Incremental approach to feature selection based on rough set theory

Authors: Jiye Liang, Feng Wang, Chuangyin Dang, Yuhua Qian

Abstract:

Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.

Keywords: Dynamic data sets;incremental algorithm;feature selection;rough set theory

Incremental approach to feature selection based on rough set theory.pdf

Fri Aug 15 15:30:00 CST 2014