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Fusing Monotonic Decision Tree Based on
Related Family

Tian Yang, Fansong Yan, Fengcai Qiao, Jieting Wang, Yuhua Qian*,

Abstract—Monotonic classification is a special ordinal classification task that involves monotonicity constraints between features and
the decision. Monotonic feature selection can reduce dimensionality while preserving the monotonicity constraints, ultimately improving
the efficiency and performance of monotonic classifiers. However, existing feature selection algorithms cannot handle large-scale
monotonic data sets due to their lack of consideration for monotonic constraints or their high computational complexities. To address
these issues, building on our team’s previous research, we define the monotonic related family method with lower time complexity to
select informative features and obtain multi-reducts carrying complementary information from multi-view for raw feature space. Using
bi-directional rank mutual information, we build two trees for each feature subset and fuse all trees using the corresponding decision
support level (BFMDT). Compared with six representative algorithms for monotonic feature selection, BFMDT’s average classification
accuracy increased by 4.06% (FFREMT), 6.77% (FCMT), 5.61% (FPRS up), 6.05% (FPRS down), 5.86%(FPRS global), 4.41%
(Bagging), 7.65% (REMT) and 21.89% (FMKNN), the average execution time compared to tree-based algorithms decreased by
83.41% (FFREMT), 96.96% (FCMT), 75.64% (FPRS up), 59.43% (FPRS down), 84.65%(FPRS global), 81.50% (Bagging) and
63.41% (REMT), while most of comparing algorithms were unable to complete computation on six high-dimensional datasets.

Index Terms—Rough set, Granular computing, Related family, Monotonic classification, Decision tree, Feature selection.

✦

1 INTRODUCTION

C LASSIFICATION is a vital research topic in machine
learning and data mining, aiming to train classifiers

using labeled samples to predict the labels of unlabeled
samples. Classification tasks can be divided into nominal
classification and ordinal classification based on monotonic-
ity constraints. Ordinal classification tasks exhibit ordinal
relationships among different decision classes [1]–[3]. Mono-
tonic classification tasks refer to a special case of ordinal
classification, where monotonicity constraints exist between
features and decisions, i.e., samples with higher feature val-
ues cannot be assigned to lower decision classes. Due to its
universality in the real world, monotonic classification has
garnered increasing interest in the fields of data mining [4],
knowledge discovery [5], pattern recognition [6], intelligent
decision-making [7], [8] and so on.

Classical classifiers in machine learning, such as Neu-
ral Networks, k-Nearest Neighbors (kNN), and Decision
Trees, are not suitable for solving monotonic classification
problems as they do not consider monotonicity constraints.
To achieve monotonicity, Monotonic Neural Networks [9]
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impose constraints on the network parameters, Totally and
Partially Monotone Neural Networks are explored in [10].
Monotonic Nearest Neighbor algorithms [11] aim to achieve
monotonicity of the training data by relabeling the dataset
and modifying the neighbor rules to ensure that the pre-
dicted results satisfy monotonicity constraints. Monotonic
Decision Trees [6] introduce the notion of rank entropy as a
criterion for selecting split points in decision tree construc-
tion, and modify the prediction mechanism of leaf nodes to
satisfy monotonicity constraints. Compared to the first two
models, the monotonic decision tree model is rule-based and
interpretable rather than probabilistic or instance, making it
better suited for handling structured data.

Ensemble learning, such as Bagging [12] and Boosting
[7], [13], improving a classifier’s robustness and generaliza-
tion by combining the evaluation of prediction results from
multiple classifiers, is also applied to monotonic classifica-
tion [14]. Especially, due to providing multiple complemen-
tary feature subsets, some feature selection algorithms are
widely utilized in ensemble learning [15], [16].

Rough Set Theory [17], introduced by Pawlak, has
proven to be an effective mathematical tool for monotonic
classification [4], [6], [14], [16], [18], [19] and ensemble
learning [16], [20]. Dominance Rough Set Theory, which
substitutes equivalence relationships with preference rela-
tionships, is widely employed for feature selection in or-
dinal decision tables, including normal ordinal data [21]–
[25], interval-valued ordinal data [26], [27], and dynamic
ordinal data [28], [29] et al.. The discernibility matrix [30]
and the significance measure [3] are two primary effective
methods used for feature selection based on rough sets.
They have been combined with monotonic classifiers to
improve monotonic classification problems [31], [32].

Our research team has long been dedicated to the ex-
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Fig. 1: The computation process of related family (left), discernibility matrix (center) and significance measure (right).

ploration of fusing monotonic decision tree, employing
feature selection methods based on both the significance
measure [14] and the discernibility matrix [16], [19]. Among
these researches, Qian et al. developed an method called
FREMT [14] for monotonic feature selection and decision
tree fusion based on feature significance in dominance
rough sets, aiming to further enhance the generalization
ability of ordinal decision trees; Xu et al. [19] propose
FCMT based on discernibility matrix in dominance rough
set; Wang et al. [16] propose FFREMT, which employs a
fuzzy discernibility matrix as a feature selection method
and predicts through voting across all trees. Besides our
works, Hu et al. [33] introduced three fuzzy significance
measures using a forward heuristic algorithm FPRS, which
can select monotonic features. Although feature selection
algorithms based on feature significance and discernibil-
ity matrix are theoretically well-founded, their drawbacks
are also evident. The complexities of significance measure-
based methods [14], [33] and discernibility matrix-based
methods [16], [19] are both quadratic about feature scale
and sample scale, respectively. As a result, they struggle to
handle high-dimensional data.

To achieve more efficient feature selection for large-scale
data processing, the first author et al. [34]–[36] propose
the related family method for efficient feature selection.
Because it evaluate the significance of every single feature
and avoid repeat granulation, the complexities for both time
and space can be reduced to linear. The computation process
of related family is compared with discernibility matrix and
significance measure in Fig. 1. The algorithm based on the
discernibility matrix performs pairwise comparisons of sam-
ple on each feature, whereas the feature significance-based
method involves complex calculations at the feature level. In
contrast, the related family only requires a single traversal
of the sample set for each feature, resulting exponentially
boosting computation efficiency and scalability of feature
selection by even thousands of times [37]. However, the
original related family approach is unable to exploit the
ordinal information of the data.

Granulation is one of the fundamental processes in

rough sets, where the problem space is partitioned into
information granules forming granular layers, enabling con-
cise and accurate knowledge representation under given
granulation criteria to improve algorithm interpretability
and knowledge inference efficiency, thereby satisfying the
requirements of large-scale data processing. The granula-
tion approaches used in the discernibility matrix [16], [19],
significance measure [38]–[40] and related family [35], [37]
and others [37], [41], [42] have achieved promising results
in various aspects, but either exhibit high time or space
complexity, or do not consider preference relations in mono-
tonic datasets, thus failing to efficiently process ordinal data
sets. In order to develop an accurate and efficient approach
for ordinal data processing, we introduce innovations in
monotonic classification from four perspectives:

1) Monotonic Consistent granulation: Monotonic Par-
tition based on single feature is presented to ensure
that all samples within a granule adhere to strict
monotonicity constraints. As a result, the time com-
plexity about sample scale is reduced as O(nlogn).

2) Accurate granule evaluation: The fitting degree is
proposed for assessing the quality of all monotonic
partitions, which offers a more precise evaluation
method compared to dependency degree.

3) Efficient feature evaluation mode: Monotonic Re-
lated Family, a highly efficient feature evaluation
framework based on individual features, is con-
structed for reducing the time complexity with re-
spect to the feature scale as O(m).

4) Fusing monotonic decision tree: Monotonic Related
Family computes multi-reducts for each ordinal de-
cision table, which supply complementary informa-
tion from various perspectives. Each reduct induces
two monotonic decision trees (superiority and infe-
riority), then all trees generated by different reducts
are fused to construct an accurate and robust classi-
fier, called BFMDT.

Five representative algorithms of monotonic decision
tree, including FFREMT [16], FCMT [19], FPRS (up, down,
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global) [33], Bagging [12] and REMT [6], are compared
with BFMDT on eighteen datasets. Experiments show
that the average CA (classification accuracy) increased by:
4.06% (FFREMT), 6.77% (FCMT), 5.61% (FPRS up), 6.05%
(FPRS down), 5.86%(FPRS global), 4.41% (Bagging), 7.65%
(REMT) and 21.89% (FMKNN); the average MAE (mean ab-
solute error) decreased by: 6.35% (FFREMT), 6.89% (FCMT),
6.58% (FPRS up), 6.96% (FPRS down), 6.78%(FPRS global),
16.14% (Bagging), 16.54% (REMT) and 56.19% (FMKNN);
the average execution time of the algorithm reduced by:
83.41% (FFREMT), 96.96% (FCMT), 75.64% (FPRS up),
59.43% (FPRS down), 84.65%(FPRS global), 81.50% (Bag-
ging) and 63.41% (REMT). Additionally, algorithms with
feature selection could not complete experiments on six
high-dimensional datasets.

2 PRELIMINARIES

This section presents a review of the concepts associated
with feature selection in ordinal classification, specifically
within the monotonic classification problems. Additionally,
the fundamental concepts of the related family are also
discussed.

