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A B S T R A C T

In the field of graph neural networks (GNNs) for representation learning, a noteworthy highlight is the
potential of embedding fusion architectures for augmented graphs. However, prevalent GNN embedding fusion
architectures mainly focus on handling graph combinations from a global perspective, often ignoring their
collaboration with the information of local graph combinations. This inherent limitation constrains the ability
of the constructed models to handle multiple input graphs, particularly when dealing with noisy input graphs
collected from error-prone sources or those resulting from deficiencies in graph augmentation methods. In this
paper, we propose an effective and robust embedding fusion architecture from a local-to-global perspective
termed collaborative graph neural networks for augmented graphs (LoGo-GNN). Essentially, LoGo-GNN
leverages a pairwise graph combination scheme to generate local perspective inputs. Together with the global
graph combination, this serves as the basis to generate a local-to-global perspective. Specifically, LoGo-GNN
employs a perturbation augmentation strategy to generate multiple augmentation graphs, thereby facilitating
collaboration and embedding fusion from a local-to-global perspective through the use of graph combinations.
In addition, LoGo-GNN incorporates a novel loss function for learning complementary information between
different perspectives. We also conduct theoretical analysis to assess its expressive power under ideal
conditions, demonstrating the effectiveness of LoGo-GNN. Our experiments, focusing on node classification
and clustering tasks, highlight the superior performance of LoGo-GNN compared to state-of-the-art methods.
Additionally, robustness analysis further confirms its effectiveness in addressing uncertainty challenges.
1. Introduction

Graph-structured data, characterized by complex interrelationships
and nonlinear properties, has become an essential representation across
numerous fields [1]. The proliferation of graph data in various fields
such as social networks, bioinformatics, financial risk assessment, and
recommendation systems has intensified the need for improved mod-
eling and analysis. Recently, Graph Neural Networks (GNNs) have
garnered widespread attention due to their remarkable performance in
modeling graph data, which have been shown to rely heavily on infor-
mation fusion in graph data [2–4]. The embedding fusion architecture,
as a widely used information fusion mechanism for processing graph
data, is an important variant of GNNs [5–7].

Currently, many representative embedding fusion approaches for
augmented graphs have been developed to avoid being constrained by
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the effective expression ability of the raw input [8–11]. They usually
involve two key steps. First, the design of graph augmentation strate-
gies is crucial, aiming to extend the single-view data to multiple inputs.
Second, leveraging a fusion architecture enables effective collaboration
and learning from the inputs. This naturally raises two questions. (1)
How can effective graph augmentation methods be designed? (2) How can
a flexible and effective embedding fusion architecture for multi-inputs be
designed?

To address the first question, several effective graph augmentation
methods have been proposed recently, such as feature graph augmenta-
tion [9,10] and random walk graph augmentation [4,12], which mainly
focus on the generation of topology relations. However, although the
design of graph augmentation at the topology level is simple, it in-
creases the difficulty of developing subsequent fusion architectures.
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This is attributed to the fact that embedding fusion mainly involves
fusion of node embeddings, that is, the fusion at the node feature level,
which requires additional fusion modules to handle multiple adjacency
matrices [1,13,14]. Therefore, it is also necessary to develop graph
augmentation methods at the node feature level to facilitate the design
of fusion architectures.

To address the second question, most embedding fusion architec-
tures for multi-inputs mainly focus on the fusion and learning of
different graph embeddings, such as designing effective attention mech-
anisms [10] and constructing multi-channel learning [4,9,12]. They
treat multiple inputs as a global perspective for processing, which
means that the combination of all inputs is treated as a whole and the
elements inside are processed in the same form. A common approach
is to learn the graph representation for each input, and then fuse these
embeddings through attention mechanisms [4,8,10,12]. However, they
rarely focus on designing the embedding fusion architecture from the
local perspectives of input combinations. Local combination evaluation
is very common in classical model fusion strategies such as ensemble
learning [15]. Learning only the combination of all inputs from a global
perspective, without considering its collaboration with different partial
input combinations (local perspectives), may limit the expressive power
of the model. Here we provide a simple example that will help to better
understand this issue.

As depicted in Fig. 1, we use superpixel graphs [16] of images to
represent the input graphs (multiple views, such as View1, View2, and
View3, derived from the raw graph and its graph augmentation) to
elucidate the advantages of local-to-global perspective learning more
intuitively. We refer to the combination of all views as the global
perspective and consider the combination of partial views as the local
perspective. It can be observed from Fig. 1 that global information and
local information can form a complementary relationship, especially
when subjected to noise attacks. The global information originates from
the common learning process of all views, making it vulnerable to the
influence of noise attacks. However, it is not difficult to identify crucial
information by simultaneously considering information from different
local perspectives. It is worth noting that crucial information may orig-
inate not only from global information but also from local information.
Therefore, designing suitable input combination schemes and learning
complementary information between different perspectives assists in
better understanding the system complexity and adapting to various
situations more flexibly and comprehensively.

In our study, we propose an effective and robust node embed-
ding fusion architecture called collaborative graph neural networks
for augmented graphs (LoGo-GNN) to address the above two issues.
oGo-GNN incorporates information collaboration and node embedding
usion from a local-to-global perspective to enhance the robustness
nd expressive power of the model. First, we develop a general per-
urbation augmentation strategy at the node feature level that serves
he generation of different inputs. Additionally, we propose a novel
airwise graph combination scheme to generate local perspective in-
uts. Together with the combination of all input graphs, it serves as
he core for generating local and global perspectives, which cohesively
pply local and global perspective encoders for embedding fusion.
inally, the node embeddings generated from different perspectives
re fused into a unified representation using an attention mechanism.
he unified representation feeds into the final objective modules for
ownstream tasks. It is worth noting that the loss function of LoGo-GNN
ncludes a novel complementary loss and an object loss to guide the
fficient node embedding fusion and collaboration between different
erspectives. Compared to the existing GNN architectures based on
mbedding fusion, our approach makes the following contributions.

(1) A novel embedding fusion architecture for augmented graphs
is proposed, which extends single-view input through a per-
turbation augmentation strategy, and constructs a collaborative
mechanism from a local-to-global perspective through a pair-

wise graph combination scheme. In addition, it also includes a

2 
a novel global loss function to guide effective node embed-
ding fusion and collaboration between different perspectives. We
demonstrate the effectiveness of LoGo-GNN both theoretically
and experimentally. We also conduct a robustness analysis to
demonstrate the good robustness of LoGo-GNN in addressing
uncertainty challenges.

(2) A novel perturbation augmentation strategy is developed, which
associates node features with diverse topological information,
enhancing the quality of node representation. It not only pro-
vides a novel scheme for extending a single input to multiple
inputs, but also preserves the raw adjacent relationships. De-
tailed experimental analysis verifies the effectiveness of the
perturbation augmentation strategy.

(3) A novel scheme of pairwise graph combination is proposed. It
decomposes different input graphs into multiple graph combi-
nations, enabling LoGo-GNN to explore the local perspective
information between any pairwise graph combinations.

(4) A novel global loss function is developed. We introduce com-
plementary learning between different perspectives into the em-
bedding fusion architecture through a novel complementary loss
function. The complementary loss function and the object loss
serving the learning objective representation together form a
global loss function to guide the efficient node embedding fusion
and collaboration between different perspectives.

. Related work

Graph neural networks based on embedding fusion architecture
ave spawned many representative works due to their excellent per-
ormance in downstream tasks [17,18]. One of the most noteworthy
re the multi-channel learning models for augmented graphs. They
hare two common characteristics. (1) A single input is expanded into
ultiple inputs through graph augmentation techniques. (2) The fusion
rocess handles all channels or inputs from a global perspective. Our
oGo-GNN is built on embedding fusion architectures for augmented
raphs. Thus, we discuss work that is related to our method from these
hree perspectives.

raph augmentation. Graph augmentation is a widely used technique
or graph representation learning tasks, which has a significant im-
act on graph contrastive learning and fusion architecture, as shown
n various studies [19–21]. The most effective forms of graph aug-
entation can be summarized into two categories. (1) Topology-level

ugmentation involves creating augmented graph instances through
lobal graph sampling [19], edge manipulation [20], building feature
raphs [9,10], and adjustments in adjacency matrix weights [22]. Most
ecent works augment the topologies from the perspective of homo-
eneity analysis [23], the learning between augmented graphs still
elongs to homogeneous learning, and there are still many limitations
n designing fusion architectures. (2) Node feature level augmentation
ostly employs random feature masking and introducing Gaussian
oise to feature vectors [20]. However, these techniques may intro-
uce excessive local variations, disturbing the relational aspects among
eighboring nodes. Fortunately, node feature level augmentation ex-
ibits greater effectiveness in many scenarios when designed properly,
elping to obtain more discriminative representations due to its precise
mpact on node features [8]. This leads to the promotion of graph
ugmentation from traditional learning-only forms to participate in
usion forms.

ulti-channel learning in graph neural networks. The multi-channel
earning of graph neural networks can utilize the complementarity be-
ween multiple information transmission channels, thereby improving
he performance of the model in graph-structure related tasks [1]. Most
ulti-channel learning models mainly focus on designing attention
echanisms and the fusion of input or channel information from

global perspective for example, fusion architectures for different
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Fig. 1. Illustration of local-to-global perspective collaborative learning. It can be intuitively seen from the images that the flexible use of local and global information will result
in clearer images. The graphs of SLIC superpixels are 8-nearest neighbor graphs in the Euclidean space and node colors denote the mean pixel intensities [16]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
hop neighbor information [4,17,18], fusion architectures for different
topology graph information [9,10], and fusion architectures for dif-
ferent augmented node feature information [8]. However, they rarely
consider elastic learning mechanisms, such as contrastive relationship
learning [20,24], multi-channel learning from different perspectives of
input combination, and multi-scale learning which adapts to different
environments [25], making it difficult to design robust and flexible
fusion architectures. In this paper, our study draws inspiration from
these ideas to explore a novel robust architecture of GNNs.

