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Abstract—The pure accuracy measure is used to eliminate random consistency from the accuracy measure. Biases to both majority

and minority classes in the pure accuracy are lower than that in the accuracy measure. In this paper, we demonstrate that compared

with the accuracy measure and F-measure, the pure accuracy measure is class distribution insensitive and discriminative for good

classifiers. The advantages make the pure accuracy measure suitable for traditional classification. Further, we mainly focus on two

points: exploring a tighter generalization bound on pure accuracy based learning paradigm and designing a learning algorithm based

on the pure accuracy measure. Particularly, with the self-bounding property, we build an algorithm-independent generalization bound

on the pure accuracy measure, which is tighter than the existing bound of an order Oð1= ffiffiffiffiffi
N

p Þ (N is the number of instances). The

proposed bound is free from making a smoothness or convex assumption on the hypothesis functions. In addition, we design a learning

algorithm optimizing the pure accuracy measure and use it in the selective ensemble learning setting. The experiments on sixteen

benchmark data sets and four image data sets demonstrate that the proposed method statistically performs better than the other eight

representative benchmark algorithms.

Index Terms—Generalization performance bound, linear-fractional measure, pure accuracy, selective ensemble learning
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1 INTRODUCTION

DURING the process of decision-making, decision makers
often make random guesses, which may generate consis-

tencywith the true state.We call this kind of consistency as ran-
dom consistency. Designed by humans and induced from
some limited data, the learning algorithms analogously have
probabilities to generate randomness [1] and random consis-
tency [2], [3]. However, in the area of classification, simple con-
sistency measures, which are defined as general functions of
the entries in confusion matrix, are generally used to evaluate
the performance of the algorithms. For instance, the accuracy

measure is the summation of the true positive and the true neg-
ative, the F-measure and the G-mean measure are defined as
the harmonic mean and the geometrical mean of the precision
rate and the recall rate, respectively. They do not take the ran-
dom consistency into consideration. Evaluation results with
containing the random consistency may lead to a deceptive
feedback loop and thenmake an influence on the improvement
of the learning system.

Nowadays, eliminating random consistency from consis-
tency measures has become a hot research topic. This topic
originated from the area of educational psychology [4], [5],
[6], [7]. The researchers anticipated the expected score of the
accurate answer not by reason and logic would be zero
instead of one. With the zero baseline for a right guess,
reviewer may improve the reliability of assessment and
facilitate the examinees to increase their performance in a
proper way. Various approaches to correct chance agree-
ment have been proposed. One of the most used ones is to
penalize the right scores by wrongs with a factor that can
ensure the expected score of a pure guess is zero. Another
one is to define statistics that penalize the total agreement
by the associativity degree of examinees’ marginal distribu-
tions, such as Cohen’s k [8], Scott’s p [9], Goodman and
Kruskal’s � [10], Mak’s r and Hamann’s h [11]. These statis-
tics are built for hypothesis testing in inferential statistics
and used to make inferences about some unknown distribu-
tion parameters.

In the field of clustering, eliminating random consistency
recently serves as an important technique to evaluate the qual-
ity of clustering results. Adjusted Rand Index, a popular evalu-
ation measure in clustering, is defined by eliminating random
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consistency from the Rand Index [12]. Some other similarity
measures like Jaccard coefficient and information-entropy
basedmeasures are also promoted as correctionmeasures [13],
[14], [15]. Furthermore, the information-entropy based meas-
ures after correction show unbiasedness to the number and the
size of clusters [13], [14], [15]. As far as we know, the above
mentioned measures are often used in the final evaluation
stage anddo not participate in the process of learning.

A learning problem is a problem that considers two
topics: designing algorithms that can automatically improve
a performance measure from the experience data and esti-
mating the generalization ability of the learning algorithms.
In previous decades, the accuracy measure has been the
fundamental performance measure in learning. It has been
well-studied that the traditional algorithms, including logis-
tic regression, support vector machine and Adaboost are
designed to optimize convex surrogate loss functions of the
error probability (one minus accuracy) [16], [17]. And in
ensemble learning, accuracy has been used as the preferen-
tial measure to evaluate the performance of integration [18],
[19]. In addition, almost all learning theories focus on
searching the generalization bounds with respect to the
error probability [20], [21], [22], [23], [24].

With the interest in eliminating random accuracy from
the accuracy measure, Wang et.al [2] has defined a pure
accuracy measure (PA). Some classifiers that optimize PA
have been developed, which contain plug-in rule [2] and
support vector machine model (SVM) [3]. In [2], it has been
proved that learning by PA implies a good A by showing
the lower bound and the upper bound of the error probabil-
ity of the optimal rule in the sense of PA. In addition, the
learnability of PA has been shown in both finite and infinite
hypothesis spaces.

However, the proposed plug-in rule is incapable of pro-
viding a group of weight to show the importance of input
features, which hinders its use feature selection or in selec-
tive ensemble learning. The proposed SVM model approxi-
mately maximizes PA with fixing the positive probability of
the output label larger than that of the training label. In this
paper, we attempt to design an algorithm that optimizes
PA, which applies to the learning settings with a linear com-
bination of input as the decision function. We also aim to
survey the generalization performance of PA by a tighter
generalization bound.

The pure accuracy measure belongs to the class of linear-
fractional performance measures. Such measures include the
well-known Jaccard coefficient, F-measure and so on. The lin-
ear-fractional measures are non-decomposable, namely, they
cannot be represented as a summation over individual instan-
ces [25], [26], [27]. This property causes difficulties in estimating
themeasureswithout bias and the failure of the traditional gra-
dientmethods in optimizing them.

Recently, much interest has been put in the linear-frac-
tional measures, including some theoretical analysis on the
surrogate consistency between the linear-fractional meas-
ures with other losses [25], [26], [28], the consistency analysis
of the two-step approach to optimize the linear-fractional
measures [29], [30], [31], and the generalization performance
analysis of the linear-fractional measures [32]. It is worth
mentioning that Dembczy�nski et.al [32] provided a Rade-
macher complexity based generalization bound with an

order of Oð1= ffiffiffiffiffi
N

p Þ for the linear-fractional measures by
applying the property of p-Lipsitz continuity and the
Hoeffding’s inequality.