2.1 Monotonicity Constraints

Let (U,A ∪ {D}) be an ordinal decision table, where U =
{x1, . . . , xn} is a set of samples, A = {a1, . . . , am} is a set
of features to describe the samples, and D is the decision
class with values {d1, d2, . . . , dk}. Let v(x, a) be the value of
x with respect to the feature a ∈ A. There are four relations
between two samples in a decision table: ⩾a, ⩾D , ⩽a and
⩽D , which signify the relation of superiority and inferiority
with respect to a or D, respectively.

Definition 1. [30], [43] Given a set of samples U , ∀x ∈ U
and B ⊆ A, where A = {a1, . . . , am}. Let v(x, ak) be the
feature value of sample x under ak, k = 1, 2, ...,m. The
ordinal relations between samples in terms of feature
ak or D is denoted by ⩽ and ⩾. Thus, the preference
relations on U is defined

xi ⩽B xj ⇔ v(xi, ak) ⩽ v(xj , ak) for ∀ak ∈ B, (1)

xi ⩾B xj ⇔ v(xi, ak) ⩾ v(xj , ak) for ∀ak ∈ B. (2)

The dominance class [xi] and inferiority class [xi]are
defined as:

[xi]
⩽
B = {xj |xi ⩽B xj}, [xi]

⩽
D = {xj |xi ⩽D xj}, (3)

[xi]
⩾
B = {xj |xi ⩾B xj}, [xi]

⩾
D = {xj |xi ⩾D xj}. (4)

The monotonicity constraints are defined as:

xi ⩽B xj ⇒ v(xi, D) ⩽ v(xj , D), (5)

xi ⩾B xj ⇒ v(xi, D) ⩾ v(xj , D). (6)

The inferior class characterizes the ”not superior” rela-
tionship among samples, while the dominant class repre-
sents the ”not inferior” relationship. This also holds true for
the decision set D. Based on these observations, monotonic-
ity constraints are defined.

Based on the monotonicity constraints, the lower ap-
proximation and upper approximation of the set which
dominates di are defined as follows:

Definition 2. [19] Let d⩾i be a sample set whose class is no
worse than class di. The lower approximation and upper
approximation are:

R⩾
Bd

⩾
i = {x ∈ U |[x]⩾B ⊆ d⩾i }, (7)

R⩾
Bd

⩾
i = {x ∈ U |[x]⩽B ∩ d⩾i ̸= ∅}. (8)

2.2 Rank Entropy and REMT

The C4.5 algorithm, a representative decision tree method,
leverages Mutual Information as the metric for the selection
of split points. Nonetheless, this approach overlooks the
monotonicity of data, potentially leading to the omission
of ordinal information throughout the computational pro-
cess. To overcome this limitation, Rank Entropy and Rank
Mutual Information are introduced to assess the monotone
consistency of ordinal data.

Definition 3. [6], [18] Let (U,A∪{D}) be an ordinal decision
table, U is a set of samples described by feature set A,
B ⊆ A. The ascending and descending rank entropy
with respect to B are defined

RE⩽
B(U) = − 1

|U |

n∑
i=1

log
|[xi]

⩽
B |

|U |
, (9)

RE⩾
B(U) = − 1

|U |

n∑
i=1

log
|[xi]

⩾
B |

|U |
. (10)

The ascending and descending rank conditional infor-
mation of the set U regarding B and C are defined as:

RE⩽
B|C(U) = − 1

|U |

n∑
i=1

log
|[xi]

⩽
B ∩ [xi]

⩽
C |

|[xi]
⩽
C |

, (11)

RE⩾
B|C(U) = − 1

|U |

n∑
i=1

log
|[xi]

⩾
B ∩ [xi]

⩾
C |

|[xi]
⩾
C |

. (12)

The ascending and descending rank mutual information
(ARMI and DRMI) regarding B and C are defined as:

RMI⩽(B,C) = − 1

|U |

n∑
i=1

log
|[xi]

⩽
B | × |[xi]

⩽
C |

|U | × |[xi]
⩽
B ∩ [xi]

⩽
C |

,

(13)

RMI⩾(B,C) = − 1

|U |

n∑
i=1

log
|[xi]

⩾
B | × |[xi]

⩾
C |

|U | × |[xi]
⩾
B ∩ [xi]

⩾
C |

.

(14)

The Rank Mutual Information (RMI) serves as a measure
to evaluate the monotone relationship between features
B and C . Consequently, both rank entropy and RMI are
frequently utilized for determining the split points in mono-
tonic decision trees.

In the realm of monotonic classification, the Rank
Entropy-based Monotonic Tree (REMT) algorithm [6] has
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gained significant popularity due to its reliance on As-
cending Rank Mutual Information (ARMI) for generating
monotonic consistent decision rules.

Given an feature set {a1, a2, . . . , am} and the sample
set Ui = {x1, x2, . . . , xn} for the i-th sub dataset, let
ARMI⩽(aj , c,D) be the ARMI induced by a conditional
feature aj and the decision feature D with a split point c,
the ARMI⩽(aj , c,D) are computed as follow

For x ∈ Ui, let

v′(x, aj) =

{
1, v(x, aj) ⩽ c;

2, v(x, aj) > c.
(15)

ARMI⩽(aj , c,D) = − 1

|Ui|
∑
x∈Ui

log
|[x]′⩽aj

| × |[x]⩽D|
|Ui| × |[x]

′⩽
aj ∩ [x]⩽D|

,

(16)
where [x]

′⩽
aj

is formed by the new values v′(x, aj).

ARMI⩽(a∗, c∗, D) =

max{ARMI⩽(aj , c,D)|c ∈ Cj , aj ∈ A},
(17)

where Cj is the set of all candidate values for feature aj , c∗ is
a number to split the value domain of a∗ such that the rank
mutual information between a∗ and D yields the largest
value. Then select a feature that archives the maximum
ARMI among all features as the split feature a∗ and its
optimal split point c∗. Since REMT is a binary tree, finding
one split point is sufficient. The split point c∗ of feature a∗

divides the sample set Ui into two subsets: Ui1 = {x ∈
Ui|v(a∗, x) ⩽ c∗} and Ui2 = {x ∈ Ui|v(a∗, x) > c∗}.

In order to mitigate the problem of overfitting, a thresh-
old value of δ is applied in the algorithm. The rank mutual
information (ARMI) computed on Ui for split point a∗ and
c∗ signifies the degree of monotone consistency within the
sample set. Once the monotone consistency is lower than a
given threshold, the node ceases to split and is designated
as a leaf node. In cases where the decision in the sample set
Ui or the feature value under aj is singular, the ARMI is
equal to 0, and the sample set is likewise identified as a leaf
node.

2.3 Related Family
Related family [34], dependency degree [3] and the discerni-
bility matrix [19] can be all utilized for feature selection
in decision tables. Due to much greater computational effi-
ciency, related family is used to processing large scale data.
Definition 4. [34] Let (U,∆, D) be a covering decision

system, ∆ = {C1, C2, . . . , Cm} be a family of coverings of
U = {x1, x2, ..., xn}, and for any xi ∈ U , r(xi) = {C ∈
∆|∃Ck ∈ ∪∆ and ∃X ∈ U/D s.t. xi ∈ Ck ∈ C and Ck ⊆
X}. Then R(U,∆, D) = {r(xi)|xi ∈ U} is called the
related family of (U,∆, D).

Based on the related family, all reducts can be computed
using boolean operations, providing multiple perspectives
for classification tasks.
Definition 5. [34] Let (U,∆, D) be a covering decision

system, ∆ = {C1, C2, . . . , Cm} be a family of coverings
of U = {x1, x2, ..., xn}, R(U,∆, D) = {r(xi)|xi ∈ U}.
The related function f(U,∆, D) is a boolean function of

m boolean variables C1, C2, . . . , Cm corresponding to the
coverings C1, C2, . . . , Cm, respectively, which is defined
as

f(U,∆, D)(C1, C2, . . . , Cm) = ∧{∨(r(xi)|xi ∈ U)} (18)

Definition 6. [34] Let (U,∆, D) be a consistent covering
decision system, where ∆ be a family of coverings on
U , R(U,∆, D) be the related family of (U,∆, D), and
f(U,∆, D) be the related function. If g(U,∆, D) =
∨k=1(∧∆k)(∆k ∈ ∆) is the reduced disjunctive form
obtained from f(U,∆, D) via the laws of multiplication
and absorption. That is, for any ∆k ⊆ ∆, k = 1, 2, . . . , l,
there is no repeated element in ∆k. Then RED(∆, D) =
{∆1,∆2, . . . ,∆l}.

3 FEATURE SELECTION BASED ON MONOTONIC
RELATED FAMILY

The discernibility matrix and the significance measure (such
as dependency degree) are indeed effective feature selection
methods. Nevertheless, their high computational complex-
ity, concerning either sample size or feature scale, can result
in time-consuming processes when handling large sample
datasets and may even prove impossible to complete with
limited resources. In this section, to reduce the computation
complexity of feature selection, we propose a novel feature
selection method, named monotonic related family, from the
perspective of feature values under every single feature.

3.1 Monotonic Partition
Different feature selection methods may correspond to var-
ious granulation approaches. For monotonic related family,
it is necessary to adopt a new granulation technique. We
introduce the definition of Maximal Monotonic Interval
(MMI), Monotonic Partition, and the corresponding gran-
ulation method first.
Definition 7. Let ODT = (U,A∪{D}) be an ordinal decision

table, Gt(aj) ⊆ U and aj ∈ A. If Gt(aj) satisfies:

1) For ∀xi, xk ∈ Gt(aj), if xi ⩽aj xk then xi ⩽D xk; if
xi ⩾aj xk then xi ⩾D xk.