Local-to-global perspective graph learning. The local-to-global per-
spective graph learning paradigms can simultaneously capture global
and local information from graphs, thereby enhancing model perfor-
mance. Some works try design local and global learning through certain
graph structure properties [2,26]. For example, LGD-GCN [26] lever-
ages local and global information to disentangle node representations
in the latent space, thereby improving model expressiveness. Similarly,
LA-GCN [2] uses local graph augmentation to learn the distribution
of neighbor node features conditioned on central node features, and
employs these generated features to enhance the GNN’s expressiveness.
However, few studies consider the local-to-global relationships from
different graph embedding fusion perspectives in GNNs. One of the
most intuitive ways to explore such relationships from information
sources (i.e., input combinations), which is a widely recognized ap-
proach in other fields, particularly ensemble learning [15]. Inspired by
these works, we attempt to explore local-to-global learning from the
perspective of input graph combinations in GNNs.

3. LoGo-GNN

Let G = (V, E) denote a graph, where V = {𝑣1, 𝑣2,… , 𝑣𝑁}, E ⊆
V× V represent the node set and the edge set respectively. We denote
3 
Table 1
Notation description.

Notation Description

G A graph
V Node set
E Edge set
𝑿 Feature matrix
𝒙𝑖 𝑖th node feature vector
𝑨 Adjacency matrix
V𝐿 Set of labeled nodes
𝒀 𝐿 Label indicator matrix
𝑔(⋅) GNN encoder
𝑯 Learned embedding
𝒉𝑖 𝑖th node embedding
T Perturbation augmentation function
S Set of all topologies
𝑺 𝑖 𝑖th topology

the feature matrix and the adjacency matrix as 𝑿 ∈ R𝑁×𝐹 and 𝑨 ∈
{0, 1}𝑁×𝑁 , where 𝒙𝑖 ∈ R𝐹 is the feature of 𝑣𝑖, and 𝑨𝑖,𝑗 = 1 iff (𝑣𝑖, 𝑣𝑗 ) ∈
E. A small amount of class information of nodes in G is given during
training in the semi-supervised setting. 𝐶 denotes the number of classes,
V𝐿 denotes the set of labeled nodes. 𝒀 𝐿 ∈ R|V𝐿|×𝐶 denotes the label
indicator matrix. Our objective is to learn a GNN encoder 𝑔(⋅) ∈ R𝑁×𝐶

receiving the graph features and structure as input, which produces
node embeddings in low dimensionality. We denote 𝑯 = 𝑔(⋅) as the
learned embedding, where 𝒉𝑖 is the embedding of node 𝑣𝑖. T is the
perturbation augmentation function. S is the set of all topologies, 𝑺𝑖

represents the 𝑖th topology. In Table 1, the notations used in the article
are defined.



Q. Guo et al. Pattern Recognition 158 (2025) 111020 
Fig. 2. A comparison between LoGo-GNN and traditional embedding fusion architectures.
3.1. Framework overview

The overall structure of LoGo-GNN is illustrated in Fig. 2. LoGo-GNN
differs from traditional embedding fusion architectures in four main as-
pects (depicted by the green modules in Fig. 2). (1) LoGo-GNN incorpo-
rates a novel node feature augmentation (perturbation augmentation)
strategy to enhance node representations, expanding a single input
into multiple inputs. (2) LoGo-GNN includes a pairwise graph com-
bination scheme to generate inputs from different local perspectives.
(3) Each perspective shares a common encoder for multi-perspective
representation learning. (4) LoGo-GNN also features a discriminator
module, utilizing a newly defined complementary loss function to learn
complementary information between different perspectives.

The following sections are structured to present the details and
implementation of LoGo-GNN. In Section 3.2, we present the process
of perturbation augmentation. In Section 3.3, we provide details on
the implementation of the pairwise graph combination approach. In
Section 3.4, we illustrate how we leverage GNN encoders for the
embedding fusion and learning of multiple perspectives. In Section 3.5,
we introduce our proposed global loss function and the process of
model training. Finally, Section 3.6 provides details of the theoretical
analysis about our model and traditional GNNs.

3.2. Perturbation augmentation

Among of the traditional graph augmentation methods used for fu-
sion architecture, topology augmentation methods are predominant [4,
10,18,27]. Introducing diverse topological information can greatly en-
hance the robustness of GNNs against topological attacks [10,27].
Although these approaches can be seen as a way to extend a single-view
input, they mainly focus on the expansion of topological relationships
and do not take into account the high-level information hidden between
node features and topological relationships. Here we give a simple ex-
ample to enhance understanding of this issue. In the benchmark dataset
Cora for node classification, the node features are composed of word
vectors derived from the titles and abstracts of each paper. The exis-
tence of edges between papers indicates there is a citation relationship.
In situations where two papers exhibit similar word vectors but belong
to different categories, identifying their differences becomes challeng-
ing. In such cases, uncovering latent high-level semantic information
becomes crucial. It is worth noting that the differential information of
neighboring node features can potentially provide valuable high-level
information to distinguish the nodes of different categories. The high-
level information in raw edge (citation) relationships can be considered
as the difference between a certain paper’s features and the features of
the paper it cites. This concept can also be applied to edge relationships
with different semantics, leading to the generation of more informative
high-level information.
4 
As previously mentioned, a perturbation augmentation strategy is
designed, which introduces high-level information related to diverse
topology information and node features. This strategy does not alter the
topology relationships of the input graph but only improves the quality
of node features. It performs graph augmentation from the perspective
of node features, i.e., approaching an ‘ideal’ node feature matrix instead
of approaching the ‘ideal’ topology. In the following, we provide a
detailed explanation of the perturbation augmentation.

Given a perturbation augmentation function T, we generate the
perturbation augmentation graphs, denoted as:

G̃𝑗 = T(G,𝑺𝑗 ) = (�̃�𝑗 ,𝑨); (1)

Given nodes �̃�𝑖 ∈ Ṽ (1 ≤ 𝑖 ≤ 𝑁), the corresponding feature vector
is denoted by �̃�𝑖.

�̃�𝑖 = 𝒙𝑖 +
√

∑

𝒙𝑗∈N(𝒙𝑖)
(𝒙𝑖 − 𝒙𝑗 )2∕ ||N(𝒙𝑖)|| ; (2)

where N(𝒙𝑖) corresponds to neighborhoods of node 𝑣𝑖 based on the
topology 𝑺, |

|

N(𝒙𝑖)|| is the number of neighbors of node 𝑣𝑖. We further
examine different topologies in the subsequent experimental section.
(𝒙𝑖 − 𝒙𝑗 )2 represents the difference information (high-level information)
between nodes, explaining the implicit high-level relations [28]. We
analyze it in detail in the experiment section.

3.3. Pairwise graph combination

It is important to consider both global and local perspectives when
dealing with multiple input graphs. To achieve the specific local per-
spectives, it is necessary to strategically combine these input graphs.
Thus, the combination methods play a vital role in this process. GNNs
operate by passing messages between multiple pairwise node com-
binations, thus aggregating information between nodes [29]. We are
inspired by this mechanism and design a pairwise graph combination
scheme which can be used as the inputs for the local perspective.

Pairwise graph combination. Given a graph set {G1, G2,… , G𝑘}, the
combination of G𝑖 and G𝑗 is {G𝑖, G𝑗}. {G1, G2,… , G𝑘} can be decom-
posed into

(𝑘
2

)

pairwise graph combinations. In this paper, the graph
combinations {G, G̃1}, {G, G̃2}, . . . , serve as inputs to the each of the lo-
cal perspective encoders. The utilization of pairwise graph combination
reveals the local perspective information of any two graphs.

