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Abstract—Multi-task learning uses knowledge transfer among
tasks to improve the generalization performance of all tasks.
For deep multi-task learning, knowledge transfer is often im-
plemented via sharing all hidden features of tasks. A major
shortcoming is that it can lead to negative knowledge transfer
across tasks when task correlation is weak. To overcome it, this
paper proposes an evolutionary method to learn sparse sharing
representations adaptively. By embedding the neural network op-
timization into evolutionary multitasking, our proposed method
finds an optimal combination of tasks and sharing features. It
can identify negative correlation and redundant features and then
remove them from the hidden feature set. Thus, an optimal sparse
sharing subnetwork can be produced for each task. Experiment
results show that the proposed method achieve better learning
performance with a smaller inference model than other related
methods.

Index Terms—Multi-task learning, evolutionary multitasking
optimization, knowledge transfer, sharing representation.

I. INTRODUCTION

TO date, scientists have developed many machine learning
techniques and methods to deal with various tasks [1]–

[4], such as clustering, classification, regression, and more.
Although these learning methods have made great success in
many areas, they are mostly driven by single tasks or datasets
[5]–[8]. It limits the adaptability of machine learning models
to different learning tasks. For example, the model of image
recognition has unsatisfactory performance in dealing with
speaker recognition task. It means that we need to design
new learning algorithms for changing tasks, which is time-
consuming and laborious. To overcome it, researchers have
begun exploring more general learning paradigms, which can
adaptively cope with diverse learning tasks. To this end, several
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Fig. 1: The different sharing architecture of multi-task learning. The layers
inside the red dotted box are task-sharing layers. The layers at the top of the
model are task-specific layers. The blue block represents the tasks sharing
parameters; The yellow and red blocks are the task-specific parameters; The
solid pink circle represents the sharing mechanism of the model. (a) Given
a learning model, tasks share all the underlying parameters. (b) Task 1 and
Task 2 are given a separate model in advance, and the tasks share parameters
at the same level through some mechanism. (c) Given a learning model, the
sharing layers are divided into different tasks. (d) The parameters of sharing
layers are divided into three categories: task 1, task 2, and the shared by task
1 and task 2.

machine learning methods have been proposed, including
transfer learning [9], automatic machine learning [10], [11],
meta-learning [12], multi-task learning [13] and so on.

Multi-task Learning (MTL) deals with multiple related tasks
at the same time, and it aims to improve the performance of
each task. MTL improves generalization performance by using
the domain information contained in the training signals of
related tasks as an inductive bias, so it is also considered as
an inductive transfer mechanism [14]. As a general learning
paradigm, many learning paradigms such as semi-supervised
and unsupervised learning [15], reinforcement learning [16],
multi-modal learning [17]–[19], active learning [20] can com-
bine with multi-task learning to improve their performance.
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With the development of deep learning, deep multi-task
learning (DMTL) has attracted much research attention. It has
been applied in various areas such as computer vision [21],
natural language processing [22], and speech recognition [23]
with success. For neural networks, a commonly used multi-
task learning approach is to design a parameterized model that
shares a subset of parameters across different tasks [24]. As
shown in Fig. 1(a), the model bottom layers are shared by
all tasks, and the top layers are task specific [25]–[27]. Then
a linearly weighted objective function can be optimized to
determine the model parameters. In such a modeling approach,
all tasks share the same latent features, and each sharing layer
hidden units can be viewed as the common feature mapping or
representation learned for the tasks [28]. Knowledge transfer
across tasks is realized via shared parameters during learning.
The sharing layers transform the input data from the original
feature space to the learned feature representation.

However, in practice, the relevance among tasks can be very
loose, or only a few tasks are correlated with each other. Thus
the learned features may contain some negative correlation
and redundant components [29]. Sharing all of them will
transfer some destructive information across tasks and then
lead to “negative knowledge transfer”. This phenomenon, also
known as “task interference” [30], [31], sometimes worsens
the performance of multi-task learning. Therefore, the general
modeling and learning method as shown Fig. 1(a) may not be
always effective. To alleviate this issue, much effort has been
made to study how to share features among tasks. Existing
methods can be roughly classified into three categories: soft
sharing, hierarchical sharing, and sparse sharing.

In soft sharing, each task is given a separate network
in advance, and tasks realize the interaction of information
through inter-access [32], [33] as shown Fig. 1(b). However,
the growth of tasks is accompanied by the growth of the
model’s parameters, so such methods cannot be well extended
to address many tasks learning problems. In hierarchical
sharing, parameters are shared between corresponding lay-
ers of task-specific network [34], [35] as shown Fig. 1(c),
which usually need prior knowledge to design the hierarchical
sharing architecture. In recent years, the method of automatic
identification task-sharing layers has been proposed, but the
number of modules in each layer also needs to be given in
advance [36]. The methods of sparse sharing, as shown in
Fig. 1(d), divide the sharing layer’s parameters according to
tasks. Considering deep learning models often have millions
or billions of parameters [37], [38], which causes a vast search
space for finding the best combination of tasks and parameters.
Existing sparse sharing methods improve learning efficiency
and performance by dividing parameters randomly [30], [39]–
[41]. However, the strategy of random division has the follow-
ing limitation:

1) Random parameters division leads to the uncertainty of
experimental results [40], [42].

2) The random dividing method based on dropout results
in the inconsistencies between the training model and
the inference model [30].

3) It cannot identify and reduce redundant information in
the model [30], [40], [43].

As argued above, the existing methods of avoiding negative
knowledge transfer by parameter assignment have disadvan-
tages such as weak scalability, prior dependence, randomness,
etc. In the paper, a multi-task information sharing method—
evolving sparse sharing representation (ESSR) is proposed;
it learns a low-dimensional and sparse sharing representation
for each task adaptively and avoids the negative knowledge
transfer. To ensure valuable knowledge transfer and improve
the generalization performance of each task, ESSR seeks the
combination of tasks and sharing features adaptively. It can
also be viewed as a feature selection method, which removes
the negative correlation and redundant features from all latent
features [44], [45]. Specifically, for a base neural network,
as shown in Fig. 1(a), the algorithm adaptively decouples a
specific sparse sharing subnetwork for each task by evolution.
Each subnetwork corresponds to a “main task”, and other tasks
as “auxiliary tasks” improve the performance of the main task
by transferring knowledge on selected parameters. Inspired by
evolutionary multitasking [46], the learning of task-specific
subnetwork is modeled as a multitasking optimization prob-
lem, which is solved by a multifactorial evolutionary algorithm
with a single population. Finally, the best subnetworks of
multiple tasks are obtained simultaneously.

The main contributions of the paper are as follows:

• A knowledge sharing method ESSR is proposed to learn
the sparse sharing representation of tasks by adaptively
seeking the optimal combination of tasks and sharing fea-
tures. The sharing representation of each task corresponds
to a subnetwork which is obtained by decoupling a given
base network.

• The learning of task representation (subnetworks) is for-
malized as an optimization problem, and an evolutionary
multitasking optimization algorithm is introduced to find
the best representation of all tasks simultaneously and
adaptively.

The proposed method in this paper has the following
advantages:

• ESSR reduces both the negative correlation and redun-
dant features of tasks, which can avoid task interfer-
ence caused by knowledge negative transfer in multi-task
learning.

