多景深图像聚焦信息的三维形貌重建:数据集与模型
Authors: 张江峰,闫涛,王克琪,钱宇华,吴鹏
Abstract:
受限于数据采集方式的多源异性与三维重建结果的昂贵标注,现有基于多景深图像聚焦信息的三维形貌重建方法通常需要根据具体应用场景设计,缺乏场景适应性。本文提出一种多景深图像数据集构建的理论与方法,并在此基础上设计具有良好鲁棒性的深度网络模型。构建的多景深图像数据集(MDFI Datasets)旨在剥离图像实际语义与深度信息的强关联性,通过联合输入图像序列的富纹理特性与三维形貌固有的同质与阶跃特性,提出形貌核函数非线性空间映射方法扩展数据集的多维性与多样性。设计的深度三维形貌重建网络模型(DSFF-Net)以U-Net为基础网络,添加可变形卷积模块(Deformable ConvNets v2)增强网络的特征提取能力,全新设计的局部-全局关系耦合模块(LGRCB)有助于提升模型全局聚焦信息的聚合能力。为验证MDFI Datasets的跨场景适用性和DSFF-Net模型的鲁棒性与泛化性,本文从四个不同方面进行实验对比分析。实验结果表明,相较于最先进的鲁棒聚焦体积正则化的聚焦形貌恢复算法(RFVR-SFF)和全聚焦深度网络(AiFDepth-Net),本文提出的DSFF-Net模型在RMSE指标上分别下降15%和29%;大景深场景实验表明,本文提出的数据集构建方法能够适应实际应用场景。
Keywords: 三维形貌重建,深度学习,图像序列数据集
多景深图像聚焦信息的三维形貌重建_数据集与模型_张江峰.pdf
Tue Aug 29 09:56:00 CST 2023