3.4. Model details

Our framework enables flexibility in choosing GNN architectures
without imposing any constraints. To keep things simple, we adopt
the standard single-layer graph convolution network (GCN) [29] as
the basis for the embedding fusion, i.e., 𝑔(⋅) ∶ R𝑁×𝐹 × R𝑁×𝑁 →
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R𝑁×𝐹 . For simplicity, the propagation process can be represented as
follows: 𝜎(�̃�𝑿𝜣), where 𝜎(⋅) denotes an activation function, such as
𝑅𝑒𝐿𝑈 (⋅) = max(0, ⋅), 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑿𝑖𝑗 ) = 𝑒𝑥𝑝(𝑿𝑖𝑗 )

∑𝐶
𝑗=1 𝑒𝑥𝑝(𝑿𝑖𝑗 )

, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑿𝑖𝑗 ) =

1
1+𝑒𝑥𝑝(−𝑿𝑖𝑗 )

, 𝑡𝑎𝑛ℎ(𝑿𝑖𝑗 ) =
𝑒𝑥𝑝(𝑿𝑖𝑗 )−𝑒𝑥𝑝(−𝑿𝑖𝑗 )
𝑒𝑥𝑝(𝑿𝑖𝑗 )+𝑒𝑥𝑝(−𝑿𝑖𝑗 )

, �̃�= �̂�− 1
2 �̂��̂�− 1

2 is the symmetri-
cally normalized adjacency matrix, �̂� = 𝑨+ 𝑰 , 𝑰 is the identity matrix,
nd �̂� = 𝑫 + 𝑰 is the degree matrix. 𝜣 ∈ R𝐹×𝐹ℎ corresponds to the

weight matrix of the network, with 𝐹 representing the dimension of
nput features and 𝐹ℎ representing the dimension of output features.

ocal and global perspective encoders. Each perspective encoder
onsists of a GCN encoder and an input graph set (pairwise graph
ombination or the set of all graphs). Specifically, unlike GCN which
akes a single graph as input, the local and global perspective encoders
ake multiple graphs as inputs and obtain embeddings through the
ean pool.

𝜣𝜃
= 1

𝑘
∑

G𝑗∈{G1 ,G2 ,…,G𝑘}
𝑅𝑒𝐿𝑈 (�̃�𝑿𝑗𝜣𝜃) (3)

Assuming the global graph combination is {G, G̃1, G̃2}, the inputs for
he local perspective encoders include {G, G̃1}, {G, G̃2}, and {G̃1, G̃2},
esulting in the corresponding embeddings 𝑯1 = 𝑔𝜣𝜃1

(G, G̃1), 𝑯2 =
𝑔𝜣𝜃2

(G, G̃2) and 𝑯3 = 𝑔𝜣𝜃3
(G̃1, G̃2). As for the global perspective en-

coder, its inputs consist of {G, G̃1, G̃2}, leading to the embedding 𝑯4 =
𝑔𝜣𝜃4

(G, G̃1, G̃2). 𝜃1, 𝜃2, . . . , 𝜃𝑚 represents different perspectives.

ttention mechanism. To efficiently fuse the embeddings generated
y the local perspective encoders and the global perspective encoder,
e incorporate an attention mechanism [9] to obtain a more compre-
ensive semantic representation.

With 𝑚 embeddings, namely 𝑯1, 𝑯2, . . . , and 𝑯𝑚, we use attention
echanisms to determine their respective importance.

𝜶1,𝜶2,… ,𝜶𝑚) = 𝑎𝑡𝑡(𝑯1,𝑯2,… ,𝑯𝑚) (4)

here 𝜶1,𝜶2,… ,𝜶𝑚 ∈ R𝑁×1 indicate the attention values of 𝑁 nodes
ith embeddings 𝑯1,𝑯2,… ,𝑯𝑚, respectively. 𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑖𝑗 ),
𝑖𝑗 = 𝐪𝑇𝑖 ⋅𝑡𝑎𝑛ℎ(𝜣𝑎𝑡𝑡 ⋅(𝒉𝑗 )𝑇 +𝐛𝑖), the unnormalized attention value 𝑤𝑖𝑗 for

th node in embedding matrices 𝑯𝑖 through a shared attention vector
𝑖 ∈ R𝐹 ′×1, 𝜣𝑎𝑡𝑡 ∈ R𝐹 ℎ×𝐹 ′ is the weight matrix, and 𝐛𝑖 ∈ R𝐹 ′×1 is the

bias vector.
Finally, the new embedding 𝑯 is aggregated by the attention mech-

anism with the attention values 𝜶.

𝑯 = 𝜶1 ⋅𝑯1 + 𝜶2 ⋅𝑯2 +⋯ + 𝜶𝑚 ⋅𝑯𝑚 (5)

.4.1. Semi-supervised learning architecture
In semi-supervised learning scenarios, such as node classification

asks, we employ a single-layer GCN layer as the final encoder.

inal encoder. The fused embedding 𝑯 serves as the input for the final
ncoder which is a single-layer GCN, resulting in the final output 𝒀 .

̃ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̃�𝑯𝜣𝑓𝑖𝑛𝑎𝑙) (6)

.4.2. Unsupervised learning architecture
In unsupervised learning, the introduction of the decoder effectively

aptures self-supervised information from input graphs [30]. The LoGo-
NN architecture utilizes multiple perspective encoders to perform
mbedding fusion. This results in the fused embedding needing to be
aired with multiple decoders to reconstruct each input graph. Each
nput graph corresponds to a decoder, and an additional decoder is
dded to reconstruct the topology relations of the raw input graph.
uring decoding, multiple two-layer decoder are utilized, and each
ecoder layer endeavors to invert its respective encoding process.

inal decoder. The final decoded outputs are reconstructed node
ttribute matrix �̃�𝑖 and the reconstructed graph structure �̃�𝑟𝑒. Specifi-
ally, the output of the 𝑖th input graph decoder is

̃ 𝑟𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̃�𝑅𝑒𝐿𝑈 (�̃�𝑯𝜣(0))𝜣(1)) (7)
𝑖 𝜃′𝑖 𝜃′𝑖

5 
here 𝜣(𝑙)
𝜃′𝑖

represents the learning parameters of the 𝑖th reconstructed
erspective decoder in the 𝑙th layer.

The output of the topology reconstruct decoder is

̃ = �̃�𝑅𝑒𝐿𝑈 (�̃�𝑯𝜣(0)
𝜃′ )𝜣

(1)
𝜃′ (8)

�̃�𝑟𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(�̃��̃�𝑇 ) (9)

3.5. Training

The training objective function of LoGo-GNN comprises two com-
ponents: complementary learning and object loss. The objective of the
complementary learning (L𝑐) is to guide the fusion of complementary
information between different encoder perspectives, whereas the object
loss (L𝑜) instructs the model to perform downstream tasks effectively.

We define a global loss function denoted as L to facilitate the
end-to-end training of LoGo-GNN.

L= 𝜂 ⋅L𝑐 + (1 − 𝜂) ⋅L𝑜 (10)

Discriminator and complementary loss. In LoGo-GNN architecture,
the global encoder perspective struggles to learn the ‘ideal’ output.
To address this issue, the local encoder perspective is introduced as
a compensatory measure. In the given context, it is essential to learn
complementary information from the aspect of different perspective
encoders. We can use the idea of graph contrastive learning [23,24]
to learn the relationships between different perspectives. However, the
traditional approaches of contrastive learning focus on learning the
consistency of node embeddings from various viewpoints, which is not
in line with the objective of learning complementary information. To
address this issue, we develop a novel complementary loss function
(denoted as L𝑐) for LoGo-GNN.

Projection Head. We follow a learning architecture that is similar to the
traditional graph contrastive learning method [21,31]. Specifically, the
learned node embeddings 𝑯𝑗 are fed into a shared projection head,
which comprises a multilayer perceptron (MLP) with two hidden layers
and the ReLU activation function. The resulting node embeddings,
{𝒁1,𝒁2,… ,𝒁𝑚}, are used to construct the discriminator.

Discriminator. A complementary objective, i.e., a discriminator, is de-
signed to maximize the complementary information between differ-
ent encoder perspectives. The working of this function is illustrated
in Eq. (11).

L𝑐 = 𝑒𝑥𝑝(− 1
|V|

∑

𝑙∈𝐕

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗≠𝑖

‖

‖

‖

𝒁𝑙,𝑖 −𝒁𝑙,𝑗
‖

‖

‖2
) (11)

here |V| is the number of nodes. 𝒁𝑙,𝑖 (1 < 𝑖 ≤ 𝑚) are the rep-
esentation feature vectors of the 𝑙th node for the 𝑖th perspective
ncoder.

bject loss for semi-supervised learning. We adopt the cross-entropy
rror as the loss function of the final labeled node embeddings for
emi-supervised node classification tasks, denoted as L𝑜:

L𝑜 = −
∑

𝑣𝑘∈V𝐿

𝐶
∑

𝑗
𝒀 𝐿
𝑘𝑗 log(𝒀𝑘𝑗 ) (12)

bject loss for unsupervised learning. We establish a reconstruction
oss to assess the reconstructed graph from decoding and incorporate
he contrastive loss function I of GCA [20] to enhance the self-
upervised learning of the model. Due to space constraints, the intricate
etails of I will not be expounded upon. The ultimate object function

L𝑜 is defined as follows:

L𝑜 =
∑

𝑗∈{G1 ,G2 ,…,G𝑘}

‖

‖

‖

�̃�𝑗 − �̃�𝑟𝑒
𝑗
‖

‖

‖2

𝜆1‖‖�̃� − �̃�𝑟𝑒
‖

‖2 + 𝜆2
𝑚
∑ ∑ ∑

I𝑖
𝑗,𝑘

(13)
𝑖 𝑗∈G𝑠𝑒𝑡𝑖 𝑘∈G𝑠𝑒𝑡𝑖 ,𝑗≠𝑘
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where 𝜆1 and 𝜆2 are hyperparameters. G𝑠𝑒𝑡𝑖 is the set of input graphs
for the 𝑖th perspective encoder.