• ESSR gets a small subnetwork for each task adaptively
by evolution, which reduces the uncertainty caused by
random masking.

The remainder of this paper is as follows. Section II
introduces the related work of this paper. Section III presents
the proposed method ESSR. Section IV proves the effective-
ness of the proposed method through experiments. Section V
summarizes the work in this paper.

II. RELATED WORK

In this section, the definition of MTL is introduced first.
Then the previous works that solve the task interference in
DMTL are reviewed. Finally, a series of existing multitasking
optimization studies are presented.
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A. The Definition of Multi-Task Learning

Definition 1 (Multi-Task Learning): Given a multi-task
problem consisting of T learning tasks {Tt}Tt=1, where all the
tasks or a subset of them are relevant. Multi-task learning aims
to improve the learning performance of a model for Tt by using
the knowledge contained in all or some of the T tasks [47].

Based on the definition of MTL, we let T tasks to be
learned. A task Tt is accompanied by a training dataset
Dt = {(xt

i, y
t
i)}

Nt

i=1, where Nt is the number of samples. For
a given training dataset, MTL is learning a mapping from
input space X t to the target space Yt. A parameter hypothesis
class for each task can be denoted as ŷti = f t(ε(xt

i, θ
sh), θt) :

X t −→ Yt, where ε refers to the task-sharing layers of a
neural network, θsh refers to the parameters of shared across
tasks and θt is task-specific parameters. The task-specific loss

function is Lt(θ
sh, θt) =

1

Nt

∑Nt

i l(f̂ t
i , y

t
i).

The naive method for solving multi-task learning is linear
scalarization, which simply performs a linearly weighted sum
of the losses for each individual task. The objective function is
generally described in the following empirical risk minimiza-
tion formulation:

min
θsh

θ1,...θT

T∑
t=1

wtLt(θ
sh, θt), (1)

wt is the weight of the t-th task. This method is often affected
by the weight w and tends to a certain task as shown in Fig.
2(b) [48].

B. The Related Works of Alleviate the “Task Interference” of
DMTL

After giving the definition and some symbols of MTL, we
will review the research on solving the task interference in
DMTL. These studies are roughly divided into the following
three categories:

1) Adaptive Loss Weighting: Such methods aim at solving
the task imbalance problem caused by the weight of loss
function during learning.

Studies have shown that the performance of multi-task
learner often depends on the relative weighting wt of the task
losses [49]. However, it is difficult to adjust these weights
artificially. Therefore, a series of works have studied and
discussed how to adjust the weight of task loss adaptively.
Kendall et al. (2018) proposed a multi-task deep learning
method in which the multiple losses are weighted by con-
sidering the homoscedastic uncertainty of each task. Chen et
al. (2018) [50] proposed an adaptive loss weighting method—
GradNorm, and it makes the weight wi adaptively change with
the training steps, i.e., wi = wi(t). Inspired by GradNorm, Liu
et al. (2019) [51] proposed a simple and effective adaptive
weighting method—dynamic weight average (DWA).

2) Sharing Architecture Learning: These methods avoid
the negative knowledge transfer in DMTL by parameter parti-
tion. It means that sub-network of task is decoupled from the
given base network. The knowledge is transferred among the
shared parameters.

task 1

task 2

(a) Single task learning

task 1

task 2

(b) Linear scalarization MTL

(c)

task 1

task 2

(c) Multi-objective MTL
(d)

task 1

task 2

(d) ESSR MTL

Fig. 2: Explanation of the solutions obtained by different methods. Take two
tasks as examples, and the red dot or green dot in the figure is the final
solution. (a) The solution of single-task learning. (b) The solution of linear
scalarization multi-task learning. (c) The trade-off solution of multi-objective
multi-task learning. (d) The solution of the ESSR method.

The previous studies can be divided into three categories:
parameters-level, filters-level, and layers-level. Sun et al.
(2019) [43] divided the parameters of the base neural net-
work into different tasks. Bragman (2019) [52], Strahovski
(2019) [40] and Pascal (2020) [30] divided filters into differ-
ent tasks, and task-special subnetwork is obtained. Prellberg
(2020) [36] and sun (2020) [41] proposed the partition method
based on layer-level, in which the assignment of sharing layers
and task-specific layers were given.

3) Multi-objective Multitasking: These methods aim at
finding the Pareto optimal solutions with good trade-off among
different tasks by casting multi-task learning as a multi-
objective optimization (as shown in Fig. 2(c)).

Sener and Koltum (2018) [53] first focused on the conflict
among tasks and regarded multi-task learning as a multi-
objective optimization problem. Different from linear scalar-
ization, the multi-objective optimization formulation of MTL
uses a vector-valued loss:

min
θsh

θ1,...θT

L(θsh, θ1, ..., θT )

= min
θsh

θ1,...θT

(L1(θ
sh, θ1), ..., LT (θ

sh, θT ))T .
(2)

However, this method also finds one Pareto optimal solution
across different tasks for a MTL problem instead of “Pareto
optimality sets” with task preference.

Lin et al. (2018) [48] proposed Pareto multi-task learning
(Pareto MTL) to find a set of well-distributed solutions that
can represent different trade-offs across tasks. The main idea
of Pareto MTL is to decompose a MTL problem into several
constrained multi-objective subproblems with different trade-
offs preferences across the tasks in the original MTL. The
paper also shows that the Pareto MTL can be reformulated
as a linear scalarization of tasks with adaptive loss weighting.
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Subsequently, Mahapatra and Rajan (2020) [54] proposed a
MOO optimization method — exact Pareto optimal (EPO)
that can converge to the desired ray in loss space. Ma et
al. (2020) [55] presented a novel and efficient method that
generates locally continuous Pareto sets and Pareto fronts.
It provides the possibility for continuous analysis of Pareto
optimal solutions in machine learning problems. Li et al.
(2021) [56] proposed a novel controllable Pareto multi-task
learning framework, which enables the system to make real-
time trade-off control across different tasks with a single
model.

These studies focus on multi-task learning problems with
task conflict, which can be considered as a particular aspect
of multi-task learning research.

C. Evolutionary Multitasking Optimization

Evolutionary multitasking as a new paradigm in the field of
optimization and evolutionary computation was proposed in
2016 [46]. Unlike multi-objective optimization, multi-tasking
optimization aims to find the optimal solution for each task
rather than trade-off solutions. Assuming there are T min-
imization problems, the objective function of evolutionary
multitasking can be formulated as follows:

{x1, x2, ..., xT } = argmin {f1(x), f2(x), ..., fT (x)}
s.t. xi ∈ Ωt, i = 1, ..., T,

(3)

where xt and Ωt are the feasible solution and feasible region
of task t, respectively. It aims to optimize each task completely
and concurrently with the help of implicit parallelism of
population-based search. In [46], a multifactorial evolutionary
algorithm (MFEA) is first proposed to solve this problem.
Subsequently, researchers have primarily focused on address-
ing the issues related to task interference or more complex
problems in learning algorithms [57], [58]. Multi-task evolu-
tionary algorithms have been developed to mitigate the task
interference during the optimization process, such as MFEA
II [59], MO-MFO [60] , and others [61]–[66]. Furthermore, the
evolutionary multitasking framework has been applied to the
simultaneous optimization of multiple sparse reconstruction
tasks [67] and feature subspaces generation [68].