In designing algorithms, there are two types of methods:
indirect method and direct method. Indirect methods proceed
by formalizing a sequence of cost-sensitive classifiers or plug-
in rules to optimize the linear-fractional measures [29], [30],
[31], [33], [34], [35]. But the cost-sensitive classifiers are trapped
in the determination of combination coefficient for losses from
different classes, and the plug-in rules needmore training data
because it is a two-step process consisting of learning the poste-
rior probability and searching the truncated threshold to maxi-
mize the specified measure. Direct methods directly connect
the model parameters with the measures [27], [36], [37]. AMP
(Alternate Maximization Procedure) method [36] used the
lower level sets of the the linear-fractional measures and alter-
natively maximized the level value and the model parameters
to optimize themeasures. Bisectionmethod [31] used the same
idea as AMP method and searched the optimal level value in
binary. These two methods used the same strategy that intro-
duced a parameter to transform the problem of optimizing the
interestingmeasure to a linear one. This strategy is efficient but
may fail when the objective function also contains a regulariza-
tion term. SVMperf [37] optimized a convex relaxation of the
interested measure, which required that the margin between
the true label vector and the other possible label vectors should
be larger than the score evaluated by the specified measure.
Gradient method [38], [39] is an extension of SVMperf. It
inferred two label vectors to define the gradient of the linear-
fractional measure and searched the optimal model parameter
by gradient descent method. SVMperf and Gradient are novel
but are restricted by the large computational complexity.
Although the above algorithms effectively optimize the linear-
fractional measures, there still exists much room to promote
the optimization performance.

From the above reviews,we aim to develop a tighter gener-
alization bound and design a more direct learning algorithm
on the pure accuracymeasure. Themajor contributions of this
paper are summarized as follows:

� First, we build a generalization bound on PA based
on the Rademacher complexity and the number of
instances N . It declines faster than Oð1= ffiffiffiffiffi

N
p Þ with

considering the self-bounding property.
� Second, we design a method that directly optimizes

the pure accuracy measure. This method is used in the
scene of ensemble learning, and the corresponding
algorithm is called PASE. PASE does not use a relaxa-
tion loss and can be extended to optimize the models
containing regularization terms. Experimental results
demonstrate the effectiveness of PASE.

The organization of this paper is as follows.We give the def-
inition and the advantages of pure accuracy in Section 2. In Sec-

tion 3, an existing bound on pure accuracy is reviewed, then a

tighter concentration inequality and a tighter generalization

bound onPAare shown. In Section 4, first, the benchmark algo-

rithms are reviewed. Then PASE is presented and its perfor-

mance is validated through sixteen benchmark data sets and
four image data sets. Section 5 concludes this paper. All the
proofs and some experimental results are provided in the Sup-

plementary Material, which can be found on the Computer
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2 PURE ACCURACY AND ITS ADVANTAGES OVER

ACCURACY

In this paper, binary classification is considered. It aims to
learn a classifier hðXÞ mapping from the feature space X 2
X � R d to the binary label space Y 2 Y ¼ fþ1;�1g. The
classifiers are learnt from a hypothesis space H . To evaluate
the classifiers, the confusion matrix is often used, which is
defined as Table 1.

In Table 1

TP ¼ PX;Y ðhðXÞ ¼ þ1; Y ¼ þ1Þ; (1)

FP ¼ PX;Y ðhðXÞ ¼ þ1; Y ¼ �1Þ; (2)

FN ¼ PX;Y ðhðXÞ ¼ �1; Y ¼ þ1Þ; (3)

TN ¼ PX;Y ðhðXÞ ¼ �1; Y ¼ �1Þ; (4)

and the positive class probabilities of h and Y are

qðhÞ ¼ PXðhðXÞ ¼ þ1Þ; p ¼ PY ðY ¼ þ1Þ; (5)

respectively. In a learning task, p is taken as a constant, and
qðhÞ is an unknown quantity w.r.t the output of the
classifier.

Based on the confusion matrix, the accuracy measure (A)
and the error probability (L) are defined as

AðhðXÞ; Y Þ ¼ PX;Y ðhðXÞ ¼ Y Þ ¼ TP þ TN; (6)

LðhðXÞ; Y Þ ¼ PX;Y ðhðXÞ 6¼ Y Þ ¼ FP þ FN; (7)

respectively.
The underlying probability distribution of X � Y is usually

unknown. We only have a collection of empirical data drawn
independently from it, denoted as SN ¼ fðxx1; y1Þ; . . .; ðxxN;
yNÞg. In the empirical situation, the letter with a hat and a sub-
script N denotes the corresponding empirical measure. For
example, the empiricalmeasure of TP is

cTPN ¼ 1

N

XN
i¼1

I½hðxxiÞ ¼ þ1; yi ¼ þ1�; (8)

where I is the indictor function.

2.1 A Framework of Pure Consistency Measure

To evaluate the performance of the classifier, a consistency
measure (CM) is usually introduced.

Definition 1. For two random discrete variables Z1 and Z2, a
measure is a CM, if for 8 z 2 Z, it increases monotonically
with pz ¼ PZ1;Z2

ðZ1 ¼ z; Z2 ¼ zÞ, where Z is the domain of the
variables.

The accuracy increases monotonically with TP and TN.
Then, A is a consistency measure of hðXÞ and Y , while the
error probability is not.

For two discrete variables, if at least one of them is a
totally random variable, there also exists consistency
between them. Consistency generated by randomness
rather than by logic may influence the objectivity and reli-
ability of the evaluation result. To measure this kind of con-
sistency, random consistency measure (RCM) is defined as
follows.

Definition 2. A measure is a RCM if it can measure the consis-
tency that is generated by randomness.

To measure the pure consistency, a general framework of
pure consistencymeasure (PCM) is defined as follows [8], [12].