2) For ∀x0 ∈ U , if infx∈Gt(aj) v(x, aj) ⩽ v(x0, aj) ⩽
supx∈Gt(aj) v(x, aj), then x0 ∈ Gt(aj).

Then Gt(aj) is defined as a Ascending Maxi-
mal Monotonic Interval, shorted for AMMI, where
infx∈Mt v(x, aj), supx∈Mt

v(x, aj) are the infimum and
supremum respectively. By exchanging the xi ⩽D xk

with xi ⩾D xk in 1), the Gt(aj) is defined as a De-
scending Maximal Monotonic Interval, short for DMMI.
AMMI and DMMI are together referred to as MMI.

Based on the range of MMI’s feature values, we can
define the dominance relationships of feature aj among
MMIs. This dominance relationship has a certain similarity
to the dominance relationship between interval values. In
the related literature [26], the degree of interval dominance
has been explicitly defined. In this paper, due to non-
overlap between every two MMIs, it is much easier to judge
the dominance relationship. The dominance relationship
between two MMIs is defined.
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Definition 8. Let ODT = (U,A∪{D}) be an ordinal decision
table, aj ∈ A be a feature, Gt(aj) and Gu(aj) be two
MMIs induced by aj . If min{v(x, aj)|x ∈ Gt(aj)} ⩾
max{v(x, aj)|x ∈ Gu(aj)}, then Gt(aj) ⩾ Gu(aj); if
max{v(x, aj)|x ∈ Gt(aj)} ⩽ min{v(x, aj)|x ∈ Gu(aj)},
then Gt(aj) ⩽ Gu(aj). In other conditions, we say Gt(aj)
is incomparable with Gu(aj).

Then Monotonic Partition under feature ak are defined
based on the concept of MMI.

Definition 9. Let ODT = (U,A∪{D}) be an ordinal decision
table, U = {x1, x2, . . . , xn}, A = {a1, a2, . . . , am}. For
any aj ∈ A, {G1(aj),G2(aj), . . . ,Gh(aj)} are all AMMIs

induced by feature aj ,
h⋂

t=1
Gt(aj) = ∅,

h⋃
t=1
Gt(aj) = U .

If G1(aj) ⩽ G2(aj) ⩽ . . . ⩽ Gh(aj), then MP⩽(aj) =
{G1(aj),G2(aj), . . . ,Gh(aj)} is defined as Ascending
Monotonic Partition induced by aj , short for AMP. If
G1(aj) ⩾ G2(aj) ⩾ . . . ⩾ Gh(aj), and all MMIs are
DMMI, then MP⩾(aj) = {G1(aj),G2(aj), . . . ,Gh(aj)}
is defined as Descending Monotonic Partition induced
by aj , short for DMP.

AMP and DMP are collectively referred to as MP. Each
feature can form an AMP and a DMP. Consequently, the
Ascending and Descending Monotonic Granule Family can
be defined based on this observation, denoted by ∆⩽ and
∆⩾.

Definition 10. Let ODT = (U,A ∪ {D}) be an ordinal de-
cision table, the Ascending and Descending Monotonic
Granule Family ∆⩽ and ∆⩾ are defined as

∆⩽ = {MP⩽(aj)|aj ∈ A}, (19)

∆⩾ = {MP⩾(aj)|aj ∈ A}. (20)

Algorithm 1 is presented to obtain ∆⩽ from an ordinal
decision table (U,A∪{D}), which calculates an MP for each
feature, utilizing sorting and comparison operations. The
time complexity of sorting operation is O(nlogn) for each
aj ∈ A, while the time complexity of comparison operation
is O(mn) for all features. Consequently, the time complexity
of Algorithm 1 is O(mn+m∗nlogn) = O(mn(1+ logn)) =
O(mnlogn). To store the generated ∆⩽, a space of O(mn)
is required. By replacing the ⩽ to ⩾ in step 9, we can obtain
the ∆⩾.

In Algorithm 1, the subscripts of xi and xk denote the
indices of the samples after sorting. The samples to be incor-
porated into MP⩽(aj) are those with original indices that
correspond to these new subscripts following the sorting
process.

Example 1.
An artificial dataset of twelve samples is used to demon-
strate AMP generation, with nine for training and three
for testing.
In the initial step, the ordinal decision table is sorted
by each feature to create AMPs. Taking feature d for
an example, the sample x2 with the lowest value ini-
tiates the first AMMI, G1(d). After six iterations of
expansion via the algorithm, G1(d) includes samples
{x2, x1, x3, x4, x5, x9, x7}.

Algorithm 1 Obtaining a monotonic granules family ∆⩽

Require: An ordinal decision table (U, {A ∪D}).
Ensure: ∆⩽ that generated from the decision table.

1: |U | and |A| are the number of samples and features of
ODT .

2: initialize ∆⩽ = ∅.
3: for each aj ∈ A do
4: Sort samples by ascending feature values of aj , for

those samples with the same feature value, sort them by
ascending decision values.

5: initialize i = 1,MP⩽(aj) = ∅.
6: while i ⩽ |U | do
7: k = i; % i and k are sample indexes ranked by

aj .
8: while k + 1 ⩽ |U | and xk ⩽D xk+1 do
9: k = k + 1;

10: end while
11: MP⩽(aj)← {xi, . . . , xk};
12: i = k + 1;
13: end while
14: ∆⩽ ←MP⩽(aj);
15: end for

TABLE 1: An artificial ordinal decision table

U/A a b c d e f g h D

x1 0.1 0.0 0.3 0.2 1.0 0.4 0.6 0.8 1
x2 0.3 0.1 0.6 0.0 0.6 0.2 0.1 0.9 1
x3 0.3 0.0 0.5 0.5 0.9 0.0 0.7 0.6 1
x4 0.1 0.3 0.3 0.5 0.1 0.1 0.8 0.7 2
x5 0.3 0.2 0.7 0.7 0.0 0.4 0.4 0.5 2
x6 0.0 0.5 0.1 1.0 0.1 0.5 0.1 0.3 2
x7 0.6 0.5 0.1 0.8 0.6 0.5 0.0 0.2 3
x8 0.1 0.6 1.0 1.0 0.2 0.7 0.3 0.2 3
x9 0.1 1.0 1.0 0.7 0.1 1.0 1.0 0.0 3

Sample x6 with decision value 2 does not fit the mono-
tonicity of G1(d) and is thus excluded, initiating the next
AMMI. Following the same method, the second AMMI,
G2(d), is formed with x6 and x8. Together, G1(d) and
G2(d) cover the entire set U , creating the AMP MP⩽(d).
This process highlights the dataset’s strong monotonicity
with respect to feature d and leads to the derivation of
∆⩽.

An MMI maintains local monotonicity by ensuring con-
sistency between features and decisions, and we define its
fitting degree accordingly.

Definition 11. Let (U,A∪{D}) be an ordinal decision table,
MP⩽(aj) = {G1(aj),G2(aj), . . . ,Gh(aj)} ∈ ∆⩽ repre-
sents the AMP formed by aj ∈ A. If xi ∈ Gt(aj)(1 ⩽
t ⩽ h), the ascending fitting degree of sample xi under
feature aj is defined as

F⩽(xi, aj) =
|Gt(aj) ∩ [xi]D|
|[xi]D|

(1− 2 · inver(aj)
N(N − 1)

) (21)

and the ascending significance of feature aj is defined as

F⩽(aj) =
∑

1⩽i⩽|U |

F⩽(xi, aj) (22)
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where xi ∈ Gt(aj), | ∗ | signifies the cardinality of ∗, and
the function inver(∗) denotes the inversion number of
decision values for all samples when sorted by feature
aj .

Equation (21) and (22) evaluate a feature aj from two
aspects: (1) local monotonicity: |Gt(aj)∩[xi]D|

|[xi]D| assesses the
monotone consistency of the granule Gt(aj); (2) global
monotonicity: (1 − 2·inver(aj)

N(N−1) ) evaluate the monotone con-
sistency among all granules induced by feature aj .

The ascending fitting degreeF⩽(xi, aj) of feature aj and
significance F⩽(aj) of aj are defined based on MP⩽(aj),
analogous to their descending counterparts which use
MP⩾(aj). These measures evaluate feature aj ’s correla-
tion with the decision, accounting for both increasing and
decreasing trends. The predominant trend is determined
by comparing F⩽(aj) and F⩾(aj), with the higher value
indicating the feature’s monotonic relationship with the
decision. For consistency in data processing, features that
decrease monotonically are adjusted to reflect an increase.
A fitting matrix is then constructed to systematically store
these fitting degrees for all samples and features, aligning
with the dimensions of the ordinal decision table.

Definition 12. A fitting degree matrix M(U,A ∪ D) =
(cij)n×m is defined as

cij = F(xi, aj) (23)

where xi ∈ U , aj ∈ A, n and m are the numbers of
samples and features, respectively.

Algorithm 2 transforms the decreasing feature to increas-
ing, and obtains the fitting degree matrix.