Remark on Computational Complexity. The feature transformation
computational complexity of LoGo-GNN training is O

(

(𝑘+
(𝑘
2

)

)|E|(𝐹𝐷+
𝐷2)

)

, where 𝐷 is the number of hidden channels, 𝑘 is the number of
nput graphs, and 𝐿 is the number of layers. In contrast, the complexity
f GCN [29], GAT [5], as some base GNN models, are given by a fea-
ure transformation computational complexity O

(

|E|(𝐹𝐷 + 𝐿𝐷2)
)

. The
omputational complexity of LoGo-GNN heavily relies on the number of
nput graphs. When 𝑘 is 1, LoGo-GNN shares an identical computational
omplexity with base models.

.6. Theoretical analysis

We investigate why our proposed method outperforms the existing
NN model by characterizing the expressive power of these variants,
ith our theoretical analysis mainly based on Ref. [10]. Assuming the
xistence of an infinite graph Ḡ with a node set V̄ and a probability
pace with measure 𝑃 , a formal function analysis views the given graph
G as a subgraph of Ḡ. The nodes in G are considered independent and
dentically distributed samples of V̄ based on 𝑃 . Let V⊂ V̄ be a node
et and 𝑓 ∶ V→ R be a bounded and continuous function defined on
t. Each node in V has 𝑚 features. Let 𝑔 be a bounded, differentiable
unction on R satisfying |𝑔(𝑥)| ≤ 1 and ∫𝐾 𝑔′(𝑡)𝑑𝑡 < ∞ where 𝐾 is a
ompact set. We denote 𝑨𝜇,𝑣 ∶= 𝑨(𝜇, 𝑣) as the kernel associated with the
𝜇, 𝑣) element of a given matrix 𝑨. �̂�𝜇 and �̂�𝑣 stand for the ‘idea’ feature

vectors related to 𝑨𝜇,𝑣 of node 𝜇 and node 𝑣, respectively. 𝑥𝜇 and 𝑥𝑣
stand for the input feature vectors of node 𝜇 and node 𝑣, respectively.
The unknown function on Ḡ can be represented through an integral
representation framework.

𝑓
(

�̂�𝑣
)

= ∫𝑅𝑚
𝛼(𝑤)𝑔

(

𝑤T
∫𝑉

𝑨𝜇,𝑣�̂�𝜇𝑑𝑃 (𝜇)
)

𝑑𝑤.

Likewise, this integral can be approximated with the Monte-Carlo
method to get an approximation defined as

𝑓 ∗
𝐿
(

�̂�𝑣
)

∶=
𝐿
∑

𝑗=1
𝛽𝑗𝑔

(

𝑤T
𝑗 ∫V

𝑨𝜇,𝑣�̂�𝜇𝑑𝑃 (𝜇)
)

.

where 𝛽𝑗 = 𝑇
𝐿 sign

[

𝛼
(

𝑤𝑗
)]

and the
{

𝑤1, 𝑤2,… , 𝑤𝐿
}

are indepen-
ently chosen subject to the probability distribution 𝑃 ∗, which is
nknown in advance. As such, all the parameters

{

𝛽1, 𝛽2,… , 𝛽𝐿
}

and
𝑤1, 𝑤2,… , 𝑤𝐿

}

need to be optimized algorithmically (with the given
raining samples), as the philosophy of BP training. Denote the distance
etween 𝑓 and 𝑓 ∗

𝐿 by

V

(

𝑓, 𝑓 ∗
𝐿
)

∶=
√

1
|V|

𝐸
[

∫V

(

𝑓
(

�̂�𝑣
)

− 𝑓 ∗
𝐿
(

�̂�𝑣
))2 𝑑𝑃 (𝑣)

]

.

where 𝐸[⋅] denotes the expectation value with respect to the probability
distribution 𝑃 , and |V| denotes the volume of the node set V.

Theorem 1. For a graph signal G with an ideal latent complete node
feature matrix set X𝑀 and given the bounded loss function L, the expected
object loss of GNN with the node feature matrix setX𝑀 and its subsetX𝑚 are
expressed as L(X𝑀 ;𝑨G) and L(X𝑚;𝑨G), respectively. Then, the difference
between the L(X𝑀 ;𝑨G) and L(X𝑚;𝑨G) is bounded by:

|

|

|

L
(

X𝑀 ;𝑨G

)

−L
(

X𝑚;𝑨G

)

|

|

|

≤
√

𝐼
((

X𝑀∖X𝑚
)

∣ X𝑚;𝑨G

)

.

and the difference decreases with the increase of 𝑚.

roof. Suppose X𝑀 = (X𝑚,X𝑀⧵𝑚), where X𝑀⧵𝑚 represents the addi-
tional features in X𝑀 not in X𝑚. Using the chain rule:

𝐼(X𝑀 ;AE) = 𝐼(X𝑚,X𝑀⧵𝑚;AE) = 𝐼(X𝑚;AE) + 𝐼(X𝑀⧵𝑚;AE ∣ X𝑚)

The difference can be written as:

|L(X ;A ) −L(X ;A )| ≤ 𝐼(X ;A ∣ X )
𝑀 E 𝑚 E 𝑀⧵𝑚 E 𝑚

6 
Applying the square root bound:

𝐼(X𝑀⧵𝑚;AE ∣ X𝑚) ≤
√

𝐼((X𝑀 ⧵ X𝑚) ∣ X𝑚;AE)

Thus, we get:

|L(X𝑀 ;AE) −L(X𝑚;AE)| ≤
√

𝐼((X𝑀 ⧵ X𝑚) ∣ X𝑚;AE)

Taking the GCN models as an example, the expressive power of
CN models with sufficiently large 𝐿 trained through gradient descent

earning algorithms is limited in probability based on Monte Carlo
ethods and the existing literature [10,32], i.e., 𝑑𝑉

(

𝑓, 𝑓 ∗
𝐿
)

≤ 𝐶
√

𝐿
,

where 𝐶 = ∫𝑅𝑚 |𝛼(𝑤)|𝑑𝑤 < +∞. 𝑑𝑉
(

𝑓, 𝑓 ∗
𝐿
)

represents the distance
between the ideal model 𝑓 and GCN models with sufficiently large 𝐿
trained through gradient descent learning algorithms 𝑓 ∗

𝐿.
In practical implementations, the existing GCN model uses the

augmented node feature matrix 𝑥 as an approximation for the ‘ideal’
augmented node feature matrix �̂�. According to Ref. [10], by evalu-
ating the integral ∫

V
𝑨𝜇,𝑣�̂�𝜇𝑑𝑃 (𝜇) in a Monte Carlo manner through

uniform sampling in the node space, the widely used GCN model can
be expressed concisely.

𝑓𝐺𝐶𝑁
𝐿

(

𝑥𝑣
)

∶=
𝐿
∑

𝑗=1
𝛽𝑗𝑔

(

𝑤T
𝑗
1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖

)

.

In the same manner, the global perspective encoder can be formulated
as

𝑓𝐺𝑙𝑜𝑏𝑎𝑙
𝐿

(

𝑥𝑣; 𝑥2𝑣; 𝑥
3
𝑣
)

∶=
𝐿
∑

𝑗=1
𝛽𝑗𝑔(𝛼1𝑤T

𝑗,1
1
𝑁

𝑁
∑

𝑖=1

𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖 + 𝛼2𝑤
T
𝑗,1

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖
+ 𝛼3𝑤

T
𝑗,1

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

3
𝜇𝑖
).

here average pooling is used to obtain the final output for multiple
utputs from each perspective in this paper. Therefore, 𝛼1 = 𝛼2 = 𝛼3 =

1
3 .

