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Current machine learning algorithms encounter challenges such as missing labels and high 
dimensionality. Feature selection serves as an effective dimensionality reduction technique, 
enhancing the efficiency and accuracy of subsequent machine learning tasks by eliminating 
irrelevant and redundant features. Given the difficulty in obtaining fully labeled data, partially 
labeled data has become a crucial target for machine learning models to address. The related 
family is an efficient, rough set-based feature selection approach; however, it cannot be applied 
to semi-supervised learning tasks. Consequently, this paper introduces a semi-supervised feature 
selection method based on a fuzzy related family for partially labeled data. At first, the fuzzy 
label values of unlabeled samples are calculated based on fuzzy similarity relationships by 
establishing a novel fuzzy covering system. Subsequently, a fuzzy related family is constructed 
by a consistent fuzzy set. Then a semi-supervised feature selection algorithm, referred to as 
the Semi-supervised Fuzzy Related Family (SFRF), is developed using the established feature 
significance measurement. Compared to existing semi-supervised feature selection algorithms, 
SFRF considerably enhances feature selection efficiency while preserving classification accuracy. 
Specifically, the average reduction efficiency across twelve datasets increased by up to 109 times.

1. Introduction

With the rapid advancement of computer technology, data-driven machine learning methods have been extensively employed in 
various fields, such as finance, healthcare, and transportation. Effective utilization of data has always been a key challenge in the 
field of machine learning, and feature selection can aid in eliminating redundant attributes, improving computational efficiency, and 
ensuring the effective utilization of data information. Therefore, feature selection is a popular preprocessing step in machine learning. 
Currently, most of feature selection methods are primarily applied to supervised learning tasks. These methods typically form the 
final feature subset by selecting features with high relevance to labels, considering the variance of the feature, observing the learning 
curves of the model, and so on. Thereby improve the efficiency and performance of subsequent classification learning and data 
mining tasks, which usually necessitate datasets containing all labels. However, obtaining labels for data is often a challenging and 
time-consuming task, resulting in most real-world datasets being partially labeled. Thus, semi-supervised feature selection methods 
for handling partially labeled data have garnered widespread attention in recent years [1–4].
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Semi-supervised feature selection methods typically involve two crucial steps: handling unlabeled data and evaluating feature 
significance. In the first step, there are two primary approaches. (1) One approach predicts the labels of unlabeled samples, converting 
the data into fully labeled data. For example, An et al. [5] propose a method called 𝑘NN-FRS based on fuzzy rough set with a relative 
measurement, introducing a novel measure of classification uncertainty. Shu et al. [6] propose a method that calculates the 𝜖-

neighborhood of unlabeled samples and expand it to obtain a larger neighborhood. Furthermore, Campagner et al. [7] presente a 
weakly supervised feature selection method to handle labels with multiple possible conditions. To better process weakly labeled data, 
they delve into the fundamental mathematical connections between rough set theory and belief function theory [8] [9]. Researchers 
have also proposed various methods for label prediction [10] [11] [12]. Although these methods can effectively handle partially 
labeled data, their efficiency is relatively lower due to the costs associated with label prediction. (2) The other approach ignores 
unlabeled samples and selects informative features based on existing labels. Qian et al. [13,14] and Yang et al. [15] define several 
local rough set models based on existing labels to propose fast local feature selection algorithms. Dai et al. [16] introduce the 
concept of discernibility pairs and dependency to measure the significance of labeled and unlabeled data. Pand et al. [17] combine 
the neighborhood discrimination index with the Laplacian score to handle labeled and unlabeled samples. In the second step, the 
focus is on evaluating the relevance between features or feature subsets and decision labels. Shu et al. [18] propose a multi-criteria 
measure method that combines dependency, information entropy, and information granulation to comprehensively evaluate features. 
Liu et al. [19] adhere to the principles of maximizing relevance and minimizing redundancy and utilize a forward sequential search 
strategy to gradually identify qualified features. Qian et al. [20] flexibly generate neighbors using the granular-ball-constrained 
neighbor strategy and obtain the confidence of labels for samples.

Rough set theory, a granular computing model proposed by Pawlak [21], forms upper and lower approximations without requiring 
prior knowledge to approximately describe data structures. Two feature selection frameworks, dependency degree and discernibility 
matrix, have been developed based on rough set theory and used for semi-supervised feature selection [18,20,22–25]. However, the 
classical rough set model can only be applied to categorical data. The fuzzy set, proposed by Zadeh [26], can effectively handle 
continuous data without discretization and information loss. Combining the advantages of both models, Dubois and Prade [27]

introduce the fuzzy rough set, which can simultaneously describe fuzziness and roughness, to process continuous data without losing 
information. Based on fuzzy rough sets, many feature selection methods have been proposed [28–34]. Hu et al. [35] propose a feature 
selection algorithm based on multi- kernel fuzzy rough set for large-scale multimodality data. Sun et al. [33] introduce an innovative 
approach to feature selection within neighborhood decision systems. Huang et al. [34] presente a multigranulation fuzzy rough set 
model and design a noise-tolerant feature selection algorithm by means of the fuzzy 𝛽-neighborhood. Especially, researchers have 
explored semi-supervised feature selection methods based on fuzzy rough sets. Ma et al. [36] propose a semi-supervised rough fuzzy 
Laplacian feature mapping method that combines neighborhood fuzzy rough sets with Laplacian. Xing et al. [37] propose a weighted 
fuzzy rough sets-based multi-view tri-training model for partially labeled data.

The related family is an efficient feature selection method based on rough set theory, proposed by Yang et al. [15,38–40]. Building 
upon the related family, Lang et al. [41,42] investigate the mechanism of feature selection in dynamic covering decision systems 
with object and feature changes. However, the current related family method is only applicable to supervised learning tasks and 
faces difficulties when dealing with partially labeled data. Furthermore, although fuzzy rough set theory can effectively represent 
knowledge and extract valuable information from continuous data, the combination of fuzzy rough set theory and the related family 
method has been less explored. Therefore, it is crucial to develop new approaches that integrate the strengths of both theories to 
advance the field of semi-supervised feature selection for partially labeled data.

In light of these challenges, a semi-supervised feature selection method is proposed based on the fuzzy related family, which 
can effectively utilize existing labeled data. Firstly, fuzzy labels are assigned to each unlabeled sample based on the fuzzy similarity 
relationship, rather than a single label. Unlike adding a single label to each unlabeled sample, fuzzy labels reflect the degree of 
membership of the sample to various fuzzy decision classes, which more closely aligns with real-world situations. Secondly, the 
paper introduces the concept of a fuzzy related family to address partially labeled datasets for the first time. Thirdly, an efficient 
semi-supervised feature selection algorithm is proposed. Numerical experimental results demonstrate that, compared to existing 
semi-supervised feature selection methods, the average computational efficiency of feature selection can be improved by up to 109 
times.

2. Background knowledge

In this section, the basic concepts of fuzzy covering rough set and partially labeled data are introduced.

The fuzzy set, a mathematical model proposed by Zadeh [26] in 1965, is designed to describe the fuzziness of data. Based on 
different membership functions, the inclusion relationship between a sample set and each sample in the universe is mapped onto the 
interval [0, 1], rather than {0, 1}. Compared to traditional set theory, the fuzzy set can better describe uncertainty and fuzziness in 
the real world. To address the issue that classical rough set theory cannot handle continuous data, Dubois and Prade [27] introduce 
fuzzy set into rough set theory and propose the concept of fuzzy rough set. Covering is an important concept in rough set theory, as 
it represents the set of information granules. To better express continuous data, fuzzification of covering has emerged as a popular 
research topic in both fuzzy theory and rough set theory [43–45].

Definition 2.1. [43] Given a nonempty finite set 𝑈 (called universe) and the fuzzy power set ℱ(𝑈 ) of 𝑈 . For ̃ = {𝐹1, 𝐹2, ⋯ , 𝐹𝑠}, 
2

where fuzzy sets 𝐹𝑖 ∈ℱ(𝑈 ) and 𝑖 = 1, 2, ..., 𝑠, if for any 𝑤 ∈𝑈 , (⋃𝑠
𝑖=1 𝐹𝑖)(𝑤) = 1, then ̃ is called a fuzzy covering of 𝑈 .
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In this paper, the union between the two fuzzy sets 𝐹𝑖∪𝐹𝑗 indicates that for any 𝑤 ∈𝑈 , there exist (𝐹𝑖∪𝐹𝑗 )(𝑤) =𝑚𝑎𝑥{𝐹𝑖(𝑤), 𝐹𝑗 (𝑤)}.

Ma et al. [44] point out that the condition (⋃𝑠
𝑖=1 𝐹𝑖)(𝑤) = 1 is too strict, so they extend the fuzzy covering to the fuzzy 𝛽-covering, 

using the parameter 𝛽 (0 < 𝛽 ≤ 1) to replace 1. In this paper, we set 𝛽 = 0 for the convenience of parameter choice and adjust the 
corresponding equation. The reason why 𝛽 is set as 0 has been discussed in our published paper [46]. Thus, in order to allow 𝛽 take 
the value of 0, we modified all occurrences of “≥ 𝛽” encountered in Definition 2.1 and Definition 2.2 to be “> 𝛽” in the article.

