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Abstract

Neural architecture search-based multi-modal classification
(NAS-MMC) methods can individually obtain the optimal
classifier for different multi-modal data sets in an auto-
matic manner. However, most existing NAS-MMC method-
s are dramatically time consuming due to the requiremen-
t for training and evaluating enormous models. In this pa-
per, we propose an efficient evolutionary-based NAS-MMC
method called divide-and-conquer neural architecture search
(DC-NAS). Specifically, the evolved population is first divid-
ed into k + 1 sub-populations, and then k sub-populations of
them evolve on k small-scale data sets respectively that are
obtained by splitting the entire data set using the k-fold strati-
fied sampling technique; the remaining one evolves on the en-
tire data set. To solve the sub-optimal fusion model problem
caused by the training strategy of partial data, two kinds of
sub-populations that are trained using partial data and entire
data exchange the learned knowledge via two special knowl-
edge bases. With the two techniques mentioned above, DC-
NAS achieves the training time reduction and classification
performance improvement. Experimental results show that
DC-NAS achieves the state-of-the-art results in term of clas-
sification performance, training efficiency and the number of
model parameters than the compared NAS-MMC methods on
three popular multi-modal tasks including multi-label movie
genre classification, action recognition with RGB and body
joints and dynamic hand gesture recognition.

Introduction
In recent years, multi-modal learning has emerged as a pow-
erful approach to enhance the performance of various ma-
chine learning tasks by leveraging complementary informa-
tion from multiple data modalities (Xu et al. 2023c; Wen
et al. 2023; Zhuge et al. 2022; Xu et al. 2023a,b; Jiang
et al. 2023; Zhang et al. 2022; Han et al. 2023; Zhou et al.
2022). This fusion of information from different sources,
such as images, texts, audios, and other forms of data, has
shown great potential in tackling complex real-world prob-
lems, ranging from image and speech recognition to health-
care and autonomous driving. However, achieving an effec-
tive and efficient fusion of multi-modal features remains a
challenging task.
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In the pursuit of optimal multi-modal feature fusion s-
trategies, researchers have turned their attention to neu-
ral architecture search (NAS) that is one state-of-the-art
technique for automating the process of designing high-
performing neural network architectures. NAS has demon-
strated remarkable success in discovering optimal multi-
modal feature fusion strategies that outperform hand-crafted
ones (Liang et al. 2021). For instance, in specific domains,
MMnas (Yu et al. 2020) applies NAS to multi-modal learn-
ing with the aim of discovering Transformer model archi-
tectures for visual-text alignment, while MMIF (Peng et al.
2020) seeks the optimal CNN structures for extracting multi-
modality image features from tomographic scans. MFAS
(Perez Rua et al. 2019) and BM-NAS (Yin et al. 2022),
on the other hand, are two more general frameworks capa-
ble of efficiently searching for multi-modal fusion strategies
and enhancing the performance of multi-modal classifica-
tion tasks.

Although the existing multi-modal NAS methods have
achieved promising results in various multi-modal tasks,
most of them need to train extensive multi-modal neural net-
works in each update step, tending to cost more time than
non-NAS ones. The gradient-based multi-modal NAS meth-
ods greatly improve search efficiency, but their search spaces
heavily depend on the super-networks that are predefined.
As the number of modalities increases and the scale of data
grows, it is necessary to propose multi-modal NAS methods
with high computational efficiency and large search space.

In this paper, we propose a population-based multi-modal
NAS method called divide-and-conquer neural architecture
search (DC-NAS) with a high computational efficiency and
large search space. DC-NAS can efficiently adapt to vari-
ous multi-modal feature fusion strategies and learns DNN
networks to tackle diverse multi-modal classification tasks.
It primarily relies on evolutionary NAS as the main frame-
work where features extracted from various single-modal
DNNs and basic fusion operators are encoded in a tree-based
representation. Following the principles of biological evolu-
tion, it iteratively searches for the optimal individual to con-
struct the best multi-modal feature fusion network. During
the population iteration process, DC-NAS employs a divide-
and-conquer search strategy, breaking down the larger prob-
lem into a set of smaller and simpler subproblems that are
solved iteratively. This strategy has been widely applied to



