
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Learning With Incremental Instances and Features
Shilin Gu , Yuhua Qian , Member, IEEE, and Chenping Hou , Member, IEEE

Abstract— In many real-world applications, data may dynam-
ically expand over time in both volume and feature dimensions.
Besides, they are often collected in batches (also called blocks).
We refer this kind of data whose volume and features increase
in blocks as blocky trapezoidal data streams. Current works
either assume that the feature space of data streams is fixed
or stipulate that the algorithm receives only one instance at
a time, and none of them can effectively handle the blocky
trapezoidal data streams. In this article, we propose a novel
algorithm to learn a classification model from blocky trapezoidal
data streams, called learning with incremental instances and
features (IIF). We attempt to design highly dynamic model
update strategies that can learn from increasing training data
with an expanding feature space. Specifically, we first divide
the data streams obtained on each round and construct the
corresponding classifiers for these different divided parts. Then,
to realize the effective interaction of information between each
classifier, we utilize a single global loss function to capture their
relationship. Finally, we use the idea of ensemble to achieve
the final classification model. Furthermore, to make this method
more applicable, we directly transform it into the kernel method.
Both theoretical analysis and empirical analysis validate the
effectiveness of our algorithm.

Index Terms— Blocky trapezoidal data streams, classification,
evolvable features, learning with streaming data.

NOMENCLATURE

ℓt, j Hinge loss of classifier wt, j on Xt, j .
ℓ̃t, j Hinge loss of classifier w̃ j on Xt, j .
τt, j Nonnegative scalar.
ℓt Vector whose elements are ℓt, j .
ℓ̃t Vector whose elements are ℓ̃t, j .
τ t Vector whose elements are τt, j .
φ(·) Function that maps data from the original

input space RM to the feature space F.
κ(·, ·) Kernel function.
ρ Remoteness of a norm.
B Budget size.
Xt ∈ Rnt ×dt Data block obtained on round t .
Xt, j ∈ Rnt ×m j j th part of Xt .
Yt ∈ Rnt ×1 Label vector of Xt .

Manuscript received 22 November 2020; revised 7 November 2021,
26 June 2022, and 12 October 2022; accepted 9 January 2023. This work
was supported in part by the Key NSF of China under Grant 62136005; and
in part by the NSF of China under Grant 61922087, Grant 61906201, and
Grant 62006238. (Corresponding authors: Yuhua Qian; Chenping Hou.)

Shilin Gu and Chenping Hou are with the College of Science, National
University of Defense Technology, Changsha, Hunan 410073, China (e-mail:
gslnudt@outlook.com; hcpnudt@hotmail.com).

Yuhua Qian is with the Institute of Big Data Science and Industry, Shanxi
University, Taiyuan, Shanxi 030006, China (e-mail: jinchengqyh@126.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3236479.

Digital Object Identifier 10.1109/TNNLS.2023.3236479

xi
t, j ∈ Rm j i th instance of the j th part observed

on round t .
yi

t, j ∈ {−1,+1} Label of xi
t, j .

ŷi
t, j ∈ {−1,+1} Predicted label of xi

t, j .
wt, j ∈ Rm j j th linear classifier on round t .
w̃ j ∈ Rm j Arbitrary vectors with the same

dimension as Xt, j .
x̂ ∈ Rdt Unlabeled instance.
x̂ j ∈ Rm j Vector consisting of elements of x̂ that

are in the same feature space of Xt, j .

I. INTRODUCTION

IN MANY real-world applications, we have to deal with the
situation where both data volume and feature dimension

dynamically keep expanding, such as the text classification
with an increasing number of documents and text vocabulary
or the classification of data collected by continuously installed
detectors in the environment monitoring. Also, we usually
receive a batch of data instead of one instance at the same
time since the detectors collect data for a certain period of
time before being retrieved. This kind of data is referred
to as blocky trapezoidal data streams. As shown in Fig. 1,
for ecological environment monitoring, we can install many
detectors to collect data, where each detector corresponds to
a batch of features. With the development of technology, we
can deploy more advanced detectors to collect more features
of the environment, that is, both the data collected by detectors
and the features of data increase over time.

The setting of online learning is relatively close to blocky
trapezoidal data stream learning. Traditional online learning
algorithms mainly solve the problem where either the training
instances arrive sequentially, but the feature space is fixed [1],
[2], [3], [4], [5], [6], or the features arrive continuously as
streams, but the training set is fixed [7], [8], [9], [10], [11].
Obviously, the traditional online learning algorithms, such as
the perceptron algorithm [6], the passive–aggressive (PA) algo-
rithm [4], and the online streaming feature selection (OSFS)
algorithm [9], cannot be directly applied to handle the blocky
trapezoidal data streams because their model update criteria
are designed either in the case of increasing data volume or
increasing feature dimension, without considering the increase
in both aspects at the same time. To deal with the blocky
trapezoidal data streams using traditional online learning algo-
rithms, a straightforward approach is to take advantage of the
newly obtained data and learn a new model for classification.
However, this approach may have two deficiencies. First,
the newly coming data are usually scarce, which might be
insufficient to build a superior predictive model. Second, the

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1681-5856
https://orcid.org/0000-0001-6772-4247
https://orcid.org/0000-0002-9335-0469

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Illustration of blocky trapezoidal data stream. In the first row, we only
have a few initial detectors, and as time evolves, more advanced detectors are
installed. Each column represents the features collected by a batch of detectors
that are installed at the same time. Each row represents the data composed
of features that are collected by all current detectors. Therefore, the volume
and dimensions of blocky trapezoidal data streams are increasing over time.

newly built model ignores the previously collected data, which
cannot fully exploit the information from the historical data
and causes big waste.

Therefore, the main challenge in dealing with blocky trape-
zoidal data streams is how to design highly dynamic model
update strategies that can learn from increasing training data
with an expanding feature space. Recently, a few studies have
explored solving trapezoidal data streams [12], [13], [14].
They adopt different feature division or projection strategies
to construct dynamic models, which make good improvements
in dealing with trapezoidal data streams. However, all these
studies are not designed for the situation where data arrive in
blocks and have no corresponding theoretical guarantee.

In this article, we propose a new learning with incremental
instances and features (IIF) algorithm to solve blocky trape-
zoidal data streams, which has a broader application scenario
than trapezoidal data stream learning. We design a novel
strategy to learn a highly dynamic classification model from
blocky trapezoidal data streams and then use the classifier
for prediction. In our setting, each group of newly installed
detectors forms a set, and the algorithm receives a batch of data
collected by current multiple detector sets at each iteration.
For the features collected by each set of detectors, we treat
them as a batch of independent data, and then, we construct a
classification model on such data and update it by following
the update rule used in online multitask learning [15]; the
relationship between these classifiers can be captured by a
single global loss function. Specifically, each classifier can
make a prediction on each independent data, and the predictive
quality of each classifier is associated with its loss; then, we
can combine these loss values by using a global loss function.
Finally, we use the idea of ensemble to achieve the final
classification model. The proposed algorithm uses an additive
update rule, so we directly transform it into a kernel method
for description in this article. Theoretical and empirical studies
validate the performance of the proposed algorithm.

It is worthwhile to summarize the main contributions of the
proposed approach as follows.

1) We propose a new method IIF to deal with blocky
trapezoidal data streams where data may expand in
both volume and feature dimensions. To the best of our

knowledge, there is a very little study in the literature
that is specially designed for this kind of data stream.

2) We design a novel strategy to learn a highly dynamic
classification model from blocky trapezoidal data
streams. We theoretically analyze the performance
bounds of the proposed algorithm.

3) Extensive experiments on both synthetic and real-world
datasets demonstrate the effectiveness of IIF.

The remainder of this article is organized as follows.
Section II introduces the related work. Section II introduces the
setting of the problem. The proposed algorithm is presented
in Section IV. Section V provides the corresponding analysis
and the detailed proofs of our theorems. Section VI reports the
experimental results. We conclude the work in Section VII.

II. RELATED WORK

In this article, we aim to learn a classification model from
blocky trapezoidal data streams, which is closely related to
online learning from fixed feature space and online learning
from dynamic feature space.

A. Learning From Fixed Feature Space

This pattern refers to traditional online learning algorithms,
where training instances arrive in sequence with feature space
fixed, i.e., every instance has the same number of features [16].
There are many studies on traditional online learning [1],
[2], [17]. Generally, we can divide them into two categories,
linear and nonlinear online learning algorithms.

The linear online learning algorithms achieve satisfactory
performance when the training instances are linearly separable
[1], [4], [6]. The perceptron algorithm [6] and PA algorithm
[4] are two well-known linear algorithms. At each round, the
perceptron updates the model only when the model makes
a wrong prediction. However, the PA algorithm aggressively
updates the model whenever the loss is nonzero. Therefore,
PA algorithms usually have a better performance than percep-
tron. Recently, people have proposed many new linear online
learning algorithms [17], [18], [19], [20], and they all improve
online learning in different aspects.