Definition 2.2. [44] Given a universe 𝑈 and the fuzzy power set ℱ(𝑈 ) on 𝑈 . For ̃ = {𝐹1, 𝐹2, ⋯ , 𝐹𝑠}, where 𝐹𝑖 ∈ℱ(𝑈 ), 𝑖 = 1, 2, ..., 𝑠, 
if for any 𝑤 ∈ 𝑈 , (⋃𝑠

𝑖=1 𝐹𝑖)(𝑤) > 𝛽, where 𝛽 ∈ [0, 1], then ̃ is called a fuzzy 𝛽-covering of 𝑈 , (𝑈, ̃) is an approximate space of 
fuzzy 𝛽-covering.

Generally, describing an object (sample) only requires information related to this object (sample), not all information. So Yang et 
al. [45] propose the concept of fuzzy 𝛽-minimal description.

Definition 2.3. [45] Given an universe 𝑈 and a fuzzy 𝛽-covering ̃ = {𝐹1, 𝐹2, ⋯ , 𝐹𝑠} on 𝑈 , where 𝛽 ∈ [0, 1]. For any 𝑤 ∈ 𝑈 , the 
fuzzy 𝛽 minimal description of 𝑤 is defined as:

(𝛽
𝑤)̃

= {𝐹 ∈ ̃|(𝐹 (𝑤) > 𝛽) ∧ (∀𝐻̃ ∈ ̃ ∧ 𝐻̃(𝑤) > 𝛽 ∧ 𝐻̃ ⊆ 𝐹 ⇒ 𝐹 = 𝐻̃)} (1)

The relationship 𝐻̃ ⊆ 𝐹 between the two fuzzy sets denoted that for ∀𝑤 ∈𝑈 , 𝐻̃(𝑤) ≤ 𝐹 (𝑤). The subscript ̃ can be omitted without 
causing confusion.

Definition 2.4. Let (𝑈, ̃) be an approximate space of fuzzy 𝛽-covering, where 𝛽 ∈ [0, 1]. For any 𝑊 ∈ℱ(𝑈 ), the fuzzy 𝛽-covering 
lower approximation 𝐹𝐿

̃
(𝑊 ) and the upper approximation 𝐹𝐻

̃
(𝑊 ) of 𝑊 are defined as:

𝐹𝐿
̃

(𝑊 ) = ∪{𝐹 ∈ ̃|𝐹 ⊆ 𝑊 } (2)

𝐹𝐻
̃

(𝑊 ) = 𝐹𝐿
̃

(𝑊 ) ∪ (∪{𝛽
𝑤|𝑊 (𝑤) > 𝛽}) (3)

In this paper, the fuzzy 𝛽-covering lower approximation is defined as Definition 2.4. For convenience, we set 𝛽 as 0.

3. A new semi-supervised feature selection method

To fully utilize the potential information of unlabeled samples, this chapter presents a semi-supervised feature selection method 
based on fuzzy related families. Firstly, a partially labeled dataset is converted into a fuzzy label covering information system by 
evaluating the fuzzy similarity between labeled samples and unlabeled samples. Next, a fuzzy related family is constructed based on 
the fuzzy label covering information system. As a result, a feature evaluation function is defined to select informative features.

3.1. Fuzzy label

In cases involving partially labeled data, predicting the missing labels can be achieved by utilizing the available labeled data. 
More precisely, if an unlabeled sample exhibits similarity to certain labeled samples, it is probable that its label will also resemble 
those of the labeled samples. This relationship of similarity between samples can offer valuable information about the underlying 
patterns in the data. Consequently, the fuzzy similarity relation is employed to characterize this similarity relationship, serving not 
only to indicate whether two samples are similar but also to quantify the degree of similarity. In this section, we explore adding 
fuzzy labels for unlabeled samples based on fuzzy similarity relations.

Let (𝑈𝑙 ∪ 𝑈𝑢, 𝐴𝑇 , 𝐷) be a partial label information system, where 𝑈𝑙 , 𝑈𝑢, 𝐴𝑇 and 𝐷 are the set of labeled samples, the set of 
unlabeled samples, the conditional feature set and the decision feature, respectively. 𝐹𝑁𝐴𝑇 is a fuzzy similarity relation based on the 
conditional feature set 𝐴𝑇 . For ∀𝑤𝑖, 𝑤𝑗 ∈ 𝑈𝑙 ∪ 𝑈𝑢, 𝐹𝑁𝐴𝑇 satisfies: (1) reflexivity: 𝐹𝑁𝐴𝑇 (𝑤𝑖, 𝑤𝑖) = 1; (2) symmetry: 𝐹𝑁𝐴𝑇 (𝑤𝑖, 𝑤𝑗 ) =
𝐹𝑁𝐴𝑇 (𝑤𝑗, 𝑤𝑖). In this paper, the subscript 𝐴𝑇 is omitted without causing confusion.

For ∀𝑤𝑖, 𝑤𝑗 ∈𝑈𝑙 ∪𝑈𝑢, the fuzzy similarity between sample 𝑤𝑖 and sample 𝑤𝑗 is calculated by:

𝐹𝑁(𝑤𝑖,𝑤𝑗 ) =

{
1 − 𝑑𝑓 (𝑤𝑖,𝑤𝑗 ), 𝑑𝑓 (𝑤𝑖,𝑤𝑗 ) < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

where 𝑑𝑓 (𝑤𝑖, 𝑤𝑗 ) = (
∑

𝑎∈𝐴𝑇

|𝑎(𝑤𝑖) − 𝑎(𝑤𝑗 )|2)1∕2 is the Euclidean distance function, and the values under each feature have been normal-

ized to [0, 1]. The Euclidean distance is applied as an example, and other metric distances or kernels are also viable options.

Suppose the set of labeled samples 𝑈𝑙 can be divided into 𝑠 categories by the labeled features 𝐷, i.e., 𝑈𝑙∕𝐷 = {𝐷1, 𝐷2, ⋯ , 𝐷𝑠}. 
Then the corresponding fuzzy set 𝐷̃𝑖 is obtained by converting the classical sets into fuzzy. For labeled samples, if 𝑤 ∈𝐷𝑖, since 𝑤
has a label, then 𝐷̃𝑖(𝑤) = 1, and 𝐷̃𝑗 (𝑤) = 0 for any 𝑗 ≠ 𝑖. For an unlabeled sample ∀𝑤 ∈ 𝑈𝑢, let 𝑘 be the parameter of the number of 
nearest labeled samples, 𝑘 is set as 10% of the number of labeled samples in the experiments. Let 𝑁𝑤 = {𝑧1, 𝑧2, ⋯ , 𝑧𝑘} ⊆ 𝑈𝑙 be the set 
of 𝑘 nearest samples, then calculate the membership degree 𝐷̃𝑖(𝑤) that 𝑤 belonging to the category 𝐷𝑖 based on the fuzzy similarity 
3

between 𝑤 and samples in 𝑁𝑤. The detailed description is shown in Definition 3.1.
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Table 1

Partial Labeled Data.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10

𝑎1 0.2763 0.2552 0.4868 0.8605 0.3657 0.8816 0.4578 0.2763 0.2973 0.7500

𝑎2 0.2154 0.5316 0.4446 0.2332 0.3577 0.2233 0.3260 0.2648 0.1719 0.8498

𝑎3 0.5133 0.3422 0.5561 0.7272 0.4866 0.5454 0.4919 0.1818 0.5080 0.4652

𝑎4 0.4072 0.4329 0.4845 0.4845 0.5876 0.0721 0.4587 0.3556 0.6288 0.4845

𝑑 2 2 3 1 2 1 3 2 2 3

𝑤11 𝑤12 𝑤13 𝑤14 𝑤15 𝑤16 𝑤17 𝑤18 𝑤19 𝑤20

𝑎1 0.8157 0.7473 0.7500 0.8158 0.7474 0.3526 0.6868 0.3211 0.3921 0.6368

𝑎2 0.6640 0.2290 0.8498 0.6640 0.2292 0.0395 0.4664 0.1957 0.3340 0.5850

𝑎3 0.7379 0.7700 0.4652 0.7380 0.7701 0.0000 0.6417 0.4064 0.4332 0.6631

𝑎4 0.7164 0.4536 0.4845 0.7165 0.4536 0.0000 0.2371 0.4330 0.5361 0.6392

𝑑 3 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 2

Fuzzy Membership Table of Decision Class.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10