large-scale optimization problems (Guo, Qian, and Liang
2022; Bi, Xue, and Zhang 2021). With the guidance of the
strategy, we first split the training dataset and the popula-
tion into multiple small-scale datasets and sub-populations,
respectively. Then, one sub-populations of them uses the en-
tire training dataset, and the rest ones use one split small-
scale dataset for training and evaluation during the evolution
process. This intuitively reduces training time since the ef-
ficiency limitation of searching for the optimal solution us-
ing evolutionary algorithms lies in evaluating each individ-
ual. The sub-populations except one in DC-NAS are only
trained using different subsets sampled from training data
for multi-modal feature fusion learning, which may result
in performance loss. In this work, the issue is addressed by
exchanging the knowledge between sub-populations via two
specially-designed knowledge bases in each generation.

It is worth noting that the idea that employing multiple s-
mall populations with information exchange between them
for the search, resembles the island-based evolutionary algo-
rithms (Lardeux and Goffon 2010), makes DC-NAS a spe-
cial case of such methods. However, unlike these approach-
es, DC-NAS divides the training set into several mutually
exclusive subsets and incorporates knowledge transfer, aim-
ing to improve efficiency while maintaining performance to
the best possible extent.

The contributions of our work are as follows:
• In order to efficiently utilize diverse multi-modal features

for multi-modal classification tasks, we propose a novel
multi-modal method DC-NAS, which adaptively select-
s and fuses features from various modalities to find the
optimal fusion network.
• DC-NAS where most individuals evolve with the par-

tial data, only few individuals evolve with the entire da-
ta, and knowledge is allowed to exchange between them
achieves the comparable performance with one where all
individuals evolve with the entire data. This design theo-
retically and empirically reduces the computation time.
• The extensive comparison experiments on three multi-

modal tasks show that DC-NAS achieves competitive
performance with reduced search time and fewer mod-
el parameters compared to the the state-of-the-art multi-
modal feature fusion methods.

Related Work
Neural Architecture Search: NAS is a hot research field
that aims to find the optimal neural network architecture
through automated methods. In recent years, several ap-
proaches related to NAS have emerged and can be broad-
ly categorized into three types: gradient-based methods(Liu,
Simonyan, and Yang 2019), reinforcement learning-based
methods(Zoph and Le 2017) and evolution-based methods
(Liang et al. 2021).

The gradient-based methods require the construction of
a super network in advance and the manual design of the
search space, deviating from the goal of automation (Yuan
et al. 2023). Moreover, compared to evolution-based meth-
ods, gradient-based methods have a relatively small solution
space and can easily get trapped in local optima (Dong et al.

2021); Reinforcement learning-based methods formulate the
structure search problem as a Markov decision process and
use reinforcement learning algorithms to learn search poli-
cies. In the search process, reinforcement learning algo-
rithms interact with the environment to collect feedback sig-
nals and update search policies to obtain better neural struc-
tures. Although these methods have achieved satisfactory
performance, they often require significant computational
resources, making them challenging to apply widely.

Evolutionary-based methods(Yuan et al. 2023) employ
evolutionary algorithms to search for neural architectures.
They start with an initial population and use evolutionary
operations such as selection, crossover, and mutation to it-
eratively improve and optimize the structures, or adopt par-
ticle swarm optimization to search for model architectures.
This approach typically guides the evolution process by e-
valuating the performance of each candidate structure to
find the best one. However, a major limitation of evolu-
tionary algorithms is the need to evaluate multiple individ-
uals, which leads to significant training overhead. To over-
come this constraint, this paper proposes a novel divide-and-
conquer-based method to improve training efficiency with-
out substantially compromising model performance. This
method is applied to the multi-modal feature fusion neural
architecture search for multi-modal classification tasks.