Definition 3. For two random discrete variables Z1 and Z2,
PCM is defined as

PCMðZ1; Z2Þ

¼ CMðZ1; Z2Þ �RCMðZ1; Z2Þ
maxZ1;Z2

CMðZ1; Z2Þ �RCMðZ1; Z2Þ : (9)

The framework of PCM is to subtract a random consis-
tency measure from the original consistency measure and
then to normalize the maximal value to 1 by an upper
bound. When PCM=0, the consistency of Z1 and Z2 is con-
sidered to be generated completely by randomness.

2.2 The Definition of Pure Accuracy

We give the concrete formulation of RCM and PCM in the
context of accuracy, and call the random consistency in
accuracy as Random Accuracy (RA) and the eliminated
measure as Pure Accuracy (PA). How to define RA is crucial
to formulize PA.

Here, we follow the definition of RA in [2], [3], where RA
is defined as the mean accuracy over a binary partition
class. For the classifier hðXÞ to be evaluated, the binary par-
tition class H qðhÞ contains all the possible binary partitions
that have the same class distribution as hðXÞ. That is

H qðhÞ ¼ fh0jPXðh0ðXÞ ¼ þ1Þ ¼ qðhÞ; h0ðXÞ 2 fþ1;�1gg:
(10)

Different with partitions in [40], the partitions in H qðhÞ are
independent of X. For N instances, a partition in H qðhÞ is a 1
byN vector with each element taking values from fþ1;�1g.
Each element corresponds to a predict label of each
instance.

In [2], it has been proved that when the partitions h0 in
H qðhÞ follow the uniform distribution, their true positive
number N � cTPNðh0Þ follows the hypergeometric distribu-
tion with the parameterNqðhÞ andNp. That is

N � cTPNðh0Þ � PHG NqðhÞ; N;Npð Þ; (11)

where the function PHGðNqðhÞ; N;NpÞ represents the proba-
bility of obtaining exactly N � TP ðh0Þ positive instances and
NqðhÞ �N � TP ðh0Þ negative instances if NqðhÞ instances are
chosen at random without replacement from a finite

TABLE 1
Confusion Matrix

hðXÞ
Y Y ¼ þ1 Y ¼ �1 Total(h)

hðXÞ ¼ þ1 TP FP qðhÞ
hðXÞ ¼ �1 FN TN 1� qðhÞ
Total(Y ) p 1� p 1
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population containing N instances of which Np are the
number of positive instances and N �Np are the number
of negative instances. Thus, according to the properties
of hypergeometric distribution, the expectation value1 ofcTPNðh0Þ is

Eh0:h02H qðhÞ
cTPNðh0Þ ¼ pqðhÞ: (12)

The true negative number N � TNðh0Þ follows the hypergeo-

metric distribution with the parameters Nð1� qðhÞÞ and
Nð1� pÞ

N � cTNNðh0Þ � PHG Nð1� qðhÞÞ; N;Nð1� pÞð Þ; (13)

and

Eh0:h02H qðhÞ
cTNNðh0Þ ¼ ð1� pÞð1� qðhÞÞ: (14)

Thanks to the partitions having the same class distribu-
tion and following the uniform distribution, the expectation
of their cTPNðh0Þ and cTNNðh0Þ have the above simple formu-
lations. Then the random accuracy has the following simple
formulation.

Definition 4 ([2], [3]). RA of hðXÞ is defined as

RAðhÞ ¼ pqðhÞ þ ð1� pÞð1� qðhÞÞ: (15)

Definition 5 ([2], [3]). Under the framework of PCM, PA of
hðXÞ is defined as

PAðhðXÞ; Y Þ ¼ AðhðXÞ; Y Þ �RAðhðXÞ; Y Þ
1�RAðhðXÞ; Y Þ : (16)

Note that the formulation of PA coincides with the defi-
nition of Cohen’s k statistic [8], which measures the chance
agreement between two raters by assuming the raters are
statistically independent. However, the way we define RA
may inspire the other new formulations by attaching more
complex distribution on H qðhÞ or using the other estimators
except expectation over the partitions.

In the area of detecting the dependence between func-
tions, the indeed independence statistics are derived, which
satisfy the property that their value are zero when the func-
tions are statistically independent. Based on the statistics,
superior independence test and regression method have
been developed [41], [42]. The RA measure is a kind of inde-
pendence criterion between the output label of classifier and
the true label. The PA measure is indeed a dependence cri-
terion due to minus RA from A, i.e., PA satisfies the prop-
erty that its value is zero if and only if the output label of
classifier and the true label are statistically independent.

For simplicity, we omit the functional dependence on X
and Y in the following notations. Here, we give some repre-
sentations of PA for further analysis.

Definition 6. The linear-fractional measure [28] is defined as

CðhðXÞ; Y Þ ¼ a0 þ a1TP þ a2FP þ a3FN þ a4TN

b0 þ b1TP þ b2FP þ b3FN þ b4TN
; (17)

where ai; bi, i ¼ 0; . . .; 4 are constants.

Due to LðhÞ ¼ 1�A ¼ FP þ FN and qðhÞ ¼ pþ FP �
FN , PA can be represented as

PA ¼ 1� LðhÞ
pþ ð1� 2pÞqðhÞ ; (18)

¼ 1� FP þ FN

2pð1� pÞ þ ð1� 2pÞðFP � FNÞ : (19)

Obviously, PA belongs to the linear-fractional measures.
To give more intuition of PA, we show some learning set-

tings that PA and A are linear.

Theorem 1. PA and A are linear in the following cases: (1) when
p ¼ 1

2 , PA ¼ 2A� 1; (2) when qðhÞ ¼ q0, q0 is a constant tak-
ing value in [0,1], PA ¼ 1� A

pþð1�2pÞq0 .

We omit the proof of Theorem 1 because it can be easily
obtained by definition.

The first case of Theorem 1 corresponds to a learning
problem where the class distribution is totally balanced.
The second case means the positive class probability of the
classifier is fixed, which may occurs in the proportion learn-
ing problem [43]. In this problem, the training data is pro-
vided in groups and only the proportion of each class in
each group is known. In such two cases, the evaluation
results of PA and A are consistent, and PA can be maxi-
mized through maximizing A.