When data are linearly inseparable, we often need to
map the data to another high-dimensional reproducing kernel
Hilbert space, and then, the newly mapped data are linearly
separable in the new space [21]. These algorithms are referred
to as kernel-based online learning. Different online kernel
methods, such as the kernelized perceptron [22] and kernelized
OGD [23], have been proposed. Although these methods
perform better than linear models, they have to face the “curse
of kernelization” [24] in large-scale learning problems, that
is, the growing unbounded number of support vectors (SVs).
Recently, many budget online learning algorithms have been
proposed to address this challenge [25], [26], [27], [28], [29],
[30], [31]. For example, Wang and Vucetic [26] proposed a
budgeted PA algorithm by introducing an additional constraint
to the original PA optimization problem. Furthermore, unlike
the regular budget online kernel learning, Lu et al. [27]
proposed two efficient methods Fourier online gradient descent
(FOGD) and Nystrom online gradient descent (NOGD) to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

GU et al.: LEARNING WITH INCREMENTAL INSTANCES AND FEATURES 3

explore a new approach to kernel functional approximation
techniques. Since these traditional online learning algorithms
all assume that the feature space they learn from remains the
same, they cannot handle the blocky trapezoidal data streams.

B. Learning From Dynamic Feature Space

The dynamic feature space contains incremental feature
space and varying feature space. The most relevant to our
work is trapezoidal data stream learning, which belongs to
data stream with incremental feature space. Zhang et al. [12]
were the first to deal with trapezoidal data stream. They
proposed OLSF with its two variants OLSF-I and OLSF-II.
Specifically, Zhang [12] first divided the features of the current
training instance into historical features and new features.
Then, a classifier updates historical features and new features
by following different update rules used in online learning. Wu
et al. [9] proposed OSFS algorithms to solve online streaming
feature selection, where features arrive as streams, but the
training set is fixed [32]. Recently, a few works have been
proposed to learn from data streams with varying feature
space, where features would vanish or occur over time [33],
[34], [35], [36]. Hou et al. [34] proposed the feature evolvable
streaming learning (FESL) algorithm; it first recovers historical
features by a mapping function learned in the period where
both historical features and new features exist, and then, it
learns two models from features of the above two parts.
Finally, ensemble learning is used to make the final prediction.
Based on FESL, Zhang et al. [35] and Hou [36] conducted in-
depth exploration and expansion of the FESL scenario and
proposed evolving discrepancy minimization (EDM) [35] and
prediction with unpredictable feature evolution (PUFE) [36]
algorithms to handle different situations in data streams with
varying feature space. Beyazit et al. [13] proposed online
learning from varying features (OLVF) to project the existing
model and the current instance onto shared feature space and
make a prediction. He et al. [37] proposed the generative
learning with streaming capricious data (GLSC) algorithm,
which establishes the relationships between historical and new
features by constructing a model on a universal feature space.
Nevertheless, all these above studies are not designed for the
situation where data arrive in blocks.

III. PRELIMINARIES

In this article, we focus on the binary classification problem.
The multiclass cases could be easily solved by using one-
versus-one [38] or one-versus-rest [39] strategies.

For blocky trapezoidal data stream learning, data blocks
are obtained in a sequence of rounds. On round t , we
obtain data block (Xt ,Yt) with nt instances, where Xt ∈

Rnt ×dt and Yt ∈ Rnt . We divide these instances into t parts
{(Xt,1,Yt), . . . , (Xt,t ,Yt)} according to the way in Fig. 2,
where Xt, j ∈ Rnt ×m j , j = 1, . . . , t , and dt = m1 + · · · + m t .
Let wt, j ∈ Rm j denote the linear classifier for the j th data part
on round t . The algorithm maintains t separate classifiers in
its internal memory on round t and updates them from round
to round. Specifically, each divided part (Xt, j ,Yt) contains nt

instances (xi
t, j , yi

t), where i = 1, . . . , nt , Yt = (y1
t , . . . , ynt

t).
Note that yi

t and yi
t, j are the real labels of the i th instances in

Xt and Xt, j , respectively. Therefore, we have yi
t = yi

t, j . The

Fig. 2. Proposed algorithm notations. The features and instances dynamically
expand, and newly augmented features in different periods are marked by
different colors (red, blue, green, and so on). We divide the data streams
according to the color of the feature and learn the corresponding classification
models for the divided parts.

algorithm first uses the classifier wt, j to predict the binary
labels ŷ1

t, j , . . . , ŷnt
t, j , where ŷi

t, j = sign(wT
t, j · xi

t, j). Then, the
correct labels of the respective y1

t , . . . , ynt
t are revealed and

the classifier wt, j can be updated based on the prediction loss.
Generally, for an online binary classification task, the update

rule of w in perceptron is given as follows:

wt+1 = wt + αt xt

where αt = yt is the weight. This linear model can only make
accurate prediction when the instances are linearly separable.
However, the data may contain complicated pattern and may
be linearly inseparable in practice. This problem can be solved
by using a mapping function φ(·) to map x from the original
input space RM to the feature space F. Then, the new training
instances φ(x) are linearly separable in the new feature space
F. We define SV as the instance whose coefficient α is
nonzero. Obviously, w is the weighted sum of SVs, i.e.,
w =

∑
i∈SV αiφ(xi), where SV is the set of SV’s and i is

its index. Thus, the predictor f (x) is

f (x) = wT φ(x) =

∑
i∈SV

αiφ(xi)
T φ(x). (1)

Instead of directly computing φ(x), a kernel function κ(·, ·)

is introduced such that κ(xi , x j) = φ(xi)
T φ(x j), and then, the

predictor f (x) can be denoted as

f (x) = wT φ(x) =

∑
i∈SV

αiκ(xi , x). (2)

In summary, the notations used in this article are listed in
the Nomenclature and we will explain the concrete meaning
when it is first used.

IV. OUR PROPOSED APPROACH

In this section, we formally present the proposed IIF algo-
rithm. IIF mainly contains two steps: one is the update step
and the other one is the budget step.

A. Update Strategy
As stated in Section III, on round t , the algorithm

divides the observed data block (Xt ,Yt) into t parts
{(Xt,1,Yt), . . . , (Xt,t ,Yt)} according to the way in Fig. 2,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where Xt, j ∈ Rnt ×m j , j = 1, . . . , t , and dt = m1 + · · · + m t .
Classifiers for each of the parts Xt, j are maintained in the
algorithm’s internal memory and updated from round to round.
For each part Xt, j ∈ Rnt ×m j , the corresponding linear classifier
is wt, j ∈ Rm j . We use wt, j to predict the binary labels
ŷ1

t, j , . . . , ŷnt
t, j of dataset Xt, j , where ŷi

t, j = sign(wT
t, j ·φ(xi

t, j)).
Then, the correct labels of the respective y1

t , . . . , ynt
t are

revealed and the classifier wt, j can be updated based on the
prediction loss. Usually, to penalize incorrect predictions, we
can use a hinge loss as the loss function, which makes the
learner update the prediction model from wt, j to wt+1, j by
some strategy whenever the loss is nonzero.

In this article, we slightly modify the loss function and use
an average hinge-loss function to penalize incorrect predictions
for part Xt, j . The loss associated with the j’th part on round
t is defined to be

ℓt, j =

[
1
nt

nt∑
i=1

(
1 − yi

t, j · wT
t, j · φ

(
xi

t, j

))]
+

. (3)

where [a]+ = max{0, a}, j = 1, 2, . . . , t . In our setting, we
assume that the algorithm receives a batch of data at each
iteration; therefore, it is inefficient to calculate the prediction
loss and update the classifier for each instance. Conversely,
performing prediction loss calculation and classifier update
on a batch of data can reduce the frequency of classifier
update and reduce the running time to a certain extent, which
has more practical application significance. Besides, at the
beginning of online learning, the learned classification model
can be poor, and using average loss can reduce the update bias
caused by misclassification to a certain extent.

In this article, we use an additive update rule as follows to
update the classifiers:

wt+1, j = wt, j +
1
nt

τt, j

nt∑
i=1

yi
t, j · φ

(
xi

t, j

)
(4)

where τt, j is a nonnegative scalar, and the determination of its
value will be discussed later. By adopting the above update
strategy, we can construct a separate classifier for each of the
parts Xt, j on round t . Then, we are able to achieve the fused
classifier wt+1 by using the ensemble idea at the end of each
round

wt+1 =
[
wT

t+1,1, . . . , wT
t+1,t

]T
(5)

where wt+1 fully absorbs the information of the previous t
data blocks so that it can take advantage of more features in
building a superior predictive model.