Our model includes a global perspective encoder and multiple local
perspective encoders, which can be formulated as

𝑓𝐿𝑂𝐺𝑂−𝐺𝑁𝑁
𝐿

(

𝑥𝑣; 𝑥2𝑣; 𝑥
3
𝑣
)

∶=
𝐿
∑

𝑗=1
𝛽𝑗𝑔(𝛼′1 (𝛼1𝑤

T
𝑗,1

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖

+ 𝛼2𝑤
T
𝑗,1

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖

+ 𝛼3𝑤
T
𝑗,1

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

3
𝜇𝑖
)

+ 𝛼′2(𝛼
2
1
𝑤T

𝑗,2
1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖 + 𝛼22𝑤

T
𝑗,2

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖
)

+⋯

+ 𝛼′4(𝛼
4
1
𝑤T

𝑗,4
1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖
+ 𝛼44𝑤

T
𝑗,4

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

3
𝜇𝑖
))

where {𝑥, 𝑥2, 𝑥3} stands for the raw node feature matrix and the aug-
mented node feature matrices. The node feature matrix set for the
inputs of the global perspective encoder is {𝑥, 𝑥2, 𝑥3}. {𝑥, 𝑥2}, {𝑥, 𝑥3},
{𝑥2, 𝑥3} are the node feature matrix set for the inputs of the local
erspective encoder. 𝛼1 = 𝛼2 = 𝛼3 = 1

3 , 𝛼𝑖
1
= 𝛼𝑖

2
= 1

2 , and 𝛼′1, 𝛼
′
2, 𝛼

′
3,

𝛼′4 are the attention coefficients to be learned.
Based on Theorem 1, it is logical to assume that GCN has perspective

insufficiency measured by 𝑙1 which partially implies the differences
between 𝑥 and �̂�, the local perspective encoder by 𝑙2 that partially
implies the differences between {𝑥, 𝑥2} or {𝑥, 𝑥3} or {𝑥2, 𝑥3} and �̂�, the
global perspective encoder by 𝑙3 which partially implies the differences
between {𝑥, 𝑥2, 𝑥3} and �̂�, with 𝑙1, 𝑙2 ≥ 𝑙3.

Theorem 2. To simplify the analysis, we only focus on the node feature
matrix set associated with the raw input. In the context of real implemen-
tations in discrete cases, the expressive powers for GCN, global perspective
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encoder and our model, respectively, can be bounded by

𝑑V

(

𝑓, 𝑓𝐺𝐶𝑁
𝐿

)

≤ 𝐶
√

𝐿
+ ‖𝛽‖ ‖𝑤‖

|

|

𝑔′(0)|
|

O
(

𝑙1
)

,

V

(

𝑓, 𝑓𝐺𝑙𝑜𝑏𝑎𝑙
𝐿

)

≤ 𝐶
√

𝐿
+ ‖𝛽‖ ‖𝑤‖

|

|

𝑔′(0)|
|

O
( 1
3
𝑙1 +

1
3
𝑙2 +

1
3
𝑙3
)

,

V

(

𝑓, 𝑓𝐿𝑂𝐺𝑂−𝐺𝑁𝑁
𝐿

)

≤ 𝐶
√

𝐿
+ ‖𝛽‖ ‖𝑤‖

|

|

𝑔′(0)|
|

O

(

( 1
3
𝛼′1 +

1
2
𝛼′2 +

1
2
𝛼′3 +

1
2
𝛼′4)(𝑙1 + 𝑙2) +

1
3
𝛼′1𝑙3

)

.

t indicates that LoGo-GNN can perform more favorably than GCN with
ertain appropriate attention coefficients under ideal conditions, that is,
pproaching the theoretical approximation error 𝑑V

(

𝑓, 𝑓 ∗
𝐿
)

with higher
robability. In addition, due to the additional attention coefficient and
ocal perspective encoders of LoGo-GNN, its robustness and flexibility are
tronger than the global perspective encoder.

roof. Due to 𝑙2 ≥ 𝑙3, it is logical to suppose that the insufficient of
ifferent local perspective encoders are uniformly represented as 𝑙2. It
oughly admits that

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖 − ∫𝑉

𝑨𝜇,𝑣�̂�𝜇𝑑𝑃 (𝜇)‖ ∝ O
(

𝑙1
)

∥𝛼1
1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖 + 𝛼2

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖
+ 𝛼3

1
𝑁

𝑁

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

3
𝜇𝑖
− ∫𝑉

𝑨𝜇,𝑣�̂�𝜇𝑑𝑃 (𝜇)∥ ∝ O
( 1
3
𝑙1 +

1
3
𝑙2 +

1
3
𝑙3
)

∥ 𝛼′1(𝛼1
1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖 + 𝛼2

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖
+ 𝛼3

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

3
𝜇𝑖
)

+ 𝛼′2(𝛼
2
1
1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥𝜇𝑖 + 𝛼22

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖
)

+⋯

+ 𝛼′4(𝛼
4
1
1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

2
𝜇𝑖
+ 𝛼44

1
𝑁

𝑁
∑

𝑖=1
𝑨𝜇𝑖 ,𝑣𝑥

3
𝜇𝑖
) − ∫𝑉

𝑨𝜇,𝜈 �̂�𝜇𝑑𝑃 (𝜇) ∥

∝ O
(

( 1
3
𝛼′1 +

1
2
𝛼′2 +

1
2
𝛼′3 +

1
2
𝛼′4)(𝑙1 + 𝑙2) +

1
3
𝛼′1𝑙3

)

The values of 𝛼′𝑖 are related to the attention coefficient. Based on
riangular inequality, we have 𝑑V

(

𝑓, 𝑓𝐺𝐶𝑁
𝐿

)

≤ 𝑑V

(

𝑓, 𝑓 ∗
𝐿
)

+ 𝑑V

(

𝑓 ∗
𝐿,

𝑓𝐺𝐶𝑁
𝐿

)

. After a careful deduction based on Taylor series for the activa-
ion 𝑔(⋅), the latter can be bounded by ‖𝛽‖ ‖𝑤‖

|

|

𝑔′(0)|
|

O
(

𝑙1
)

, completing
the proof of 𝑑V

(

𝑓, 𝑓𝐺𝐶𝑁
𝐿

)

, where 𝛽 represents the discrete form of the
ompressed function, 𝑔′(0) represents the derivative of the activation
unction 𝑔(⋅) when the value is 0. Similar tricks can be used to prove
V

(

𝑓, 𝑓𝐺𝑙𝑜𝑏𝑎𝑙
𝐿

)

and 𝑑V

(

𝑓, 𝑓𝐿𝑂𝐺𝑂−𝐺𝑁𝑁
𝐿

)

.
We analyze in detail the advantages of our model compared to

he aforementioned mainstream GCN models. We summarize from
heorem 1 and Theorem 2 that the expressive power of GNN under

deal conditions is primarily determined by the set of augmented fea-
ure matrices. Additionally, the expressive power of embedding fusion
rchitectures for augmented graphs is superior to GCN under ideal
onditions.

However, it is often challenging to achieve an ideal condition
here complete information is available. In such cases, complementary

ollaboration can provide valuable information when local and global
erspectives are combined. This suggests that LoGo-GNN has an advan-

tage over the global perspective encoder. We provide a detailed analysis

of this advantage in the experiment section.

7 
4. Experiments

In this section, we describe the experiments that are conducted to
evaluate LoGo-GNN and answer the following research questions.

Q1: How does our method perform in node and graph classification
tasks?

Q2: What role does each module play in the proposed method?

Q3: How is the robustness of LoGo-GNN reflected?

4: How does our method perform in node clustering tasks?

5: How does perturbation augmentation work in LoGo-GNN?

6: How do different hyperparameters affect LoGo-GNN?

atasets. The experiments are conducted over six real-world datasets
hich are summarized in Table 2. Cora, Citeseer, Pubmed, and DBLP
re the research paper citation networks [29,33]. ACM is extracted
rom the ACM dataset [34], and Chameleon is extracted from the

ikipedia network [35]. The super-pixels datasets test graph classi-
ication using the popular MNIST and CIFAR10 image classification
atasets [16].

OGO-GNN. In the experiment section, we use OURS to represent
he LoGo-GNN based on semi-supervised learning, and OURS-UN to

represent the LoGo-GNN based on unsupervised learning. It is worth
noting that the learned embeddings based on unsupervised learning are
used for training linear classifiers to obtain the classification results on
node classification tasks.

Baselines. We compare LoGo-GNN with state-of-the-art methods. (1)
Base encoder: GCN [29]. (2) Attention-based encoder: GAT [5],
MAGCN [10], DGCN [12] and PA-GCN [8]. (3) Multi-scale/view infor-
mation fusion-based encoder: MixHop [17], N-GCN [4], MOGCN [18],
MAGCN [10], DGCN [12] and PA-GCN [8]. (4) Contrastive learning-
based encoder: NCLA [22], PA-GCN [8], GraphCL [31], IGCL [36], and
GCA [20]. (5) Unsupervised learning model: K-means, Deepwalk [37],
GAE [30], and VGAE [30].

Parameter Setting. All dataset-specific hyperparameters are summa-
rized in Table 3. The raw input graph is denoted as Raw. It is worth
noting that we use multiple graph relations to perform perturbation
augmentation as the input graphs (denoted as PR, PC, PK), which are
described as follows:

(1) PR: The first graph relations (topology) are provided by the raw
graph relations of these datasets.

(2) PC: The second graph relations (topology) are provided by cosine
similarity. Cosine similarity is utilized to measure text similarity.
Specifically, there is an edge between two nodes if the text sim-
ilarity is greater than the similarity threshold (hyperparameter
𝑐𝑜𝑠-threshold).

(3) PK: The third graph relations (topology) are provided by 𝑘NN
graph construction (hyperparameter 𝑘) [38].