Algorithm 2 Obtaining the fitting degree matrix

Require: An ordinal decision table (U, {A ∪D}).
Ensure: The fitting degree matrix M(U,A∪D) = (cij)n×m

1: normalize the ordinal decision table;
2: M(U,A ∪ D) = (cij)n×m = Zero(n,m);% n, m are

numbers of samples and features, respectively;
3: form the ∆⩽ and ∆⩾ by Algorithm 1;
4: for each aj in A do
5: compute the F⩽(aj) and F⩾(aj) by Definition 11;
6: if F⩽(aj) ⩾ F⩾(aj) then
7: mark the feature as monotonic increase;
8: else
9: mark the feature as monotonic decrease;

10: replace MP⩽(aj) in ∆⩽ with MP⩾(aj);
11: end if
12: end for
13: for all features marked as monotonic decrease do
14: for all feature values v: v = 1− v;
15: end for
16: set cij = F(xi, aj), 1 ⩽ i ⩽ n, aj ∈ A;
17: return M(U, {A ∪D});

Example 2. (Follow up Example 1) Table 2 exhibit the fitting
degree matrix of Table 1.

TABLE 2: Fitting degree matrix M(U,A ∪D)

U/A a b c d e f g h

x1 0.23 1.0 0.24 0.94 0.35 0.63 0.41 0.19
x2 0.46 1.0 0.48 0.94 0.18 0.63 0.2 0.19
x3 0.46 1.0 0.48 0.94 0.35 0.31 0.41 0.09
x4 0.23 1.0 0.24 0.63 0.53 0.31 0.2 0.09
x5 0.23 1.0 0.24 0.63 0.53 0.63 0.2 0.19
x6 0.23 1.0 0.24 0.31 0.53 0.63 0.2 0.19
x7 0.23 1.0 0.24 0.63 0.18 0.94 0.2 0.28
x8 0.46 1.0 0.48 0.31 0.35 0.94 0.2 0.28
x9 0.46 1.0 0.48 0.63 0.35 0.94 0.2 0.28

3.2 Feature Selection Based on Monotonic Related
Family
In most rough set-based feature selection algorithms, the
neighborhood radius parameter is important for the classi-
fication performance. However, the value set of the parame-
ter, interval [0, 1], is an infinite set, implying the difficulty of
optimal parameter searching. Unlike other feature selection
algorithms [16], [19], [27], [44], [45], the value set of param-
eter σ in this paper, which is finite, can be derived from the
fitting degree matrix. The MMIs generated from ODT are
finite, so the values of fitting degree also constitute a finite
set, with each value being applicable as a parameter σ. We
primarily focus on samples with fitting degrees exceeding
σ.

Due to the monotone consistency of all granules pro-
duced in Subsection 3.1, the lower approximation of any
monotonic decision class (d⩽i or d⩾i ) is itself based on Defini-
tion 2, which can not be applied in this paper. Consequently,
utilizing the fitting degree and parameter σ, we established
both upper and lower approximations to formulate a novel
rough set model and subsequently defined the σ-positive
region.
Definition 13. Let ODT = (U,A ∪ {D}) be an ordinal

decision table, B ⊆ A, the monotonic lower and upper
approximation of di are defined as

R⩾
Bd

⩾
i = {x|x ∈ d⩾i and ∃aj ∈ B, s.t. F⩾(x, aj) ⩾ σ}

(24)
R⩽

Bd
⩽
i = {x|x ∈ d⩽i and ∃aj ∈ B, s.t. F⩽(x, aj) ⩾ σ}

(25)

R⩾
Bd

⩾
i = U −R⩽

Bd
⩽
i−1 (26)

R⩽
Bd

⩽
i = U −R⩾

Bd
⩾
i+1 (27)

Definition 14. Let ODT = (U,A ∪ {D}) be an ordinal
decision table, B ⊆ A, aj ∈ B, σ is the parameter of
fitting degree. The σ-positive region of ODT is

POSσ⩽
B (D) = {x|∃aj ∈ B, s.t. F⩽(x, aj) ⩾ σ} (28)

POSσ⩾
B (D) = {x|∃aj ∈ B, s.t. F⩾(x, aj) ⩾ σ} (29)

when there is no confusion, we omit ⩽ or ⩾ from the
superscript.

Drawing upon the concept of a σ-positive region, we
proceed to define the notion of a σ-reduct.
Definition 15. Let ODT = (U,A ∪ {D}) be an ordinal

decision table, P ⊆ A, σ is the parameter of fitting
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degree. For any a ∈ A, if POSσ
A−{a}(D) = POSσ

A(D),
we say a is dispensable in A. Otherwise, a is indispens-
able in A. If POSσ

P (D) = POSσ
A(D) and any p ∈ P is

indispensable, then P is a σ-reduct of A. The collection
of all indispensable elements in A is called core, denoted
by COREσ(A). The collection of all σ-reducts of A is
denoted by REDσ(A).

In this paper, to facilitate data processing, we ad-
just monotonically decreasing features to increasing. Thus,
if there is no extra information, POSσ

A(D), σ-reduct,
COREσ(A) and REDσ(A) are refer to the notions based
on monotonically increasing.
Theorem 1. Let ODT = (U,A∪ {D}) be an ordinal decision

table. For P,Q ⊆ A , if P ⊆ Q, then POSσ
P (D) ⊆

POSσ
Q(D).

Proof: If P = Q, we have POSσ
P (D) = POSσ

Q(D) by
Definiton 15. If P ⊂ Q, let K = Q − P , then POSσ

Q(D) =
POSσ

P∪K(D) = {x|∃aj ∈ P ∪ K, s.t. F⩽(x, aj) ⩾ σ} =
POSσ

P (D) ∪ POSσ
K(D). Thus POSσ

P (D) ⊆ POSσ
Q(D).

Theorem 1 highlights the non-decreasing nature of the
positive region with growing feature subsets. The fitting
degree matrix captures the monotonic consistency across
samples, where an increase in a sample’s fitting degree
indicates a stable or enhanced monotonic relationship with
the decision classes. As the fitting degree of a particular
sample escalates, the MMI encompassing it either resides in
an identical decision domain (sole decision class) or exhibits
enhanced monotonicity (multiple decision classes), which
can be discerned from the matrix itself. This framework lays
a solid theoretical foundation for feature selection. Subse-
quently, we introduces the concepts of monotonic related
sets and family to enable the process.
Definition 16. Let (U,A∪{D}) be an ordinal decision table,

A = {a1, a2, . . . , am} and D = {d1, d2, . . . , dk}, the
monotonic related set is defined as

mr(xi) = {aj ∈ A|F⩽(xi, aj) ⩾ σ} (30)

The monotonic related family MR(U) of (U,A∪{D}) is
defined as

MR(U) = {mr(xi)|xi ∈ U} (31)

Theorem 2 elucidates the relationship between mono-
tonic related family, positive region, reducts and core.
Theorem 2. Let ODT = (U,A∪ {D}) be an ordinal decision

table, mr(xi) is the monotonic related set of sample xi,
P ⊆ A, σ is the parameter of fitting degree, then

1) POSσ
P (D) = POSσ

A(D) if and only if P ∩mr(xi) ̸=
∅ for any mr(xi) ̸= ∅.

2) P is a σ-reduct of A if P is a minimal subset of A
such that P ∩mr(xi) ̸= ∅ for any mr(xi) ̸= ∅.

3) COREσ(A) = {a|∃mr(xi) ∈MR(U) s.t. mr(xi)
= {a}}.

Proof:

1) Suppose for any mr(xi) ̸= ∅, P ∩mr(xi) = ∅. For
any xi ∈ POSσ

A(D), it is obvious that mr(xi) ̸= ∅,
since P ∩mr(xi) = ∅, then exists p ∈ P such that
p ∈ mr(xi). Thus F⩽(xi, p) ⩾ σ, which means

xi ∈ POSσ
P (D), then POSσ

A(D) ⊆ POSσ
P (D).

Considering P ⊆ A, POSσ
A(D) = POSσ

P (D).
2) It is evident.
3) (⇒) Suppose q ∈ COREσ(A), then q is indis-

pensable in A, then POSσ
A−{q}(D) ̸= POSσ

A(D).
Then ∃xi ∈ U s.t. xi ∈ POSσ

A(D) and xi /∈
POSσ

A−{q}(D). It is evident that p is the only feature
in A such that F⩽(xi, p) ⩾ σ, then mr(xi) = {q}.
it is evident that COREσ(A) ⊆ {a|∃mr(xi) ∈
MR(U) s.t. mr(xi) = {a}}.
(⇐) Suppose for any a ∈ A, if ∃mr(xi) ∈
MR(U) s.t. mr(xi) = {a}}, then a is the
only feature such that F⩽(xi, a) ⩾ σ, then
xi /∈ POSσ

A−{a}(D). It means xi ∈ POSσ
A(D)

and xi /∈ POSσ
A−{a}(D), then POSσ

A(D) =
POSσ

A−{a}(D), which means a is indispensable
in A, thus {a|∃mr(xi) ∈ MR(U) s.t. mr(xi) =
{a}} ⊆ COREσ(A)

Then the matrix representation Mσ(U,A ∪ {D}) of the
monotonic related family are defined.
Definition 17. A σ-related matrix Mσ(U,A ∪ {D}) =

(eij)n×m is defined as

eij =

{
1, if aj ∈ mr(xi),

0, otherwise,
(32)

where xi ∈ U , aj ∈ A, n and m are the number of
samples and features, respectively.