Multi-Modal Fusion: In the context of deep neural net-
works, multimodal fusion techniques can generally be cat-
egorized into three types: early fusion, late fusion, and hy-
brid fusion. Early fusion involves combining low-level fea-
tures, late fusion combines decision-level outputs, while hy-
brid fusion combines both early and late fusion to achieve
enhanced results. So far, various effective combination tech-
niques such as tensor pooling (Hou et al. 2019), Dempster-
Shafer theory (Liu et al. 2023) and association-based fusion
(Liang et al. 2022, 2023) have been proposed. Deep neural
networks, as leading feature extractors, often produce ex-
tensive features for each modality data, making manual se-
lection for feature fusion a challenging task. There are two
kinds strategies to deal to this issue. The first strategy is to
perform fusion at multiple intermediate layers based on pre-
defined fusion rules such as CentralNet (Vielzeuf et al. 2019)
and MMTM (Vaezi Joze et al. 2020). While these meth-
ods have demonstrated promising performance on multiple
tasks, they often lead to an increase in model parameters.

The second strategy is to transfer the original task into a
neural architecture search (NAS) task. For example, MFAS
(Perez Rua et al. 2019) introduced NAS methods to multi-
modal learning for automatically giving a satisfying solu-
tion to multi-modal feature fusion. However, the sequen-
tial model-based optimization algorithm needs to train and
evaluate lots of deep neural networks, leading to search-
ing inefficiency. To address this issue, the gradient-based
NAS methods such as DARTS (Liu, Simonyan, and Yang
2019), MMIF(Peng et al. 2020), 3D-CDC(Yu et al. 2021),
and BM-NAS (Yin et al. 2022) have been proposed. Such
methods train a super-network instead of lots of neural net-
works, reducing the searching time. However, the structures
of super-networks are limited. For example, BM-NAS (Yin
et al. 2022) restricts the requirement for different ancestors
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Figure 1: The whole framework of DC-NAS.

in each unit, leading to limited fusion options and results in
a decrease in performance. Moreover, BM-NAS (Yin et al.
2022) adoption of tensor representation for modal feature
fusion introduces additional computational overhead and in-
formation redundancy. MMnas (Yu et al. 2020) allows the
search of attention operations, but the network’s topology
remains fixed during architecture search.

Diverging from the aforementioned approaches, the pro-
posed DC-NAS is an evolution-based NAS approach with
a wider and more flexible search space than gradient-
based methods, achieving superior architectural perfor-
mance. Moreover, DC-NAS utilizes feature vectors as the
foundational fusion units, exclusively uses five fundamental
fusion operators for feature fusion and uses the divide-and-
conquer algorithm for population evolution, significantly re-
ducing computational load and addressing the low efficiency
issue of the existing population-based NAS methods.

The Proposed DC-NAS
For avoiding confusion, we appoint some terms here. The
population consists of individuals, each individual corre-
sponds to a multi-modal classification model that is encoded
as a tree. The knowledge extracted from the sub-populations
typically refers to the special individuals or parts of them.
The all representations extracted from modalities are uni-
formly called features.

In this paper, we propose an efficient evolutionary-based
NAS method for multi-model classification called divide-
and-conquer neural architecture search (DC-NAS). DC-
NAS efficiently searches for optimal DNN architectures that
fuse multi-modal features. It employs an evolutionary algo-
rithm to iteratively improve and optimize the fusion archi-
tectures in the population. Throughout the population itera-
tions, we adopt the divide-and-conquer strategy to partition
the training dataset into multiple disjoint subsets and allo-
cate each subset to a separate sub-population. Additionally,

a special sub-population is evolved on the entire dataset for
obtaining more accuracy individuals. Knowledge exchange
between each sub-population and one of two knowledge
bases that is achieved via the crossover operator enables
effective knowledge transfer among sub-populations, ensur-
ing learning performance. Figure 1 illustrates the entire DC-
NAS framework.