2.3 Advantages of Pure Accuracy

In [2], we have shown that compared with A, PA is class
distribution insensitive and lower biased. As is well-known,
F-measure (FM) is a kind of measure suited to learning [44].
Here, we aims to compare PA with A and FM in the view of
class distribution insensitivity and discrimination.

Far more than the class imbalance of data, many factors
can influence the class distribution of classifier, such as
noise, overlap and even human-bias [45]. These factors
often exists together in a learning task. For a learning task,
the property of class distribution insensitivity helps the
learning algorithm get closer to the true class distribution.

Advantage 1 (Class Distribution Insensitivity).
As the definition of RA, a binary partition can be deemed

as an output of a classifier. By enumerating all possible
binary partitions, we study how the value of A, FM and PA
change with the class distribution of classifier. When N ¼
100, p ¼ 0:3 and N ¼ 500, p ¼ 0:02, we calculate the values
of the measures and the positive-class probability of the
binary partition. Fig. 1 visualizes the calculation results.
From Figs. 1a and 1b, it can be observed that the leftmost
point is far higher than the rightmost point, indicating that
the accuracy value plane is inclined. From Figs. 1c and 1d, it
can be observed that the rightmost point is not equal to the
leftmost point, indicating that the F-measure value plane is
inclined. From Figs. 1e and 1f, it can be observed that both
the leftmost point and the rightmost point are equal to zero,
indicating that the pure accuracy plane is not inclined.

1. For a learning task, the true label of instance is fixed. The parti-
tions in H qðhÞ are the possible predict vectors with the same class distri-
bution. They have different accuracy values. The expectation is
calculated over these values.
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These signifies that PA is a performance evaluation measure
that is more insensitive to the class distribution of classifier
than A and FM.

Next, we give some brief theoretical analysis on the class
distribution insensitivity of PA and FM. It has been shown
that the optimal rule of a a linear fractional measure has the
formulation of hðxxÞ > r [2], where hðxxÞ ¼ Pðy ¼ 1jxxÞ and
r 2 ½0; 1�. In Theorem 1 of [2], it has been shown that for PA,
the decision value rPA ¼ hðxxÞ > ð12 � pÞPA	 þ p, where
PA	 ¼ PAðh	

PAÞ, h	
PAðxxÞ ¼ argmaxhPAðhÞ and p ¼ PðY ¼

þ1Þ. By the same technique in proving Theorem 1 of [2], we
obtain that for FM, the decision value is rFM ¼ 1

2FM
	, where

FM	 ¼ FMðh	
FMÞ and h	

FMðxxÞ ¼ argmaxhFMðhÞ.
Obviously, rPA is a function related to p, while rFM is not

related to p. This signifies that the optimal rule learned by
PA is able to tune with the class distribution of the true
label. This makes PA not be biased to different classes. Thus
PA is class distribution insensitive. However, from rFM , we
cannot obtain such observation.

Next, we will show that compared with FM, learning by
PA is better.

Theorem 2. For two classifiers hi, i ¼ 1; 2, satisfying

PAðh1Þ 
 PAðh2Þ
FMðh1Þ � FMðh2Þ;

�
(20)

we have

Lðh1Þ � Lðh2Þ
qðh1Þ � qðh2Þ

�
(21)

From Theorem 2, we can conclude that for a classifier
with a bigger PA but a smaller FM, both the error probabil-
ity and positive class probability are smaller. This signifies
that when the evaluation results of PA and FM are inconsis-
tent, the evaluation of PA is more reasonable because it
rewards the classifier with a higher accuracy value and a
lower probability to output the minority class.

Advantage 2 (More Discriminative). Accuracy is the expec-
tation of 0�1 step function. The value range of it is limited.
As shown in Table 2, although h1; h2 and h3 make different
predictions on ten instances, they are assigned with the
same A value. However, they have different PA values.
Furthermore, we have the following result on the discrimi-
nation ability of PA and A.

Theorem 3. Let Table ¼ ðTP; FP; FN; TNÞ denote the confu-
sion matrix. Suppose the number of instances is N , for two
confusion matrices Tablei, i ¼ 1; 2, let

P ¼ fðTable1; Table2ÞjPA1 6¼ PA2; A1 ¼ A2g;
Q ¼ fðTable1; Table2ÞjA1 ¼ A2g; (22)

we have jP j ! jQ j asN ! 1.

The set jP j contains the pair of classifiers that are
assigned the same A value but different PA value. The set
jQ j contains the pair of classifiers that are assigned the same
A value. Theorem 3 tells us that with the number of instan-
ces tends to infinity, the size of jP j tends to the size of jQ j,
which signifies that PA can distinguish almost all classifier
pairs that cannot be distinguished by A.

Next, we compare the distinction ability of PA and FM
for good classifiers. A classifier is good if its bias is low and
accuracy is high. The bias is defined as

Bias ¼ ��PðhðXÞ ¼ þ1jY ¼ �1Þ � PðhðXÞ ¼ �1jY ¼ þ1Þ��
¼
���� FP

1� p
� FN

p

����; (23)

which measures the difference between the error probabil-
ity of the two classes. Fig. 2 depicts three groups of bar
whenN ¼ 100. From left to right, the bars are the number of
pairs that h1 is better than h2, the number of better classifiers
that PA can distinguish and the number of better classifiers
that FM can distinguish, respectively. That is, the bars are
the size of the set B ¼ fðTable1; Table2ÞjA1 
 A2; Bias1 �
Bias2g, the number of table pairs that satisfies PA1 
 PA2 in
B and the number of table pairs that satisfies FM1 
 FM2 in
B, respectively. From Fig. 2, we observe that the bars of PA
are higher than the ones of FM under different numbers of

Fig. 1. Comparison on class distribution insensitivity.

TABLE 2
An Example on Distinction Ability of a and PA

X x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 A PA

Y �1 �1 �1 �1 �1 �1 �1 �1 þ1 þ1

h1 �1 �1 �1 �1 �1 �1 þ1 þ1 þ1 þ1 0.8 0.5455
h2 �1 �1 �1 �1 �1 �1 �1 þ1 þ1 �1 0.8 0.3750
h3 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 0.8 0
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positive instances. This means that PA has a better distinc-
tion ability for good classifiers than FM.