Theorem 3 posits that based on the fitting degree matrix
and the σ-related matrix, the positive region of any feature
subset can be generated; therefore, we can perform feature
selection based on these two matrices or monotonic related
family.
Theorem 3. Let ODT = (U,A∪ {D}) be an ordinal decision

table, M(U,A ∪ {D}) = (cij)n×m be the fitting degree
matrix, and Mσ(U,A∪{D}) = (eij)n×m be the σ-related
matrix. Then

1) For any P ⊆ A, POSσ
P (D) = {xi|eij = 1 and aj ∈

P}.
2) POSσ

P (D) = POSσ
A(D) if and only if for any x ∈

POSσ
A(D), there is aj ∈ P such that eij = 1.

3) P is a σ-reduct of A if P is a minimal subset of A
such that for any x ∈ POSσ

A(D), there is aj ∈ P
such that eij = 1.

4) COREσ(A) = {aj ∈ A|eij = 1 and ∀t ̸= j, eit =
0}.

The σ-related matrix Mσ(U,A∪{D}) and the monotonic
related family MR(U) can be generated based on the fitting
degree matrix M(U,A ∪ {D}) as shown in the following
theorem.
Theorem 4. Let ODT = (U,A∪ {D}) be an ordinal decision

table, M(U,A ∪ {D}) = (cij)n×m be the fitting degree
matrix, σ be the parameter, MR(U) be the monotonic
related family of (U,A ∪ {D}) and Mσ(U,A ∪ {D}) =
(eij)n×m be the σ-related matrix.

1) For ∀xi ∈ U , mr(xi) = {aj |cij ⩾ σ}.
2) For ∀xi ∈ U , mr(xi) = {aj |eij = 1}.
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3) For ∀xi ∈ U and ∀aj ∈ A, eij = 1 if and only if
cij ⩾ σ.

Proof:

1) For xi and aj , if cij ⩾ σ, then F(xi, aj) ⩾ σ ⇔ aj ∈
mr(xi).

2) For xi and aj , eij = 1⇔ aj ∈ mr(xi).
3) For xi and aj , eij = 1 ⇔ aj ∈ mr(xi) ⇔
F(xi, aj) ⩾ σ ⇔ cij ⩾ σ

Example 3. (Follow up Example 2) The corresponding ma-
trix representation with parameter σ = 0.5 can be found
in Table 3. In each row, the columns with a value of
1 form the monotonic related set for the sample. For
example, mr(x1) = {b, d, f}.

TABLE 3: M0.5(U,A ∪ {D}) based on MR(U)

U/A a b c d e f g h

x1 0 1 0 1 0 1 0 0
x2 0 1 0 1 0 1 0 0
x3 0 1 0 1 0 0 0 0
x4 0 1 0 1 1 0 0 0
x5 0 1 0 1 1 1 0 0
x6 0 1 0 0 1 1 0 0
x7 0 1 0 1 0 1 0 0
x8 0 1 0 0 0 1 0 0
x9 0 1 0 1 0 1 0 0

To showcase the superiority of the monotonic related
family, we juxtapose it with the discernibility matrix. Be-
cause an n × m matrix is applied to finding reducts, the
space complexity of the monotonic related family is O(nm),
in contrast to the discernibility matrix, which exhibits a
space complexity of O(n2m). Consequently, the monotonic
related family is capable of managing much larger scale data
compared to the discernibility matrix.

Skowron and Rauszer introduced a feature selection
approach that utilizes a discernibility function for the si-
multaneous identification of all reducts [46]. This method
predominantly relies on the principles of absorption and
distribution [47]. Similar to discernibility matrix, a boolean
function f(U,A ∪ {D}) is defined to acquire the all reducts
based on the monotonic related family.
Definition 18. The monotonic related function with respect

to (U,A ∪ {D}) is defined as

f(U,A∪{D}) = ∧{∨(mr(x))|∀x ∈ U,mr(x) ̸= ∅} (33)

where ∨ and ∧ are the disjunction and conjunction
operators, respectively.

By applying the absorption law and the distribution
law, the disjunction norm form can be transformed into
the conjunction, subsequently yielding multiple reducts.
These reducts are represented as terms of the conjunction
norm form. Theorem 5 elucidates how to derive the boolean
monotonic related function f(U,A ∪ {D}) from the fitting
degree matrix and the σ-related matrix.
Theorem 5. Let A be the monotonic related family of

(U,A ∪ {D}), Mσ(U,A ∪ {D}) = (eij)n×m be the σ-
related matrix, M(U,A∪ {D}) = (cij)n×m be the fitting

degree matrix, and f(U,A ∪ {D}) be the monotonic
related function. Then

1) f(U,A ∪ {D}) = ∧{∨{aj |eij = 1})|∀xi ∈ U}
2) f(U,A ∪ {D}) = ∧{∨{aj |cij ⩾ σ})|∀xi ∈ U}

Theorem 6 introduces the method of deriving all reducts
via the monotonic related function f(U,A ∪ {D}).
Theorem 6. Let A be the monotonic related family of (U,A∪
{D}), and f(U,A∪{D}) be the monotonic related func-
tion. If g(U,A∪{D}) = (∧A1)∨ (∧A2) . . .∨ (∧Al) is the
reduced disjunctive form transferred from f(U,A∪{D})
via the laws of multiplication and absorption, which is,
for any Ak ⊆ A, k = 1, 2, ..., l, there is no repeated
element in Ak. Then REDσ(A) = {A1, A2, . . . , Al}.

Proof: For every k = 1, 2, . . . , l, ∧Ak ⩽ ∨mr(xi) for
any mr(xi) ∈ MR(U), so Ak ∩ mr(xi) ̸= ∅. Let A′

k =
Ak−{q} for any q ∈ Ak, then g(U,A∪{D}) ≨ ∨k−1

t=1 (∧At)∨
(∧A′

k) ∨ (∨lt=k+1(∧At)). If for every mr(xi) ∈ MR(U), we
have A

′

k ∩ mr(xi) ̸= ∅, then ∧A′

k ⩽ ∨mr(xi) for every
mr(xi) ∈ MR(U). That is, g(U,A ∪ {D}) ⩾ ∨k−1

t=1 (∧At) ∨
(∧A′

k)∨ (∨lt=k+1(∧At)), which is a contradiction. It implies
there is mr(xi0) ∈ MR(U) such that A

′

k ∩ mr(xi0) = ∅.
Thus, Ak is a reduct of A.

For any X ∈ REDσ(A), we have X∩r(xi) ̸= ∅ for every
mr(xi) ∈MR(U), so f(U,A∪{D})∧(∧X) = ∧(∨mr(xi))∧
(∧X) = ∧X , which implies ∧X ⩽ f(U,A∪{D}) = g(U,A∪
{D}). Suppose for every k = 1, 2, . . . , l, we have Ak −X ̸=
∅. Then, for every k, there is Ck ∈ Ak − X . By rewriting
g(U,A∪ {D}) = (∨lk=1Ck)∧Φ, ∧X ⩽ ∨lk=1Ck. Thus, there
is Ck0

such that ∧X ⩽ Ck0
, it means Ck0

∈ X , which is a
contradiction. So Ak0

⊆ X for some k0, since both X and
Ak0

are reducts, it is evident that X = Ak0
. Consequently,

REDσ(A) = {A1, A2, . . . , Al}.
The monotonic related family is introduced to enhance

the classification performance and robustness of monotonic
models by generating diverse feature subsets, offering a the-
oretical basis for ensemble classifiers. While finding reducts
via discernibility functions is NP-hard, the monotonic re-
lated function, despite being more computationally efficient,
also presents an NP-hard challenge. To reduce the compu-
tation cost, a heuristic algorithm is designed to identify key
features, with REDσ(A) denoting the set of all potential
reducts.
Example 4. (Follow up Example 3)

f(U,A ∪ {D}) ={b ∨ f} ∧ {b ∨ e ∨ f} ∧ {b ∨ d}∧
{b ∨ d ∨ f} ∧ {b ∨ d ∨ e}∧
{b ∨ d ∨ e ∨ f}

={b ∨ d} ∧ {b ∨ f}
={b} ∨ {d ∧ f}

Based on the absorption law in monotonic related func-
tion, the minimal elements which cannot be contained
by other elements in the monotonic related family are
sufficient to find all reducts. For instance, in Example
4, {b, d} and {b, f} are enough for finding all reducts.
Deleting all non-minimal elements from monotonic re-
lated functions decreases the time complexity and the
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computational load. Then all reducts, {b} and {d ∧ f},
could be obtained.

Algorithm 3 Obtaining feature subsets by fitting degree
matrix
Require: Fitting degree matrix=(cij)n×m; parameter σ.
Ensure: A set of feature subsets REDσ(A).

1: initialize the feature subsets REDσ(A) = ∅.
2: set cij as 1 if cij ⩾ σ and the others as 0, denote the

resulting matrix as Mσ(U,A ∪ {D}) = (eij)n×m.
3: sort the rows in ascending by each row sum

∑m
j=1 eij .

4: remove the rows that are all 0 or all 1.
5: absorb Mσ(U,A ∪ {D}) = (eij)n×m, denote the result-

ing matrix as M∗(U,A ∪ {D}) = (e∗ij)n′×m′ .
6: let OFS = {ak ∈ A|e∗1k = 1}. % find feature subsets
7: for ak in OFS do
8: red = {ak}.
9: update M∗(U,A ∪ {D}): delete the rows satisfied

e∗ik = 1 and the kth column.
10: update n

′
, A = A− {ak}, m

′
= |A|.

11: while n
′ ̸= 0 and m

′ ̸= 0 do
12: ak = argmaxak

(
∑n

′

i=1 e
∗
ik).