Unimodal Feature Extraction
In this study, we follow previous works on multi-modal
fusion such as MFAS(Perez Rua et al. 2019), MMT-
M(Vaezi Joze et al. 2020), and BM-NAS(Yin et al. 2022)
to adopt the pre-trained unimodal neural network model-
s as feature extractors. We extract raw features from the
intermediate layers of these models, as neural network ar-
chitectures typically have a layered or block-like structure,
which naturally lends itself to this extraction approach. S-
ince the features extracted from different modalities have
varying dimensions (e.g., one-dimensional for text and two-
dimensional for images), we employ global average pool-
ing to transform them into feature vectors, achieving fea-
ture alignment and facilitating subsequent feature fusion
while also reducing computational complexity. By extract-
ing intermediate layers from a multi-modal single neu-
ral network, we can obtain a collection of n modal fea-
ture datasets represented by the dataset X , where X =
{(X1(si), X2(si), Xv(si), yi)}ni=1. Here, Xj(si) represents
the j-th feature of the multi-modal data si, and Xj rep-
resents the j-th feature representation extracted from the
multi-modal dataset.

Multi-Modal Classification Model Encoding and
Encoding
The each individual p in population is encoded as a binary
tree, where the leaf nodes consist of features and the branch
nodes consist of fusion operators. In this paper, the fusion
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Figure 2: Left: the binary tree encoding of the optimal in-
dividual for NTU RGB-D dataset. Right: its corresponding
multi-modal classification model.

operators consists of concatenation (Wang et al. 2017), addi-
tion (Wu et al. 2014), multiplication (Gao et al. 2018), Max-
imize(Duong, Lebret, and Aberer 2017) and average. Their
definitions can be found in appendix. For each individual,
if the binary tree contains k features, then it must contain
k−1 fusion operators. Each individual corresponds to multi-
modal classification model. The left in Figure 2 shows the
optimal individual on NTU RGB-D dataset (Shahroudy et al.
2016). The binary tree can be decoded a multi-modal clas-
sification model shown in the right in Figure 2 as following
steps: 1) Pass the modality features represented by the leaf
nodes of the individual encoding tree into fully connected
layers (FC) for feature alignment to facilitate feature fusion;
2) Perform feature fusion based on the fusion operators rep-
resented by the branch nodes; 3) Pass the fused features into
a FC and a Softmax layer for the final prediction output.

Algorithm Framework
The core idea of DC-NAS is that the individuals in popu-
lation are trained using partial training set, instead of en-
tire one. As shown in Figure 3, the detailed process of our
divide-and-conquer approach and the relationships between
various variables are presented. Specifically, the K-fold s-
tratified sampling is first conducted on the entire training
dataset Xtr, obtaining K non-overlapping subsets with the
same class proportion, denoted as Xtr

1 , Xtr
2 , ..., Xtr

K ; the en-
tire population P with M individuals is evenly divided into
K + 1 sub-populations, namely P0, P1, ..., PK . Each sub-
population contains m individuals, where m = bM/(K +
1)c. For instance, when we perform 3-fold stratified sam-
pling on the training set, the population with 28 individuals
will be divided into four sub-populations, each has seven in-
dividuals. The sub-population P0 will evolves on the entire
dataset Xtr, while Pi will evolves on the subset Xtr

i , where
i = 1, 2, · · · ,K.

Each sub-population Pi in DC-NAS can learn different
knowledge from distinct training data. To enable fast knowl-
edge transfer among the K + 1 sub-populations at each
generation, we propose a simple yet effective knowledge
transfer method. Specifically, given two knowledge bases
B1 and B2 that store the m best optimal individuals of P0

and {P1, ..., PK} of all the past generations, respectively.
The storage of each knowledge base is limited to m to con-
serve memory. For example, suppose that the current popu-
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Figure 3: The relationship among different variables.

lation generation is t and P t
i denotes the offspring of the sub-

population Pi in t-th generation. Then, B1 stores the top-m
best optimal individuals extracted from {P 1

0 , P
2
0 , · · · , P t

0};
while B2 stores the top-m best ones that are obtained
by extracting m/K from each {P 1

i , P
2
i , · · · , P t

i }, i =
1, 2, · · · ,K, respectively. After fitness evaluation in each
generation, both knowledge bases B1 and B2 will be up-
dated. Knowledge exchange is performed via crossover, the
details will be described in Crossover part.

We employ a standard evolutionary algorithm to search
for the optimal solution through population-based evolution-
ary NAS. The main steps of the DC-NAS framework include
population initialization, fitness evaluation, offspring gener-
ation, and selection.