𝐷̃1 0 0 0 1 0 1 0 0 0 0

𝐷̃2 1 1 0 0 1 0 0 1 1 0

𝐷̃3 0 0 1 0 0 0 1 0 0 1

𝑤11 𝑤12 𝑤13 𝑤14 𝑤15 𝑤16 𝑤17 𝑤18 𝑤19 𝑤20

𝐷̃1 0 1 0.1994 0.2181 0.4166 0.1053 0.3413 0.1761 0.1357 0.1949

𝐷̃2 0 0 0.2233 0.2362 0.2415 0.6987 0.2521 0.5967 0.5639 0.3332

𝐷̃3 1 0 0.5773 0.5458 0.3419 0.1960 0.4066 0.2272 0.3004 0.4719

Definition 3.1. Given a partial label information system (𝑈𝑙 ∪ 𝑈𝑢, 𝐴𝑇 , 𝐷) and the division of the labeled sample sets on the label 
features 𝑈𝑙∕𝐷 = {𝐷1, 𝐷2, ⋯ , 𝐷𝑠}. For ∀𝑤 ∈𝑈𝑙 ∪𝑈𝑢, 𝐷𝑖 ∈𝑈𝑙∕𝐷, the fuzzy label value 𝐷̃𝑖(𝑤) of sample 𝑤 is defined as:

𝐷̃𝑖(𝑤) =

⎧⎪⎪⎨⎪⎪⎩

∑
𝑧∈𝑁𝑤∩𝐷𝑖

𝐹𝑁(𝑤,𝑧)∑
𝑧∈𝑁𝑤

𝐹𝑁(𝑤,𝑧) , 𝑖𝑓 𝑤 ∈𝑈𝑢

1, 𝑖𝑓 𝑤 ∈𝑈𝑙 𝑎𝑛𝑑 𝑤 ∈𝐷𝑖

0, 𝑖𝑓 𝑤 ∈𝑈𝑙 𝑎𝑛𝑑 𝑤 ∉𝐷𝑖

(5)

where 𝐹𝑁 is a fuzzy similarity relation based on the conditional feature set 𝐴𝑇 , 𝑁𝑤 = {𝑧1, 𝑧2, ⋯ , 𝑧𝑘} are the 𝑘 closest labeled samples 
to 𝑤. The fuzzy labels of the universe 𝑈𝑙 ∪𝑈𝑢 are then denoted as: ̃ = {𝐷̃1, 𝐷̃2, ⋯ , 𝐷̃𝑠}.

Example 3.1. Given a partial label information system 𝑃𝐿𝐼𝑇 = (𝑈𝑙 ∪𝑈𝑢, 𝐴𝑇 , 𝐷), where the labeled sample set 𝑈𝑙 = {𝑤1, 𝑤2, ⋯ , 𝑤12}, 
the unlabeled sample set 𝑈𝑢 = {𝑤13, 𝑤14, ⋯ , 𝑤20}, the condition features 𝐴𝑇 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}, and the decision feature 𝐷 = {𝑑}. The de-

tails are shown in Table 1. It is easy to get 𝑈𝑙∕𝐷 = {𝐷1, 𝐷2, 𝐷3}: 𝐷1 = {𝑤4, 𝑤6, 𝑤12}, 𝐷2 = {𝑤1, 𝑤2, 𝑤5, 𝑤8, 𝑤9}, 𝐷3 = {𝑤3, 𝑤7, 𝑤10, 𝑤11}.

For the labeled sample 𝑤1, since 𝑤1 ∈𝐷2, we get 𝐷̃2(𝑤1) = 1 and 𝐷̃1(𝑤1) = 𝐷̃3(𝑤1) = 0; similarly, we can obtain the fuzzy labels 
of all labeled samples.

For the unlabeled sample 𝑤13, if 𝑘 = 10, the Euclidean distance function is used to find the 10 closest samples to 𝑤13 in 
the set of labeled samples 𝑈𝑙 to obtain 𝑁𝑤12

= {𝑤10, 𝑤11, 𝑤3, 𝑤7, 𝑤2, 𝑤5, 𝑤4, 𝑤12, 𝑤6, 𝑤1} (if the number of labeled samples is less 
than 10, then all labeled samples are selected). Then the fuzzy similarity between these 10 samples and sample 𝑤13 is calcu-

lated respectively: 𝐹𝑁(𝑤13, 𝑤10) = 1, 𝐹𝑁(𝑤13, 𝑤11) = 0.5914, 𝐹𝑁(𝑤13, 𝑤3) = 0.5084, 𝐹𝑁(𝑤13, 𝑤7) = 0.3991, and 𝐹𝑁(𝑤13, 𝑤2) = 0.3968, 
𝐹𝑁(𝑤13, 𝑤5) = 0.3668, 𝐹𝑁(𝑤13, 𝑤4) = 0.321, 𝐹𝑁(𝑤13, 𝑤12) = 0.3079, 𝐹𝑁(𝑤13, 𝑤12) = 0.3079, 𝐹𝑁(𝑤13, 𝑤12) = 0.3079, 𝐹𝑁(𝑤13, 𝑤12) =
0.3079. 𝐹𝑁(𝑤13, 𝑤6) = 0.2343, 𝐹𝑁(𝑤13, 𝑤1) = 0.203, and 𝐹𝑁(𝑤13, 𝑤1) = 0.203. Then the fuzzy labels of the sample 𝑤13 are calculated 
according to the Equation (5) as 𝐷̃1(𝑤13) = 0.1994, 𝐷̃2(𝑤13) = 0.2233, 𝐷̃3(𝑤13) = 0.5773.

Similarly, the fuzzy label values can be derived for all unlabeled samples with respect to all labeled categories. The final result is 
shown in Table 2.

3.2. Fuzzy label covering information system

Given a partial label information system (𝑈𝑙 ∪𝑈𝑢, 𝐴𝑇 , 𝐷), the conditional feature 𝐴𝑇 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛}. Based on each conditional 
feature 𝑎𝑖 ∈ 𝐴𝑇 , we can form the corresponding fuzzy covering ̃𝑖, then these fuzzy coverings are used to form a fuzzy covering 
family 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛} on universe 𝑈𝑙 ∪𝑈𝑢. Then all fuzzy labels ̃ = {𝐷̃1, 𝐷̃2, ⋯ , 𝐷̃𝑠} of universe 𝑈𝑙 ∪ 𝑈𝑢 are calculated 
based on Definition 3.1. Thus we can convert (𝑈𝑙 ∪𝑈𝑢, 𝐴𝑇 , 𝐷) to (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃), called FLCIS (Fuzzy Labeled Covering Information 
4

System).
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Suppose that (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) is a FLCIS, 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛} is a fuzzy covering family of 𝑈𝑙 ∪𝑈𝑢. Let ∪𝒱 = {𝐹 ∈ ̃𝑖|̃𝑖 ∈
𝒱}, because ̃𝑖 ∈ 𝒱 is a fuzzy covering on universe 𝑈𝑙 ∪ 𝑈𝑢, ∪𝒱 is also a covering on universe 𝑈𝑙 ∪ 𝑈𝑢. For any fuzzy set 
𝑊 ∈ℱ(𝑈𝑙 ∪𝑈𝑢), the fuzzy covering lower approximation of 𝑊 about (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) is defined as:

𝐹𝐿∪𝒱 (𝑊 ) = ∪{𝐹 ∈ ∪𝒱|𝐹 ⊆ 𝑊 } (6)

Based on the fuzzy inclusion operation, the fuzzy positive region of fuzzy label ̃ is defined as:

𝑃𝑂𝑆∪𝒱 (̃) = ∪{𝐹𝐿∪𝒱 (𝐷̃𝑖)|𝐷̃𝑖 ∈ ̃} = ∪{𝐹 ∈ ∪𝒱|∃𝐷̃𝑖 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑖} (7)

Generally, the objective of feature selection is to identify the minimal subset that maintains the positive region invariant. Given 
that retaining the fuzzy positive region of fuzzy covering entirely invariant is overly stringent, the coverage rate regarding the fuzzy 
positive region is proposed as a constraint for feature selection. In this study, the coverage rate concerning the fuzzy positive region 
is defined within the context of the fuzzy label covering information system.

Definition 3.2. Given a FLCIS (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), where 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛} is a fuzzy covering family on 𝑈𝑙 ∪ 𝑈𝑢, ̃ =
{𝐷̃1, 𝐷̃2, ⋯ , 𝐷̃𝑠} are fuzzy labels of 𝑈𝑙 ∪𝑈𝑢. The fuzzy positive region coverage set 𝐶𝑆(𝒯) and the fuzzy positive region coverage rate 
𝐶𝑅(𝒯) for any 𝒯 ⊆𝒱 are:

𝐶𝑆(𝒯) = {𝑤𝑖|𝑃𝑂𝑆∪𝒯(̃)(𝑤𝑖) > 0} (8)

𝐶𝑅(𝒯) = |𝐶𝑆(𝒯)|∕|𝑈𝑙 ∪𝑈𝑢| (9)

Proposition 3.1. Let (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) be a FLCIS, where 𝒱 is a fuzzy covering family of 𝑈𝑙 ∪𝑈𝑢. If 𝒯1 ⊆𝒯2 ⊆𝒱, then 𝐶𝑅(𝒯1) ≤ 𝐶𝑅(𝒯2).