Implementation Details. We train our model using the full batch
in each training epoch. We implement our algorithm in Pytorch and
optimize it with the Adam [39] algorithm. In traditional graph data,
we select a different number of labeled nodes per class for the training
set and choose 1000 nodes as the test set. In super-pixels datasets, we
choose 10000 images as the test set. We report the mean classification
accuracy (ACC) of our method after 10 runs over the dataset splits
that are specified above. The hyperparameter 𝜂 is selected in the
search range {0.05; 0.1; 0.15; ... ; 0.95}, hyperparameter 𝜆1 and 𝜆2
are selected in the search range {0; 0.1; 0.2; ... ; 1}. Additionally, the
hyperparameter 𝑐𝑜𝑠-threshold is selected in the search range {0.1; 0.15;
0.15; ... ; 0.5}, and 𝑘 is selected in the search range {5; 10; 15; ...

; 30}. The number of iterations for Eq. (1) is set to {1, 2, 3}. The
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Table 2
Data details.

Datasets Nodes Edges Features Classes Training Test

Cora 2708 5429 1433 7 140 1000
Citeseer 3327 4732 3703 6 120 1000
ACM 3025 13 128 1870 3 60 1000
Chameleon 2277 36 101 2325 4 80 1000
DBLP 17 716 105 734 1639 4 80 1000
Pubmed 19 717 44 338 500 3 60 1000

MNIST – – – 10 55 000 10 000
CIFAR10 – – – 10 45 000 10 000

Table 3
Hyperparameter settings.

Dataset Learning rates Weight decay Training epochs Dropout

Cora 0.005 1.00E−05 100 0.5
Citeseer 0.005 1.00E−05 100 0.5
ACM 0.005 1.00E−05 100 0.5
Chameleon 0.005 1.00E−05 100 0.5
DBLP 0.001 1.00E−05 500 0.5
Pubmed 0.001 1.00E−05 1000 0.5

MNIST 0.001 1.00E−05 5000 0.5
CIFAR10 0.001 1.00E−05 5000 0.5

Table 4
Notation description.

Notation Description

Raw The raw input graph
RawC The convolution augmentation graph via Eq. (14).
PR The augmentation graph based on raw graph relations.
PC The augmentation graph based on cosine similarity graph relations.
PK The augmentation graph based on 𝑘NN graph relations.
Global Learned representation of global perspective ({RAW,PC,PK}).
Local1 Learned representation of local perspective ({RAW,PC}).
Local2 Learned representation of local perspective ({RAW,PK}).
Local3 Learned representation of local perspective ({PC,PK}).
Local-Global Fused representation from the local-to-global perspective.

experiment results of each experiment are obtained with the optimal
hyperparameters and the number of iterations.

Evaluation Metrics. Following existing works in evaluating node or
raph classification [16,29,40], we adopt classification accuracy (ACC)
o evaluate the performance of baselines and LoGo-GNN for node

classification tasks. ACC is computed on all testing examples based on
each dataset. Additionally, we adopt normalized mutual information
(NMI) and adjusted random index (ARI) to evaluate the performance
of baselines and LoGo-GNN for node clustering tasks.

4.1. Performance on node and graph classification (Q1)

4.1.1. Performance on node classification
This subsection reports the mean and standard error of classification

accuracy (ACC) after 10 runs. It is worth pointing out that the results
of DeepWalk [37] and NCLA [22] are obtained from corresponding
papers. The semi-supervised node classification results are reported in
Table 5. We make the following observations:

(1) Compared to baselines, LoGo-GNN has superior performance
over most datasets. It is worth noting that LoGo-GNN based
on semi-supervised learning architecture (OURS) is superior to
LoGo-GNN based on unsupervised learning architecture (OURS-
UN). This can be attributed to the fact that LoGo-GNN based on
a semi-supervised learning architecture is an end-to-end fusion
framework, where label information can be used to guide the
embedding fusion process in the process of training.

(2) LoGo-GNN based on semi-supervised learning architecture

(OURS) still has advantages over other models (MAGCN, t

8 
MOGCN, PA-GCN, etc.) that use multi-topologies/views infor-
mation fusion. In addition, LoGo-GNN based on unsupervised
learning architecture (OURS-UN) is superior to most graph
contrastive learning models (GCA, IGCL, etc.). This superiority
can be attributed to the fact that LoGo-GNN integrates the
information from global to local encoder perspectives (from
global input graphs to multiple pair graph combinations) and
conducts suitable topology learning on fused node embeddings.

(3) Following the failure cases shown in Table 5, taking the Pubmed
dataset as an example, the performance of LoGo-GNN is weaker
than that of NCLA. This can be attributed to the fact that
NCLA includes an augmentation learning mechanism, which
can efficiently learn self-supervised information between input
graph and augmentation instances when raw graph relations are
reliable. Similarly, taking the Citeseer dataset as an example,
the performance of LoGo-GNN is also weaker than that of LA-
GCN. LA-GCN uses learnable local feature augmentation based
on the raw graph relationships and focuses more on enhancing
information from feature perspectives. However, overall, the
performance of LoGo-GNN is still superior to these methods. The
difference is that LoGo-GNN focuses on the design of fusion ar-
chitecture and uses multiple graph relation information instead
of just raw graph relation information to generate augmentation
instances due to the possibility of introducing unreliable edge
relationships. The advantages of LoGo-GNN are more evident in
noisy environments. We analyze the robustness of LoGo-GNN in
the subsequent experiment section.

.1.2. Performance on graph classification
Following Ref. [16], we use the image classification datasets for

raph classification and take GCN [29] and GAT [5] as baselines.
he mean and standard error of classification accuracy (ACC) are
eported after 10 runs. The graph classification results are reported in
able 6. It is clear that LoGo-GNN has superior performance compared
o baselines. This reflects that LoGo-GNN is equally competitive in
raph classification tasks.

.2. Ablation study (Q2)

.2.1. LoGo-GNN architecture study
The superiority of the proposed LoGo-GNN has been verified by

he aforementioned comparison experiments. We also perform the fol-
owing ablation studies to verify the validity of each component in
oGo-GNN in this subsection:

• Multi perspectives-GCN+MLP: GCN with local-to-global encoder
perspectives via a standard MLP for node classification tasks;

• Multi perspectives-GAT+GAT: Graph attention networks (GAT)
with local-to-global encoder perspectives via a single-layer GAT
for node classification tasks;

• Global-GCN+GCN: GCN with global encoder perspective via a
single-layer GCN for node classification tasks;

• OURS-UN-w/o: LoGo-GNN based on unsupervised learning archi-
tecture without constraint L𝑐 ;

• OURS-w/o: LoGo-GNN based on semi-supervised learning archi-
tecture without constraint L𝑐 ;

• OURS-UN: the proposed LoGo-GNN based on unsupervised learn-
ing architecture;

• OURS: the proposed LoGo-GNN based on semi-supervised learn-
ing architecture;

The ablation results for the six datasets are listed in Table 7. We

hen make the following observations:
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Table 5
ACC of node classification tasks (%), where 𝑨 and 𝑿 are the adjacency matrix and feature matrix, and 𝒀 is the label information. (Bold: best)

Method Training data Datasets

Cora Citeseer ACM Chameleon DBLP Pubmed

DeepWalk [37] 𝑨 67.2 43.2 – – – 65.3
NCLA [22] 𝑿, 𝑨 82.2 71.7 – – – 82.0
GCA [20] 𝑿, 𝑨 82.7 ± 0.6 71.8 ± 0.7 89.4 ± 0.6 35.6 ± 0.2 70.6 ± 0.5 76.8 ± 0.5
IGCL [36] 𝑿, 𝑨 83.5 ± 0.5 72.1 ± 0.6 89.2 ± 0.7 47.6 ± 0.4 73.6 ± 0.3 80.8 ± 0.6
GraphCL [31] 𝑿, 𝑨 83.1 ± 0.6 72.1 ± 0.6 90.2 ± 0.6 48.6 ± 0.5 72.9 ± 0.5 80.6 ± 0.6
OURS-UN 𝑿, 𝑨 83.5 ± 0.4 73.0 ± 0.3 91.6 ± 0.7 51.5 ± 0.6 73.8 ± 0.3 80.9 ± 0.8