Population Initialization: A population P with M indi-
viduals is randomly generated, and then divide it into K +1
sub-populations.

Fitness Evaluation: Each individual is first decoded in-
to a multi-modal classification model, and then the model is
trained using the corresponding to sub-dataset. Its classifica-
tion accuracy or weighted F1 on test set is used as the fitness
value for the decoded individual.

Crossover, Mutation, and Selection: As shown in Figure
4, there exists two cases for crossover. The first case involves
the crossover between individuals from P0 and B2, while
the second case involves the crossover between individuals
from P1, P2, ..., PK and B1. Let’s take the first case as an
example: we first select an individual from P0 and another
individual from B2 for crossover. This process is repeated
m/2 times. After the crossover, the population undergoes
mutation processing, followed by binary tournament selec-
tion (Miller and Goldberg 1996) involving both offspring
and parents. The pseudo code of DC-NAS is shown in Al-
gorithm 1.

Experiments
In this study, we evaluated DC-NAS on three popular multi-
modal tasks: (1) multi-label movie genre classification task
on the MM-IMDB dataset (Arevalo et al. 2017), (2) multi-
modal action recognition task on the NTU RGB-D dataset
(Shahroudy et al. 2016), and (3) multi-modal gesture recog-
nition task on the EgoGesture dataset (Zhang et al. 2018).
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For each task, we conducted a brief analysis and provided
the experimental parameter settings.

MM-IMDB Dataset
The MM-IMDB dataset (Arevalo et al. 2017) is a compre-
hensive multi-modal collection sourced from the Internet
Movie Database, encompassing 25,959 movies along with
their associated posters, plots, genres, and other metadata.
In our experiment, we focus on the task of multi-label genre
classification, utilizing both posters (RGB images) and plot-
s (text) as input modalities. The dataset includes a total of
27 non-mutually exclusive genres, such as Drama, Comedy,
Romance, and more. However, due to severe class imbal-
ance, we opt to employ only 23 genres for the classification
task, omitting News, Adult, Talk-Show, and Reality-TV gen-
res as they account for just 0.10% of the dataset. The dataset
is originally split into three subsets: 15,552 movies for train-
ing, 2,608 for validation, and 7,799 for testing purposes. The
processing approach is also designed to facilitate a compar-
ison with previous methods.

To ensure a fair comparison with other explicit multi-
modal fusion methods, the same neural network backbone
models as BM-NAS (Yin et al. 2022) are adopted in our
experiments. Specifically, Maxout MLP (Goodfellow et al.
2013) is chosen as the backbone model of the text modal-
ity, and VGG Transfer (Simonyan and Zisserman 2015), a
deep neural network model based on VGG19 (Simonyan and
Zisserman 2015), is chosen as the backbone model of the
RGB image modality. The evaluation metric is the weighted
F1 score, which is a reliable measure of multi-label classi-
fication performance due to the high degree of imbalance
in the dataset, rather than other types of F1 scores. The use
of weighted F1 scores is also consistent with previous ap-
proaches to facilitate comparison. For the parameters of our
architecture, we set the population size N = 20, the number
of population iterations T = 10, the dimension of the fusion
vector FD = 256 and the modal features are repeatable.

Due to the highly imbalanced class distribution in the
MM-IMDB dataset (Arevalo et al. 2017), we adopt a more
reasonable metric, the weighted F1 score, to measure the
performance of multi-label classification. As shown in Table
1, compared to existing multi-modal classification methods,
DC-NAS achieves the best weighted F1 score, outperform-
ing the latest BM-NAS (Yin et al. 2022) method by 0.78%.

Method Modality F1-W(%)
Unimodal methods

Maxout MLP (ICML13) Text 57.54
VGG Transfer (ICLR15) Image 49.21

Multi-modal methods
Two-stream (NIPS14) Image + Text 60.81
GMU (ICLR17) Image + Text 61.70
CentralNet (ECCV18) Image + Text 62.23
MFAS (CVPR19) Image + Text 62.50
BM-NAS (AAAI22) Image + Text 62.92±0.03
DC-NAS (ours) Image + Text 63.70±0.11

Table 1: Multi-label genre classification results on MM-
IMDB dataset. Weighted F1 (F1-W) is reported.