3 THE GENERALIZATION ABILITY OF LEARNING BY

PA

Through the training data set, classifiers can be obtained by
optimizing some performance measures. How the classifiers
perform on the new data is known as the generalization ability
or the learning ability. The generalization ability investigation
about PA can be summarized as bounding the deviation
between the true PA and the empirical PA,which is

jPAðL; p; qÞ � cPANð bLN; bpN; bqNÞ��: (24)

The generalization bound is of great importance for us to
understand what factors influence the performance. A
tighter bound maybe helpful to design an algorithm with a
fast speed of convergence and high generalization ability.
Many effort have been put on developing tighter generaliza-
tion bound [24], [46], [47], [48], [49], [50]. In this section, we
investigate the learning ability of PA by giving a tighter gen-
eralization bound.

3.1 An Existing Oð1= ffiffiffiffiffi
N

p Þ Bound of PA

Concentration inequalities provide bounds on how a ran-
dom variable deviates from its expected value. For simple
random variables and their summations, these kind of
inequalities have been thoroughly studied and well
developed [51].

There are two obstacles of using concentration inequal-
ities on the linear-fractional measures. One is that the
empirical measure is not an unbiased estimation of the true
measure. The other is that the linear-fractional measures
cannot be obtained by summations on individual instances.
To solve these obstacles, K. Dembczy�nski et.al. [32]
employed the p-Lipschitz continuity, which is a generalized
property of the Lipschitz continuity with replacing the Lip-
schitz constant by a parameter in terms of p.

Definition 7 (p-Lipschitz [32]). For performance measure
CðZ; p; qÞ, it is p-Lipschitz with respect to Z; p; q. If for any fea-
sible Zi; pi; qi, i ¼ 1; 2, it satisfies

��CðZ1; p1; q1Þ �CðZ2; p2; q2Þ
��

� Zp

��Z1 � Z2

��þ Pp

��p1 � p2
��þQp

��q1 � q2
��; (25)

where Zp; Pp;Qp are constants depended on p.

Thus, the upper bound of the deviation on C can be
obtained by combining the bounds of deviations on Z; p; q.

The complexity parameter of the hypothesis space is a
key factor in developing a generalization bound. In [52],
a more practical complexity parameter and a theoretical
framework for deriving bounds based on it for prefer-
ence-based learning are proposed. In [53], non-trivial
bounds of some complexity parameters are determined,
based on which the proposed algorithm was proved to
be near-optimal. In binary classification, the Rademacher
complexity is a good choice for infinite hypotheses space.
Based on Rademacher complexity, one can obtain tighter
bounds than based on the growth function and the VC-
dimension [54]. Rademacher complexity measures the
data description capability of the hypothesis space by
measuring the fitting ability to the random uniform
noise.

Definition 8 ([54]). The Rademacher complexity of a hypothesis
class F is defined as

RðF Þ ¼ Es;Xsupf2F

���� 2NXN
i¼1

sifðxiÞ
����; (26)

where si are r.v. with Pðsi ¼ þ1Þ ¼ Pðsi ¼ �1Þ ¼ 1
2 .

Based on the property of p-Lipschitz continuity and the
Rademacher complexity, a generalization bound for perfor-
mance measures is given [32].

Theorem 4 ([32]). Let CðTP; p; qÞ be a p-Lipschiz continuous
performance measure w.r.t TP; p; q. Then, for all h 2 H , t >
0, with a probability at least 1� expf�tg over the random
choice of sample SN , we have��CðTP; p; qÞ � bCNðTP; p; qÞ

��
� maxfTPp; Pp;Qpg

�
2RðH Þ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ ln 4

2 N

r
þ 1ffiffiffiffiffi

N
p

�
: (27)

By simple calculation, we know that PA is p-Lipschitz w.
r.t TP; p; q with the constantmaxfTPp; Pp;Qpg ¼ 3=p.

Corollary 1 (Corollary of Theorem 4). For all h 2 H , t >
0, with a probability at least 1� expf�tg over the random
choice of sample SN , we have����PA y; hðxxÞð Þ � cPAN y; hðxxÞð Þ

����
� 3

p

�
2RðH Þ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ ln 4

2 N

r
þ 1ffiffiffiffiffi

N
p

�
: (28)

Generally, the order of the Rademacher complexity is
Oð1= ffiffiffiffiffi

N
p Þ [50]. Corollary 1 gives a generalization bound of

PA in an Oð1= ffiffiffiffiffi
N

p Þ order. From Corollary 1, we can draw a
conclusion that the gap between the true PA value and the
empirical one tends to zero with the instances tends to infin-
ity and the rate of decline is Oð1= ffiffiffiffiffi

N
p Þ.

Fig. 2. Comparison on distinction ability.
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3.2 A Tighter Concentration Inequality for Bounding
PA

The self-bounding property and a sub-poissonian concen-
tration inequality are presented in this subsection. The
property of self-bounding was first proposed by S. Bou-
cheron [55]. With the self-bounding property, the variance
of variables can be dominated by their expectations, which
signifies that most of the distribution information is concen-
trated around the expectation. Popular complexity meas-
ures are self-bounding, such as the VC-dimension and the
Rademacher complexity.

Definition 9 (Self-Bounding [55]). For independent random
variables X1; . . .; XN 2 X , let X ¼ ðX1; . . .; XNÞ 2 X N , and
X

ðiÞ ¼ ðX1; . . .Xi�1; Xiþ1; . . .; XNÞ 2 X N�1 for each i. A mea-
surable function Z : X ! R satisfies the self-bounding prop-
erty, if there exists a measurable function Zi : X

ðiÞ ! R , such
that, for everyX 2 X N , we have

0 � ZðXÞ � ZiðXðiÞÞ � 1; (29)XN
i¼1

ZðXÞ � ZiðXðiÞÞ
� �

� ZðXÞ: (30)

The self-bounding property is more advanced than the
commonly-used bounded difference. The bounded difference
property is the foundation of the widely-used McDiarmid’s
inequality, which is the foundation of Theorem 4 and Corol-
lary 1. The self-bounding facilitates the following tighter Sub-
Poissonian concentration inequality.