However, when we need to predict an unlabeled instance
x̂ ∈ Rm1+···+mt on round t , it is usually hard to directly compute
φ(x̂), and we can directly update ft+1, j instead of wt+1, j .
We first have the following definition:

x̂ j =

∏
Xt, j

x̂ ∈ Rm j (6)

where x̂ j ∈ Rm j represents a projection of the feature space
from dimension dt to dimension m j , and it is a vector

consisting of elements of x̂ that are in the same feature space
of Xt, j . From (6), we can easily know that

x̂ =

[
x̂T

1 , . . . , x̂T
t

]T
. (7)

Then, we have

ft+1, j
(
x̂ j
)

= wT
t+1, j · φ

(
x̂ j
)

=

(
wt, j +

1
nt

τt, j

nt∑
i=1

yi
t φ
(
xi

t, j

))T

φ
(
x̂ j
)

= wT
t, j · φ

(
x̂ j
)
+

1
nt

τt, j

nt∑
i=1

yi
t κ
(
xi

t, j , x̂ j
)

= ft, j
(
x̂ j
)
+

1
nt

τt, j

nt∑
i=1

yi
t κ
(
xi

t, j , x̂ j
)
. (8)

After we get each classification model ft+1, j , we can
achieve the fused classifier ft+1 on round t as follows to
predict the unlabeled instance x̂:

ft+1
(
x̂
)

=

t∑
j=1

wT
t+1, j · φ

(
x̂ j
)

=

t∑
j=1

ft+1, j
(
x̂ j
)
. (9)

Note that our method does not require accessing all the
past training data during both the training and testing phases.
In fact, when we use the linear kernel in our method, there
is no need for data storage. Concretely, as can be seen from
(4), (8), and (9), the mapping function φ(·) plays an important
role in computing w and f (f = wT

· φ(x)). From (8), we
can know that

ft+1, j
(
x̂ j
)

= wT
t, j · φ

(
x̂ j
)
+

1
nt

τt, j

nt∑
i=1

yi
t κ
(
xi

t, j , x̂ j
)
. (10)

With this observation, on the one hand, if we use the linear
kernel, whose mapping function φ(·) has one explicit expres-
sion, i.e., φ(xi) = xi [40] and κ(xi , x) = xT

i · x, we will have

ft+1, j
(
x̂ j
)

= wT
t+1, j · φ

(
x̂ j
)

= wT
t, j · x̂ j +

1
nt

τt, j

nt∑
i=1

yi
t

(
xi

t, j

)T
· x̂ j

=

(
wt, j +

1
nt

τt, j

nt∑
i=1

yi
t xi

t, j

)T

· x̂ j . (11)

In this case, wt+1, j = wt, j + (1/nt)τt, j
∑nt

i=1 yi
t, j x

i
t, j and we

can compute ft+1, j (x̂ j) = wT
t+1, j · x̂ j directly, with no need

to compute the inner products κ(xi
t, j , x̂ j). In other words, the

information of past data has been stored in the vector wt, j .
We only need to maintain this vector, with no need to store past
data in the whole learning process. On the other hand, if the
mapping function φ(·) does not have an explicit expression,
such as that in the Gaussian kernel, we cannot update wt+1, j

directly. In this case, we only need to store part of the past
data whose coefficient τt, j ̸= 0, called SVs. The nonsupport
vectors Xt, j with ℓt, j = 0 make τt, j = 0 as τt, j = Cℓt, j/∥ℓt∥2
in (19) and we need not to store them. In the following, we
propose a budget strategy to further bound the number of SVs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

GU et al.: LEARNING WITH INCREMENTAL INSTANCES AND FEATURES 5

Next, we give the derivation process of τt, j . As can be seen
from (3), we can get t losses on round t . Generally, in machine
learning, we need to fully extract the intrinsic information
between the features and effectively merge the extracted
information to learn a better classifier. Usually, the exchange of
information between features can be achieved through losses.
For the blocky trapezoidal data streams, different parts of the
data are conducive to the final classification goal. Therefore,
the main idea of the proposed algorithm is to effectively merge
these losses ℓt, j obtained above to update the t classifiers
on round t and suffer the smallest possible cumulative loss
throughout T rounds.

Specifically, since the prediction of each part Xt, j is associ-
ated with its own individual loss, we can capture the relation-
ship between the different parts Xt, j after getting t losses on
round t by using a single global loss function, which is able to
evaluate the predictive quality of individual classifier for each
data part. Then, we can merge the information of different
parts of the obtained data streams by the above strategy and
effectively update each independent classifier. The details of
the update strategy are given as follows.

We denote ℓt = (ℓt,1, . . . , ℓt,t) the loss vector, where ℓt, j is
the individual loss values of the data part Xt, j , j = 1, . . . , t .
Then, we are able to define the global loss function as follows:

L(ℓt) = ∥ℓt∥2 =

 t∑
j=1

∣∣ℓt, j
∣∣21/2

. (12)

Now, we can update each classifier wt, j by taking advantage
of ℓt . As shown in (4), the key problem is how to use ℓt

to achieve the step size τt, j . Generally, the online learning
algorithms need to balance a tradeoff between retaining the
information acquired on previous rounds and modifying the
hypotheses based on the new instances obtained on the current
round. Nevertheless, there are multiple classifiers that need to
be updated at every round in our setting, and if we balance
this tradeoff individually for each of the classifier updates,
then the information exchange between different parts Xt, j

will become more difficult. Therefore, we jointly balance this
tradeoff for all of the parts. In this way, we are able to make
more aggressive modifications to some of the hypotheses at
the expense of others.

In order to realize the above idea and create a relationship
between ℓt and τt, j , we set τt, j to be

τ t = arg max
τ :∥τ∥

∗
≤C

τ · ℓt (13)

where ∥·∥
∗ is the dual norm of norm ∥·∥ and C > 0 is a

constant. The dual norm of ∥ℓt∥ is defined as

∥ℓt∥
∗

= max
v∈Rt

ℓt · v
∥v∥

= max
v∈Rt :∥v∥=1

ℓt · v. (14)

From (14), we can easily derive that for any ℓt , v ∈ Rt , it
holds that

ℓt · v ≤ ∥ℓt∥
∗
∥v∥. (15)

In this article, ∥·∥ is a p-norm and we set p = 2, so (15)
is also called the Cauchy–Schwartz inequality. We need to

know that the dual of ∥·∥
∗ is the original norm ∥·∥ and that

the dual of an absolute norm is also an absolute norm [41].
In order to specify the exact value of τt, j we suppose that for
∀ 1 ≤ t ≤ T, 1 ≤ j ≤ t , we have τt, j ≥ 0, ∥τ t∥

∗
≤ C , and

ℓt, j = 0 ⇒ τt, j = 0. The above three properties of τt, j are
called nonnegativity, boundedness, and conservativeness.

Here, we introduce another definition, called the remoteness
of a norm ∥·∥, which plays an important role in the subsequent
theoretical analysis. It is defined as

ρ(∥·∥, k) = max
u∈Rk

∥u∥2

∥u∥
.

Geometrically, ρ(∥·∥, k) is the Euclidean length of the
longest vector, which is contained in the unit ball of ∥·∥.
For example, for any p-norm ∥·∥p with p ≥ 2, ρ(∥·∥p, k) =

k1/2−1/p. In the subsequent analysis, we abbreviate ρ(∥·∥∗, k)

by ρ for the remoteness of the dual norm ∥·∥
∗ when ∥·∥

∗ and
k are obvious from the context.

According to (15) and the definition of remoteness, we have
that τ t · u ≤ ∥τ t∥

∗
∥u∥, and then, we have ∥τ t∥

2
p · ∥u∥

2
p ≤

(∥τ t∥
∗)2

∥u∥
2
p. Since ∥u∥

2
p is an absolute norm, we divide both

sides of the inequality by ∥u∥
2
p and have that

∥τ t∥
2
p ≤

(
∥τ t∥

∗
)2 ∥u∥

2
p

∥u∥
2
p

≤
(
∥τ t∥

∗
)2 ∥u∥

2
2

∥u∥
2
p

≤
(
∥τ t∥

∗
)2 max

u∈Rt

∥u∥
2
2

∥u∥
2
p

=
(
∥τ t∥

∗
)2

ρ2. (16)

Using (14), we obtain the dual norm of ∥·∥
∗

∥ℓt∥
∗∗

= max
τ :∥τ∥

∗
≤1

τ · ℓt . (17)

Since ∥ · ∥ and ∥ · ∥
∗∗ are equivalent and ∥τ/C∥

∗
= ∥τ∥

∗/C ,
we can easily derive from (13) that τ t satisfies

τ t · ℓt = C∥ℓt∥. (18)

Then, we can easily know that

τt, j = Cℓt, j/∥ℓt∥2. (19)

Once we achieve τt, j , we can update every ft+1, j according
to (2) and (8) at each round and achieve the fused classifier
ft+1 on round t according to (9).

Note that there are mainly two ways of sharing knowledge
among different sets of features. The first one is based on
model parameters, such as coefficients in linear models, and
the other one is based on features, which aims to learn
common feature representations among different feature sets.
Our algorithm belongs to the first type and we use a single
global loss function to evaluate the quality of the multiple
predictions and share knowledge about model parameters.
Since it is challenging to learn common feature representations
for different feature sets with unceasingly arriving instances,
we have not employed the second type. Besides, the kernel
functions used to handle nonlinear data would deteriorate the
learning of common feature representations because we may
have no explicit expression in the mapped high-dimensional
space.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

B. Budget Strategy

We can see from Section IV-A that when the mapping
function φ(·) of the used kernel does not have an explicit
expression, the proposed method may need to store part of the
past data, called SVs. As stated in [16], [42], [43], and [44],
one critical issue in kernel-based online learning is the growing
unbounded number of SVs with increasing computational and
space complexity over time. Thus, to limit the amount of
stored data when the mapping function φ(·) of the used
kernel does not have an explicit expression, we add a budget
strategy, called random selection, which is commonly used in
current research and enjoys the merits of simplicity and high
efficiency [16], [42], [43].