In the paper, the MFEA algorithm is utilized to solve
the sparse sharing representation of tasks. Therefore, several
key definitions of MFEA are given. Specifically, assuming a
population P with K individuals, several definitions associated
with the individual pj , j ∈ {1, 2, ...,K} are shown as follows:

Definition 2 (Factorial Cost): The factorial cost of individ-
ual pj on task Tt is defined as Ψ j

t = f j
t + λδjt , where λ is

the penalty parameters, f j
t and δjt are the objective value and

the total constraint violation, respectively. When the pj is a
feasible solution, it is represented only by the objective value
f j
t .

Definition 3 (Factorial Rank): The factorial rank rjt of
individual pj on task Tt is an index that is obtained from
the ascending order of the factorial cost Ψt.

Definition 4 (Skill Factor): The skill factor τj of pj is a
index of task corresponding to the best factorial rank, which

is denoted as τj = argmint

{
rjt

}T

t=1
.

Definition 5 (Scalar Fitness): The scalar fitness φj of pj is
the inverse of τj ; i,e. φj = 1/mini∈{1,...,T}r

j
i .

III. PROPOSED METHOD

In this section, learning task sparse sharing representation
is modeled as an optimization problem, and the ESSR method
is proposed first. Then an evolutionary learning framework is
adopted to solve the optimal combination of tasks and sharing
features. Finally, we further explore the importance of features
and task relationships in MTL.

A. Sparse Sharing Representation of MTL

To avoid negative knowledge transfer in MTL, a feasible
approach is sharing some features among tasks. The process
of selecting which features to share is a combinatorial op-
timization problem. It aims to maximize task’s performance
by identifying the ideal blend of tasks and shared features.
In contrast to existing random combination methods, ESSR
models the selection of sharing features as an optimization
problem.

In a neural network with L sharing convolution layers, l ∈
{1, ..., L} is the index of the sharing layers. Let xl−1,k be
the input feature of k-th filter units of l-th layer, and xl is
the output feature of it. The convolution operation for task
Tt, t ∈ {1, ..., T} can be described as:

xl,k
t = f l,k

(
θl,k, xl−1,k

t

)
, (4)

f l,k refers to a feature map of the k-th filter unit at the layer l,
and θl,k is the parameters of filter. Given a neural network with
K filters in the sharing layers, θε = [θ1, θ2, ..., θK ] denotes the
filters parameters of sharing layers and F = {f1, f2, ..., fK} is
the hidden sharing feature set of tasks. Depending on θε and F ,
the sharing layers transform the original inputs to the learned
feature representation. However, when some of the information
among tasks is weakly or even negatively correlated, feature
set F will contain some negative correlation or redundant
features. This results in negative knowledge transfer by sharing
all the features during multi-task learning. Therefore, in this
paper, we assume that all tasks share a small subset of features.

Let M = [m1,m2, ...,mK ] is a mask, and mk is a tensor
filled with all 0 or all 1, and it has the same dimension with
θk. Then, the following operations is given:

mk ⊙ θk =

{
θk, mk = 1|θk|

0|θk|, mk = 0|θk|
(5)

where |θk| denotes the dimension of θk, and ⊙ denotes
element-wise multiplication. If mk = 1|θk|, the k-th filter is
selected. Conversely, if mk = 0|θk|, it means that the k-th
filter is masked in neural network, the feature fk is discarded.
Moreover, the subspace spanned by the k-th feature will also
be removed from F . Therefore, the operation M ⊙ θε is
equivalent to select a sharing subset of features by masking the
filters. After the sharing layers are masked, the task Tt gets a
sparse sharing representation. Next, a learning method learns a
mapping F from this sparse representation to a specific output,
i.e. yt = F (M ⊙ θε, xt).
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Fig. 3: The flowchart of the ESSR. The first step involves the initialization
of the population P comprising N individuals, followed by decoding each
individual into a corresponding mask. Secondly, each mask corresponds to a
subnetwork for a given base network. And all the subnetworks are trained
in parallel. Then each individual (subnetwork) is evaluated based on it scalar
fitness (SF). If the termination condition is met, the algorithm stops running;
Otherwise, the algorithm selects a new population according to SF and cycles
into the next iteration. Finally, our framework learns a specific subnetwork
for each task.

Because of the variations among tasks, it is challenging to
identify a single mask that optimizes the performance of all
tasks. ESSR learns the mask set based on task preferences.
Drawing inspiration from evolutionary multitasking, we for-
malize the multitask learning problem as follows:

{(M, θ)1 , (M, θ)2 , ..., (M, θ)T }
= argmin

(M,θ)

{
L1

(
M ⊙ θε, θ

1
)
, L2

(
M ⊙ θε, θ

2
)
,

..., LT

(
M ⊙ θε, θ

T
)}

,M ∈ {0, 1}K
(6)

where K denotes the number of filters; 0 and 1 are the
tensors filled with 0 and 1 respectively. (M, θ)t is a 2-tuple
consisting of the optimal mask and parameters of task Tt. Eq.
(6) is a multitasking optimization problem that aims to find
the T optimal combination of mask and network parameters
simultaneously. The subnetworks of tasks are obtained by
optimizing Eq. (6).

Let Θ = {M, θε, θ
t} be a parameters set. Eq. (6) can be

equivalently written in the following general form:

{Θ1,Θ2, ...,ΘT }
= argmin

Θ
{L1 (Θ;X ) , L2 (Θ;X ) , ..., LT (Θ;X )} , (7)

X ∈ D = {Dt}Tt=1. Thus, ESSR can also be interpreted as
determining the best possible solution for each task, as shown
in Fig. 2(d).

B. Evolving Sparse Sharing Representation for MTL

In this section, an adaptable learning framework is proposed
to solve the problem (6). There are two types parameters to be
optimized: masks and neural network parameters. The task’s
masks are utilized to obtain subnetwork architectures, whereas
all tasks jointly optimize neural network parameters. Addi-
tionally, evolutionary algorithms update the task masks based
on the subnetwork’s performance. Algorithm 1 represents the
pseudocode of ESSR. It consists of training subnetworks in
parallel and updating mask set, they are alternately optimized
during learning. The algorithm is explained in detail as fol-
lows:

Algorithm 1: ESSR Algorithm Framework

Input: Multi-task dataset D = {Dt}Tt=1;
Base network Net;

Output: Task-specific subnetworks.
1 Initialize a population (mask set);
2 for g = 1 to G do
3 Part 1: Training subnetworks in parallel

(Algorithm 2) ;
4 Part 2: Updating mask set (Algorithm 3);
5 end
6 return Task-specific subnetworks.