13: red← ak .
14: update M∗(U,A∪{D}): delete the rows satisfied

e∗ik = 1, delete the kth column.
15: update n

′
, A = A− {ak}, m

′
= |A|.

16: end while
17: REDσ(A)← red.
18: end for
19: return REDσ(A).

Algorithm 3 selects the monotonic related set with the
minimum number of elements as the Original Features Set
(OFS) for efficient feature subset generation, then elimi-
nated duplicate feature subsets. Constructing Mσ(U,A∪D)
takes O(mnlogn) time with parameter σ, and generating
M∗(U,A ∪ D) requires O(nlogn) time. The process of ex-
tracting feature subsets for OFS elements concludes with
a time complexity of O(mn). Overall, the complexity for
subset acquisition is O(mn(logn+ l)), with l as OFS’s size.
This approach significantly reduces feature selection time
complexity.

4 BI-DIRECTION FUSING MONOTONIC DECISION
TREES

Paper [6] shows that the RMI metric approaches zero with
increasing feature correlation, where RMI > 0 suggests a
positive correlation and RMI < 0 indicates a negative one.
Both ARMI and DRMI can measure this monotonic corre-
lation and have been used to build and refine monotonic
decision trees for improved classification [4].

4.1 Decision Support Level (DSL)

A standalone decision tree classifier is prone to overfit-
ting and underfitting complications. As a solution to this
predicament, prior research has demonstrated the efficacy of
ensemble learning in enhancing the generalization capacity

of a classifier [7], [12], [14], [16], [19]. To amalgamate multi-
ple classifications from disparate decision trees, we advocate
for the incorporation of the Decision Support Level (DSL) as
a pivotal factor.

Definition 19. [48] Let Leafi is a leaf node of a monotonic
decision tree, the set of samples in Leafi is Ui, their
decision class is {d1, . . . , dm}, the DSL of dk on Leafi
is defined as

Support(Leafi, dk) =
|{x ∈ Ui|v(x,D) = dk}|

|Ui|
(34)

The DSL characterizes the bias for each classifica-
tion based on impure leaf nodes within a decision
tree. For an individual decision tree, it is known that∑m

k=1 Support(Leafi, dk) = 1, and the classification pos-
sessing the highest DSL is preferred as the ultimate clas-
sification. If there is a unique decision class d1 in a leaf
node (pure node), then Support(Leafi, d1) = 1. In the case
where the decision class dn is absent in Leafi, it follows that
Support(Leafi, dn) = 0.

Upon making decisions using n monotonic decision
trees, one sample belongs to n leaf nodes for n decision trees,
represented by {Leaf1, . . . , Leafn}. The decision classes
present in all leaf nodes are denoted by {d1, . . . , dm}. The
amalgamated leaf node is symbolized by Leafall. The DSL
of each decision class is computed as follows

Support(Leafall, dk) =
n∑

i=1

Support(Leafi, dk)

k =1, 2 . . . ,m

(35)

Finally, we set the decision class with highest DSL as the
final classification label for the sample.

d = argmaxdk
(Support(Leafall, dk))

k =1, 2 . . . ,m
(36)

All monotonic decision trees are used for making more
robust and accurate classifications.

4.2 Fusing Monotonic Decision Tree Algorithm

Algorithm 3 selects feature subsets using a threshold σ,
enabling the creation of multiple monotonic trees. With each
subset, two trees are built using ARMI and DRMI, leading to
2h trees from h subsets. The leaf nodes from these trees are
combined, with the classification having the highest DSL
being chosen. This approach, termed BFMDT, has a time
complexity of O(hn+k1mvn2+k2n), depending on feature
dimension m, the number of nodes k1, k2 and possible split
points v. We provide a flowchart Fig. 2 to illustrate the
overall algorithmic process.
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A decision table

Divided by Feature

Feature Selection

Build Trees

tree
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tree

Classified by DSL

Fig. 2: A flowchart described the algorithmic process

Algorithm 4 BFMDT

Require: Ordinal decision table ODT = (U, {A ∪ D});
stoping criterion δ; samples to be predicted X =
{x1, x2, . . . , xn}.

Ensure: Highest classifcation accuracy ACmax, MAEmin;
optimal threshold σbest.

1: Initialize ACmax = 0, σbest=0
2: obtain fitting degree matrix by Algorithm 1 and 2
3: for each σ do
4: get REDσ(A) from Algorithm 3
5: for each feature subset red in REDσ(A) do
6: generate two trees by ARMI and DRMI
7: end for
8: for each x ∈ X do
9: compute DSL of all possible decisions by all trees

10: compute the decision of x by Equation 36
11: end for
12: compute the accuracy and mean absolute error of X ,

marked as AC and MAE
13: if AC > ACmax then
14: ACmax = AC , σbest = σ, MAEmin = MAE
15: end if
16: end for
17: return ACmax, MAEmin and σbest.

Example 5. (Follow up Example 4)
Apply Algorithm 4 to build four decision trees based on
feature subsets {b} and {d ∧ f} shown in Fig. 3.

5 EXPERIMENT ANALYSIS

In this section, we demonstrate the efficacy of the BFMDT
algorithm by comparing it to six representative monotonic
classifiers.

5.1 Benchmark Methods and Datasets
We evaluated our method on 18 benchmark datasets, de-
tailed in Table 4, using 5-fold cross-validation to ensure
reliability. Parallel experiments were executed for each fold.
The only exception is dataset PEMS-SF, due to the exces-
sive number of features, we only compared the BFMDT
algorithm with the REMT algorithm and employed an 8-2
split approach for the experiments. Experiments were run in
parallel on an Apple Silicon M1 Pro CPU with 16G memory,
using MATLAB 2023b on macOS.

reduct: [b]

1:1.0 2:1.0 3:1.02:0.5
3:0.5

1:1.0 1:0.5
2:0.5

3:1.0

2:1.0 2:0.5
3:0.5

1:1.0

2:1.0

3:1.02:0.5
3:0.5

1:1.0

2:1.0

2:1.0

3:1.0

1:1.0

1:1.0 1:0.5
2:0.5 3:1.0

reduct: [d, f]

Fig. 3: Four trees built by ARMI (left) and DRMI (right),
←:Yes,→:No

TABLE 4: Datasets in the experimental analysis

ID dataset objects features class sources

1 breast-wisconsin 683 10 2 UCI
2 wine 178 14 3 UCI
3 breast-cancer 277 10 2 UCI
4 heart-disease 270 14 2 UCI
5 hepatitis 80 20 2 UCI
6 german-credit 1000 21 2 UCI
7 vehicle 946 19 4 UCI
8 wdbc 569 31 2 mclust
9 diabetes 768 9 2 UCI
10 wine-quality 4898 12 7 UCI
11 divorce 170 55 2 AIStudio
12 sonar 208 61 2 UCI
13 turkiye-student 5820 33 5 UCI
14 Yale 165 1025 15 jundongl
15 arcene 200 10001 2 UCI
16 SMK CAN 187 187 19994 2 jundongl
17 DrivFace 606 6401 3 UCI
18 PEMS-SF 440 138673 7 UCI

5.2 Data Pre-processing

To guarantee a uniform dimension for each feature, range
normalization is employed on all datasets during the train-
ing phase. In some specific datasets, certain features might
encompass unique values that do not contribute to the
classification process. We eliminated these features from
the datasets. In scenarios where a particular feature might
contain missing values, we employ the mean of all available
values within that feature as an appropriate substitute.
Instances with missing values in the decision are subse-
quently excluded from the dataset, without undergoing any
additional processing.

5.3 Evaluation Measures

Experiments recorded classification accuracy (CA) and
mean absolute error (MAE) to assess proposed method and
reference models. We also timed the feature selection and
classification time for each dataset.
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Fig. 4: AC and MAE of datasets with parameter σ

5.4 Experimental Results and Analysis

5.4.1 Selecting of fitting degree values

The BFMDT algorithm assigns a unique σ value set for
each dataset based on fitting degrees. This is beneficial for
small datasets, allowing for an exhaustive search for optimal
classification. However, for large datasets, this exhaustive
approach can be prohibitively time-consuming due to the
complexity of constructing decision trees. Therefore, it’s
crucial to find a σ selection method that balances classifica-
tion performance with time efficiency, especially as higher-
dimensional data increases tree construction time. In gen-
eral, a larger MMI encompasses more samples and exhibits
a higher fitting degree, ensuring an elevated likelihood of
being regarded as a key MMI.

We propose an efficient parameter selection scheme.
Initially, we identify all distinct values within the matrix
M(U,A ∪D). Each value v and its frequency in the matrix
is represented by freq(v). We set the initial value sp = 1 ,
and L = max{m,n}, where n is the number of rows and
m is the number of columns of the fitting matrix. Then all
values v that satisfy freq(v) > L/sp are considered as the
potential candidates for the parameter σ. If the number of
all potential values in the set exceeds the predefined range
(for this study, between 5 and 30), we adjust the value of
sp by either increasing it by a factor of 1.1 (i.e., sp × 1.1) or
decreasing it by a factor of 0.9 (i.e., sp×0.9), until the criteria
are met. This method aids in reducing computational time
while preserving a satisfactory classification performance.
Nonetheless, a certain degree of performance degradation is
inevitable in comparison to an approach utilizing all fitting
degrees. Figure 4 demonstrate the relationship between
σ and the corresponding classification accuracy for some
datasets, utilizing an 80% training dataset proportion. As
evident, the quantity of parameter σ tends to increase with
the increasing scale of the data.

