Collaborative graph neural networks for augmented graphs: A local-to-global perspective

Authors: Qihang Guo, Xibei Yang, Ming Li, Yuhua Qian

Abstract:

In the field of graph neural networks (GNNs) for representation learning, a noteworthy highlight is the potential of embedding fusion architectures for augmented graphs. However, prevalent GNN embedding fusion architectures mainly focus on handling graph combinations from a global perspective, often ignoring their collaboration with the information of local graph combinations. This inherent limitation constrains the ability of the constructed models to handle multiple input graphs, particularly when dealing with noisy input graphs collected from error-prone sources or those resulting from deficiencies in graph augmentation methods. In this paper, we propose an effective and robust embedding fusion architecture from a local-to-global perspective termed collaborative graph neural networks for augmented graphs (LoGo-GNN). Essentially, LoGo-GNN leverages a pairwise graph combination scheme to generate local perspective inputs. Together with the global graph combination, this serves as the basis to generate a local-to-global perspective. Specifically, LoGo-GNN employs a perturbation augmentation strategy to generate multiple augmentation graphs, thereby facilitating collaboration and embedding fusion from a local-to-global perspective through the use of graph combinations. In addition, LoGo-GNN incorporates a novel loss function for learning complementary information between different perspectives. We also conduct theoretical analysis to assess its expressive power under ideal conditions, demonstrating the effectiveness of LoGo-GNN. Our experiments, focusing on node classification and clustering tasks, highlight the superior performance of LoGo-GNN compared to state-of-the-art methods. Additionally, robustness analysis further confirms its effectiveness in addressing uncertainty challenges.

Keywords:

1-s2.0-S0031320324007714-main.pdf

Tue Jan 14 17:38:00 CST 2025