Method Modality Acc (%)
Unimodal methods

Inflated ResNet-50 (CVPR18) Video 83.91
Co-occurence (IJCAI18) Pose 85.24

Multi-modal methods
Two-stream (NIPS14) Video + Pose 88.60
GMU (ICLR17) Video + Pose 85.80
MMTM (CVPR20) Video + Pose 88.92
CentralNet (ECCV18) Video + Pose 89.36
MFAS (CVPR19) Video + Pose 89.50±0.60
BM-NAS (AAAI22) Video + Pose 90.48±0.24
DC-NAS (ours) Video + Pose 90.85±0.05

Table 2: Action recognition results on NTU RGB-D dataset.

NTU RGB-D Dataset
A large-scale multi-modal action recognition dataset from
NTU RGB-D (Shahroudy et al. 2016) consists of 56,880
samples representing 40 subjects, 80 viewpoints, and 60 dai-
ly activities. For our fusion experiments, we utilize skeleton
and RGB video modalities. The performance evaluation em-
ploys the Cross-Subject (CS) accuracy metric. As a result
of maintaining consistency, we adopt the dataset split intro-
duced in BM-NAS (Yin et al. 2022), in which subjects 1, 4,
8, 13, 15, 17, and 19 are used for training, subjects 2, 5, 9,
and 14 are used for validation, and the remaining subjects



Algorithm 1: Divide-and-conquer neural architecture search
(DC-NAS)
Input: Training data Xtr, test dataset Xte, number of sub-
populations K + 1.
Parameter: Population size M , maximum number of gen-
erations N .
Output: Optimal fusion individual.

1: Initialize t← 1;
2: Initialize two empty knowledge bases B1 ← [] and

B2 ← [];
3: Initialize a population P with M individuals;
4: Divide the population P into K + 1 sub-populations:

P0, P1, ..., PK ;
5: Conduct K-fold stratified sampling on Xtr, obtain

Xtr
1 , Xtr

2 , ..., Xtr
K ;

6: P0 gets Xtr, while Pi get Xtr
i , i = 1, 2, · · · ,K;

7: Train and evaluate each individual in each sub-
population;

8: Select the best fusion individual from each sub-
population and add it to the corresponding knowledge
base;

9: while t <= N do
10: Generate offspring Qt

0, Q
t
1, ..., Q

t
K using the

crossover operator, where Qt
0 is produced by cross-

ing P t
0 and Bt

2, Qt
1, Q

t
2, ..., Q

t
K are produced by

crossing P t
1 , P

t
2 , ..., P

t
K with Bt

1;
11: Conduct mutation on each individual in Qt

j , where
j = 0, 1, 2, ...,K;

12: Train and evaluate each individual in each sub-
population;

13: Select next generation population P t+1
i from Qt

i ∪
P t
i , where i = 0, 1, 2, ...,K;

14: Select the best fusion individual from each sub-
population and add it to the corresponding knowledge
base;

15: Update the knowledge bases: Knowledge Bank1 Bt
1,

Knowledge Bank2 Bt
2;

16: t = t+ 1;
17: end while

are used for testing. The training, validation, and testing sets
comprise 23,760, 2,519, and 16,558 samples, respectively.

For a fair comparison, two convolutional neural network
models are used as the modal feature extractors, following
the same approach as the BM-NAS (Yin et al. 2022) method.
Specifically, Inflated ResNet-50 (Baradel et al. 2018) is em-
ployed for the video modality and Co-occurrence (Li et al.
2018) for the skeleton modality. This design ensures that
all methods in the experiment share the same backbone
network. Additionally, we follow the data preprocessing
pipeline of BM-NAS (Yin et al. 2022), MFAS(Perez Rua
et al. 2019) and MMTM (Vaezi Joze et al. 2020) to ensure
the fairness of the experimental results. We use a population
size of 28, conduct 15 iterations, do not reuse modalities,
and set the fusion modality dimension to be 64.