For each σ value, if the REDσ(A) generated by Algo-
rithm 3 contains elements more than 50, we choose the first
50 feature subsets of REDσ(A) to build the trees. The pur-
pose is to balance time cost and classification performance.

5.4.2 Analysis on AC and MAE

We compared BFMDT with three algorithms that incorpo-
rated feature selection: the fuzzy dominance discernibility
matrix-based algorithm (FFREMT) [16]; the dominance dis-
cernibility matrix-based algorithm (FCMT) [19]; and three
fuzzy significance measure-based algorithms (FPRS up,
FPRS down, FPRS global) [33]. Additionally, we evaluated

two decision tree algorithms: the original monotonic deci-
sion tree algorithm (REMT) [6] and the ensemble learning-
based algorithm (Bagging) [12]. To enhance the diversity
and universality of the experiments, we also compared a
monotonic kNN-based algorithm (FMKNN) [11]. Table 5
presents the complexity of BFMDT and five aforementioned
comparison algorithms. It’s worth noting that BFMDT re-
duces the time complexity of feature selection, in terms of
both sample scale and feature scale. The results of experi-
ments are presented in Tables 6 and 7.

High-dimensional datasets are those with ID: 14-18, as
listed in Table 4. Due to their prolonged running times,
significance-based algorithms failed to complete the feature
selection tasks. Discernibility matrix-based approaches de-
mand exponentially increasing amounts of memory when
performing disjunction and conjunction operations on dis-
tinguishable features. Thus, both FFREMT and FCMT
were unable to complete experiments on high-dimensional
datasets 14-17 due to memory limitations. FCMT could not
complete the experiment on dataset 11 owing to insufficient
memory. Three FPRS algorithms on datasets 13-17, FFREMT
on dataset 10, and the Bagging algorithm on dataset 17
failed to complete the experiments due to unacceptable
execution time. In contrast, REMT, and BFMDT successfully
executed all experiments except dataset 18, where Dataset 18
was utilized for comparison between BFMDT and REMT.

In the context of datasets 1-10, the result shows that
BFMDT’s average accuracy and MAE were 77.77% and
25.40%, respectively. The BFMDT algorithm achieved the
highest classification accuracy on eight datasets and the
optimal MAE on seven datasets, compared with other al-
gorithms.

On the larger-scale datasets 11-18, the increased data
scale led to the inabilities of some algorithms, which were
listed as ”/” (insufficient memory) and ”−” (out of time) in
Tables 9 and 10. On seven datasets (among eight large scale
datasets), 11, 12, 13, 14, 16, 17, and 18, the BFMDT algorithm
achieved the best classification performance. We conducted
a comparison of the BFMDT algorithm with other algo-
rithms on datasets where they could each complete the
experiments. Table 8 shows the CA improvement and MAE
decrease ratio of BFMDT compared to other algorithms.

These results underscore the competitiveness of the
BFMDT algorithm in both classification accuracy and MAE,
compared to other methods under the same experimental
conditions. Especially, only BFMDT, REMT and FMKNN
can handle dataset 18, and the BFMDT algorithm performs
8.45% and 10.65% better than REMT on classification ac-
curacy and MAE. Due to the large number of features in
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TABLE 5: The comparison of time and space complexity

Algorithms Feature-selection Classification Space Complexity
Time Complexity Time Complexity Ratio Time Complexity

BFMDT O(mn(logn+ l)) 1 O(hn+ k1m
′
vn2 + k2n) O(mn)

FFREMT O((m+ V )n2) (1 + V/m)n/logn O(hn+ k1m
′
vn2 + k2n) O(mn2)

FCMT O(tmn2) tn/logn O(hn+ k1m
′
vn2 + k2n) O(mn2)

FPRS O((nlogn+ kn)m2) m+ km/logn O(hn+ k1m
′
vn2 + k2n) O(mn)

Bagging N/A N/A O(hn+ k1mvn2 + k2n) O(n)
REMT N/A N/A O(k1mvn2 + k2n) O(n)

FMKNN N/A N/A O(mn) O(mn)

1. m, n represent the numbers of features and samples of raw data, respectively. m′ represents the feature number after feature selection.
2. In BFMDT, l denotes the cardinality of OFS in Algorithm 3, which is maximum of 50.
3. In FFREMT, V is the number of nodes in reduction algorithms [16].
4. In FCMT, t represents the number of decision classes.
5. In FPRS, k is the number of samples in the computation domain for each sample.
6. For decision trees, k1, k2 are the number of non-leaf nodes and leaf nodes respectively. v is the number of possible split points taken in the
value domain of features. h is the number of decision trees.
7. The Time Complexity Ratio represents the ratio of time complexities of FFREMT, FCMT and FPRS divide BFMDT.

TABLE 6: Comparison on CA (%)

ID BFMDT* FFREMT* FCMT* FPRS up* FPRS down* FPRS global* Bagging REMT FMKNN
1 95.85+0.825 95.89+0.8941 94.67+4.472 95.02+1.3 95.17+1.51 95.32+1.324 95.22+1.579 95.02+2.175 91.35+3.737
2 92.67+5.166 68.53+5.495 65.75+1.983 68.48+11.94 67.34+9.994 67.34+9.994 72.41+10.13 68.48+6.763 48.89+4.099
3 77.24+2.198 69.33+4.079 61.78+7.426 64.99+7.347 64.29+7.413 65.36+8.039 67.88+4.868 51.96+9.256 74.02+2.237
4 71.11+5.003 78.52+1.014 67.15+5.918 75.19+4.829 74.81+5.493 75.19+4.829 77.41+6.058 77.41+4.793 74.81+6.495
5 83.86+2.603 75.31+15.92 83.77+3.183 80.96+10.58 75.94+15.7 78.45+12.93 77.9+13.17 78.13+12.98 83.86+2.603
6 70.0+0.0 63.6+3.11 53.6+4.219 55.8+1.891 56.4+2.104 56.2+1.891 62.0+3.142 58.8+4.907 54.1+2.302
7 63.7+2.241 55.92+0.8877 55.4+4.053 54.25+4.371 54.25+4.371 54.25+4.371 60.29+0.9972 56.28+5.89 25.06+0.2234
8 94.55+1.585 93.32+1.602 92.38+4.079 92.97+2.71 92.79+2.589 92.97+2.71 94.73+1.636 94.2+2.822 74.02+7.884
9 66.27+2.155 73.84+2.752 68.09+2.987 69.79+4.26 69.54+5.557 69.02+4.45 73.83+3.715 71.48+2.048 53.9+3.566
10 62.52+1.289 59.54+1.226 58.37+1.527 59.13+1.889 59.29+2.062 59.17+2.111 60.19+0.8406 57.74+1.516 5.104+1.537

Avg 77.77 73.38 70.10 71.66 70.98 71.33 74.19 70.95 58.51
11 99.43+1.278 / 97.06+3.176 97.02+2.986 95.24+4.017 96.43+3.931 96.45+4.83 95.29+2.631 99.39+1.355
12 75.49+3.846 72.1+9.334 - 71.67+5.218 75.02+2.513 72.64+5.261 73.83+6.222 71.64+5.478 72.14+6.385
13 84.3+0.2384 82.85+1.352 82.16+0.9696 / / / 84.53+1.18 76.55+2.887 30.03+0.5784
14 47.42+10.9 - - / / / 29.48+13.5 19.48+6.763 7.29+6.263
15 56.01+1.722 - - / / / 69.0+8.023 61.92+8.057 83.5+7.216
16 71.12+4.392 - - / / / 62.57+4.828 54.04+5.459 48.11+2.768
17 93.57+2.102 - - / / / / 87.3+2.49 70.98+13.6
18 99.55 - - / / / / 91.11 14.09+0.491

Avg all 78.13||74.06 80.12||73.35 79.39||74.13 79.39||73.34 79.39||73.53 75.72||72.73 78.03||70.45 78.03||56.15
win-tie-lose 11-4-3 1-2-15 0-1-17 0-0-18 0-0-18 0-0-18 1-2-15 0-0-18 1-2-15

1. A ”tie” is noted if two algorithms’ accuracy differs by less than 0.3% on a dataset.
2. ”win” and ”tie” algorithms are highlighted or underlined for each dataset, respectively.
3. The * indicates algorithms with feature selection.
4. 3. The b in a||b represents the average performance matrices of the comparison algorithm on all datasets that it can handle, and a represents
the average performance matrices of BFMDT on the same datasets with the comparison algorithm.
5. The footnote 2-4 also applies to Table 7.

the dataset, the FMKNN algorithm performed poorly, indi-
cating that the BFMDT algorithm maintains a high level of
robustness when dealing with high-dimensional data. The
above analysis illustrates that the BFMDT algorithm exhibits
exceptional performance, especially in the context of large-
scale data, where it demonstrates a superior enhancement
in calculation scale.

5.4.3 Analysis on the number of feature selected
Table 9 presents the number of features selected by various
algorithms on the datasets where they can perform feature
selection. Considering that these algorithms ultimately yield
multiple subsets of features, we have represented the results
using the average number of features.

It is evident that the BFMDT algorithm produces fea-
ture subsets with a notably lower average number of fea-
tures across various datasets, and has consistently demon-
strated superior classification performance on each dataset.