Specifically, let SV t, j denote the set of SVs for the j th
classifier at round t and |SV t, j | denote the set size. When the
size of SVs exceeds the fixed budget B, i.e., |SV t, j | > B,
we randomly select B SVs in SV t, j uniformly to be stored
and the rest are discarded. In summary, the procedure of our
method is listed in Algorithm 1.

Algorithm 1 Proposed Algorithm IIF
1: Input: parameter C > 0, budget B ∈ N+;
2: Initialization w1,1 = · · · = w1,T = 0,

∣∣SV1,1
∣∣ = · · · =∣∣SV1,T

∣∣ = 0;
3: for t = 1, 2, . . . , T do
4: Receive Xt and divide Xt into t parts according to the

way in Fig. 2, Xt, j ∈ Rnt ×m j , j = 1, 2, . . . , t ;
5: Predict Ŷ t, j = sign(ft, j (Xt, j)) = (ŷ1

t, j , . . . , ŷnt
t, j);

6: Receive correct labels Yt = (y1
t , . . . , ynt

t);
7: Calculate loss ℓt, j (j = 1, 2, . . . , t) according

to Eq. (3);
8: if ∃ ℓt, j > 0 then
9: Calculate τt, j according to Eq. (19);

10: Update SV t+ 1
2 , j = SV t, j ∪ (Xt, j ,Yt);

11: if |SV t+ 1
2 , j | > B then

12: Randomly select B support vectors uniformly from
SV t+ 1

2 , j and take them as SV t+1, j ;
13: else
14: SV t+1, j = SV t+ 1

2 , j ;
15: end if
16: Update ft+1, j according to Eq. (2) and Eq. (8);
17: end if
18: Update ft+1 according to Eq. (9).
19: end for

V. THEORETICAL ANALYSIS

We borrow the regret idea from online learning to derive
a cumulative loss bound of the proposed algorithm. Two
theorems and one lemma are given in this section. The two
theorems discuss the upper bound of the cumulative hinge
loss of the proposed algorithm in the case where τt, j adopts
different definitions. The lemma is the crux to prove the above
two theorems.

For clarity, we denote by ℓt, j the instantaneous loss of Xt, j

suffered by wt, j at round t and ℓt the loss vector whose
elements are ℓt, j . Besides, we denote by ℓ̃t, j the loss of Xt, j

suffered by an off-line predictor w̃ j at round t and ℓ̃t the loss
vector whose elements are ℓ̃t, j . To prove Theorems 1 and 2,
we first prove a lemma that is the crux of our analysis.

Lemma 1: Let {(Xt, j ,Yt)}
1≤ j≤t
1≤t≤T be a sequence of data

blocks, where Xt, j ∈ Rnt ×m j , and each xi
t, j ⊂ Xt, j , xi

t, j ∈ Rm j ,
yi

t, j ∈ {−1, +1}, and ∥φ(xi
t, j)∥2 ⩽ R. Let w̃ j ∈ Rm j be an

arbitrary vector. The average hinge loss attained by w̃ j on Xt, j

is defined to be ℓ̃t, j = [(1/nt)
∑nt

i=1 (1 − yi
t, j w̃ j

T
· φ(xi

t, j))]+.
∥·∥ is an absolute norm and C > 0. For the proposed algorithm
IIF, we have

T∑
t=1

T∑
j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2


⩽

T∑
j=1

∥∥w̃ j
∥∥2

2 + 2C
T∑

t=1

∥∥ℓ̃t
∥∥. (20)

Proof: First, we define 1t, j = ∥wt, j − w̃ j∥
2
2 −

∥wt+1, j − w̃ j∥
2
2. Then, we can prove the lemma by bounding∑T

t=1
∑T

j=1 1t, j . First, according to the definition of 1t, j , for
each 1 ⩽ j ⩽ T , we can easily derive that

T∑
t=1

1t, j =
∥∥w1, j − w̃ j

∥∥2
2 −

∥∥wT +1, j − w̃ j
∥∥2

2. (21)

Obviously, ∥wT +1, j − w̃ j∥
2
2 ⩾ 0 and we can know from

Algorithm 1 that w1, j = (0, . . . , 0) for all 1 ⩽ j ⩽ T , so we
have

T∑
t=1

T∑
j=1

1t, j ⩽
T∑

j=1

∥∥w̃ j
∥∥2

2. (22)

∑T
j=1 ∥w̃ j∥

2
2 is the upper bound of

∑T
t=1
∑T

j=1 1t, j . Second,
for its lower bound, we only consider 1t, j ̸= 0, which
actually contributes to the sum. Since wt+1, j = wt, j +

(1/nt)τt, j
∑nt

i=1 yi
t, j · φ(xi

t, j), we plug it into 1t, j and get

1t, j =
∥∥wt, j − w̃ j

∥∥2
2 −

∥∥wt+1, j − w̃ j
∥∥2

2

=
∥∥wt, j − w̃ j

∥∥2
2−

∥∥∥∥∥wt, j +
1
nt

τt, j

nt∑
i=1

yi
t, j · φ

(
xi

t, j

)
−w̃ j

∥∥∥∥∥
2

2

= τt, j

{
−

2
nt

wT
t, j

nt∑
i=1

yi
t, j · φ

(
xi

t, j

)
−

τt, j

n2
t

×

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

+
2
nt

w̃T
j

nt∑
i=1

yi
t, j · φ

(
xi

t, j

)
= τt, j

{
2
nt

nt∑
i=1

(
1 − yi

t, j · wT
t, j · φ

(
xi

t, j

))

−
τt, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

−
2
nt

nt∑
i=1

(
1 − yi

t, j · w̃T
j · φ

(
xi

t, j

))}
.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

GU et al.: LEARNING WITH INCREMENTAL INSTANCES AND FEATURES 7

As described above, we only consider nonzero summands,
i.e., 1t, j ̸= 0. It implies that wt, j ̸= wt+1, j and ℓt, j ̸= 0.
Thus, we can write ℓt, j as

ℓt, j =
1
nt

nt∑
i=1

(
1 − yi

t, j · wT
t, j · φ

(
xi

t, j

))
.

Besides, according to the definition of ℓ̃t, j in Lemma 1, it
holds that

ℓ̃t, j ⩾
1
nt

nt∑
i=1

(
1 − yi

t, j · w̃T
j · φ

(
xi

t, j

))
.

Then, we can easily derive that

−ℓ̃t, j ⩽ −
1
nt

nt∑
i=1

(
1 − yi

t, j · w̃T
j · φ

(
xi

t, j

))
.

Note that ∥·∥ is an absolute norm and ℓt, j ⩾ 0, so τt, j

defined in (19) is nonnegative, i.e., τt, j ⩾ 0, we can derive
the following inequality:

1t, j = τt, j

{
2
nt

nt∑
i=1

(
1 − yi

t, j · wT
t, j · φ

(
xi

t, j

))
−

τt, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

−
2
nt

nt∑
i=1

(
1 − yi

t, j · w̃T
j · φ

(
xi

t, j

))}

= τt, j

2ℓt, j −
τt, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

−
2
nt

nt∑
i=1

(
1 − yi

t, j · w̃T
j · φ

(
xi

t, j

))}

⩾ τt, j

2ℓt, j −
τt, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

− 2ℓ̃t, j

. (23)

Obviously, summing (23) over 1 ⩽ j ⩽ T , we can get

T∑
j=1

1t, j ⩾
T∑

j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2


− 2

T∑
j=1

τt, j ℓ̃t, j . (24)

In (24),
∑T

j=1 τt, j ℓ̃t, j = τ t · ℓ̃t . From (15), we know that for
any τ t , ℓ̃t , it holds that τ t · ℓ̃t ⩽ ∥τ t∥

∗
∥ℓ̃t∥. Thus, we have∑T

j=1 τt, j ℓ̃t, j ⩽ ∥τt∥
∗
∥ℓ̃t∥. Similarly, τt, j defined in (13) is

clearly bounded by ∥τ t∥
∗ ⩽ C and it is conservative, and we

have that
∑T

j=1 τt, j ℓ̃t, j ⩽ C∥ℓ̃t∥. Combining this inequality
with (24), we have

T∑
j=1

1t, j ⩾
T∑

j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2


− 2C∥ℓt∥

∗. (25)

Summing (25) over 1 ⩽ t ⩽ T , we have

T∑
t=1

T∑
j=1

1t, j ⩾
T∑

t=1

T∑
j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2


− 2C

T∑
t=1

∥ℓt∥
∗. (26)

Combining (22) and (26), we are able to conclude the proof
of Lemma 1.

With the help of Lemma 1, we are ready to prove the
following two theorems, which discuss the upper bound of
the cumulative hinge loss of the proposed algorithm in the
case where τt, j adopts two different definitions.