In Table 2, our method achieve a cross-subject accuracy
of 90.85%, demonstrating superior results compared to the

Method Modality Acc (%)
Unimodal methods

VGG-16 + LSTM (NIPS14) RGB 74.70
C3D + LSTM + RSTTM RGB 89.30
I3D (CVPR17) RGB 90.33
ResNext-101 (FG19) RGB 93.75
VGG-16 + LSTM (CVPR14) Depth 77.70
C3D + LSTM + RSTTM Depth 90.60
I3D (CVPR17) Depth 89.47
ResNeXt-101 (FG19) Depth 94.03

Multi-modal methods
VGG-16 + LSTM (CVPR17) RGB + Depth 81.40
C3D + LSTM + RSTTM RGB + Depth 92.20
I3D (CVPR17) RGB + Depth 92.78
MMTM (CVPR20) RGB + Depth 93.51
MTUT (3DV19) RGB + Depth 93.87
3D-CDC-NAS2 (TIP21) RGB + Depth 94.38
BM-NAS (AAAI22) RGB + Depth 94.96±0.07
DC-NAS (ours) RGB + Depth 95.22±0.05

Table 3: Gesture recognition results on EgoGesture dataset.

Method Dataset Parameters Time CP (%)
MMTM NTU 8.61M - 88.92
MFAS NTU 2.16M 603.64 89.50

BM-NAS NTU 0.98M 53.68 90.48
DC-NAS(ours) NTU 0.26M 13.63 90.85

BM-NAS Ego 0.61M 20.67 94.96
DC-NAS(ours) Ego 0.19M 4.57 95.22

BM-NAS MM-IMDB 0.65M 1.24 62.94
DC-NAS(ours) MM-IMDB 0.42M 1.19 63.70

Table 4: Comparison of model size, search cost (GPU
hours), and classification performance (CP) of generalized
multi-modal NAS methods.

latest approaches on NTU RGB-D (Shahroudy et al. 2016)
using video and pose modalities. When compared to the re-
cent BM-NAS (Yin et al. 2022) framework, our DC-NAS
has several advantages. BM-NAS (Yin et al. 2022) employs
tensor-based fusion, while DC-NAS adopts a vector-based
approach. Although tensor fusion provides more informa-
tion, it also introduces redundancy and increases computa-
tional overhead, leading to performance degradation. Addi-
tionally, it may disrupt the structural information of feature
vectors generated by the penultimate fully connected layer.
Furthermore, BM-NAS (Yin et al. 2022) relies on gradient-
based NAS, whereas our DC-NAS utilizes evolution-based
NAS. Evolution-based methods typically explore a larger
space of modality fusion and fusion strategies, making it
more likely to discover better solutions.

EgoGesture Dataset
The EgoGesture dataset (Zhang et al. 2018) comprises a
large-scale multi-modal gesture recognition dataset, with
24,161 gesture samples gathered from 50 diverse subject-
s and 6 distinct scenes, encompassing a total of 83 unique
gesture categories. To maintain experimental fairness, we



Version DCE KT Time ACC (%)
DC-NAS1 False False 20.67 90.86±0.03[8.0e-01]
DC-NAS2 True False 11.10 90.52±0.06[9.5e-06]
DC-NAS True True 13.63 90.85±0.05

Table 5: Ablation study on the two core component of DC-
NAS on NTU RGB-D dataset. [·] shows the p values of the
paired t-test between DC-NAS and other two versions.

adhered to the dataset’s original division, wherein samples
were grouped based on subjects. Specifically, our training
set consisted of 14,416 samples, the validation set had 4,768
samples, and the testing set comprised 4,977 samples.

For a fair comparison, we follow the setup of the BM-
NAS (Yin et al. 2022) method and utilize ResNeXt-101 (Kp-
kl et al. 2019) as the backbone for RGB and depth video
modalities. We compare our DC-NAS with various single-
modal and multi-modal methods. The experimental settings
for DC-NAS involves a population size of 28, 15 iterations,
and non-reuse of modalities with a fusion dimension of 32.
Table 3 presents the experimental results on the EgoGesture
dataset. Compared to other methods, DC-NAS achieves the
state-of-the-art classification performance.