Furthermore, the feature selection processes of the FCMT
and FFREMT algorithms appear to be ineffective on some
datasets. These results underscore the applicability and effi-
cacy of the BFMDT algorithm in the task of feature selection.

5.4.4 Analysis on time cost
The time complexity of the BFMDT algorithm can be di-
vided into two components: the time overhead associated
with feature selection and the time overhead involved in
constructing the trees. Two decision tree algorithms, Bag-
ging and REMT, and FMKNN do not necessitate any feature
selection time overhead.

Fig. 6 and Table 12-14 present the total feature selec-
tion time and total classification time of five-fold cross-
validation on different datasets. Classification methods em-
ploying feature selection tasks typically required longer ex-
ecution times. Among all comparison algorithms, FMKNN
had the shortest execution time. In tree-based algorithms,
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TABLE 7: Comparison on MAE

ID BFMDT* FFREMT* FCMT* FPRS up* FPRS down* FPRS global* Bagging REMT FMKNN
1 4.15+0.825 4.11+0.8941 5.333+4.472 4.976+1.3 4.83+1.51 4.684+1.324 4.78+1.579 4.98+2.175 8.647+3.737
2 9.603+7.428 47.71+6.181 54.14+1.672 37.09+12.64 37.66+11.52 37.66+11.52 30.98+12.11 36.54+5.741 51.11+4.099
3 22.76+2.198 30.67+4.079 38.22+7.426 35.01+7.347 35.71+7.413 34.64+8.039 32.12+4.868 48.04+9.256 25.98+2.237
4 28.89+5.003 21.48+1.014 32.85+5.918 24.81+4.829 25.19+5.493 24.81+4.829 22.59+6.058 22.59+4.793 25.19+6.495
5 16.14+2.603 24.69+15.92 16.23+3.183 19.04+10.58 24.06+15.7 21.55+12.93 22.1+13.17 21.87+12.98 16.14+2.603
6 30.0+0.0 36.4+3.11 46.4+4.219 44.2+1.891 43.6+2.104 43.8+1.891 38.0+3.142 41.2+4.907 45.9+2.302
7 55.2+3.16 70.94+3.414 44.6+4.053 70.57+5.95 70.57+5.95 70.57+5.95 60.87+2.294 64.27+10.04 147.9+0.4809
8 5.45+1.585 6.679+1.602 7.62+4.079 7.032+2.71 7.206+2.589 7.032+2.71 5.271+1.636 5.801+2.822 25.98+7.884
9 33.73+2.155 26.16+2.752 31.91+2.987 30.21+4.26 30.46+5.557 30.98+4.45 26.17+3.715 28.52+2.048 46.1+3.566
10 46.0+2.049 56.72+1.085 53.43+1.902 51.78+2.007 51.51+2.219 51.73+2.315 45.28+1.003 54.41+2.087 211.4+13.93

Avg 25.20 32.56 33.07 32.47 33.08 32.75 28.82 32.82 60.43
11 0.5714+1.278 / 2.919+3.176 2.977+2.986 4.759+4.017 3.566+3.931 3.547+4.83 4.707+2.631 0.6061+1.355
12 24.51+3.846 27.9+9.334 - 28.33+5.218 24.98+2.513 27.36+5.261 26.17+6.222 28.36+5.478 27.86+6.385
13 22.75+0.767 22.04+4.491 24.37+2.459 / / / 20.16+1.542 32.87+2.925 124.7+2.106
14 285.4+43.96 - - / / / 477.2+105.4 459.5+78.9 517.0+114.7
15 43.99+1.722 - - / / / 31.0+8.023 38.08+8.057 16.5+7.216
16 28.88+4.392 - - / / / 37.43+4.828 45.96+5.459 51.89+2.768
17 6.429+2.102 - - / / / / 13.86+2.838 29.18+13.83
18 0.4545 - - / / / / 11.11 304.3+1.742

Avg all 24.94||31.29 22.94||29.84 23.09||29.67 23.09||30.04 23.09||29.87 41.13||53.23 36.94||53.48 36.94||93.13
win-lose 10-8 3-15 1-18 0-18 0-18 0-18 3-15 0-18 2-16

TABLE 8: Comparison of average CA and MAE

ID 1-10 11-18

Algorithm CA (%) MAE (%) CA (%) MAE (%)

FFREMT 4.39 7.36 4.06 6.35
FCMT 7.67 7.87 6.77 6.89
FPRS up 6.11 7.27 5.61 6.58
FPRS down 6.79 7.88 6.05 6.96
FPRS global 6.44 7.55 5.86 6.78
Bagging 3.58 3.62 4.41 16.14
REMT 6.82 7.62 7.65 16.54
FMKNN 19.26 35.23 21.89 56.19

TABLE 9: The average number of feature subsets

ID BFMDT FFREMT FCMT up down global

1 2 8 8 8.1 8.2 8.2
2 2 10.4 11 12 12.1 12.1
3 1.5 7.7 9 8.1 8.2 8.1
4 1 11.4 11 12.1 12.1 12.1
5 1 9.7 9 10.1 11.5 15.1
6 2 18.6 20 19.1 19.1 19.1
7 1.9 15.8 13.7 17.1 17.1 17.1
8 5 19.9 5.8 29 29 29
9 3 7 8 7.2 7.2 7.2
10 8 10 11 10.1 10.1 10.1
11 1.8 / 5.8 11.7 9 15.8
12 16 42.6 - 54.3 49 57
13 7 30.1 32 / / /
14 1 - - / / /
15 1.2 - - / / /
16 1.6 - - / / /
17 13 - - / / /
18 2.8 - - / / /

REMT had the shortest execution time, as it did not involve
any feature selection or ensemble learning process. Even
if BFMDT adopted both feature selection and ensemble
learning processes, it exhibited efficiency advantage among
all algorithms.

In step of feature selection, for all datasets (numbered
1-18), BFMDT achieved the shortest execution time, and the
gap in computational efficiency was growing much larger
as the data scale increased. For instance, BFMDT accelerated
the feature selection by 146 times compared with FFREMT

on dataset 13; 20952 times compared with FCMT on dataset
11; 1590 times compared with FPRS up on dataset 12;
1399.95 times compared with FPRS down on dataset 10; and
3482 times compared with FPRS global on dataset 12. It is
due to the lowest time complexity of BFMDT.

Among all the algorithms tested, FMKNN exhibited the
shortest overall execution time, a characteristic attributed
to its computational principle. However, when faced with
high-dimensional data, the computation time of FMKNN
significantly increased. Compared to tree-based algorithms,
in step of tree-building, for small scale datasets 1-9, BFMDT
achieved the shortest execution time on 3 datasets among
all 8 classification algorithms. For 9 larger scale datasets
(numbered 10-18), BFMDT achieved the shortest execution
time on 4 datasets. In addition, BFMDT achieved the best
average computation efficiency. It shows the same pattern
as the feature selection step, as the scale increased, the
BFMDT algorithm’s advantages in terms of processable data
scale and execution time become even more pronounced.
For instance, BFMDT accelerated the tree-building by 687
times compared with FFREMT on dataset 6; 429 times com-
pared with FCMT on dataset 11; 28 times compared with
FPRS up on dataset 8; 34 times compared with FPRS down
on dataset 8; 34 times compared with FPRS global on
dataset 8; 291 times compared with Bagging on dataset 15;
and 28 times compared with REMT on dataset 17. This is
primarily due to the fact that significant feature reduction
substantially accelerates the tree-building process.

It’s worth noting that most comparison algorithms are
unable to process all datasets due to memory or time con-
straints, whereas BFMDT efficiently computes all datasets.
The last column in Table 10 shows the percentage of time
savings of the BFMDT algorithm compared to other al-
gorithms. Compared to FMKNN, the BFMDT algorithm
took 4.33 times longer to compute. However, as indicated
by the CA and MAE experimental results, the efficiency
of FMKNN comes at the cost of some loss in algorithm
robustness. The aforementioned analysis demonstrates that
BFMDT is capable of performing feature selection for high-
dimensional dataset, effectively reducing feature dimen-
sions and enhancing classification performance and com-
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TABLE 10: Time cost of feature selection and classification (in seconds)

Datasets 1-10 11 12 13 14-16 17 18 decreased
by (%)

BFMDT 5990.93 23.89 133.37 262.89 3255.38 688.18 4820.32
FFREMT 31010.26 / 134.28 7362.95 - - - 83.41

FCMT 165692.58 41028.36 - 1897.79 - - - 96.99
FPRS up 21440.66 190.26 3604.34 / / / / 75.64

FPRS down 24047.84 114.17 3146.74 / / / / 77.49
FPRS global 31913.29 485.40 7659.15 / / / / 84.65

Bagging 41146.29 4.02 144.80 7759.91 38308.04 / / 88.94
REMT 1480.98 2.16 11.95 188.01 3951.46 13180.89 22652.18 63.41

FMKNN 311.04 0.06 0.13 517.68 38.16 63.59 1914.09 -
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Fig. 5: Time of feature selections and classifications

putation efficiency.

6 CONCLUSION AND FUTURE WORK
In this paper, we introduce a novel feature selection method
for monotonic datasets and enhance ordinal classification
through the fusion of multiple feature subsets. The pro-
posed algorithm improves average classification accuracy
by 3.36%-7.65% and reduces average execution time by
63.41%-96.99%, showing efficiency in handling large-scale
data. While there is room for improvement in dealing with
continuous features and handling large sample sizes, future
research will address these limitations.
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