Theorem 1: Let {(Xt, j ,Yt)}
1≤ j≤t
1≤t≤T be a sequence of data

blocks, where Xt, j ∈ Rnt ×m j , and each xi
t, j ⊂ Xt, j , xi

t, j ∈ Rm j ,
yi

t, j ∈ {−1, +1}, and ∥φ(xi
t, j)∥2 ⩽ R. Let w̃ j ∈ Rm j be an

arbitrary vector. The average hinge loss attained by w̃ j on Xt, j

is defined to be ℓ̃t, j = [(1/nt)
∑nt

i=1 (1 − yi
t, j w̃ j

T
· φ(xi

t, j))]+.
If we define τt, j as the form of τt, j = Cℓt, j/∥ℓt∥2, C > 0,
then

T∑
t=1

∥ℓt∥ ⩽
1

2C

T∑
j=1

∥∥w̃ j
∥∥2

2 +

T∑
t=1

∥∥ℓ̃t
∥∥+

T R2Cρ2

2
(27)

where ∥·∥ is an absolute norm and ρ is the remoteness of ∥·∥.
Proof: According to Lemma 1, we can have

T∑
t=1

T∑
j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2


⩽

T∑
j=1

∥∥w̃ j
∥∥2

2 + 2C
T∑

t=1

∥∥ℓ̃t
∥∥.

According to (18), we can rewrite the left-hand side of the
above formula as

2C
T∑

t=1

∥ℓt∥ −

T∑
t=1

T∑
j=1

τ 2
t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

. (28)

According to the assumption in Theorem 1 that ∥φ(xi
t, j)∥

2
2 ⩽

R2, we have

T∑
j=1

τ 2
t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

⩽
T∑

j=1

τ 2
t, j

n2
t

n2
t R2

= R2
∥∥τ 2

t

∥∥2
2.

(29)

From (16), we can know that ∥τ t∥
2
2 ≤ (∥τ t∥

∗)2ρ2, so we
can upper bound (29) by R2(∥τ t∥

∗)2ρ2. Also, as stated before,
τt, j has boundedness property, i.e., ∥τ t∥

∗ ⩽ C , so we are able
to further bound (29) by R2C2ρ2. Combining this bound with
(28), we can have the following result:

2C
T∑

t=1

∥ℓt∥ −

T∑
t=1

T∑
j=1

τ 2
t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

⩾ 2C
T∑

t=1

∥ℓt∥ − T R2C2ρ2. (30)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Combining (20) and (30), we can easily have

2C
T∑

t=1

∥ℓt∥ − T R2C2ρ2 ⩽
T∑

j=1

∥∥w̃ j
∥∥2

2 + 2C
T∑

t=1

∥∥ℓ̃t
∥∥. (31)

Dividing both sides of the above formula by 2C and rearrang-
ing terms give the final bound, i.e.,

T∑
t=1

∥ℓt∥ ⩽
1

2C

T∑
j=1

∥∥w̃ j
∥∥2

2 +

T∑
t=1

∥∥ℓ∗

t

∥∥+
T R2Cρ2

2
. (32)

Then, we conclude the proof of Theorem 1.
During the proof of Theorem 1, we have that the term

T∑
j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

 (33)

is lower bounded by 2C∥ℓt∥ − R2C2ρ2. Obviously, 2C∥ℓt∥

is proportional to ∥ℓt∥ and R2C2ρ2 is a constant. In practice,
2C∥ℓt∥−R2C2ρ2 may be negative when ∥ℓt∥ is small enough,
which implies that the value of the update step size τt, j may
have been too large, and even more, it may imply that the
update of classifier has increased the distance to the target.

Therefore, to derive an update for which (33) is always
positive, we have added constraints to the domain of τt, j .
Specifically, we enforce τt, j to never be excessively large
by limiting the dual norm of τ t , which remains in the same
direction as before. The definition of τ t is replaced by

τ t = arg max
τ :∥τ∥

∗⩽min{C,∥ℓt ∥/R2C2}

τ · ℓt . (34)

Since ∥·∥ is a p-norm and p = 2, we have

τt, j =


ℓ

p−1
t, j

R2ρ2∥ℓt∥
p−2
p

, if ∥ℓt∥p ≤ R2Cρ2

Cℓ
p−1
t, j

∥ℓt∥
p−1
p

, otherwise.

(35)

In the following theorem, we prove the cumulative loss
bound of IIF when τt, j adopts the definition in (35).

Theorem 2: Let {(Xt, j ,Yt)}
1≤ j≤t
1≤t≤T be a sequence of data

blocks, where Xt, j ∈ Rnt ×m j , and each xi
t, j ⊂ Xt, j , xi

t, j ∈ Rm j ,
yi

t, j ∈ {−1, +1}, and ∥φ(xi
t, j)∥2 ⩽ R. Let w̃ j ∈ Rm j be an

arbitrary vector. The average hinge loss attained by w̃ j on Xt, j

is defined to be ℓ̃t, j = [(1/nt)
∑nt

i=1 (1 − yi
t, j w̃ j

T
· φ(xi

t, j))]+.
If we define τt, j as the form of (35), C > 0, then

1/
(
R2ρ2) ∑

∥ℓt∥
2

t≤T :∥ℓt ∥≤R2Cρ2

+C
∑

∥ℓt∥
2

t≤T :∥ℓt ∥>R2Cρ2

≤ 2C
T∑

t=1

∥∥ℓ̃t
∥∥+

k∑
j=1

∥∥w̃ j
∥∥2

2 (36)

where ∥·∥ is an absolute norm and ρ is the remoteness
of ∥·∥.

Proof: The first thing we need to figure out is whether τt, j

defined in (35) has the properties of boundedness, nonnega-
tivity, and conservativeness. Obviously, τt, j defined in (34) is
bounded by ∥τ t∥

∗ ⩽ C and it is conservative. Besides, since

∥·∥
∗ is an absolute norm and ℓt, j ⩾ 0, τt, j is nonnegative.

Therefore, according to Lemma 1, we can have

T∑
t=1

T∑
j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2


≤

T∑
j=1

∥∥w̃ j
∥∥2

2 + 2C
T∑

t=1

∥∥ℓ̃t
∥∥.

To prove Theorem 2, we need to lower bounding the
left-hand side of the above formula. According to (35), we
have to analyze two cases. First, if ∥ℓt∥ ⩽ R2Cρ2, then
min{C, ∥ℓt∥/(R2ρ2)} = ∥ℓt∥/(R2ρ2). According to the defi-
nition of τ t and the fact that the dual of the dual norm is the
original norm, we can have

2
T∑

j=1

τt, jℓt, j = 2∥τ t∥
∗
∥ℓt∥ = 2

∥ℓt∥
2

R2ρ2 . (37)

As proved in (29)

T∑
j=1

τ 2
t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

can be bounded by R2
∥τ 2

t ∥
2
2 and R2

∥τ 2
t ∥

2
2 can be bounded

by R2(∥τ t∥
∗)2ρ2 according to (16). Besides, according to the

domain of ∥τ t∥
∗, we have ∥τ t∥

∗ ⩽ ∥ℓt∥/(R2ρ2). Thus, we
can bound R2(∥τ t∥

∗)2ρ2 by ∥ℓt∥
2/(R2ρ2). In summary, we

can have the following result:

T∑
j=1

τ 2
t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

⩽
∥ℓt∥

2

R2ρ2 . (38)

From (20), (37), and (38), we can have the following result:

∥ℓt∥
2

R2ρ2 ⩽
T∑

j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

. (39)

For the second case, if ∥ℓt∥ > R2Cρ2, then
min{C, ∥ℓt∥/(R2C2)} = C . We have that

2
T∑

j=1

τt, jℓt, j = 2∥τ t∥
∗
∥ℓt∥ = 2C∥ℓt∥. (40)

As before, we can upper bound R2
∥τ 2

t ∥
2
2 by R2(∥τ t∥

∗)2ρ2.
Using the fact that ∥τ t∥

∗ ⩽ C , we bound this term by
R2C2ρ2. Finally, using our assumption that ∥ℓt∥ > R2Cρ2,
we conclude that

T∑
j=1

τ 2
t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

⩽ C∥ℓt∥. (41)

Subtracting both sides of this inequality from the respective
sides of (40) gives

C∥ℓt∥ ⩽
T∑

j=1

2τt, jℓt, j −
τ 2

t, j

n2
t

∥∥∥∥∥
nt∑

i=1

yi
t, j · φ

(
xi

t, j

)∥∥∥∥∥
2

2

. (42)

Comparing the upper bound in (20) with the lower bounds
in (39) and (42) proves the theorem.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

GU et al.: LEARNING WITH INCREMENTAL INSTANCES AND FEATURES 9

TABLE I
DETAILS OF DATASETS USED IN THE EXPERIMENTS

VI. EXPERIMENTS

In this section, we first introduce the datasets and the general
settings. Then, we present the experimental results on both
synthetic data and real-world applications.

A. Datasets and General Settings

We conduct our experiments on 12 datasets from UCI
Repository1 and LIBSVM Library,2 and two real-world
datasets that are rcv1 [45] and radio frequency identification
(RFID) [46]. The details of the 14 datasets used in our
experiments are listed in Table I.