GCN [29] 𝑿, 𝑨, 𝒀 81.5 ± 0.2 70.4 ± 0.4 87.8 ± 0.2 47.6 ± 0.4 70.2 ± 0.5 79.0 ± 0.6
GAT [5] 𝑿, 𝑨, 𝒀 83.2 ± 0.7 72.6 ± 0.7 87.4 ± 0.3 47.9 ± 0.4 71.0 ± 0.3 79.0 ± 0.6
PA-GCN [8] 𝑿, 𝑨, 𝒀 83.6 ± 0.2 70.4 ± 0.3 90.9 ± 0.3 49.0 ± 0.3 72.0 ± 0.4 79.3 ± 0.3
MOGCN [18] 𝑿, 𝑨, 𝒀 82.4 ± 1.2 72.4 ± 0.8 90.1 ± 1.4 46.9 ± 0.4 70.9 ± 0.7 79.2 ± 0.3
N-GCN [4] 𝑿, 𝑨, 𝒀 83.0 ± 0.5 72.2 ± 0.5 88.0 ± 0.3 48.9 ± 0.4 71.3 ± 0.2 79.5 ± 0.4
MixHop [17] 𝑿, 𝑨, 𝒀 81.9 ± 0.4 71.4 ± 0.6 87.9 ± 0.7 40.6 ± 0.6 70.9 ± 0.3 80.8 ± 0.2
DGCN [12] 𝑿, 𝑨, 𝒀 84.1 ± 0.3 73.3 ± 0.1 90.2 ± 0.2 48.9 ± 0.4 72.3 ± 0.2 80.2 ± 0.3
MAGCN [10] 𝑿, 𝑨, 𝒀 84.5 ± 0.5 73.3 ± 0.3 90.6 ± 0.3 50.4 ± 0.5 72.5 ± 0.3 80.6 ± 0.8
LA-GCN [2] 𝑿, 𝑨, 𝒀 84.6 ± 0.7 𝟕𝟒.𝟕 ± 𝟎.𝟓 89.9 ± 0.4 48.3 ± 0.6 72.0 ± 0.5 81.7 ± 0.7
OURS 𝑿, 𝑨, 𝒀 𝟖𝟒.𝟔 ± 𝟎.𝟒 73.4 ± 0.5 𝟗𝟏.𝟖 ± 𝟎.𝟓 𝟓𝟐.𝟕 ± 𝟎.𝟑 𝟕𝟒.𝟗 ± 𝟎.𝟓 81.6 ± 0.7
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Table 6
ACC of graph classification tasks (%). (Bold: best)

Method Datasets

MNIST CIFAR10

MLP 95.3 ± 0.1 56.3 ± 0.2
GCN [29] 90.1 ± 0.1 54.1 ± 0.4
GAT [5] 95.5 ± 0.2 64.2 ± 0.5
OURS-UN 97.5 ± 0.2 67.3 ± 0.4
OURS 97.8 ± 0.3 68.1 ± 0.5

Table 7
ACC (%) of LoGo-GNN and its variants. (Bold: best)

Method Datasets

Cora Citeseer ACM Chameleon DBLP Pubmed

Multi perspectives-GCN+MLP 84.2 72.4 90.1 49.5 72.1 80.3
Multi perspectives-GAT+GAT 84.7 73.3 92.0 52.9 75.2 81.6
Global-GCN+GCN 84.5 73.2 91.6 51.7 74.5 81.2
OURS-UN-w/o 82.5 71.5 90.4 51.2 72.8 80.5
OURS-w/o 84.3 73.3 91.5 51.3 73.1 80.9

OURS-UN 83.5 71.7 91.6 51.5 73.8 80.9
OURS 84.6 73.4 91.8 52.7 74.9 81.6

(1) We apply a standard MLP (Multi perspectives-GCN+MLP) or
Graph Attention Networks (multi perspectives-GAT+GAT) for
final classification to further verify the advantage of the LoGo-
GNN architecture. The results show that the model that intro-
duces graph attention networks (GAT) achieves a better per-
formance than the other models (multi perspectives-GCN+MLP,
OURS). The introduction of graph attention networks (GAT) is
an effective way to learn the topology of fused node embeddings.
Additionally, the performance of OURS is better than multi
perspectives-GCN+MLP. We explain this empirical finding by the
fact that fused node embeddings do not significantly influence
their raw graph relations. Interestingly, the process of perturba-
tion augmentation introduces different topological information,
which makes performing convolution operations based on the
raw graph relations on the fused node embeddings effective.

(2) LoGo-GNN achieves a better performance than Global-GCN+
GCN. This result highlights the importance of local information
when global information is limited or incomplete (label informa-
tion is limited). Specifically, in most cases, models that introduce
both local and global perspectives perform better than models
that only introduce the global encoder perspective.

(3) It is important to learn complementary information from vari-
ous perspectives. We can see from Table 7 that the LoGo-GNN
(𝐎𝐔𝐑𝐒-𝐔𝐍 and 𝐎𝐔𝐑𝐒) trained using the global loss function
9 
outperforms the LoGo-GNN trained only using the object loss
L𝑜. This also confirms our analysis in designing the global loss
function.

.2.2. Perturbation augmentation study (Q4)
We only use the best performing LoGo-GNN based on semi-

upervised learning architecture (𝐎𝐔𝐑𝐒) for the following experiment
o simplify the analysis and conduct the tasks of node classification and
emantic similarity analysis on the Cora dataset to further validate the
ffectiveness of proposed perturbation augmentation strategy.

First, we use different aggregation methods to obtain the augmen-
ation graphs. We also introduce the aggregation method of GCN [29]
nto graph augmentation as a comparison (please refer to Eq. (14)). The
escriptions of different input graphs are shown in Table 4. Addition-
lly, we use the broken line chart to describe the representation ability
f input graphs (PR, PC, RawC, Raw) after each aggregation (iteration)
nd compare the semantic similarity between the augmentation graphs
nd the input graph Raw. Specifically, each augmentation graph and
nput graph learn their representations through a shared GCN encoder,
nd their semantic similarity is measured by comparing the learned
raph representations. The results are shown in Fig. 3. It can be
bserved that performing multiple iterations of perturbation augmen-
ation can significantly change the semantic similarity with the raw
raph. In addition, perturbation augmentation graphs based on other
opological relationships have better expressive power in the case of
mall iterations. It is worth noting that the semantic similarity between
he augmentation graphs and the raw graph is smaller when using other
opologies for perturbation augmentation. Based on the analysis above,
n augmentation graph with a significant representation ability and
mall semantic similarity is more effective in providing supplementary
nformation during the information fusion process. Therefore, we are
ore inclined to choose the augmentation graphs based on other

opology relations.

̃ 𝑖 = �̂�𝑖,𝑖𝒙𝑖 +
∑

𝒙𝑗∈N(𝒙𝑖)
�̂�𝑖,𝑗𝒙𝑗 . (14)

We also compare the performance of the GCN encoder based on the
aw graph (Raw) and different perturbation augmentation graphs (PR,
C, PK), as shown in Table 8 and Table 9. It is clear that the GCN
ncoder based on different perturbation augmentation graphs performs
etter than the GCN encoder based on the raw graph, which further
roves the effectiveness of our proposed perturbation augmentation
trategy.

.2.3. Robustness analysis (Q3)
As LoGo-GNN based on unsupervised learning architecture

𝐎𝐔𝐑𝐒-𝐔𝐍) and LoGo-GNN based on semi-supervised learning archi-
ecture (𝐎𝐔𝐑𝐒) have the same fusion architecture, we only use the best
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Fig. 3. Representation ability of input graphs and semantic similarity between the perturbation augmentation graphs and the raw input graph on the Cora dataset.
Fig. 4. The performance of VGAE reconstructed graphs for the learned embeddings based on different perspectives on the Cora dataset. Unattacked inputs represent using
representations learned from each unattacked perspective as inputs. Attacked inputs represent using representations learned from each attacked perspective as inputs, where we
randomly delete some edges with an 80% ratio to get the modified graph as the input of each perspective encoder.
Table 8
ACC (%) of GCN encoder based on different perturbation augmentation graphs. (Bold:
best)

Input Datasets

Cora Citeseer ACM Chameleon DBLP Pubmed

RAW 81.5 70.4 87.8 47.6 70.2 79.0
PR 81.3 70.5 88.1 46.9 71.2 78.3
PC 82.4 71.4 88.7 49.6 71.8 80.1
PK 82.2 70.7 87.5 48.3 70.0 80.5

Table 9
ACC (%) of LoGo-GNN based on different graph combinations. (Bold: best)

Input Datasets

Cora Citeseer ACM Chameleon DBLP Pubmed

Raw+PR+PC 83.7 71.5 91.0 50.6 72.9 80.4
Raw+PR+PK 83.3 71.1 91.2 50.2 71.9 81.0
Raw+PC+PK 84.6 73.4 91.8 52.7 74.9 81.6

performing LoGo-GNN based on semi-supervised learning architecture
(𝐎𝐔𝐑𝐒) for the following experiment to simplify the analysis.

First, we use visualization and graph reconstruction methods to
measure the expressive power of each perspective. We use visualization
and graph reconstruction methods to measure the expressive power
of each perspective. Specifically, we use VGAE [30] to reconstruct
the representations learned by each perspective encoder on the Cora
dataset and use the AUC (area under the curve of ROC) metric to plot
cylindrical shapes. The results are shown in Fig. 4. The representations
learned by each perspective encoder are also plotted using t-SNE [9],
as shown in Fig. 5.
10 
Additionally, we use the broken line chart to evaluate the semantic
similarity between the global perspective embedding and the local per-
spective embeddings based on different training epochs ({1,5,10,20,40,
100}) on the Cora dataset. Specifically, each perspective embedding
learns its representations through a shared GCN encoder, and their
semantic similarity is measured by comparing the learned represen-
tations. The results are shown in Fig. 6. The description of each
perspective is detailed in Table 4. It is clear that the expressive power
(visual distribution and graph construction ability) of the representa-
tions learned by each perspective encoder is affected when the input
graphs are attacked. Fused representation from local to global per-
spectives has stronger expressive power (as shown in Fig. 5) in noisy
environments, i.e., LoGo-GNN is robust. The representation learned
from a global perspective is not optimal in this scenario. On the
other hand, the representation learned from the local perspective has
better expressive power. Moreover, the difference in the learned rep-
resentations between each local perspective and the global perspective
increases with the proposed contrastive loss L𝑐 , which validates the im-
portance of introducing local perspectives and also verifies our earlier
analysis. Our aim is to maximize the differences in the representations
learned by the encoders from different perspectives while ensuring that
certain perspective encoders have exceptional learning abilities. It is
worth noting that it does not always lead to a significant difference
in the representation learned by encoders from different perspectives
as the training epoch increases. This is attributed to the fact that the
objective function is constrained by both contrast loss and object loss
simultaneously.