Comparison of Searching Time and Model Size
This section aims to show the advantage of DC-NAS by
comparing it with three strong MMC benchmark method-
s including MFAS (Perez Rua et al. 2019), BM-NAS (Yin
et al. 2022) and MMTM (Vaezi Joze et al. 2020) in terms
of the searching time, model size and classification perfor-
mance. MMTM is a manual MMC methods and the rest ones
are NAS methods. The results are reported in Table 4. From
the Table 4, we observe that our DC-NAS costs the least
searching time, but finds the optimal model with less param-
eters and better classification performance. For example, the
model size of DC-NAS is reduced by at least three times on
the NTU RGB-D and EgoGesture; The time consumption
for searching the optimal fusion model on the NTU RGB-
D and EgoGesture datasets has been nearly reduced by four
times than the state-of-the-art BM-NAS. These results fur-
thermore demonstrate the effectiveness of DC-NAS.

Ablation Study
The section aims to verify the effectiveness of each compo-
nent of DC-NAS, the unimodal feature selection strategy and
the multi-modal fusion strategy by three ablation studies.

Impact Analysis of Each Component of DC-NAS. DC-
NAS includes two core component: divide-and-conquer evo-
lution (DCE) and knowledge transfer (KT). This section
aims to evaluate the importance of each component by com-
paring DC-NAS with its two modified versions DC-NAS1

and DC-NAS2 in Table 5. Specifically, DC-NAS1 denotes
all individuals are trained using the entire training dataset;
DC-NAS2 is the version of DC-NAS without KT module.
From the Table 5, there is no significant difference between
DC-NAS and DC-NAS1 according to the paired t-test with
a 95% confidence level. However, DC-NAS is significantly

Feature selection strategies ACC (%)
Random 88.81±0.11

Late fusion 89.47±0.07
Searched (MFAS) 89.50±0.60

Searched (BM-NAS) 90.48±0.24
Searched (DC-NAS) 90.85±0.05

Table 6: Ablation study for feature selection strategies on
NTU RGB-D Dataset.

Add Mul Cat Max Avg DC-NAS
89.54 88.71 89.20 88.84 88.07 90.85

Table 7: Ablative study for fusion operators on NTU RGB-D
dataset.

better than DC-NAS2 according to the paired t-test with a
95% confidence level. These results indicate that jointly us-
ing them ensures that training individuals using partial data
can achieve almost the same classification performance.

Impact Analysis on Feature Selection Strategies. Table
6 compares different unimodal feature selection strategies
on NTU RGB-D dataset. For the random strategy, we eval-
uate the average results of the first 10 individuals initialized
randomly in the population. As for the late fusion strate-
gy, we concatenate the last two layers of features extracted
from two modalities, train and evaluate the model five times,
and then take the average value. We then compare these s-
trategies with the MFAS (Perez Rua et al. 2019) and BM-
NAS (Yin et al. 2022) methods for selecting modal fusion
strategies. As shown in Table 6, the searched feature selec-
tion strategy is better than all baselines, demonstrating that
feature selection strategy plays an important role in multi-
modal classification task.

Impact Analysis on Fusion Strategy. Table 7 evalu-
ates different multimodal fusion strategies on NTU RGB-D
dataset. We compare the optimal feature fusion individuals
found by DC-NAS with the direct use of all modality fea-
tures using the five basic fusion operators. As shown in Ta-
ble 7, the searched fusion strategy is better than all baselines,
demonstrating that the optimal fusion strategy of different
features may be different.

Conclusion
In this paper, we have proposed an efficient NAS-MMC
method DC-NAS. DC-NAS reduces the searching time by
training different sub-populations using small-scale data,
while achieves the comparable or even better classifica-
tion performance by exchanging knowledge between sub-
populations. Extensive experiments have been conducted for
verifying its these advantages. DC-NAS may make it pos-
sible that NAS-MMC technique applies to the large-scale
multi-modal data. In the future, some important issues relat-
ed to DC-NAS need to be studied more deeply, such as more
effectively strategies of the knowledge exchange between d-
ifferent sub-populations and data split.
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