Our experiments are conducted in four aspects. First, we
compare IIF with seven state of the arts in Section VI-B.
Second, in Section VI-C, we compare IIF with two traditional
online learning methods, which can access all the features at
each round for training. Third, we apply IIF on two real-world
trapezoidal data streams in Section VI-D. Finally, we further
evaluate the performance of IIF with respect to parameter C ,
an online variant of IIF, budget strategy, kernel function, and
computational efficiency in Section VI-E–VI-I.

We simulate blocky trapezoidal data streams as follows.
Each dataset is randomly divided into two nonoverlapping
parts, with 50% as the training data and 50% as the testing
data. Training data are used for blocky trapezoidal data stream
learning. For the training data, we randomly split the data into
T (T = 2, 3, 4, 5, 6) chunks, and each chunk corresponds to
the instances received on each round. The current chunk not
only contains all the features of the previous chunk but also
randomly adds at least one feature. The feature dimension of
the last chunk and the test data remains the same.

Unless otherwise specified, we use a linear kernel function
in the proposed method, i.e., φ(xi) = xi and κ(xi , x j) =

xi
T x j . After T rounds, we measure the performance of the

learned classifier on test data. Both ACC and area under
the curve (AUC) are used for evaluation metrics. For each
dataset and each T , we run the experiment 20 times, each
with a random partition. The results are reported by an average
performance.

B. Comparisons With State of the Arts
In this section, we compare IIF with seven state of the

arts. The first three methods are batch learning. Specifically,
the first batch (FB) learns a classifier based on the data
received on the first round, and then, it directly evaluates

1http://archive.ics.uci.edu/ml
2http://www.csie.ntu.edu.tw/~cjlin/libsvm

its performance on the test data. Similarly, the last batch
(LB) learns a classifier based on the data received on the
last round and random batch (RB) learns a classifier based
on the data received on a randomly selected round. The first
batch of features (FBF) uses the perceptron update strategy,
it only uses the initial features to update its model, and the
data stream in FBF is (X1,1, . . . ,XT,1). LibSVM is used to
train a support vector machine (SVM) classifier for batch
learning in FB, LB, and RB methods. The simple method is a
simplified version of IIF, it does not consider the relationship
between the classifiers, and the update of each classifier is
carried out independently, without information exchange, i.e.,
wt+1, j = wt, j + (1/nt)

∑nt
i=1 yi

t, j · φ(xi
t, j). OLSF is a newly

proposed trapezoidal data stream learning algorithm, with two
variants OLSF-I and OLSF-II. According to [12], we use OLSF-
I for comparison and still mark it as OLSF. OLISF-per is the
compared method used in [12], which uses the perceptron
update strategy. For methods FBF, OLSF and OLISF-per, we
assume that the instance comes one by one, and they update
the model on each instance. For OLSF, the parameters are set
according the description in [12]. Since all compared methods
are not kernel-based methods, for fairness, we simply use the
linear kernel in the proposed method, i.e., κ(xi , x j) = xi

T x j .
We present the empirical results of the above eight methods

on 12 datasets. We set T = 2, 3, 4, 5, 6. The results of
average ACC and AUC are shown in Table II and Fig. 3,
respectively. It can be observed that the performance of IIF
is better than or equal to the seven state of the arts on 12
datasets, which validates the effectiveness of our proposed
methods. Specifically, for methods FB, LB, and RB, they
perform poorly on most datasets, and it is because they only
use one batch of the data streams to train a classifier, resulting
in the loss of a large amount of data information. On a few
datasets, they have good performance, such as FB on diabetes,
LB on X8D5K1, and RB on gisette. This is because a good
classifier can be trained without a large amount of training
data on these datasets. Besides, the above three methods are
quite unstable, which can be inferred from the large standard
deviation of ACC values, such as gisette and hearts. Only
selecting one batch of data streams for classifier learning
cannot fully guarantee the stable performance of the classifier
due to the randomness. The performances of methods FBF,
simple, and OLISF-per are mixed. They work well on some
datasets but perform poorly on others. FBF only uses the initial
batch of features to update the model, still resulting in the loss
of a large amount of data information. The only difference
between simple and the proposed method IIF is whether the
relationship between different classifiers is considered. As can
be seen from Table II and Fig. 3, IIF is significantly better
than simple, which shows the great importance of using a
single global loss function to capture the relationship between
different parts of data streams. Although OLSF performs better
than the other six state of the arts on most datasets, our
method has more wins than it. This is because in OLSF, if the
existing classifier correctly predicts the label of the current
instance, the increased features will not be used for model
update, resulting in a waste of feature information. Moreover,
the standard deviation of the ACC values made by our method

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
EXPERIMENTAL ACC [MEAN (STD)] RESULTS ON 12 DATASETS. THE BEST PERFORMANCE AND ITS COMPARABLE PERFORMANCES

BASED ON PAIRED t -TESTS AT 95% SIGNIFICANCE LEVEL ARE HIGHLIGHTED IN BOLDFACE

in 20 repeats is also lower than all the state of the arts, which
shows that our method has consistently better performance.

C. Comparisons With Traditional Online
Learning Algorithms

In this section, we compare our method with two traditional
online learning methods, i.e., budget passive–aggressive (BPA)
online learning [26] and NOGD [27]. Specifically, we assume
that BPA and NOGD can access all the features at each round

for training, which indicates that the feature space is fixed.
We try to explore how close the experimental results of our
method are to the above two methods.

We can see from Fig. 4 that the differences between
our method and the two traditional methods are relatively
small. our method is even comparable to the above two
methods on p-gene and spect datasets. It again proves that
our method can effectively extract the information in the data
streams and achieve satisfying results even if some features are
missing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

GU et al.: LEARNING WITH INCREMENTAL INSTANCES AND FEATURES 11

Fig. 3. AUC results for the 12 datasets. For each dataset, the bars from left to right represent the cases that T = 2, T = 3, T = 4, T = 5, and T = 6.
(a) Cleve. (b) Gisette. (c) Hearts. (d) p-gene. (e) Spect. (f) PCMAC. (g) c-cancer. (h) Cifar. (i) Pima. (j) Basehock. (k) Diabetes. (l) X8D5K1.

D. Applications to Real-World Data Streams
In this section, we evaluate the performance of IIF on two

real-world data streams, i.e., rcv1 [45] and RFID [46]. rcv1
aims to classify the JMLR articles into different groups. Since
new articles are published continuously with new topics, this
setting can be regarded as trapezoidal data stream learning.
The “RFID” data stream is collected using the RFID tech-
nique. Each RFID aerial is used to receive the tag signals.
To ensure continuous signal reception, new aerials are
deployed next to the old ones before the old ones fail. During
this overlapping period, data streams from both historical and
augmented feature spaces can be achieved. Therefore, RFID
also satisfies our assumptions.

According to the overall performance of all comparison
methods in Section VI-B, we selected FBF, simple, OLISF-per,
and OLSF as representatives to compare with our method.
Table III and Fig. 5 show the experimental results of the aver-
age ACC and AUC values. We can observe that IIF achieves
significantly better results than the compared methods, and it
not only performs better in classification but also has a more
stable performance under different iterations, which can be
verified from the smaller standard deviation.

E. Parameter Analysis

Here, we study the sensitivity of our algorithm to parameter
C on four datasets, p-gene, basehock, PCMAC, and cifar.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. ACC results on four datasets compared with two traditional online
learning methods BPA and NOGD. (a) p-gene. (b) Spect. (c) Heart. (d) Cleve.

TABLE III
EXPERIMENTAL ACC [MEAN (STD)] RESULTS ON TWO REAL-WORLD

DATASETS COMPARED WITH FOUR STATE OF THE ARTS

Fig. 5. ACC results on two real-world datasets compared with four state of
the arts. (a) RFID. (b) rcv1.

As the common parameter setting methodology in online
learning, we vary C in a wide range, i.e., 10[−3:1:3], and set
T = 4. As can be seen from Fig. 6, when the value of C
is within a certain range, e.g., 0 < C < 0.1, our method
is not only insensitive to changes of C but also maintains
good performance. The reason may be that C determines the
updating step size, i.e., τt, j = Cℓt, j/∥ℓt∥2. A small C can
make the updating step size change smoothly and prevent
turbulence in the optimization procedure. Certainly, a small
C will delay the speed of convergence. Thus, to balance
the computational efficiency and learning performance of the
proposed method, we set C = 0.01 for all datasets in the
experiments.

F. Comparison With Online Variant of IIF
In this section, we compare the proposed IIF with its online

variant, named benchmark, to further demonstrate the effec-
tiveness of blocky training. Specifically, when a data block

Fig. 6. ACC results on four datasets with respect to parameter C . (a) p-gene.
(b) Basehock. (c) PCMAC. (d) Cifar.

TABLE IV
ACC [MEAN (STD)] RESULTS ON SIX DATASETS

COMPARED WITH BENCHMARK

(Xt ,Yt) with nt instances is observed, there are generally two
ways to make use of them for model updating. One is our
proposed blocky IIF, which uses all the instances in the block
(Xt ,Yt) to update the model simultaneously. The other is the
online variant of IIF, named benchmark. It updates the model
in an online manner, i.e., the model is updated immediately if
we get one new instance in the data block.