Lemma 1 (A Sub-Poissonian Inequality [55]). If Z is a
self-bounding function, then for all " > 0, we have

P Z 
 EZ þ "ð Þ � exp

�
� EZ’

�
"

EZ

�	
: (31)

Moreover for 0 < " < EZ holds

P Z � EZ � "ð Þ � exp

�
� EZ’

�
"

EZ

�	
; (32)

where ’ðuÞ ¼ ð1þ uÞ lnð1þ uÞ � u, for u 
 �1.

Sub-Poissonian inequality gives a bound in terms of the
expectation. The bound has no connection with the variance
or some variance-like terms, which will be helpful to
develop a tighter bound.

From the concentration inequality, we are more inter-
ested in estimating the deviation upper bound " with a
specified confidence level. But the inverse function of ’ðuÞ
in Lemma 1 is not closed. This hinders the functional
expression of the deviation bound with respect to the confi-
dence level. To handle this, one often further amplifies the
inequality by an elementary inequality [51]

’ðuÞ 
 ’2ðuÞ ¼
u2

2þ 2 u=3
:

Here, we use ’1ðuÞ to amplify ’ðuÞ

’1ðuÞ ¼ 3ð3þ u� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6 u

p Þ:
The inverse function of ’1ðuÞ is closed, and the proposed
lower bound ’1ðuÞ is larger than the usually used ’2ðuÞ. As
shown in Fig. 3, ’1ðuÞ locates between ’ðuÞ and ’2ðuÞ. Based
on ’1ðuÞ, we have

Corollary 2. If Z is a self-bounding function and satisfies EZ >
0, then for all t > 0, we have

P Z 
 EZ þ t

3
þ

ffiffiffiffiffiffiffiffiffiffiffi
2tEZ

p� �
� expf�tg; (33)

moreover for t > 4EZ, we have

P Z � EZ � t

3
�

ffiffiffiffiffiffiffiffiffiffiffi
2tEZ

p� �
� expf�tg: (34)

Next, we extend Corollary 2 to general functions.

Lemma 2. Let F : R ! ½0; 1� be a non-zero measurable and addi-
tive 2 function class defined on random variables Z. Then, for
all f 2 F , t > 0, with a probability at least 1� expf�tg over
the i.i.d. sample set DN ¼ fzz1; . . .; zzNg, we have

EfðzzÞ � bENfðzzÞ þRðF Þ þ t

3 N
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tRðF Þ

N

r
; (35)

and

bENfðzzÞ � EfðzzÞ þRðF Þ þ t

3 N
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tRðF Þ

N

r
: (36)

Lemma 2 is a major result. It provides an upper and
lower bound for the expectation of general additive func-
tions. The bound is based on the Radermacher complexity
RðF Þ, the number of instances N and the confidence level
term t. Its order is Oð1=N þ 1=

ffiffiffiffiffi
N

p Þ. Lemma 2 improves the
bounds of Theorem 3.1 in [54].

Lemma 2 and its proof skills can be extended to rein-
forcement learning and stochastic convex optimization set-
tings to improve the existing generalization bound, which
maybe helpful to design algorithms with a fast convergence
rates.

Based on Lemma 2, a generalization bound on the proba-
bility of error can be developed.

Fig. 3. Comparison of the Elementary Functions.

2. Here, the additive property means that bENfðzzÞ ¼ 1
N

PN
i¼1 fðzziÞ.
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Theorem 5. Suppose that f1;f2: R ! ½0; 1� satisfies: f2ðuÞ �
I½u � 0� � f1ðuÞ. For every h 2 H , t > 0, with a probability
at least 1� expf�tg over the random choice of sample SN , we
have

P yhðxxÞ � 0ð Þ � bEN f1ðyhðxxÞð Þ þRð~f1 � H Þ

þ t

3 N
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tRð~f1 � H Þ

N

s
; (37)

and

P yhðxxÞ � 0ð Þ 
 bEN f2ðyhðxxÞð Þ �Rð~f2 � H Þ

� t

3 N
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tRð~f2 � H Þ

N

s
; (38)

where
~fi � H ¼ fðxx; yÞ ! fiðyhðxxÞÞ � fið0Þ; h 2 H ; i ¼ 1; 2g.
Theorem 5 provides an upper and lower bound for the

expectation of the error probability. The bound is based on
some empirical loss f, the Radermacher complexity RðF Þ,
the number of instances N and the confidence level term t.
Its order is Oð1=N þ 1=

ffiffiffiffiffi
N

p Þ. Theorem 5 improves the
bounds of Theorem 7 in [22].

3.3 A Tighter Generalization Bound of PA

Generalization bounds for PA is based on the above prelimi-
nary results, including Corollary 2, Lemma 2 and Theorem
5. First, we use the p-Lipschitz continuous property to han-
dle PA.

Lemma 3. PA is p-Lipschitz continuous with respect to L; p; q.
That is, for 8Li; pi; qi; i ¼ 1; 2, we have��PAðL1; p1; q1Þ � PAðL2; p2; q2Þ

�� (39)

� 2

p

��L1 � L2

��þ ��p1 � p2
��þ ��q1 � q2

��
 �
; (40)

where L is the error probability and p; q is the positive-class
probability of the true label and the classifier, respectively.

Theorem 6. For every h 2 H and a large enough t > 0, with a
probability at least 1� expf�tg, we have����PA y; hðxxÞð Þ � cPAN y; hðxxÞð Þ

���� � 4

p

�
RðH Þþ

tþ ln 6

2 N
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðtþ ln 6Þ

N

r ffiffiffiffiffiffiffiffiffiffiffiffi
RðH Þ

p
þ

ffiffiffi
p

p
2

� ��
: (41)

Theorem 6 gives a generalization bound of PA in an
Oð1=N þ 1=

ffiffiffiffiffi
N

p Þ order. The bound is based on the Rader-
macher complexity, which is suited to both finite and infi-
nite hypothesis space. From Theorem 6, we can draw a
conclusion that the gap between the true PA value and the
empirical ones tends to zero with the instances tends to
infinity and the rate of decline is Oð1=N þ 1=

ffiffiffiffiffi
N

p Þ. Theorem
6 considers the same factors as Corollary 1. Next, we show
that with a large number of instances, the bound in Theo-
rem 6 is tighter than the existing bound in Corollary 1.