1) Subnetwork Training: When a mask is provided, the
corresponding subnetwork is jointly optimized by all tasks.
Algorithm 2 outlines the pseudocode of subnetworks training.
During training, the task gradients are averaged to obtain the
final subnetwork parameter gradient gθ (lines 2-9 of Algo-
rithm 2). The Adam algorithm then optimizes the parameters
using gθ. The task gradient is transmitted to parameter θ by
back propagation of weighted loss λLt. And the weight λ is
assigned differently for each task, depending on whether it is
the “main task” of the subnetwork. The “main task” has a
larger λ than other tasks. Lines 4-6 of the Algorithm 3 show
how the subnetwork is assigned its “main task”. This mecha-
nism guarantees that each subnetwork is uniquely linked with
a “main task”, while other tasks serve as “auxiliary tasks” that
provide valuable information for “main task” during training.
For the initial population without prior task information, all
tasks receive the same loss function weights λ.

2) Updating Mask Set: Considering only the mask set, the
optimization objective function is simplified as follows:

{M1,M2, ...,MT }
= argmin

M
{L1 (M) , L2 (M) , ..., LT (M)} . (8)

This is a multitasking optimization problem. In this paper,
the classic single population MFEA algorithm is introduced
to solve the masks of tasks simultaneously. In the following,
we give the detailed steps of the evolutionary algorithm:

Encoding and decoding: The individuals in the population
are randomly initialized. Assuming the base network contains
K filters in the sharing layers. Individual chromosomes are
encoded and decoded as follows:
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Fig. 4: Illustration of the process of filter selection. The figure shows a convolution neural network containing four sharing convolution layers. The rhomboid
blocks with different colors in the network represent different layers, constituting ten filters in total, numbered sequentially. Individuals in the population
encode based on the ten-element vectors using either 0 or 1. For example, individual 3 is considered, and the position 3, 5, 7, and 9 are zeroed, meaning that
filters 3, 5, 7, and 9 will be discarded during learning. Finally, subnetwork generating from the 3rd individual is established.

Encoding: Individual chromosomes within population P are
encoded as K−dimension vectors filled with 0 and 1; i.e.∀p ∈
P , p = (p1, p2, ..., pK), and pk ∈ {0, 1}.

Decoding: The mask M is generated after decoding the
individual. If the pk = 1, then the mk is a tensor filled with
1. It means that the i-th filter in sharing layers is selected.
Similarly, if pk = 0, then mk is a tensor filled with 0. At the
same time, the i-th filter in sharing layers is masked. Fig. 4
shows the process of filter selection and subnetwork generation
after giving a population.

Individual task division: In this paper, we represent the
factorial cost of the individual using negative task accuracy.
The factorial cost of individual pj on task Tt is denoted as
Ψ j
t = −accjt , where accjt refers to the accuracy of individual

j on task Tt. Once the subnetworks are trained, calculating
the factorial cost of each individual becomes feasible. The
factorial rank and skill factor of individuals are obtained ac-
cordingly based on Definition 3 and Definition 4, respectively.
Individuals are assigned to different tasks according to their
skill factor. In the initialization stage, the skill factor τj of the
individual is obtained by comparing its performance across
different tasks. If the individual is optimal on the t-th task,
then τj = t. If an individual shows identical performance
across several tasks, it will be randomly assigned to one of
those tasks. During the population evolution stage, individ-
ual acquire the skill factor through cultural communication
inherited from their parents as outlined in lines 4-12 of the
Algorithm 3.

Through division, each individual (subnetwork) corresponds
to a unique learning task that we refer to as the “main task”.
Thus, we can manually adjust the weight of loss function based
on the individual’s skill factor so that the learning algorithm
is biased towards learning the “main task”.

Population evolution and genetic transfer: The reproduc-
tion of individuals within a population is achieved through
crossover and mutation. Crossover is the main mechanism for
genetic transfer.

Algorithm 2: Subnetworks Training

Input: M : A population (mask set);
T : The number of tasks;
a: A number between 0.5 and 1;
D = {Dt}Tt=1: Multi-task dataset;
Net: A base network;
Output: Ψ : Population Factorial Cost;
/* Subnetworks run in parallel. */

1 for i = 1 to |M | do
/* Subnetwork training. */

2 for t = 1 to T do
3 if t = Mi.skill factor then
4 gt= ∇θaLt(Mi ⊙ θε;D

train
t ) ; // Mi ⊙ θε

indicates masking the Net.
5 else
6 gt= ∇θ(1− a)Lt(Mi ⊙ θε;D

train
t )

7 end
8 end
9 Gradient gθ = 1

T

∑T
i=1 g

t;
10 Update θ using gθ;
11 Obtain subnetwork Neti;

/* Subnetwork testing. */
12 for t= 1 to T do
13 Calculate task accuracy accit;
14 end
15 Factorial Cost Ψi =

{
−acci1, ...,−acciT

}
;

16 end
17 Return Ψ

Genetic transfer occurs on inter-tasks or intra-tasks by
crossover operators during population evolution. However, the
crossover of individuals between tasks increases the risk of
negative knowledge transfer while realizing genetic transfer.
The optimization algorithm must balance exploitation and
exploration of the search space. So the random mating prob-
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Algorithm 3: Population Evolution

Input: Pg: Current population;
Output: Pg+1: Next generation population.

1 R← ∅; C ← ∅;
2 for t = 1 to |Pg|/2 do
3 Two candidate parents pi and pj in P are selected

randomly;
4 if τi == τj or rmp<0.3 then
5 Obtain offspring c1 and c2 by the crossover;
6 The Skill Factor of offspring is assigned

randomly according to the parent;
7 Put c1 and c2 in C;
8 else
9 Obtain offspring c1 and c2 by the mutation;

10 The Skill Factor of individuals is assigned
according to their parents;

11 Put c1 and c2 in C;
12 end
13 end
14 Evaluate the individuals in offspring C according to

Algorithm 2;
15 Put Pg and C into the matching pool R;
16 Calculate Factorial Rank of individuals in R;
17 Calculate Scalar Fitness of individuals in R;
18 Select N best Scalar Fitness individuals from R to

form Pg+1;
19 Return Pg+1;

ability (rmp) is used to adjust this balance. If rmp< 0.3,
inter-task individuals reproduce through crossover operator;
otherwise, the offspring will be produced through mutation.
The details of population evolution are shown in Algorithm 3.

Evaluation and Selection: The performance of individual
is evaluated based on the scalar fitness (refer to Definition 5).
Individual with higher scalar fitness have greater adaptability
to multi-task environments. And the “elite selection” operator
is used to obtain a new population, that is, N individuals with
optimal scalar fitness in the population are selected into the
next generation.

C. Exploring Feature Importance of Tasks

ESSR aims to eliminate valueless components from all the
hidden features so that the retained features can provide help-
ful knowledge for tasks. However, it is essential to consider
the specific roles that these features play in the transfer of
knowledge. Further discussion is necessary.

Assuming T = {Tt}Tt=1 is task set and F = {fk}Kk=1 is the
all hidden feature set of tasks. Ut ⊆ F denotes the task sharing
feature set of task Tt, which is learned by ESSR. According
to the utilization of tasks, we divide features in F into three
categories: common feature, redundant feature, and supporting
feature.

Definition 6 (Common feature): The common features in
F are used for all tasks. The set of all common features is
denoted as C(F); i.e. for ∀fk ∈ C(F) ⊆ F satisfying fk ∈
Ut, t = 1, ..., T .