We conduct experiments on six datasets, i.e., basehock,
PCMAC, gisette, c-cancer, RFID, and rcv1. We set T = 5.
After each round, we measure the ACC performance of
the learned classifiers on test data. We run the experiment
20 times, each with a random partition. Table IV shows
the experimental results of the average ACC values. We can
observe that the proposed algorithm IIF achieves better results
than the benchmark on most datasets, which demonstrates that
blocky training is better than online training.

G. Study on the Budget Strategy
In this section, we conduct experiments to study the role

of budget strategy. As introduced in Section VI-B, we add
a budget strategy to limit the amount of stored data when
the mapping function φ(·) of the used kernel does not have
an explicit form, called random selection. Specifically, when
the size of SVs exceeds a fixed budget B, we randomly
select B SVs uniformly to be stored, and the rest will be
discarded. We take the Gaussian kernel function widely used
in the literature as an example and mark the budgeted IIF as

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

GU et al.: LEARNING WITH INCREMENTAL INSTANCES AND FEATURES 13

TABLE V
ACC [MEAN (STD)] RESULTS OF IIFRBF AND IIFRBF -O COMPARED

WITH OTHER STATE OF THE ARTS WHEN B = 50

IIFrbf. We randomly partition the data 20 times, and under each
fixed data partition, we conduct multiple random selections by
running our method 20 times, which is deliberately designed
for the randomness of SVs’ selection to obtain a reliable and
trustful predictive performance. First, according to the overall
performance of all comparison methods in Section VI-B, we
select FBF, simple, OLISF-per, and OLSF as representatives to
compare with IIFrbf. We conduct experiments on five datasets
and set B = 50. The ACC results are shown in Table V. It can
be observed that our method still outperforms other state of
the arts, indicating its effectiveness with limited stored data.

Second, we study the sensitivity of our method to the
budget B. We set T = 4. Fig. 7 shows the ACC results of
our method under different values of parameter B on two
datasets, i.e., RFID and cleve. We observe that when parameter
B exceeds some thresholds, further increasement of B has a
limited performance gain. This observation indicates that we
can easily select a proper B to limit the amount of stored data
while maintaining the superior performance of the method.

Finally, in addition to random selection, we employ another
way, i.e., “Forgetron” [44], which discards the oldest SVs
by assuming that an older SV is less representative of the
distribution of fresh training data streams. It is incorporated
into our method by replacing the random selection strategy and
marked as IIFrbf-O. We compare the random selection strategy
IIFrbf with IIFrbf-O. Experimental results in Table V show that
both IIFrbf and IIFrbf-O outperform the other state of the arts,
and IIFrbf has a better performance than IIFrbf-O, which further
indicates its effectiveness in alleviating the problem of data
storage.

H. Comparison Between Linear Kernel and Gaussian Kernel

In this section, to explore the impact of different kernel
functions on the performance of our method, we compare

Fig. 7. ACC results of method IIFrbf under different values of budget B.
(a) RFID. (b) Cleve.

TABLE VI
ACC [MEAN (STD)] RESULTS OF IIF AND IIFRBF

ALGORITHMS ON FOUR DATASETS

Fig. 8. AUC results of IIF and IIFrbf on four datasets. (a) Cleve. (b) Hearts.
(c) Spect. (d) RFID.

the performance of our method when using the Gaussian
kernel (IIFrbf) and linear kernel (IIF). We set B = 50 and
randomly partition the data 20 times, and under each fixed data
partition, we conduct multiple random selections by running
IIFrbf 20 times. The ACC and AUC results are shown in
Table VI and Fig. 8, respectively. It can be observed that IIFrbf
does perform better than IIF on some datasets, but it is not
consistently better on all datasets. The reason may be that the
performance of different kernel functions is data-dependent.
A more complicated kernel function does not always lead
to better performance. Since the focus of this article is on
the solution to this new setting of blocky trapezoidal data
stream learning and the choice of the kernel function, or
more commonly, model selection, is still a difficult problem
in current research, we have not specified kernel selection in
this article. In the future, we will conduct in-depth research in
this special setting.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 9. Curve shows the CPU time for IIF and batch IIF algorithms over
the number of iterations. (a) Gisette. (b) PCMAC. (c) Cifar. (d) Basehock.

TABLE VII
AVERAGE CPU TIME OF THE COMPARED METHODS

(O-per REPRESENTS OLISF-per)

I. Comparisons on Computational Efficiency

In this section, we demonstrate the computational efficiency
of our method through the following two aspects. First,
according to the strategy used in [47] and [48], we conduct
comparison experiments of CPU time for incremental learning
algorithm IIF and batch IIF. Specifically, when a new data
block is obtained at iteration t, t = 1, . . . , T (here, we set
T = 4), for batch IIF (abbreviated as batch), the construction
of the classification model is achieved from scratch, it will
repeat the learning from the beginning and the knowledge
acquired in the past is discarded, while for IIF, the classifi-
cation model is updated from the previously learned model
and the newly obtained data block. Thus, the CPU time for
IIF to construct the classification model is just the updating
time. The experimental results are presented in Fig. 9. We can
observe that as t increases, the CPU time gap between IIF
and batch IIF keeps increasing, which demonstrates that the
proposed incremental learning algorithm IIF has the advantage
of fast and timely updating over the batch learning method.

Second, we compare the average CPU time for IIF and the
seven state of the arts on 12 datasets. Table VII shows the
average time elapsed for data stream learning. Similarly, we
set T = 4. As can be seen from Table VII, our method is
slower than OLISF-per and OLSF on relatively large datasets
but has an obvious speed advantage than these two methods on
most datasets. Although our method takes more runtime than
most compared methods, it achieves a good balance between

classification accuracy and operating speed, which makes our
method more effective for practical applications.

VII. CONCLUSION

In this article, we aim to learn a highly dynamic classifica-
tion model from blocky trapezoidal data stream and propose a
new algorithm called IIF. This method first gradually increases
the independently updated classifiers based on the data steam
obtained on each round. Then, the predictive quality of each
individual classifier can be evaluated by the single global
loss function. The final classifier is achieved by using the
idea of ensemble. For the applicability of this method, we
directly transform it into the kernel method in this article.
We theoretically prove the worst case relative loss bounds for
IIF. Empirical studies on various synthetic data and real-world
applications validate the effectiveness of our algorithm.

In fact, the assumption about blocky trapezoidal data
streams does not always hold in reality due to the detectors’
limited lifespan, which will make the features that correspond
to the old detectors vanish. Therefore, a more realistic assump-
tion is that the historical features vanish arbitrarily or that each
arriving data stream can arbitrarily carry features. Besides, it
is also necessary to explore the relationship between features
of different parts from other aspects, such as learning com-
mon feature representations. These interesting assumptions are
quite useful in practice and we will do further study on them.

REFERENCES

[1] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proc. 20th Int. Conf. Mach. Learn., Washington,
DC, USA, 2003, pp. 928–936.

[2] T. Roughgarden and O. Schrijvers, “Online prediction with selfish
experts,” in Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA,
USA, vol. 30, 2017, pp. 1300–1310.

[3] J. Xu, Y. Y. Tang, B. Zou, Z. Xu, L. Li, and Y. Lu, “The generalization
ability of online SVM classification based on Markov sampling,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 628–639, Mar. 2015.

[4] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” J. Mach. Learn. Res., vol. 7,
pp. 551–585, Dec. 2006.

[5] J.-W. Liu, J.-J. Zhou, M. S. Kamel, and X.-L. Luo, “Online learning
algorithm based on adaptive control theory,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 6, pp. 2278–2293, Jun. 2018.

[6] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6,
pp. 386–408, 1958.

[7] P. Zhou, P. Li, S. Zhao, and X. Wu, “Feature interaction for streaming
feature selection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 10,
pp. 4691–4702, Oct. 2020.

[8] S. Perkins and J. Theiler, “Online feature selection using grafting,”
in Proc. 20th Int. Conf. Mach. Learn., Washington, DC, USA, 2003,
pp. 592–599.

[9] X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu, “Online feature
selection with streaming features,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 5, pp. 1178–1192, May 2013.

[10] J. Wang et al., “Online feature selection with group structure analysis,”
2016, arXiv:1608.05889.

[11] C. Hou, L.-L. Zeng, and D. Hu, “Safe classification with augmented
features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 9,
pp. 2176–2192, Sep. 2019.

[12] Q. Zhang, P. Zhang, G. Long, W. Ding, C. Zhang, and X. Wu, “Online
learning from trapezoidal data streams,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 10, pp. 2709–2723, Oct. 2016.

[13] E. Beyazit, J. Alagurajah, and X. Wu, “Online learning from data streams
with varying feature spaces,” in Proc. AAAI Conf. Artif. Intell., vol. 33,
2019, pp. 3232–3239.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

GU et al.: LEARNING WITH INCREMENTAL INSTANCES AND FEATURES 15

[14] D. Wu, Y. He, X. Luo, M. Shang, and X. Wu, “Online feature selection
with capricious streaming features: A general framework,” in Proc. IEEE
Int. Conf. Big Data (Big Data), Los Angeles, CA, USA, Dec. 2019,
pp. 683–688.