Proof. Since 𝑃𝑂𝑆∪𝒯2
(̃) = ∪{𝐹𝐿∪𝒯2

(𝐷̃𝑖)|𝐷̃𝑖 ∈ ̃} = ∪{𝐹 ∈ ∪𝒯2|∃𝐷̃𝑖 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑖}= (∪{𝐹 ∈ ∪𝒯1|∃𝐷̃𝑖 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑖}) ∪
(∪{𝐹 ∈ ∪(𝒯2 −𝒯1)|∃𝐷̃𝑖 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑖}). It is obvious that 𝑃𝑂𝑆∪𝒯2

(̃) = 𝑃𝑂𝑆∪𝒯1
(̃) ∪ (∪{𝐹 ∈ ∪(𝒯2 −𝒯1)|∃𝐷̃𝑖 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑖}), 

i.e. 𝑃𝑂𝑆∪𝒯1
(̃) ⊆ 𝑃𝑂𝑆∪𝒯2

(̃). Thus 𝐶𝑆(𝒯1) ⊆ 𝐶𝑆(𝒯2), then 𝐶𝑅(𝒯1) ≤ 𝐶𝑅(𝒯2), so the fuzzy positive region coverage rate is mono-

tonic. □

Definition 3.3. Given a FLCIS (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), where 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛} is a fuzzy covering family on 𝑈𝑙 ∪ 𝑈𝑢. For any 
̃𝑖 ∈𝒱, if 𝐶𝑅(𝒱 −{̃𝑖}) = 𝐶𝑅(𝒱), ̃𝑖 is said to be reducible in 𝒱, otherwise ̃𝑖 is necessary in 𝒱. And for any 𝒯 ⊆𝒱, if every 
element in the 𝒯 is necessary, then 𝒯 is independent. If 𝒯 is independent, and 𝐶𝑅(𝒯) = 𝐶𝑅(𝒱), then 𝒯 is said to be a reduct of 𝒱.

For any 𝒯 ⊆𝒱, it is evident that 𝐶𝑆(𝒯) ⊆ 𝐶𝑆(𝒱). If 𝐶𝑆(𝒱) ⊆ 𝐶𝑆(𝒯), it is clear that 𝐶𝑆(𝒯) = 𝐶𝑆(𝒱). Therefore, the purpose of 
feature selection in this paper is to find a minimal feature subset (reduct) keeping 𝐶𝑆(𝒱) or 𝐶𝑅(𝒱) invariant.

3.3. Fuzzy related family

The related family, an efficient feature selection method proposed by Yang et al. [38], is based on covering rough sets. However, 
this method is unable to process partially labeled data. To address this issue, we propose a novel approach called the fuzzy related 
family, which is based on a fuzzy label covering information system. This approach effectively designs a feature evaluation function 
for selecting relevant features.

Definition 3.4. Given a FLCIS (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃), where 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛}, is a family of fuzzy coverings on 𝑈𝑙 ∪𝑈𝑢. For any 
sample 𝑤𝑖 ∈𝑈𝑙 ∪𝑈𝑢, define the related set of 𝑤𝑖 as 𝑟(𝑤𝑖) = {̃ ∈𝒱|∃𝐹 ∈ ̃ ∧ ∃𝐷̃𝑗 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑗 ∧ 𝐹 (𝑤𝑖) > 0}, the related family 
of fuzzy label covering information systems (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) is ℝ(𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) = {𝑟(𝑤𝑖)|𝑤𝑖 ∈𝑈𝑙 ∪𝑈𝑢}.

The fuzzy related family introduces fuzzy concepts to represent the likelihood of unknown samples belonging to some consistent 
granules (which means unknown samples may be classified to the correct class), while the original related family just denote whether 
unknown samples belong to some consistent granules. In other words, when there are multiple features that could potentially classify 
a sample correctly, the fuzzy related family can assess which feature is more likely to lead to a correct classification, but the original 
related family choose one feature randomly.

Suppose a fuzzy information granule 𝐹 and a fuzzy label 𝐷̃𝑗 ∈ ̃, if 𝐹 ⊆ 𝐷̃𝑗 , we regard that the fuzzy information granule 𝐹
is consistent to the fuzzy label 𝐷̃𝑗 in this paper. As shown in Definition 3.4, the related set of a sample 𝑤𝑖 consists of all feature 
generating at least one fuzzy information granules 𝐹 which is consistent to a certain fuzzy label 𝐷̃𝑗 and 𝐹 (𝑤𝑖) > 0.

The related family of a fuzzy label covering information system ℝ(𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃) = {𝑟(𝑤𝑖)|𝑤𝑖 ∈ 𝑈𝑙 ∪ 𝑈𝑢} stores useful features 
for each sample, where 𝑟(𝑤𝑖) is the set of all feature classifying 𝑤𝑖 correctly. If a feature is not included in a related set of any 
sample, it is totally useless for the fuzzy information system. However, the related family cannot describe the credibility degree of 
the correct classification. To solve this problem, the fuzzy related family (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) is defined to select informative feature 
5

more credible.
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Definition 3.5. Given a FLCIS (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), where 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛} is a family of fuzzy coverings of 𝑈𝑙 ∪ 𝑈𝑢. For any 
̃𝑖 ∈𝒱, the consistent fuzzy set (̃𝑖) of ̃𝑖 is defined as:

(̃𝑖)(𝑤𝑡) =

{
𝑚𝑎𝑥{𝐹 (𝑤𝑡)|𝐹 ∈ ̃𝑖 ∧ ∃𝐷̃𝑗 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑗}, ̃𝑖 ∈ 𝑟(𝑤𝑡)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

where 𝑤𝑡 is a sample, 𝑟(𝑤𝑡) ∈ ℝ(𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), and ℝ(𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃) is the related family of fuzzy label covering information 
systems (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃). Equation (11) can also be used to represent the consistent fuzzy set of ̃𝑖:

(̃𝑖) = ∪{𝐹 ∈ ̃𝑖|∃𝐷̃𝑗 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑗} (11)

the fuzzy related family (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) is defined as:

(𝑈𝑙 ∪𝑈𝑢,𝒱, ̃) = {(̃𝑖)|̃𝑖 ∈𝒱} (12)

The related family ℝ(𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) can be generated by the fuzzy related family (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) over the following method 
shown in Proposition 3.2, which means the fuzzy related family contains more information about the data than the non-fuzzy one.

Proposition 3.2. Given a FLCIS (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃), (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) is the fuzzy related family. For each 𝑤𝑡 ∈𝑈𝑙 ∪𝑈𝑢, the related set 
𝑟(𝑤𝑡) can be induced by the fuzzy related family: 𝑟(𝑤𝑡) = {̃𝑖|(̃𝑖) ∈ (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), (̃𝑖)(𝑤𝑡) > 0}. Then, the related family 
ℝ(𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) = {𝑟(𝑤𝑖)|𝑤𝑖 ∈𝑈𝑙 ∪𝑈𝑢} can be generated by (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃).

Example 3.2. Given a FLCIS (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), where 𝑈𝑙 = {𝑤1, 𝑤2, 𝑤3}, 𝑈𝑢 = {𝑤4, 𝑤5, 𝑤6}, a fuzzy covering family 𝒱 =
{̃1, ̃2, ̃3, ̃4}, ̃1 = {𝐹11, 𝐹12, 𝐹13}, ̃2 = {𝐹21, 𝐹22, 𝐹23}, ̃3 = {𝐹31, 𝐹32, 𝐹33}, ̃4 = {𝐹41, 𝐹42, 𝐹43} and fuzzy label ̃ =
{𝐷̃1, 𝐷̃2}. All fuzzy granules in each fuzzy covering are listed as

𝐹11 =
0.5
𝑤1

+ 0.8
𝑤2

+ 0.6
𝑤3

+ 0.7
𝑤4

+ 0.3
𝑤5

+ 0.6
𝑤6

, 𝐹12 =
0
𝑤1

+ 0
𝑤2

+ 0.9
𝑤3

+ 0
𝑤4

+ 0.7
𝑤5

+ 0
𝑤6

,

𝐹13 =
0.8
𝑤1

+ 0.6
𝑤2

+ 0
𝑤3

+ 0.8
𝑤4

+ 0.1
𝑤5

+ 0
𝑤6

, 𝐹21 =
0.3
𝑤1

+ 0.6
𝑤2

+ 0
𝑤3

+ 0.5
𝑤4

+ 0.2
𝑤5

+ 0
𝑤6

,

𝐹22 =
0
𝑤1

+ 0.7
𝑤2

+ 0.8
𝑤3

+ 0.5
𝑤4

+ 0.6
𝑤5

+ 0
𝑤7

, 𝐹23 =
0
𝑤1

+ 0
𝑤2

+ 0.2
𝑤3

+ 0.2
𝑤4

+ 0.6
𝑤5

+ 0
𝑤6

,

𝐹31 =
0.4
𝑤1

+ 0.6
𝑤2

+ 0
𝑤3

+ 0.7
𝑤4

+ 0.8
𝑤5

+ 0.7
𝑤6

, 𝐹32 =
0
𝑤1

+ 0
𝑤2

+ 0.6
𝑤3

+ 0
𝑤4

+ 0.7
𝑤5

+ 0.3
𝑤6

,

𝐹33 =
0.7
𝑤1

+ 0.6
𝑤2

+ 0
𝑤3

+ 0
𝑤4

+ 0.3
𝑤5

+ 0.6
𝑤6

, 𝐹41 =
0.5
𝑤1

+ 0.5
𝑤2

+ 0
𝑤3

+ 0.6
𝑤4

+ 0.2
𝑤5

+ 0.5
𝑤6

,

𝐹42 =
0.3
𝑤1

+ 0.7
𝑤2

+ 0.6
𝑤3

+ 0.1
𝑤4

+ 0
𝑤5

+ 0.3
𝑤6

, 𝐹43 =
0.6
𝑤1

+ 0
𝑤2

+ 0.5
𝑤3

+ 0.6
𝑤4

+ 0.6
𝑤5

+ 0.7
𝑤6

.