Definition 7 (Redundant feature): The redundant features in
F are not used by any tasks. All redundant features constitute
the set R (F). For ∀fk ∈ R(F) ⊆ F , fk /∈ Ut, t = 1, ..., T .

Definition 8 (Supporting feature): The supporting features
in F are used for some tasks. The set of all supporting features
is denoted as S(F) = F − C(F)−R(F).

In addition, we also define the negative correlation feature
of task and task-special feature as follows:

Definition 9 (Negative correlation feature): The set of
negative correlation features N (Ut) of task Tt is composed of
the features that do not belong to Ut ∪ R (F). i.e. N (Ut) =
F − Ut −R (F).

Definition 10 (Task-special feature): The set of task-special
feature T S (F) is composed of the features that are used by
only one task; i.e., T S (F) = ∪Tt=1Ut − ∩Tt=1Ut, T S (F) ⊆
S(F).

The above definitions facilitate us to analyze and understand
the purpose of ESSR more clearly. The common features are
the core components of all tasks and indispensable to F . The
knowledge in the redundant features is either contained in task
sharing features or valueless for improving the performance
of tasks. And negative correlation features of a task are the
main factor that lead to negative knowledge transfer. The task-
special feature corresponds to a task uniquely and provides
knowledge to it. ESSR obtains the set of task sharing feature
by identifying and reducing redundant feature R(F) and neg-
ative correlation feature N (Ut) in F . The set of task feature,
learned by ESSR, is the essential of tasks, which suffices to
dig all basic concepts occurring in hidden knowledge.

D. Discovering Task Correlation in MTL

In the paper, we assumes that there exists some correlation
among tasks. Would it be possible to further investigate this
correlation by analyzing the learned features?

In reference [14], a simple example shows that there are
more shared units in the output layers when tasks are relevant.
The outputs of unrelated tasks tend to use different hidden
units. When tasks are more related, it indicates a higher degree
of shared features between them. Therefore, we can measure
the similarity and difference between tasks according to the
set of task sharing features (the set of filters that are used by
tasks).

For two finite sets A and B, the measure H(A,B) =
|A ∩B|
|A ∪B|

, (A ∪ B ̸= ∅) is used to portray the similarities of

them and 1 − H(A,B) is used to describe the differences
of them [69], [70]. Therefore, we define the metrics of task
similarity and difference.

Definition 11 (Similarity and Difference measure): Let Ui
and Uj are the set of task sharing features of tasks Ti and Tj ,
respectively. Then the similarity and difference between tasks
Ti and Tj are defined below:

S (Ti, Tj) =
|Ui ∩ Uj |
|Ui ∪ Uj |

, (9)

and
D (Ti, Tj) =

1

K
(|Ui ∪ Uj | − |Ui ∩ Uj |) . (10)
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For any two tasks, greater similarity and smaller differences
indicate that they are more related. Therefore, the ESSR
method has two purposes: it can explore the optimal sharing
feature subset of the task; and it can also further explain the
task relationship.

IV. EXPERIMENTAL STUDIES

A. Datasets

In this paper, experiments are carried out on three hetero-
geneous feature multi-task datasets: DKL-MNIST, Cifar100,
and Omniglot.

• DKL-mnist: This dataset is constructed by 28× 28 gray
images which are from EMNIST and KMNIST. EMNIST
dataset contains 26 Letters classes and 10 Digits classes.
The KMNIST datasets (kuzushiji-mnist) of Japanese Cur-
sive Script has 10 kuzushiji classes. So, DKL-mnist is
regarded as multi-task dataset which contains three tasks.
The DKL-mnist is divided into a training set and a testing
set; the training set is composed of 1500 samples selected
from digits, letters, and kuzushiji in equal amounts, and
other 70, 800 samples as testing set.

• Cifar100: According to [36], the cifar100 consists of 20
coarse labels, and each label is regarded as a task. Each
task contains 5 classes and 500×5 training samples (500
per class). So, the whole dataset includes 50,000 training
data and 10, 000 testing data. All the samples in Cifar100
are 32× 32 RGB images.

• Omniglot : As a standard MTL dataset, the handwritten
characters of the Omniglot database are grouped into
different tasks by the 50 different alphabets, and the
number of classes in tasks is different. As a few-shot
dataset containing only 20 samples per class, it is harder
to learn. Since training and testing data are not predefined
in omniglot, we randomly split off 20% as test examples
from each alphabet according to reference [36]. All the
examples are 105× 105 gray images.

B. Experimental Settings

1) Model and parameters:

• For DKL-mnist, the base neural network consists of
three convolutional layers and two dense layers. Each
convolution layer has 32 filters whose size is 3 × 3. So,
there are 96 filters on sharing layers. All the convolutions
go through batch normalization, ReLU activation, and
2×2 max-pooling input to the next layer. The first dense
layer has 128 units and is followed by a ReLU activation.
The second dense layer is a task-specific layer. For this
dataset, there are three task-specific layers, and the units
of each layer are consistent with the number of task
classes.

• For Cifar100, we use the ResNet18 architecture as the
base network. The network configurations are consistent
with [36], which remove the 3 × 3 max-pooling layer
from the original ResNet18 and set the convolution stride
parameters again. The sharing layers contain 4800 filters.

• For Omniglot, the base neural network consists of four
convolution layers and a single dense layer. Each con-
volution layer has 53 filters which size 3 × 3. So, there
are 212 filters on sharing layers. All the convolutions go
through normalization, ReLU activation, and 2× 2 max-
pooling input to the next layer. And the number of units of
the final dense layer (task-specific layer) and the classes
of tasks are equal.

During evolution, the population size is set to 20. The
maximum evolutionary generation of DKL-mnist and Cifar100
with 10 tasks is 20, and the other datasets are 10. During
neural network training, the Adam algorithm with a learning
rate of 10−3 is used to optimize the network parameters. The
three datasets are trained for 5, 000, 20, 000, and 20, 000 times,
respectively, and the test interval is set to 200. For effective
learning, only 5, 000 iterations are carried out in mask learning
for datasets Cifar100 and Omniglot, and the subnetwork goes
through 15, 000 iterations after the best masks of tasks are
learned. In addition, we introduce the multi-task warmup
(MTW) during learning; that is, the base network is pre-trained
200 times before masking. During the model training, the
weights of the loss function are set to 0.8 and 0.2 for “main
task” and “auxiliary tasks”, respectively.

2) Comparative methods: We compare ESSR method with
seven related methods on three multi-task datasets. There
are two baseline methods (STL and MTL) and five related
methods for address task interference in MTL.

• STL: The single-task learning method (STL) is used as
baseline.

• MTL: A standard multi-task learning approach in which
tasks share all sharing layer parameters.

• Prior-MTL: The convolution layers are divided into the
sharing layers and the task-specific layers artificially.

• LWS [36]: It learns the assignment between sharing
layers and task-specific layers adaptively.

• SE [39]: It masks the filters of base network by introduc-
ing the squeeze-and-excitation module.

• TR [40]: Task Routing divides the filter output into tasks
by randomly giving multiple binary masks.

• MR [30]: Maximum Roaming inspired by dropout that
randomly varies the parameter partitioning.