[15] O. Dekel, P. M. Long, and Y. Singer, “Online multitask learning,” in
Proc. 19th Annu. Conf. Learn. Theory (COLT). Pittsburgh, PA, USA:
Springer, vol. 4005, 2006, pp. 453–467.

[16] S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A com-
prehensive survey,” Neurocomputing, vol. 459, pp. 249–289, Oct. 2021.

[17] J. Wang, P. Zhao, and S. C. H. Hoi, “Soft confidence-weighted learning,”
ACM Trans. Intell. Syst. Technol., vol. 8, no. 1, p. 15, 2016.

[18] A. Cutkosky and K. A. Boahen, “Online convex optimization with
unconstrained domains and losses,” 2017, arXiv:1703.02622.

[19] S. Kale, Z. S. Karnin, T. Liang, and D. Pál, “Adaptive feature selection:
Computationally efficient online sparse linear regression under RIP,” in
Proc. 34th Int. Conf. Mach. Learn., Sydney, NSW, Australia, vol. 70,
2017, pp. 1780–1788.

[20] K. Jun, A. Bhargava, R. D. Nowak, and R. Willett, “Scalable generalized
linear bandits: Online computation and hashing,” in Proc. Adv. Neural
Inf. Process. Syst., Long Beach, CA, USA, vol. 30, 2017, pp. 99–109.

[21] V. N. Vapnik, “Statistical learning theory,” Encyclopedia Ences Learn.,
vol. 41, no. 4, p. 3185, 1998.

[22] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,” Mach. Learn., vol. 37, no. 3, pp. 277–296, 1999.

[23] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
Aug. 2004.

[24] Z. Wang, K. Crammer, and S. Vucetic, “Breaking the curse of kerneliza-
tion: Budgeted stochastic gradient descent for large-scale SVM training,”
J. Mach. Learn. Res., vol. 13, pp. 3103–3131, Oct. 2012.

[25] J. Lu, P. Zhao, and S. C. H. Hoi, “Online sparse passive aggressive
learning with kernels,” in Proc. SIAM Int. Conf. Data Mining, Miami,
FL, USA, 2016, pp. 675–683.

[26] Z. Wang and S. Vucetic, “Online passive-aggressive algorithms on a
budget,” in Proc. 30th Int. Conf. Artif. Intell. Statist. Sardinia, Italy:
Chia Laguna Resort, vol. 9, 2010, pp. 908–915.

[27] J. Lu, S. C. H. Hoi, J. Wang, P. Zhao, and Z. Liu, “Large scale online
kernel learning,” J. Mach. Learn. Res., vol. 17, p. 47, Apr. 2016.

[28] T. D. Nguyen, T. Le, H. Bui, and D. Phung, “Large-scale online
kernel learning with random feature reparameterization,” in Proc. 26th
Int. Joint Conf. Artif. Intell., Melbourne, VIC, Australia, Aug. 2017,
pp. 2543–2549.

[29] L. Jian, S. Shen, J. Li, X. Liang, and L. Li, “Budget online learning
algorithm for least squares SVM,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 9, pp. 2076–2087, Sep. 2017.

[30] K. Crammer, J. S. Kandola, and Y. Singer, “Online classification on
a budget,” in Advances in Neural Information Processing Systems 16
[Neural Information Processing Systems, NIPS 2003, December 8–13,
2003, Vancouver and Whistler, British Columbia, Canada], S. Thrun,
L. K. Saul, and B. Schölkopf, Eds. Cambridge, MA, USA: MIT Press,
2003, pp. 225–232. [Online]. Available: https://proceedings.neurips.cc/
paper/2003/hash/1a68e5f4ade56ed1d4bf273e55510750-Abstract.html

[31] J. Lu, D. Sahoo, P. Zhao, and S. C. H. Hoi, “Sparse passive-aggressive
learning for bounded online kernel methods,” ACM Trans. Intell. Syst.
Technol., vol. 9, no. 4, pp. 1–27, Jul. 2018.

[32] T. Luo, C. Hou, F. Nie, and D. Yi, “Dimension reduction for non-
Gaussian data by adaptive discriminative analysis,” IEEE Trans. Cybern.,
vol. 49, no. 3, pp. 933–946, Mar. 2019.

[33] C. Hou and Z.-H. Zhou, “One-pass learning with incremental and
decremental features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,
no. 11, pp. 2776–2792, Nov. 2018.

[34] B. Hou, Y. Yan, P. Zhao, and Z. Zhou, “Storage fit learning with feature
evolvable streams,” 2020, arXiv:2007.11280.

[35] Z. Zhang, P. Zhao, Y. Jiang, and Z. Zhou, “Learning with feature and
distribution evolvable streams,” in Proc. 37th Int. Conf. Mach. Learn.
(ICML), vol. 119, 2020, pp. 11317–11327.

[36] B.-J. Hou, L. Zhang, and Z.-H. Zhou, “Prediction with unpredictable
feature evolution,” 2019, 1904.12171.

[37] Y. He, B. Wu, D. Wu, E. Beyazit, and X. Wu, “Toward mining capricious
data streams: A generative approach,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 3, pp. 1228–1240, Mar. 2020.

[38] J. A. Sáez, M. Galar, J. Luengo, and F. Herrera, “Analyzing the presence
of noise in multi-class problems: Alleviating its influence with the one-
vs-one decomposition,” Knowl. Inf. Syst., vol. 38, no. 1, pp. 179–206,
2014.

[39] J. Xu, “An extended one-versus-rest support vector machine for multi-
label classification,” Neurocomputing, vol. 74, no. 17, pp. 3114–3124,
Oct. 2011.

[40] C. M. Bishop and N. M. Nasrabadi, “Pattern recognition and machine
learning,” J. Electron. Imag., vol. 16, no. 4, 2007, Art. no. 049901.

[41] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 2012.

[42] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Tracking the best
hyperplane with a simple budget perceptron,” Mach. Learn., vol. 69,
no. 2, pp. 143–167, 2007.

[43] S. C. H. Hoi, J. Wang, P. Zhao, R. Jin, and P. Wu, “Fast bounded online
gradient descent algorithms for scalable kernel-based online learning,”
in Proc. 29th Int. Conf. Mach. Learn. (ICML), Edinburgh, U.K., 2012.

[44] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The forgetron: A kernel-
based perceptron on a fixed budget,” in Proc. Adv. Neural Inf. Process.
Syst., Vancouver, BC, Canada, 2008, pp. 1–8.

[45] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, p. 27, May 2011,
[Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm

[46] B. Hou, L. Zhang, and Z. Zhou, “Learning with feature evolvable
streams,” in Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA,
USA, vol. 30, 2017, pp. 1417–1427.

[47] X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng, and R. C. E. Tan,
“Incremental regularized least squares for dimensionality reduction of
large-scale data,” SIAM J. Sci. Comput., vol. 38, no. 3, pp. B414–B439,
Jan. 2016.

[48] D. Chu, L.-Z. Liao, M. K. P. Ng, and X. Wang, “Incremental linear
discriminant analysis: A fast algorithm and comparisons,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 11, pp. 2716–2735, Nov. 2015.

Shilin Gu received the B.S. and M.S. degrees
from the National University of Defense Technology,
Changsha, China, in 2017 and 2019, respectively,
where he is currently pursuing the Ph.D. degree.

His research interests include machine learning
and data mining.

Yuhua Qian (Member, IEEE) received the M.S.
and Ph.D. degrees in computers with applications
from Shanxi University, Taiyuan, China, in 2005 and
2011, respectively.

He is currently a Professor with the Key Lab-
oratory of Computational Intelligence and Chi-
nese Information Processing, Ministry of Education,
Shanxi University. He is best known for multigran-
ulation rough sets in learning from categorical data
and granular computing. He is involved in research
on machine learning, pattern recognition, feature

selection, granular computing, and artificial intelligence. He has authored over
100 articles on these topics in international journals.

Dr. Qian served on the Editorial Board of the International Journal of
Knowledge-Based Organizations and Artificial Intelligence Research. He has
served as the Program Chair or Special Issue Chair for the Conference on
Rough Sets and Knowledge Technology, the Joint Rough Set Symposium, and
the Conference on Industrial Instrumentation and Control, and a PC member
for many machine learning and data mining conferences.

Chenping Hou (Member, IEEE) received the Ph.D.
degree from the National University of Defense
Technology, Changsha, China, in 2009.

He is currently a Full Professor with the Depart-
ment of Systems Science, National University of
Defense Technology. He has authored more than
80 peer-reviewed papers in journals and confer-
ences, such as the IEEE TRANSACTIONS ON PAT-
TERN ANALYSIS AND MACHINE INTELLIGENCE,
IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS, IEEE TSMCB/TCB,

IEEE TRANSACTIONS ON IMAGE PROCESSING, IJCAI, and AAAI. His
current research interests include machine learning, data mining, and computer
vision.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:32 UTC from IEEE Xplore. Restrictions apply.