The fuzzy labels are

𝐷̃1 =
1
𝑤1

+ 1
𝑤2

+ 0
𝑤3

+ 0.8
𝑤4

+ 0.3
𝑤5

+ 0.6
𝑤6

, 𝐷̃2 =
0
𝑤1

+ 0
𝑤2

+ 1
𝑤3

+ 0.2
𝑤4

+ 0.7
𝑤5

+ 0.4
𝑤6

.

The fuzzy positive region is calculated from the Equation (7) as follows,

𝑃𝑂𝑆∪𝒱 (̃) = 𝐹12 ∪ 𝐹13 ∪ 𝐹21 ∪ 𝐹23 ∪ 𝐹32 ∪ 𝐹33 ∪ 𝐹41 =
0.8
𝑤1

+ 0.6
𝑤2

+ 0.9
𝑤3

+ 0.8
𝑤4

+ 0.7
𝑤5

+ 0.6
𝑤6

.

Find the related set for each 𝑤𝑖 ∈𝑈𝑙 ∪𝑈𝑢 according to the Definition 3.4.

𝑟(𝑤1) = {̃1, ̃2, ̃3, ̃4}, 𝑟(𝑤2) = {̃1, ̃2, ̃3, ̃4},

𝑟(𝑤3) = {̃1, ̃2, ̃3}, 𝑟(𝑤4) = {̃1, ̃2, ̃4},

𝑟(𝑤5) = {̃1, ̃2, ̃3, ̃4}, 𝑟(𝑤6) = {̃3, ̃4}.

Find the consistent fuzzy set for each ̃𝑖 ∈𝒱 according to the Definition 3.5.

(̃1) = 𝐹12 ∪ 𝐹13 =
0.8
𝑤1

+ 0.6
𝑤2

+ 0.9
𝑤3

+ 0.8
𝑤4

+ 0.7
𝑤5

+ 0
𝑤6

,

(̃2) = 𝐹21 ∪ 𝐹23 =
0.3
𝑤1

+ 0.6
𝑤2

+ 0.2
𝑤3

+ 0.5
𝑤4

+ 0.6
𝑤5

+ 0
𝑤6

,

(̃3) = 𝐹32 ∪ 𝐹33 =
0.7
𝑤1

+ 0.6
𝑤2

+ 0.6
𝑤3

+ 0
𝑤4

+ 0.7
𝑤5

+ 0.6
𝑤6

,

(̃4) = 𝐹41 =
0.5
𝑤1

+ 0.5
𝑤2

+ 0
𝑤3

+ 0.6
𝑤4

+ 0.2
𝑤5

+ 0.5
𝑤6

.

Finally get (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) = {(̃1), (̃2), (̃3), (̃4)}.

Theorem 3.1. Let (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃) be a FLCIS, (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃) is the corresponding fuzzy related family. For ∀𝑤𝑡 ∈ 𝑈𝑙 ∪ 𝑈𝑢, 
𝑤𝑡 ∈ 𝐶𝑆(𝒱) if and only if ∃̃𝑖 ∈𝒱 makes (̃𝑖)(𝑤𝑡) > 0.

Proof. (⇒) Since ∃̃𝑖 ∈𝒱 makes (̃𝑖)(𝑤𝑡) > 0, then there exists 𝐹𝑗 ∈ ̃𝑖 makes 𝐹𝑗 (𝑤𝑡) > 0, and ∃𝐷̃𝑟 ∈ ̃ makes 𝐹𝑗 ⊆ 𝐷̃𝑟. Since 
𝑃𝑂𝑆∪𝒱 (̃) = ∪{𝐹 ∈ ∪𝒱|∃𝐷̃𝑟 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑟}, and 𝐹𝑗 ∈ ∪𝒱, there is 𝑃𝑂𝑆∪𝒱 (̃)(𝑤𝑡) > 0, which implies 𝑤𝑡 ∈ 𝐶𝑆(𝒱).

(⇐) Assume 𝑤𝑡 ∈ 𝐶𝑆(𝒱), then 𝑃𝑂𝑆∪𝒱 (̃)(𝑤𝑡) > 0. Thus, ∃𝐹𝑗 ∈ ∪𝒱 makes 𝐹𝑗 (𝑤𝑡) > 0, and ∃𝐷̃𝑟 ∈ ̃ makes 𝐹𝑗 ⊆ 𝐷̃𝑟. This means 
6

that ∃̃𝑖 ∈𝒱 makes (̃𝑖)(𝑤𝑡) > 0. □
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Theorem 3.1 demonstrates that it is easy to determine whether an object belongs to the coverage set of a feature by the fuzzy 
related family. Because the fuzzy related family contains all information to compute the coverage of feature subsets, enabling the 
derivation of a new reduction approach based on the fuzzy related family.

Theorem 3.2. Let (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) be a FLCIS, (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) is the corresponding fuzzy related family. For 𝒯 ⊆𝒱, 𝒯 is a reduct 
of 𝒱 if and only if 𝒯 is a minimal subset satisfying the condition: for any nonempty related set 𝑟(𝑤𝑡) ∈ℝ(𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃), there ∃̃𝑟 ∈𝒯
such that (̃𝑟)(𝑤𝑡) > 0.

Proof. (⇒) Assume that 𝒯 is a reduct of 𝒱, then 𝐶𝑆(𝒯) = 𝐶𝑆(𝒱) and 𝐶𝑅(𝒯) = 𝐶𝑅(𝒱). For ∀𝑟(𝑤𝑡) ∈ℝ(𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃) and 𝑟(𝑤𝑡)
is nonempty, then 𝑤𝑡 ∈ 𝐶𝑆(𝒱). And since 𝐶𝑆(𝒯) = 𝐶𝑆(𝒱), 𝑤𝑡 ∈ 𝐶𝑆(𝒯), which means that ∃̃𝑟 ∈𝒯 such that (̃𝑟)(𝑤𝑡) > 0.

(⇐) Suppose that for ∀𝑟(𝑤𝑡) ∈ ℝ(𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), 𝑟(𝑤𝑡) is nonempty, there ∃̃𝑟 ∈ 𝒯 and 𝑟(𝑤𝑡) ∈ ℝ(𝑈𝑙 ∪ 𝑈𝑢, 𝒯, ̃) make 
(̃𝑟)(𝑤𝑡) > 0. By Theorem 3.1 it is known that 𝑤𝑡 ∈ 𝐶𝑆(𝒱) and 𝑤𝑡 ∈ 𝐶𝑆(𝒯); hence 𝐶𝑆(𝒱) ⊆ 𝐶𝑆(𝒯). Since 𝒯 ⊆𝒱, then 𝐶𝑆(𝒯) ⊆
𝐶𝑆(𝒱), so 𝐶𝑆(𝒯) = 𝐶𝑆(𝒱). And because 𝒯 is a minimal subset satisfying the condition that for ∀̃𝑗 ∈𝒯, 𝐶𝑅(𝒯) ≠ 𝐶𝑅(𝒯−{̃𝑗}), 
then 𝒯 is independent. Thus 𝒯 is a reduct of 𝒱. □

Theorem 3.2 presents reduction rules based on the fuzzy related family. Two new significance functions, grounded in the fuzzy 
related family, are defined to evaluate the features.

Definition 3.6. Given a FLCIS (𝑈𝑙 ∪ 𝑈𝑢, 𝒱, ̃), where 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛} is a fuzzy covering family of 𝑈𝑙 ∪ 𝑈𝑢, (𝑈𝑙 ∪
𝑈𝑢, 𝒱, ̃) is the corresponding fuzzy related family. The significance of feature subset 𝒯 ⊆𝒱 is defined as:

𝐶𝐷(𝒯) =
|𝑈𝑙∪𝑈𝑢|∑

𝑡=1
𝑚𝑎𝑥{(̃𝑖)(𝑤𝑡)|̃𝑖 ∈𝒱} (13)

For any ̃𝑖 ∈𝒯, the inner significance of ̃𝑖 with respect to 𝒯 is

𝑆𝐼𝐺𝑖𝑛(𝒯, ̃𝑖) = 𝐶𝐷(𝒯) −𝐶𝐷(𝒯 − {̃𝑖}) (14)

For any ̃𝑖 ∈ (𝒱 −𝒯), the outer significance of ̃𝑖 with respect to 𝒯 is

𝑆𝐼𝐺𝑜𝑢𝑡(𝒯, ̃𝑖) = 𝐶𝐷(𝒯 ∪ {̃𝑖}) −𝐶𝐷(𝒯) (15)

In accordance with 3.6, the inner and outer significance of all features can be calculated using a fuzzy related family without 
redundant calculations based on the original data or fuzzy label information system. This strategy reduces the time required for 
reduct computation.