SE, TR, MR, and ESSR divide task parameters by mask-
ing the sharing layers filter. Compared with other methods,
ESSR obtains masks through optimization rather than random
assignment.

3) Performance metrics: Four indexes, accuracy, precision,
recall, and F-score, are used to evaluate the performance of
methods.

C. Comparing with Related Methods

In this section, we compare the ESSR with seven related
methods. The experimental results are summarized in Table I
and Table IV, where #N is the number of tasks. The p refers
to the utilization rate of filters. The gen is the generation
of the population evolutionary. The results presented in the
table represent the average performance of the algorithm
across all tasks. All experiments have been conducted five
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TABLE I: COMPARATIVE STUDY OF RELATED ALGORITHMS ON DKL-MNIST AND CIFAR100 DATASET

Datasets #N Model Accuracy Precision Recall F-score Avg. Rank

DKL-mnist 3

STL 0.817 ± 0.002 0.632 ± 0.002 0.651 ± 0.002 0.629 ± 0.002 -
MTL 0.798 ± 0.010 0.614 ± 0.010 0.635 ± 0.010 0.610 ± 0.011 4
Prior-MTL 0.813 ± 0.006 0.630 ± 0.007 0.651 ± 0.007 0.628 ± 0.007 3
LWS 0.837 ± 0.003 0.657 ± 0.005 0.676 ± 0.004 0.655 ± 0.005 1
SE 0.777 ± 0.009 0.597 ± 0.008 0.619 ± 0.009 0.592 ± 0.010 6
TR(p = 0.9) 0.773 ± 0.015 0.595 ± 0.016 0.617 ± 0.022 0.590 ± 0.020 7
MR(p = 0.9) 0.789 ± 0.026 0.607 ± 0.022 0.627 ± 0.021 0.602 ± 0.023 5
ESSR(gen = 20) 0.827 ± 0.002 0.644 ± 0.003 0.664 ± 0.002 0.641 ± 0.003 2

Cifar100 10

STL 0.689 ± 0.005 0.677 ± 0.009 0.678 ± 0.009 0.647 ± 0.008 -
MTL 0.683 ± 0.011 0.674 ± 0.012 0.677 ± 0.013 0.640 ± 0.014 6.25
Prior-MTL 0.694 ± 0.005 0.683 ± 0.006 0.688 ± 0.006 0.653 ± 0.006 3.75
LWS 0.684 ± 0.007 0.670 ± 0.005 0.673 ± 0.004 0.638 ± 0.004 6.75
SE 0.707 ± 0.005 0.704 ± 0.006 0.699 ± 0.006 0.670 ± 0.005 1.75
TR(p = 0.9) 0.695 ± 0.007 0.691 ± 0.005 0.685 ± 0.005 0.657 ± 0.006 3.25
MR(p = 0.9) 0.689 ± 0.006 0.683 ± 0.006 0.679 ± 0.003 0.651 ± 0.005 4.75
ESSR(gen = 20) 0.710 ± 0.004 0.707 ± 0.004 0.699 ± 0.006 0.673 ± 0.005 1

Cifar100 20

STL 0.672 ± 0.004 0.661 ± 0.005 0.662 ± 0.005 0.631 ± 0.005 -
MTL 0.673 ± 0.005 0.662 ± 0.006 0.668 ± 0.006 0.637 ± 0.014 7
Prior-MTL 0.697 ± 0.006 0.686 ± 0.006 0.687 ± 0.005 0.655 ± 0.006 3
LWS 0.684 ± 0.008 0.671 ± 0.009 0.677 ± 0.008 0.642 ± 0.009 6
SE 0.708 ± 0.006 0.705 ± 0.005 0.698 ± 0.004 0.670 ± 0.006 2
TR(p = 0.9) 0.687 ± 0.002 0.684 ± 0.003 0.676 ± 0.003 0.649 ± 0.003 4.75
MR(p = 0.9) 0.687 ± 0.005 0.685 ± 0.004 0.678 ± 0.004 0.650 ± 0.005 4
ESSR(gen = 10) 0.709 ± 0.005 0.709 ± 0.005 0.700 ± 0.006 0.674 ± 0.005 1

(a) DKL-mnist (b) Cifar100

Fig. 5: The utilization ratio of the filter. The percentage of the filters used for each layer for each task on DKL-mnist (a) and Cifar100 (b). The figure shows
the mean and standard deviation of the five experiments.

times and reported with their respective mean and standard
deviation (presented as “mean ± std”). The optimal results are
underlined, while the results obtained by ESSR are presented
in bold. On Cifar100, two groups of experiments are conducted
for 10 and 20 tasks, respectively, to verify the impact of task
size on algorithm performance. Considering time consump-
tion, the experiment is conducted only once on Omniglot.
The utilization rate of filters of ESSR method on each task is
presented in Fig. 5. Then we compare the performance of our
algorithm on each task with MTL method (refer to Fig. 6). In
addition, the performance of the final individual on each task
is presented in Table III. From Table I - V and Fig. 5 - 6,
some findings are obtained:

(1) The classical MTL method sometimes suffers from
negative knowledge transfer during multi-task learning. As
shown in Table I, the STL method work better than MTL
on DKL-mnist. This implies that with the traditional MTL
method, where all hidden features are shared during training,
there is a negative transfer of knowledge among tasks. What

is the reason behind this phenomenon? DKL-mnist with a
few (500) training samples and numerous testing samples, the
information contained in training samples is insufficient for
each task. A learning task will rely on lots of training signals
from other tasks to improve performance during learning.
However, the correlation among tasks is weak and inconsistent
for the DKL-mnist dataset. (This conclusion will be obtained
from Figure: 7 in Section IV.D.). The traditional MTL method
trains each task equally without considering the difference
among tasks, which allows some negative correlation features
to be transferred across tasks and leads to negative knowledge
transfer phenomenon.

Compared with the MTL and STL, ESSR improves perfor-
mance on all four metrics. The superior performance indicates
that ESSR can leverage the sparse modeling to discover the
discriminative features (task sharing feature set).

(2) ESSR focuses on improving the performance of each
task. To demonstrate the superiority on individual tasks, we
further compare the accuracy of ESSR with MTL on each task.
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(a) DKL-mnist (b) Cifar100

Fig. 6: Comparing the accuracy of ESSR with MTL in each task on DKL-mnist(a) and Cifar100 with 20 tasks(b).

TABLE II: THE VALUE OF T-STATISTIC IN THE T-TEST

H0 : u0 = uj , H1 : u0 ̸= uj ; t0.05,8 = 2.3060.
Datasets Model Acc Pre Rec F-score

DKL-mnist

MTL 17.985 18.1735 17.985 17.1957
prior-MTL 14 11.6264 11.2937 10.7959
LWS 17.5412 14.1005 16.9706 15.1851
SE 34.2997 34.791 30.8697 29.6833
TR 22.5687 19.0372 13.4561 15.9492
MR 9.2164 10.5392 11.0931 10.6342

cifar100-10

MTL 14.5893 16.5 9.718 14.0394
prior-MTL 15.8037 21.0494 8.1989 16.1955
LWS 20.3961 36.546 22.8035 34.5705
SE 2.9632 2.6312 0 2.6833
TR 11.767 15.8037 11.3369 12.9564
MR 18.4182 21.0494 18.8562 19.6774

cifar100-20

MTL 32.1994 38.0595 23.8514 15.7411
prior-MTL 9.7173 18.6249 10.5271 15.3858
LWS 16.76 23.3432 14.5465 19.6574
SE 0.8098 3.5777 1.7541 3.2391
TR 25.8377 27.1163 22.6274 27.1163
MR 19.6774 23.7055 19.2953 21.4663

* u0 is the mean of ESSR; uj is the mean of compared method.
* If the absolute value of the t-statistic (T-value) is greater than this critical

value, the null hypothesis can be rejected. The null hypothesis is rejected,
showing that the results are reasonably accurate and not by chance.