Finally, the performance of LoGo-GNN, GCN [29] and Global-GNN
(LoGo-GNN with global encoder perspective) are tested when dealing
with some uncertainty issues in node classification tasks to demonstrate
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Fig. 5. Visualization of the learned embeddings based on different perspectives on the Cora dataset. Unattacked * represent using representations learned from each unattacked
perspective as inputs. Attacked * represent using representations learned from each attacked perspective as inputs, where we randomly delete some edges with an 80% ratio to
get the modified graph as the input of each perspective encoder.
Fig. 6. Semantic similarity between the local perspective embeddings and the global perspective embedding on the Cora dataset. Unattacked inputs represent using representations
learned from each unattacked perspective as inputs. Attacked inputs represent using representations learned from each attacked perspective as inputs, where we randomly delete
some edges with an 80% ratio to get the modified graph as the input of each perspective encoder.
the robustness of our proposed model. We consider four types of un-
certainty issues: low label rates, random topology attack, node feature
mask, and node noise attack, which can lead to potential perturbations
and affect classification performance. We only use the Cora dataset
for experiments, with the number of labeled nodes being {14, 21, 28,
54}, attach ratios and mask ratios set to {0.2, 0.4, 0.6, 0.8}, and noise
level set to {0.001, 0.01, 0.1, 1}. Specifically for the random topol-
ogy attack/node feature mask, we randomly delete some edges/node
features with a given ratio to obtain the modified graph/nodes and
evaluate the classification accuracy on the (dirty) test set. Gaussian
noise is added to the node features to disrupt the original feature values
and affect the predicted results of the model for node noise attack. The
parameter noise level represents the coefficient for the added noise. The
experimental results are shown in Fig. 7. The following conclusions can
be made:

(1) It can be concluded from Fig. 7(a) that while the baseline perfor-
mance rapidly deteriorates with a decrease in label rate, OURS
performs exceptionally well even at extremely low label rates.
Moreover, in scenarios where there are information constraints,
considering both local and global information proves to be more
effective in capturing key information. This is because OURS
outperforms Global-GNN significantly, especially when the label

rate is extremely low.

11 
(2) It is clear from Fig. 7(b) that OURS outperforms the baselines at
higher attack ratios. This is because OURS plays a critical role in
learning from the global and local encoder perspectives. Overall,
the performance of all methods decays rapidly with respect to
the random attack ratio.

(3) Similar to the above analysis, it can be concluded from
Figs. 7(c)–(d) that OURS consistently outperforms GCN and
Global-GNN. Overall, the performance of all methods decays
rapidly with respect to the mask ratio and noise level.

4.3. Performance on node clustering (Q5)

We also evaluate the performance of the proposed method on
unsupervised graph representation learning. After training, we perform
clustering tasks on the fused node embeddings 𝑯 (1) using the K-means
algorithm over the Cora, Citeseer, Pubmed datasets, where two metrics
are used for evaluation: normalized mutual information (NMI), and
adjusted random index (ARI), with the mean and standard error of
the metrics presented in Table 10. We select some representative un-
supervised models and graph contrastive learning models as baselines,
namely, K-means, Deepwalk [37], GraphCL [31], IGCL [36], GCA [20],
GAE [30], and VGAE [30]. To verify the flexibility of LoGo-GNN, we

use the loss functions of GCA [20], IGCL [36], and GraphCL [31]
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Fig. 7. Test performance comparison of GCN, Global-GNN, and OURS on Cora.
Table 10
Node clustering results for methods with different inputs, where 𝑨 and 𝑿 are the adjacency matrix and feature matrix (Bold: best)

Method Training data Cora Citeseer Pubmed

NMI ARI NMI ARI NMI ARI

K-mean 𝑿 32.1 23.0 30.5 27.9 0.1 0.2
DeepWalk 𝑿 32.7 24.3 8.8 9.2 27.9 29.9

GAE 𝑿, 𝑨 42.9 34.7 17.6 12.4 27.7 27.9
VGAE 𝑿, 𝑨 23.9 17.5 15.6 9.3 22.9 21.3

GRAGE 𝑿, 𝑨 54.4 ± 1.2 43.4 ± 3.1 35.2 ± 1.8 34.1 ± 1.7 30 ± 3.4 29.5 ± 2.1
OURS 𝑿, 𝑨 55.9 ± 2.4 47.5 ± 2.4 39.5 ± 2.4 35.3 ± 2.4 32.7 ± 2.6 33.9 ± 2.1

GraphCL 𝑿, 𝑨 55.3 ± 3.2 54.5 ± 2.7 42.1 ± 3.9 44.1 ± 1.8 34.1 ± 3.3 34.2 ± 2.8
OURS(GraphCL) 𝑿, 𝑨 57.2 ± 2.1 56.3 ± 2.2 45.3 ± 1.9 44.5 ± 2.2 35.8 ± 2.4 34.0 ± 1.4

IGCL 𝑿, 𝑨 56.6 ± 3.0 53.9 ± 2.0 43.5 ± 1.7 45.2 ± 1.9 33.4 ± 2.6 32.9 ± 1.1
OURS(IGCL) 𝑿, 𝑨 58.2 ± 1.2 55.5 ± 2.3 45.5 ± 2.4 45.0 ± 2.7 37.7 ± 2.5 35.9 ± 1.9
as the I loss (𝐎𝐔𝐑𝐒, 𝐎𝐔𝐑𝐒(𝐆𝐫𝐚𝐩𝐡𝐂𝐋), 𝐎𝐔𝐑𝐒(𝐈𝐆𝐂𝐋)) in the loss
function L𝑜, respectively. It can be observed that LoGo-GNN achieves
comparable results with other state-of-the-art models on most datasets.
Taking the Pubmed dataset as an example, the ARI of 𝐎𝐔𝐑𝐒(𝐈𝐆𝐂𝐋)
increased by 9.11% compared to IGCL. This reflects that LoGo-GNN is
also highly competitive in unsupervised clustering tasks. Notably, the
performance of LoGo-GNN heavily depends on the selection of I loss,
which indirectly reflects the flexibility of LoGo-GNN.

4.4. Parameter sensitivity (Q6)

A sensitivity analysis is undertaken on the critical hyperparameter 𝜂
to analyze the sensitivity of the hyperparameters. We train LoGo-GNN
using 𝜂 values approximately ranging from 0.05 to 0.95 in increments
of 0.05. We empirically find that 𝜂 values within the range of 0.4
to 0.8 yield satisfactory results, which show that model performance

can be improved by paying appropriate attention to the representation
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relationships of learning from different encoder perspectives. In addi-
tion, we conducted an evaluation on how the hyperparameters 𝜆1 and
𝜆2 impact the performance of the model. Specifically, we set 𝜂 at a
fixed value and varied the values of 𝜆1 and 𝜆2 from 0 to 0.9. Then,
we displayed the results of all node classifications on a 3D bar chart,
which is illustrated in Fig. 8. It can be observed that the effect of self-
supervised learning will be better when both 𝜆1 and 𝜆2 have higher
values.

5. Conclusion

In this study, we introduce collaborative graph neural networks
for augmented graphs (LoGo-GNN), a novel architecture that addresses
the limitations of existing graph neural networks (GNNs) in capturing
the internal local collaboration among input graphs. By employing a
perturbation augmentation strategy, it generates multiple input graphs
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Fig. 8. The performance of OURS-UN with varying hyperparameters in node
classification on the Cora dataset in terms of ACC (%).

and strategically pairs them, facilitating collaboration across differ-
ent scales and enabling representation learning from both local and
global encoder perspectives. It is worth noting that the loss function of
LoGo-GNN includes a novel complementary loss and an object loss to
guide the efficient node embedding fusion and collaboration between
different perspectives.

The strengths of our method over existing works lie in its greater
effectiveness and robustness in handling multiple augmented graphs.
LoGo-GNN stands out as an effective and robust solution, offering
a comprehensive approach from a local-to-global perspective. Theo-
retical analysis conducted under ideal conditions and related experi-
ments demonstrate the expressive power of LoGo-GNN and validate its
effectiveness and robustness.

However, the work primarily focuses on generating a local-to-global
perspective, where information from each perspective undergoes sim-
ple unified processing. Moreover, the model’s time complexity increases
non-linearly with the number of perspectives. In the future, we plan
to implement dynamic sampling of different perspective information
and consider extracting hierarchical information from each perspective
rather than simply unifying the information from each perspective.
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