4. Semi-supervised feature selection algorithm based on fuzzy related family

This section introduces a Semi-supervised Feature selection algorithm based on fuzzy Related Family (short for SFRF). The flow 
chart of SFRF is shown in Fig. 1.

As depicted in Fig. 1, SFRF initially assigns fuzzy labels to unlabeled samples according to 3.1 and computes the fuzzy covering for 
each conditional feature separately. This process converts the original partially labeled data into a fuzzy label covering information 
system FLCIS (𝑈𝑙 ∪𝑈𝑢, 𝒱, ̃). Subsequently, the fuzzy related family is constructed. Lastly, the significances of feature subsets are 
determined based on the fuzzy related family, and features are selected following a greedy strategy.

In this paper, the set of fuzzy information granules (fuzzy covering) for each conditional feature 𝑎𝑖 is calculated according to the 
Equation (16) ̃𝑖 = {𝐹𝑡|𝑡 = 1, 2, ⋯ , |𝑈𝑙|}. Then use these fuzzy coverings to form a fuzzy covering family 𝒱 = {̃1, ̃2, ⋯ , ̃𝑛}.

𝐹𝑡(𝑤𝑗 ) =

{ 1−|𝑎𝑖(𝑤𝑡)−𝑎𝑖(𝑤𝑗 )|
𝛿

, |𝑎𝑖(𝑤𝑡) − 𝑎𝑖(𝑤𝑗 )| ≤ 𝛿

0, |𝑎𝑖(𝑤𝑡) − 𝑎𝑖(𝑤𝑗 )| > 𝛿
(16)

where 𝑤𝑡 ∈𝑈𝑙 , 𝑤𝑗 ∈𝑈𝑙 ∪𝑈𝑢, 𝛿 ∈ [0, 0.2] is the radius parameters controlling the size of the fuzzy information granules.

For Algorithm 1, the time complexity of adding fuzzy labels is 𝑂(|𝐴𝑇 ||𝑈𝑙||𝑈𝑢|). The time complexity of computing the fuzzy 
information granule and constructing the fuzzy related family is 𝑂(|𝐴𝑇 ||𝑈𝑙||𝑈𝑙 ∪ 𝑈𝑢|). Furthermore, the time complexity of the 
feature selection phase is 𝑂(𝑘|𝐴𝑇 ||𝑈𝑙 ∪𝑈𝑢|), where 𝑘 < |𝐴𝑇 | denotes the number of features in the final reduction. Consequently, the 
overall time complexity for the SFRF algorithm becomes 𝑂(|𝐴𝑇 |(|𝑈𝑙||𝑈𝑢| + |𝑈𝑙 ∪𝑈𝑢||𝑈𝑙| + 𝑘|𝑈𝑙 ∪𝑈𝑢|)). Since searching all reducts 
may require exponential time. To improve the computation efficiency, based on a greedy strategy, Algorithm 1 searches a feature 
subset (an approximate reduct) which may be not a reduct.

Example 4.1. (following Example 3.2) The fuzzy related family obtained in Example 3.2 is
7

(𝑈𝑙 ∪𝑈𝑢,𝒱, ̃) = {(̃1),(̃2),(̃3),(̃4)}
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Fig. 1. Flow chart of SFRF algorithm.

Algorithm 1: Semi-supervised feature selection algorithm based on fuzzy related family (SFRF).

1 Input: A partial label data information system (𝑈𝑙 ∪𝑈𝑢, 𝐴𝑇 , 𝐷), where 𝑈𝑙 ∪𝑈𝑢 is a universe, 𝐴𝑇 = {𝑎1 , 𝑎2 , ⋯ , 𝑎𝑛} is the conditional feature set, 𝐷 = {𝑑} is the 
label feature; a radius parameter 𝛿;

2 Output: An feature subset 𝑟𝑒𝑑;

3 Generate the fuzzy label ̃= {𝐷̃1 , ̃𝐷2 , ⋯ , ̃𝐷𝑠} based on Definition 3.1

4 Let 𝑟𝑒𝑑 = {};

5 for 𝑎𝑖 ∈𝐴𝑇 do

6 Compute the fuzzy covering under the conditional feature 𝑎𝑖 according to Equation (16) ̃𝑖 = {𝐹𝑡|𝑡 = 1, 2, ⋯ , |𝑈𝑙|};

7 Compute (̃𝑖) = ∪{𝐹 ∈ ̃𝑖|∃𝐷̃𝑗 ∈ ̃ s.t. 𝐹 ⊆ 𝐷̃𝑗};

8 end for

9 𝒱 = {̃1 , ̃2 , ⋯ , ̃𝑛};

10 Compute the fuzzy positive region coverage 𝐶𝑅(𝒱), let 𝑟 = 𝐶𝑅(𝒱);
11 while 𝐶𝑅(𝑟𝑒𝑑) < 𝑟 do

12 for 𝑎𝑖 ∈𝐴𝑇 − 𝑟𝑒𝑑 do

13 Compute 𝑆𝐼𝐺𝑜𝑢𝑡(𝑟𝑒𝑑, ̃𝑖) = 𝐶𝐷(𝑟𝑒𝑑 ∪ {̃𝑖}) −𝐶𝐷(𝑟𝑒𝑑);
14 end for

15 Select the 𝑎∗(̃∗ is induced by 𝑎∗) with the highest significance 𝑆𝐼𝐺𝑜𝑢𝑡(𝑟𝑒𝑑, ̃∗);
16 Let 𝑟𝑒𝑑 = 𝑟𝑒𝑑 ∪ 𝑎∗ ;

17 Compute 𝐶𝑅(𝑟𝑒𝑑);
18 end while

19 Back to 𝑟𝑒𝑑.

(̃1) =
0.8
𝑤1

+ 0.6
𝑤2

+ 0.9
𝑤3

+ 0.8
𝑤4

+ 0.7
𝑤5

+ 0
𝑤6

,(̃2) =
0.3
𝑤1

+ 0.6
𝑤2

+ 0.2
𝑤3

+ 0.5
𝑤4

+ 0.6
𝑤5

+ 0
𝑤6

(̃3) =
0.7
𝑤1

+ 0.6
𝑤2

+ 0.6
𝑤3

+ 0
𝑤4

+ 0.7
𝑤5

+ 0.6
𝑤6

,(̃4) =
0.5
𝑤1

+ 0.5
𝑤2

+ 0
𝑤3

+ 0.6
𝑤4

+ 0.2
𝑤5

+ 0.5
𝑤6

Firstly, we calculate the significance of features {̃1}, {̃2}, {̃3} and {̃4} respectively.

𝐶𝐷({̃1}) = 3.8, 𝐶𝐷({̃2}) = 2.2, 𝐶𝐷({̃3}) = 3.2, 𝐶𝐷({̃4}) = 2.3.

Then the feature with the greatest significance ̃1 is added to feature subset as 𝒯 = {̃1}, calculate 𝐶𝑆(𝒯) = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5}
and 𝐶𝑅(𝒯) = 0.83.

Because the coverage rate of the original conditional feature set 𝒱 = {̃1, ̃2, ̃3, ̃4} is 𝐶𝑅(𝒱) = 1. Since 𝐶𝑅(𝒯) < 𝐶𝑅(𝒱), 
we proceed to calculate the significance of the unselected features {̃2}, {̃3} and {̃4} respectively.

𝑆𝐼𝐺𝑜𝑢𝑡(𝒯, {̃2}) = 0, 𝑆𝐼𝐺𝑜𝑢𝑡(𝒯, {̃3}) = 0.6, 𝑆𝐼𝐺𝑜𝑢𝑡(𝒯, {̃4}) = 0.5.

Then the feature with the greatest significance ̃3 is chosen, 𝒯 =𝒯 ∪{̃3} = {̃1, ̃3}, 𝐶𝑆(𝒯) = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6} and 
𝐶𝑅(𝒯) = 1. Once 𝐶𝑅(𝒯) reach 1, {̃1, ̃3} is output as the selected feature subset.

5. Experiment and analysis

In this section, we conducted numerical experiments to verify the effectiveness of SFRF and compared it with three existing 
semi-supervised feature selection algorithms. These three algorithms were: (1) Neighborhood Granulation based Attribute Reduction 
for partially labeled decision systems (NGAR) [47]; (2) Semi-supervised Feature selection with fuzzy RElevance and rEdundancy 
(SEMIFREE) [19]; and (3) Semi-supervised feature selection algorithm combining neighborhood discrimination index and Laplace 
scoring (Semi-Supervised Neighborhood Discrimination Index, SSNDI) [17].