Corollary 3. Using B1ðNÞ to denote the bound in Corollary 1
and B2ðNÞ denote the bound in Theorem 6, i.e.,

B1ðNÞ ¼ 3

p

�
2RðH Þ þ 3

ffiffiffiffiffi
t1
N

r
þ 1ffiffiffiffiffi

N
p

�
; (42)

and

B2ðNÞ ¼ 2

p

�
2RðH Þ þ t2

N
þ

ffiffiffiffiffiffiffi
2t2
N

r
2
ffiffiffiffiffiffiffiffiffiffiffiffi
RðH Þ

p
þ ffiffiffi

p
p� ��

; (43)

where t1 ¼ tþln 4
2 , t2 ¼ tþ ln 6, RðH Þ is the Rademacher com-

plexity of the hypothesis space H , N is the number of instan-
ces, p is the probability of positive class and t is a term in
confidence level. If

ffiffiffiffiffi
N

p
>

t2

3
ffiffiffiffi
t1

p þ 1� ffiffiffiffi
t2

p ð2 ffiffiffiffiffiffiffiffiffiffiffiffi
RðH Þp þ ffiffiffi

p
p Þ ; (44)

we have that B1ðNÞ > 3
2B2ðNÞ.

The bounds in Corollary 3 are based on the Radermacher
complexity, which are suited to both finite and infinite
hypothesis space. However, for some infinite hypotheses,
the computation of Radermacher complexity is hard. To
visually compare the bounds, we further amplify the Rader-
macher complexity by Massart’s Lemma [54]. Massart’s
Lemma bounds the Radermacher complexity by the size of
the hypothesis. Thus, the bounds can be calculated and
depicted for some finite hypothesis space. Let gmax ¼
maxfðxxiÞð

PN
i¼1 fðxxiÞ2Þ1=2, Massart’s Lemma tells us that the

Radermacher complexity can be bounded by

RðF Þ � gmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log jF jp
N

; (45)

where jF j is the size of F .
Now, we compare the tightness of the bounds in a simple

weighted ensemble learning scene.
Given T base classifiers h1; h2; . . . ; hT , for the weighted

ensemble learning, the prediction of an instance can be for-

mulated as hwwðxxÞ ¼
PT

j¼1 wjhjðxxÞ. Here, we consider a sim-

ple weighted ensemble scene, where the weight of each
base classifier takes value from w 2 f�1; 0; 1g. The hypothe-
sis space of this weight ensemble learning is Hww ¼ fwwjww ¼
ðw1; w2; . . .; wT Þ; wi 2 f�1; 0; 1g; 0 � i � Tg. For T classifiers,
we have jHwwj ¼ 3T because the weight of each classifier has
three values.

To depict the bounds, we set p ¼ 0:3, t ¼ lnð1=0:95Þ,
gmax ¼ ffiffiffiffiffi

N
p

. Thus

RðHwwÞ � gmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T log 3

p
N

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T log 3

p ffiffiffiffiffi
N

p : (46)

Putting the above size-based upper bound of Rader-
macher complexity in BiðNÞ, we can obtain the upper
bound of BiðNÞ and denote the upper bound as �BiðNÞ, i ¼
1; 2. As shown in Fig. 4, We can see that in this simple
weighted ensemble learning scene, �B2ðNÞ (the red curve)
falls faster than �B1ðNÞ(the blue curve).
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4 SELECTIVE ENSEMBLE LEARNING BASED ON PA

In this section, we design a learning algorithm that applies to
any learning setting using a linear combination model of the
input as the decision function. Such settings include the tradi-
tional classificationwhichuses a linear combination of the fea-
tures as the decision function, the kernel methodwhich uses a
linear combination of the features as the decision function,
and the selective ensemble learningwhich uses a combination
function of the base classifiers as the decision function.

In this paper, we use the algorithm in the setting of selec-
tive ensemble learning. The reason is that the selective
ensemble learning does not contain too many learning
tricks, such as kernel functions or data normalization. Thus,
compared with other settings, it can highlight the role of
performance measures.

In the scene of optimization based selective ensemble
learning, the combination terms are the base classifiers. Let
the base classifier set be H ¼ fhh1; hh2; . . . ; hhTg, where hhj ¼
ðhjðxx1Þ; . . .; hjðxxNÞÞ. Let the weight vector be ww ¼
ðw1; w2; . . . ; wT Þ 2 R þ. Following the traditional setting, the
classifiers are combined by the weighted vote hwwðxxÞ ¼PT

j¼1 wjhjðxxÞ during training, and the prediction label for xx
is þ1 if hwwðxxÞ > 0; otherwise, the output is �1. With opti-
mizing some specified performance measure, the optimal
weight vector ww	 is obtained, and the classifiers with a
weight above a threshold will be selected.

In past decades, there are several optimization methods
to select classifiers. In the following, we list two representa-
tive methods which optimized accuracy related measures:

� GASEN [18] significantly improved the performance
of neural network ensemble through selective learn-
ing, which employed the empirical error probability
as the performance measure

1

N

XN
i¼1

�
I yihwwðxxiÞ < 0½ � þ 1

2
I yihwwðxxiÞ ¼ 0½ �

�
: (47)

The optimal weights is found by the genetic
algorithm.

� RSE [56] solved the problem of selective ensemble
under the regularization framework. The objective
function is the hinge loss function with a graph Lap-
lacian regularizer. The hinge loss function is

1

N

XN
i¼1

maxf0; 1� yihwwðxxiÞg: (48)

The optimal weights is found by the quadratic
program.