For DKL-mnist (refer to Fig. 6(a)), ESSR outperforms MTL
on all three tasks. Significantly, the proposed method increases
accuracy by 11% on task 3. For Cifar100 with 20 tasks (refer
to Fig. 6(b)), the ESSR method improves the performance of
most tasks. In particular, on task 5, the accuracy of ESSR
method is improved by 27% compared with MTL. It indicates
that the proposed method aims at improving the performance
of each task, not some tasks.

(3) The performance of ESSR outperforms most of the
related methods on three datasets. From the Table I and
Table IV, the ESSR ranks first on Cifar 100 and Omniglot,
and second on DKL-mnist, which means the ESSR has a
good performance in the comparison of various competing
methods. Especially on the Cifar100 with 20 tasks, ESSR
achieves optimal performance after only 10 generation evo-
lution. Although the performance of ESSR is slightly lower
than LWS on DKL-mnist, the smaller inference model of tasks
is obtained. Furthermore, the t-test in Table: II demonstrates
significant statistical differences between the ESSR and com-
pared method.

(4) Compared with random sparse sharing methods (TR,
MR), the ESSR has fewer parameters. In the experiments,
when the output rate of filters of pre-task is 90% (p = 0.9), TR
and MR have the best performance. However, ESSR only uses
about 40%− 60% filters in each sharing layer on DKL-mnist
as shown in Fig. 5(a). And the selected filters for each task
account for 50% of the overall on sharing layers, as shown in
Figure. 5(b). This shows that ESSR with less filters performs
better than TR and MR. Especially on Omniglot dataset with
a small number of training samples and many tasks, ESSR has
apparent advantages. The results in Table V also proves that
ESSR has a smaller inference time(IT) and model size(MS).

In summary, ESSR can find a better match of tasks and
features to alleviate negative knowledge transfer of multi-task
learning. It works well with a larger sparsity of the model
compared to other related methods.

D. Analyzing the Importance of Features and the Relationship
of Tasks

We further analyzed the relationship between the filters
obtained by ESSR in terms of their consistency with features,
in order to explore the significance of various features in the
MTL, as well as the interrelationships between tasks.

For DKL-mnist, we calculate the percentage of intersection,
union, and symmetric difference of the filter sets of three tasks
and pairwise tasks, respectively. The ratio of intersection and
union is also given. The experimental results are presented
in Fig. 7. By analyzing the filters used for three tasks, the
following observations can be obtained:

• The features shared by the three tasks are less than 20%
of the total features. It implies that less than 20% features
belong to the set of common features.

• The union of task filters accounts for about 90% of the
total. It implies that 10% of features learned from the base
networks are invalid or redundant. In other words, the
base model of DKL-mnist may be over-parameterized.

• The other 70% of features belong to supporting feature,
and among them task-special features accounts for 50%
of overall.

• The ratio of intersection and union of three tasks is 0.2.
It indicates that the similarity of tasks is 0.2.
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TABLE III: ACCURACY OF FINAL INDIVIDUALS ON EACH TASK

Datasets POP T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 main task

DKL-mnist
pop1 0.969 0.749 0.720 1
pop2 0.962 0.774 0.699 2
pop3 0.957 0.743 0.746 3

cifar100-10

pop1 0.560 0.682 0.642 0.712 0.700 0.700 0.662 0.622 0.624 0.760 1
pop2 0.516 0.692 0.648 0.720 0.692 0.684 0.676 0.626 0.612 0.722 2
pop3 0.534 0.674 0.654 0.722 0.752 0.664 0.676 0.642 0.676 0.744 3
pop4 0.550 0.670 0.608 0.766 0.702 0.716 0.682 0.652 0.638 0.740 4
pop5 0.546 0.662 0.608 0.722 0.778 0.726 0.690 0.654 0.626 0.764 5
pop6 0.518 0.656 0.624 0.732 0.722 0.772 0.684 0.614 0.630 0.748 6
pop7 0.508 0.676 0.596 0.686 0.737 0.714 0.712 0.644 0.630 0.738 7
pop8 0.550 0.672 0.606 0.720 0.722 0.688 0.694 0.702 0.622 0.748 8
pop9 0.538 0.644 0.590 0.678 0.750 0.656 0.674 0.642 0.688 0.740 9
pop10 0.508 0.680 0.592 0.696 0.726 0.682 0.704 0.628 0.682 0.814 10

TABLE IV: COMPARATIVE STUDY OF RELATED ALGORITHMS ON
OMNIGLOT DATASET

Datasets Model Accuracy Precision Recall F-score Avg. Rank

Omniglot

STL 0.764 0.538 0.625 0.567 -
MTL 0.788 0.571 0.659 0.599 4
Prior 0.679 0.471 0.564 0.498 5
LWS 0.789 0.591 0.667 0.616 2.25
SE 0.276 0.162 0.211 0.169 7
TR 0.517 0.337 0.427 0.361 6
MR 0.792 0.581 0.667 0.608 2.5
ESSR 0.833 0.635 0.712 0.661 1

TABLE V: COMPARASION OF INFERENCE TIMES AND NETWORK
SIZE OF RELATED METHODS ON DKL-MNIST DATASET

Model ESSR MTL Prior-MTL LWS SE TR MR
IT(s) 32.71 33.92 32.52 34.20 59.88 43.73 42.98

MS(KB) 246.8 246.9 612.4 695.0 261.4 249.7 249.7

Overall, the knowledge obtained by the task is mainly from
task-special features, and only a few common features provide
knowledge for all tasks. It indicates that there are fewer
similarities and more differences among tasks.

By analyzing the filters used in pairwise tasks, we find that
the intersection of features between any two tasks accounts
for about 30% of the total features. The union of features
between any two tasks accounts for about 75%− 82% of the
total features. The similarities and differences between tasks
can be calculated according to Definition 11.

• The difference between task 1 with task 2 and task 3 are
about 0.42 and 0.45, respectively. The difference between
task 2 with task 3 is about 0.54;

• The similarities of task 1 with task 2 and task 3 are about
0.45 and 0.4, respectively. In addition, the similarity of
task 2 with task 3 is about 0.35;

In general, the algorithm identifies that task 1 and task 2 have
the strongest correlation. In contrast, the correlation between
task 2 and task 3 is weaker.

For Cifar100, all filters are used during multi-task learning.
In addition, there is no filter contained in all tasks. Therefore,
the feature universal set of Cifar100 does not contain common
feature and redundant feature. So, heat maps are used to show
the relationship between tasks. Fig. 8 (a) and (b) show that the
proportion of intersection and union between any two tasks
accounts for about 25% − 30% of all filters. Fig. 8 (c) and
(d) show that task 4, task 7, task 12, and task 16 have strong
similarities and small differences with all tasks.