In terms of parameter setting, both NGAR and SSNDI employ the parameter 𝛿. For these algorithms, we adjusted 𝛿 within the 
range of 0.05 to 0.5, with a step of 0.05. In the case of SFRF, 𝛿 was modified between 0.01 to 0.2, with a step of 0.01. Moreover, we 
adopted the recommended values in [17] for other parameters of SSNDI: 𝑘 = 3, 𝜆 = 0.5, and ⌊𝑛∕2⌋, where 𝑛 signifies the sample size. 
For every distinct 𝛿 value, a feature subset was acquired and the final classification result corresponds to the maximum classification 
accuracy achieved across the different 𝛿 values. In the SEMIFREE, the parameter generating the fuzzy similarity relation, 𝜖, was set 
8

at 0.2, while the parameter managing the sharpening strength, T, was fixed at 0.5.
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Table 3

Data Description.

Index Dataset Sample Feature Class

1 Seeds 210 7 3

2 Algerian 243 13 2

3 Heart 299 12 2

4 Wholesale 440 7 3

5 Thoracic 470 16 2

6 Ultrasonic 361 43 4

7 Wine 178 13 3

8 Dyrskjot 40 1023 3

9 Lapointe 69 1625 3

10 Risinger 174 1571 10

11 Tomlins 104 2315 5

12 Satimage 6345 36 7

Fig. 2. Data distribution of 𝑆𝑎𝑡𝑖𝑚𝑎𝑔𝑒.

The datasets used in the experiments were obtained from the publicly available databases UCI (http://archive .ics .uci .edu /ml) 
and KEEL (http://sci2s .ugr .es /keel /data). Each dataset was normalized before the experiment, with specific descriptions provided in 
Table 3.

5.1. Classification performance

This subsection primarily demonstrates the classification capability of the feature subset selected by SFRF through numerical 
experiments.

Firstly, two-dimensional scatter diagrams drew by the first two features of the feature subset are used to illustrate the classification 
ability of the selected features. Fig. 2, Fig. 3, Fig. 4 and Fig. 5 show the results of the 𝑆𝑎𝑡𝑖𝑚𝑎𝑔𝑒, 𝐷𝑦𝑟𝑠𝑘𝑗𝑜𝑡, 𝑆𝑒𝑒𝑑𝑠, and 𝐴𝑙𝑔𝑒𝑟𝑖𝑎𝑛 datasets 
(labeling rate 50%, parameter 𝛿 = 0.05), and two features are randomly selected for comparison.

As demonstrated in the figures, the two features selected by SFRF exhibit a stronger ability to distinguish different categories 
compared to the two randomly selected features. For instance, in the scatter plot of the Satimage dataset (Fig. 2), the ability of the 
features selected by SFRF to distinguish between different categories is significantly stronger than that of randomly selected features, 
especially class 2 and class 3, which can be clearly differentiated. In the scatter plot of the Dyrskjot dataset (Fig. 3), although the 
features selected by SFRF did not distinctly separate the three categories, it is a significant improvement compared to the scenario 
where the three categories in the randomly selected features are completely mixed together. In the scatter plot of the Seeds dataset 
(Fig. 4) it can be clearly seen that the primary distribution areas of the three categories are distinctly separated with only minor 
overlap. In the scatter plot of the Algerian dataset (Fig. 5), the red points and green points representing two categories are almost 
entirely differentiated.

Next, the classification performances are compared by 𝑘NN and CART classifiers. The datasets in Table 3 are all fully labeled. 
In the experiment, the labeling rate was set at 10%, 20%, ..., 90% to simulate partially labeled data. For each dataset, a portion of the 
samples was randomly selected to retain the labels, while the labels of the remaining samples were removed. The four algorithms 
were then applied to select features for these partially labeled datasets. The results were tested for classification through ten-fold 
9

cross-validation, with the classification accuracies displayed as the average of ten classification tests.

http://archive.ics.uci.edu/ml
http://sci2s.ugr.es/keel/data
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Fig. 3. Data distribution of 𝐷𝑦𝑟𝑠𝑘𝑗𝑜𝑡.

Fig. 4. Data distribution of 𝑆𝑒𝑒𝑑𝑠.
10

Fig. 5. Data distribution of 𝐴𝑙𝑔𝑒𝑟𝑖𝑎𝑛.
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Table 4

Classification accuracy comparison of four algorithms with the labeling rate of 10%, 20% and 30% (bold 
font indicates the best results among the four algorithms, “NA” represents that the algorithm is unable 
to complete calculations on this data).

10% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 90.00 92.86 92.86 90.48 90.00 91.91 93.81 91.91

2 95.90 95.87 92.98 96.73 98.77 98.77 98.77 96.27

3 72.15 75.60 78.23 78.56 71.57 79.38 78.92 79.58
4 63.45 71.84 61.17 71.85 61.13 71.84 63.22 71.85
5 82.53 83.83 82.77 82.13 83.19 78.94 77.45 77.66

6 89.50 82.00 80.06 79.27 85.91 85.86 87.54 79.54

7 66.52 71.52 71.23 66.84 64.63 63.35 65.20 65.77
8 NA 85.50 76.00 67.17 NA 80.50 63.50 72.67

9 NA 71.19 57.68 66.91 NA 74.70 67.14 61.43

10 NA NA 49.57 71.60 NA NA 43.09 68.45
11 NA NA 63.07 60.15 NA NA 50.17 63.56
12 NA NA NA 99.05 NA NA NA 98.23

20% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 83.81 91.43 92.38 93.81 85.24 91.91 94.76 90.00

2 96.28 96.32 92.16 93.85 98.73 98.75 98.48 98.78
3 72.23 84.65 80.28 81.31 70.62 80.89 76.23 80.90
4 64.11 71.83 63.12 62.12 60.94 71.83 59.32 59.55

5 81.70 81.70 82.13 84.26 82.34 77.87 79.36 84.26
6 87.79 82.27 80.79 77.53 86.96 86.13 88.91 78.66

7 64.92 69.32 70.41 72.60 69.28 62.49 64.69 66.03

8 NA 87.17 65.50 62.83 NA 87.50 62.50 83.50

9 NA 74.11 71.43 65.24 NA 79.40 63.63 66.91

10 NA NA 43.40 76.39 NA NA 35.69 65.84
11 NA NA 59.70 73.00 NA NA 49.10 56.91
12 NA NA NA 99.01 NA NA NA 98.24

30% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 94.76 93.81 93.81 92.86 92.86 92.86 94.29 94.29
2 97.13 96.21 91.70 91.78 99.18 98.78 98.75 98.80

3 70.92 85.61 82.53 83.22 70.15 80.27 79.24 72.73

4 63.00 71.82 63.44 61.84 60.48 71.82 61.05 62.72

5 80.85 81.49 82.13 81.70 82.98 78.30 78.09 77.02

6 87.54 87.76 81.19 88.91 84.24 87.85 85.05 88.35
7 68.76 70.13 70.10 70.75 66.91 66.58 67.10 67.16
8 NA 85.83 68.17 95.50 NA 89.17 66.50 76.00

9 NA 73.93 71.49 75.48 NA 76.01 70.48 65.71

10 NA NA 48.66 81.12 NA NA 41.20 74.17
11 NA NA 62.51 78.02 NA NA 59.47 57.68
12 NA NA NA 98.99 NA NA NA 98.26

Table 4, Table 5 and Table 6 present the classification accuracy of SFRF and the three comparative algorithms NGAR, SSNDI, 
and SEMIFREE evaluated by the 𝑘NN (𝑘 = 3) and CART classifiers at various label rates. The performance of SFRF was analyzed at 
different label rates, and the results are summarized as follows: At the 10% label rate, SFRF exhibited the highest accuracy among 
the four algorithms on 5 and 6 datasets when tested with 𝑘NN and CART classifiers, respectively (out of a total of 12 datasets). At 
20%, SFRF led in accuracy on 6 datasets for both classifiers. At 30%, the highest accuracy was achieved on 8 and 6 datasets with 𝑘NN 
and CART, respectively. At 40%, SFRF outperformed on 4 and 7 datasets with 𝑘NN and CART, respectively. At 50%, the algorithm 
led in accuracy on 7 and 6 datasets with 𝑘NN and CART, respectively. At 60%, SFRF maintained the highest accuracy on 7 and 6 
datasets for 𝑘NN and CART, respectively. At 70%, the algorithm achieved leading accuracy on 9 and 8 datasets with 𝑘NN and CART, 
respectively. At 80%, SFRF was the top performer on 8 datasets for both classifiers. Finally, at a 90% label rate, SFRF achieved the 
highest accuracy on 8 and 9 datasets with 𝑘NN and CART, respectively.

Taking into account the results from Table 4, Table 5 and Table 6, regardless of the 𝑘NN classifier or the CART classifier, SFRF 
can achieve comparable, and even better, classification results compared to the contrast algorithms.

5.2. Computational efficiency

In this section, the computational efficiency of SFRF is compared with three existing algorithms. The total execution time of the 
four algorithms for 9 different labeling rates is presented in Table 7, while the execution time of a single round for different labeling 
rates is illustrated in Fig. 6. The maximum execution time for all algorithms was set as 12 hours.