Fig. 7: Analyzing the learned features on DKL-mnist. Where ′|′ is the
percentage of set intersection, ′&′ is the percentage of a union of the set,
′D′ is the percentage of difference between the set union and intersection,
and it can be used to measure the difference between tasks; ′S′ is the ratio
of intersection and union of sets and it can be used to measure the similarity
of tasks.

E. Parameter Sensitivity Analysis

In this section, we verify the influence of the hyperparame-
ters on the performance of multi-task learning. Considering
the time consumption, the experiment is only carried out
on a small DKL-mnist dataset. Each individual iterates 2000
times during training. Other parameters are consistent with
the above experiments. The results are shown in Figure 9.
The values of metrics in the figure are the average of all task
performances. Mean is the average of three metrics. Results
show that algorithm with a larger population size or generation
size performs well. The outliers in the figure may be caused
by the randomness of the algorithm. The sensitivity analysis
of rmp shows that when the parameters are 0.2 and 0.6,
all metrics achieve better performance. It means that a good
balance between exploitation and exploration is obtained with
rmp = 0.2 or 0.6 in this case. Figure 9(c) shows the variation
of the algorithm performance with the loss function weight of
the main task. Overall, the algorithm tends to choose a larger
weight value. When the weight is 0.8, the algorithm has the
best performance.
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(a) Intersection (b) Union

(c) Similarity (d) Difference

Fig. 8: Illustration of the filters co-occurrence relation between tasks, for
Cifar100 with 20 tasks. (a) and (b) show the proportion of the intersection
and union of the task filter set to the total number, respectively. (c) shows the
similarities between tasks. (d). shows the differences between tasks.
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Fig. 9: Illustration of influence of hyperparameters on algorithm performance
for DKL-mnist dataset. (a) Influence of population size on algorithm per-
formance; (b) Influence of maximum evolutionary generation on algorithm
performance; (c) Influence of rmp on algorithm performance; (d) The
influence of the weights of the loss function on algorithm performance.

TABLE VI: COMPARATIVE STUDY OF SEVERAL EVOLUTIONARY
ALGORITHMS ON DKL-MNIST DATASET

Model Accuracy Precision Recall F-score

-GA 0.817 ± 0.003 0.631 ± 0.003 0.651 ± 0.003 0.628 ± 0.003
-MFDE 0.821 ± 0.003 0.637 ± 0.004 0.657 ± 0.004 0.635 ± 0.004

-MFPSO 0.821 ± 0.006 0.638 ± 0.007 0.659 ± 0.007 0.635 ± 0.007
-MFEA 0.827 ± 0.002 0.644 ± 0.003 0.664 ± 0.002 0.641 ± 0.003

F. Applicability of Other Multifactorial Evolutionary Algo-
rithms to ESSR

To demonstrate the applicability of ESSR, two multifactorial
evolutionary optimization algorithms1 MFPSO and MFDE
are also embedded into our multi-task learning framework.
In addition, the single-task genetic algorithm — GA is also
compared with the multi-task modeling method to verify the
advantages of multitasking algorithms. The objective function
of ESSR-GA is shown below:

(M, θ) = argmin
M,θ

T∑
t=1

Lt(M ⊙ θsh, θt). (11)

This is a single-objective optimization problem; the unique
solution of (M, θ) is obtained by minimized Eq.(11).

In this paper, the learning tasks mask is a discrete op-
timization problem, so the solutions generated by MFPSO
and MFDE must be a binary string containing only 0 or 1.
Therefore, for MFPSO and MFDE, the encoded individual
needs to be transformed into a binary string before decoding
it. For MFPSO, without changing the velocity update formula,
the position formula is redefined as follows:

xij =

{
0, rand ≥ Sigmoid(vij)

1, otherwise
, (12)

and
Sigmoid(vij) =

1

1 + e−vij
.

where vij and xij refer to the velocity and position of particle
i on j-th component, respectively; rand represents a random
number in the range of 0 and 1. For MFDE, the intermediate
individuals p generated by differential and mutation operators
are transformed as follows:

pij =

{
0, rand ≥ Sigmoid(pij)

1, otherwise
(13)

where pij refers to the j-th element of i-th intermediate
individual.

The comparative experiments of DKL-mnist are carried out.
In all experiments, a population of 20 individuals evolved
over 20 generations. The performance and evolution behaviors
of these algorithms are shown in Table VI and Fig. 10,
respectively. The results in Table VI are the “mean ± std”
of five times experiments on all tasks.

As shown in Table VI, the developed multifactorial evo-
lutionary algorithms work well. The performance of multi-
task modeling methods (MFDE, MFPSO, and MFEA) are
better than single-task modeling (GA), and MFEA has the best
performance. The performance of MFDE is similar to that of
MFPSO, but MFDE has less deviation and higher stability.
Then, we analyze the evolution behavior of the algorithm
accuracy and the average task accuracy across three tasks,
and the experimental results are presented in Fig. 10. And the
following findings are given: (1) MFEA shows strong learning
ability in all tasks, while MFDE and MFPSO tend to fall into
local minimum too early. MFPSO finds the best accuracy on

1The code is available at http://www.bdsc.site/websites/MTO/index.html.
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Fig. 10: Illustration of the evolution behavior of different evolutionary
algorithms for DKL-mnist dataset. (a) The evolutionary behavior of Task 1;
(b) The evolutionary behavior of Task 2; (c) The evolutionary behavior of
Task 3; (d) Mean evolutionary behavior.

3-rd and 4-th generation of task 1 and task 3, respectively.
For MFDE, the best accuracy obtained in task 2 has only
evolved for two generations. (2) GA outperforms MF- methods
in the initial phase, but the accuracy growth is not significant
during the 20 generations evolution. In contrast, multi-task
learning methods with poor initial performance exhibit strong
search ability later. Consequently, ESSR based on multi-task
modeling is reasonable compared to single-task, and MFEA
is more applicable to the ESSR learning framework among
multi-task modeling approaches.

V. CONCLUSION

To avoid task interference caused by negative knowledge
transfer in MTL, ESSR is proposed in this paper. It aims to
evolve a sparse sharing representation for each task. ESSR can
find the combination of tasks and sharing features adaptively
by multitasking modeling, and learning a sparse sharing sub-
network for each task. The multitasking optimization problem
is solved by a single population multifactorial evolutionary
algorithm (MFEA). The experiments demonstrate that ESSR
can mitigate the phenomenon of knowledge negative transfer
in MTL and obtain a small inference model.

However, this paper only investigates the performance of
ESSR in heterogeneous features MTL. The applicability of
this method in homogeneous features MTL, especially for
computer vision tasks with big data and network architecture,
needs further study. Due to differences in data features, it
is necessary to explore new iterative and gradient updating
approaches to ensure the performance of the algorithm. We
also need to design more appropriate evolution and evaluation
approaches to reduce the time consumption caused by the data

scale. In addition, the proposed methods will be extended to
Pareto multi-task learning in the future.
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