As can be seen from Table 7, SFRF achieved the shortest execution time on eight of the test datasets. In the remaining four 
instances where SFRF didn’t secure the fastest time, they are all small-scale datasets, SFRF was second only to SEMIFREE. The 8th 
11

through the 11th datasets, which feature medium-to-high dimensionality, displayed a significant surge in the execution time for 
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Table 5

Classification accuracy comparison of four algorithms with the labeling rate of 40%, 50% and 60% (bold 
font indicates the best results among the four algorithms, “NA” represents that the algorithm is unable 
to complete calculations on this data).

40% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 94.76 94.29 91.91 92.86 93.33 91.91 94.29 93.33

2 95.08 95.87 90.98 92.65 97.95 98.78 98.38 98.78
3 72.29 82.22 80.61 86.00 69.56 80.54 77.21 80.98
4 62.51 71.83 62.26 62.97 61.83 71.83 60.22 61.38

5 81.49 83.19 81.49 79.36 81.70 80.00 78.51 83.62
6 89.74 85.38 81.02 86.18 85.66 88.13 85.04 90.04
7 67.12 70.09 73.15 69.87 67.91 66.26 63.86 63.78

8 NA 78.17 73.17 78.33 NA 93.00 79.67 88.50

9 NA 78.69 67.14 61.13 NA 75.36 63.81 63.99

10 NA NA 55.63 79.46 NA NA 50.61 79.49
11 NA NA 73.89 76.38 NA NA 54.78 62.96
12 NA NA NA 99.10 NA NA NA 98.24

50% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 94.29 92.86 92.38 92.38 94.29 92.86 94.29 93.33

2 95.01 95.83 92.16 96.33 98.75 99.17 98.77 99.18
3 74.95 82.96 78.60 84.30 69.23 78.98 75.21 79.98
4 62.98 71.83 63.24 62.30 61.58 71.83 59.32 62.33

5 81.49 82.34 81.49 82.34 82.55 79.57 79.15 77.87

6 86.48 84.79 80.42 76.93 86.19 86.72 85.86 87.82
7 66.59 67.43 70.44 71.21 67.36 66.40 66.57 62.98

8 NA 80.67 65.67 75.17 NA 81.00 62.67 84.00
9 NA 79.88 63.81 70.83 NA 84.17 75.48 69.23

10 NA NA 51.79 82.70 NA NA 44.17 72.47
11 NA NA 63.27 79.36 NA NA 57.55 56.75

12 NA NA NA 99.07 NA NA NA 98.42

60% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 94.29 94.29 92.86 93.81 93.81 91.43 93.33 93.81
2 95.90 95.90 93.03 93.38 98.77 98.77 98.77 98.75

3 71.63 82.97 82.96 82.96 69.92 82.34 75.23 79.29

4 63.26 71.83 61.86 63.85 66.17 71.83 61.21 60.86

5 81.06 81.28 82.34 82.34 82.55 81.28 80.00 79.15

6 86.18 87.78 80.63 89.81 84.21 85.93 85.62 88.90
7 68.81 69.89 71.48 67.63 66.01 65.83 66.05 70.14
8 NA 88.00 71.00 86.67 NA 88.50 69.00 79.17

9 NA 75.48 66.25 82.74 NA 81.19 65.95 70.77

10 NA NA 49.90 82.96 NA NA 51.24 82.33
11 NA NA 59.75 77.74 NA NA 56.87 61.87
12 NA NA NA 99.07 NA NA NA 98.28

SEMIFREE, which initially showed the shortest runtime on the first quartet of datasets. For datasets 10 through 12, SEMIFREE even 
overshooted the maximum execution time. For datasets spanning from 8 to 12, SSNDI persistently breached the maximum execution 
time, and NGAR surpassed this threshold on the 12th dataset. These results collectively testify to efficiency of SFRF as a feature 
selection algorithm.

Fig. 6 presents the execution time according to different label rates, with each subplot comparing the performance of SFRF with 
three other algorithms. It is distinctly noticeable that SFRF maintains its high efficiency consistently. Furthermore, in subplots h, i, 
j, and k, representing medium-to-high dimensional datasets, other algorithms show significant volatility, whereas SFRF continues to 
exhibit robust performance.

In an overarching view, SFRF holds the shortest cumulative time among all four algorithms. Despite performance of SFRF being 
slightly superseded by the SEMIFREE algorithm on small scale datasets, it surpasses all other comparison algorithms by a substantial 
margin when applied to larger scale datasets. This underlines that the newly proposed algorithm considerably escalates the efficiency 
of feature selection, thereby signifying its suitability for the processing of large-scale datasets.

6. Conclusion and future work

In this paper, we propose a semi-supervised feature selection method called fuzzy related family based on fuzzy rough sets, 
which generates fuzzy labels for unlabeled samples using fuzzy relationships to address the problem of semi-supervised feature 
selection for partially labeled data. Based on the fuzzy related family, an efficient semi-supervised feature selection algorithm, SFRF, 
is designed. Experimental results demonstrate the effectiveness of the proposed method on data with various labeling rates. Compared 
12

with three existing semi-supervised feature selection algorithms, while preserving the consistent level of classification accuracy, SFRF 
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Table 6

Classification accuracy comparison of four algorithms with the labeling rate of 70%, 80% and 90% (bold 
font indicates the best results among the four algorithms, “NA” represents that the algorithm is unable 
to complete calculations on this data).

70% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 94.76 92.86 93.81 93.33 93.33 90.95 94.76 94.29

2 95.86 91.77 93.01 95.92 98.78 98.78 98.78 98.78
3 73.28 69.51 83.92 84.56 71.21 71.00 78.55 79.89
4 64.12 71.84 61.40 62.76 59.30 71.84 61.13 59.51

5 82.34 81.06 79.79 83.62 82.13 81.28 81.91 80.00

6 89.76 87.29 81.18 89.04 85.03 88.28 85.41 88.67
7 67.13 71.49 71.54 72.38 67.19 65.72 62.52 63.78

8 NA 86.00 85.50 92.50 NA 85.50 68.50 87.50
9 NA 66.67 68.99 70.71 NA 69.23 64.76 86.85
10 NA NA 48.09 81.46 NA NA 40.52 72.56
11 NA NA 66.93 75.66 NA NA 48.28 66.47
12 NA NA NA 99.08 NA NA NA 98.24

80% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 93.81 93.33 93.33 92.38 93.33 93.33 92.86 93.81
2 95.07 90.91 94.27 95.85 97.48 98.75 96.73 98.73

3 71.62 68.36 81.25 84.91 72.30 69.64 78.56 79.95
4 61.83 71.83 61.21 64.57 62.00 71.83 61.61 63.46

5 81.49 80.64 81.91 82.55 81.70 81.06 80.21 78.30

6 88.12 86.20 80.60 80.59 86.50 86.48 86.66 87.50
7 66.34 69.86 70.72 71.50 67.13 63.86 63.28 68.22
8 NA 85.00 77.67 85.00 NA 77.50 83.00 77.50

9 NA 67.08 66.91 82.50 NA 70.83 65.89 85.83
10 NA NA 54.53 84.46 NA NA 50.33 73.50
11 NA NA 60.56 80.73 NA NA 53.83 60.18
12 NA NA NA 98.99 NA NA NA 98.37

90% 𝑘NN CART

Index SSNDI SEMIFREE NGAR SFRF SSNDI SEMIFREE NGAR SFRF

1 93.33 92.86 92.38 93.81 93.81 92.38 94.29 94.29
2 96.26 90.15 91.78 95.45 98.77 98.77 98.77 98.77
3 72.30 68.24 81.24 84.26 69.93 71.00 76.56 81.19
4 62.92 71.83 62.03 63.23 60.72 71.83 60.51 61.81

5 80.85 81.06 82.77 82.98 82.77 81.06 79.79 80.21

6 88.38 80.19 82.22 83.42 87.26 87.82 85.29 85.59

7 64.72 70.72 72.89 67.64 66.55 63.85 64.93 67.65
8 NA 85.00 87.17 88.00 NA 85.50 85.00 92.50
9 NA 65.30 78.27 86.07 NA 71.31 62.74 83.39
10 NA NA 56.48 90.82 NA NA 46.89 80.65
11 NA NA 70.60 75.29 NA NA 55.92 63.87
12 NA NA NA 99.05 NA NA NA 98.09

Table 7

The total execution time of the four algorithms for 9 different 
labeling rates (in milliseconds).

Index SSNDI SEMIFREE NGAR SFRF

1 31399 298 6125 2676

2 158857 359 25601 2418

3 158403 1144 30974 3067

4 1550135 800 535318 18997

5 548522 7059 218289 6668

6 2952019 14850 1431698 13601

7 431253 6687 105142 5879

8 NA 252816 168134 86125

9 NA 1390617 760518 239791

10 NA NA 4290993 1313412

11 NA NA 1996654 976264

12 NA NA NA 2876627

considerably elevates the computational velocity, a noteworthy advancement. As we extend our research in subsequent investigations, 
we are committed to endeavoring the translation of this algorithm into practical, real-world application scenarios.
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