In this paper, we aim at developing a selective method
based on PA. The linear learning algorithm optimizing PA
can be formalized as

min
ww

L̂NðwwÞ
p̂N þ ð1� 2p̂NÞq̂NðwwÞ ; s:t: ww > 0; (49)

where L̂NðwwÞ ¼ 1
N

PN
i¼1 I½yihwwðxxiÞ < 0� and q̂NðwwÞ ¼

1
N

PN
i¼1 I½hwwðxxiÞ > 0�. This is a model of optimizing the non-

convex linear-fractional measures C (defined in Definition
6). Traditional gradient methods can not obtain a satisfac-
tory solution for these measures. Besides, both the numera-
tor and denominator of the objective function contain the
non-smooth indicator function. Directly optimizing it leads
to an NP-hard combinatorial problem. Thus, first, we need
to approach the indicator function by some smooth func-
tions. Here, we use the sigmoid function. Particularly,
L̂NðwwÞ and q̂NðwwÞ are substituted by

L̂N;sðwwÞ ¼ 1

N

XN
i¼1

1

1þ eyihwwðxxiÞ
; (50)

q̂N;sðwwÞ ¼ 1

N

XN
i¼1

1

1þ e�hwwðxxiÞ : (51)

As is well known, there are many convex functions that
can be used to surrogate the indicator function, such as the
hinge function, the exponential function, the logarithmic
function and so on [16]. We choice the sigmoid function due
to its boundness property. This property will be helpful for
optimization.

4.1 Reviews on the Models of Optimizing Linear-
Fractional Measures

Now we make a review on the existing models of optimiz-
ing the linear-fractional measures, including the plug-in
method, SVMperf [37], the bisection method [31] and the
gradient method [38].

4.1.1 Plug-In

The plug-in rule [28] refers to the rule with a formulation of
hðxxÞ ¼ signðĥðxxÞ � d	Þ, where ĥðxxÞ is an estimator of the
posterior probability hðxxÞ ¼ PðY ¼ þ1jX ¼ xxÞ and d	 is a
threshold. The plug-in method is a two-step method, which
includes learning ĥðxxÞ through minimizing a proper loss
function and searching d	 through maximizing the empirical
fractional-measure. This method requires to estimate the
posterior probability and to learn a proper threshold. Thus,
it needs more data to avoid over-fitting.

4.1.2 Svmperf

The basis idea of SVMperf [37] is that the margin deviation
between the true label vector and the others should be lager
than theirC value

Fig. 4. Comparison of �B1ðNÞ and �B2ðNÞin the simple weighted ensemble
learning scene.
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min
ww;�
0

1

2
kwwk2 þ C� (52)

s:t: 8�y0 2 Y n�y : �yhT
wwðxxÞ � �y0hT

wwðxxÞ 
 Cð�y; �y0Þ � �;
(53)

where hwwðxxÞ is the prediction result, Y ¼ f1gN is the space
of label vector and y ¼ ðy1; y2; . . .; yNÞ is the true label vector.
The time consuming of SVMperf is intolerable, because the
number of constraints is 2N � 1. T. Joachims [37] iteratively
solved the program with a sparse subset of the constraints
set and the most violative constraint is added in each
iteration.

4.1.3 Bisection

In the area of fractional program, there exists a method to
solve the linear-fractional optimization problem by intro-
ducing a parameter.

Theorem 7 (Parameter-Based Method [57], [58]). For pro-
gram with a ratio of two functions as the objective function

min
ww

F1ðwwÞ
F2ðwwÞ ; s:t: ww 2 W ; (54)

where F2ðwwÞ > 0, the optimal solution can be obtained by the
following program

min
ww

F1ðwwÞ � �	F2ðwwÞ; (55)

where �	 is the zero root of

fð�Þ ¼ min
ww

F1ðwwÞ � �F2ðwwÞ: (56)

Theorem 7 implies that the fractional measure can be
equivalently transformed to a linear one fð�Þ. The bisection
method [31] is based on this idea. First, it learns a posteriori
probability ĥðxxÞ. In each iteration, with the current �, the
cost matrix is updated according to the function fð�Þ. Then,
based on ĥðxxÞ and fð�Þ, the classifier point-wisely outputs
the label that minimizes the posteriori cost-sensitive loss.
The optimal � is searched in binary.

4.1.4 Gradient Method

The gradient method [38], [39] is an extension of the
SVMperf method. Hazan et.al. [38] proved that in the binary
classification, the gradient of the linear-fractional measure
C is

ÏwwCð�y; �ywwÞ ¼ 1

�

XN
i¼1

xxi�yloss;i �
XN
i¼1

xxi�yww;i

 !
; (57)

where the two label vectors �yww and �yloss are

�yww ¼ argmax
�y02Y

�y0hT
wwðxxÞ; (58)

�yloss ¼ argmax
�y02Y

fCð�y; �y0Þ þ ��y0hT
wwðxxÞg; (59)

respectively. �yloss is exactly the label vector that most viola-
tes the constraint in SVMperf. With the proved gradient, the
weight vector can be updated by

wwtþ1 ¼ wwt � �ÏwwCð�y; �ywwÞ; (60)

where � is the update step.

4.2 PASE: Pure Accuracy Based Selective
Ensemble Learning

It seems that the model (49) can be easily solved by a divide-
and-conquer strategy. Namely, one can fix the class distri-
bution q̂N;sðwwÞ at a constant q0. Then, with the linear con-
straint, an optimal solution can be found by optimizing the
L̂N;sðwwÞ. Through varying q̂N;sðwwÞ at all feasible constants,
one can obtain multiple solutions and fetch the optimal one
among them. This strategy is natural and straightforward,
while it is too time-consuming and the feasible range of q0 is
difficult to determine. Here, we introduce the following the-
orem to solve the model

Theorem 8 ([59]). For program with a ratio of two positive
functions as the objective function

min
ww

F1ðwwÞ
F2ðwwÞ ; s:t: ww 2 W : (61)

Let

wwðrÞ ¼ argmax
ww2W

F1 wwð Þ
r

; s:t:F2ðwwÞ 
 r: (62)

The optimal solution of (61) can be obtained by wwðr	Þ if and
only if r	 is the optimal solution of:

minr
F1 wwðrÞð Þ

r
s:t:min

ww2W
F2ðwwÞ � r � max

ww2W
F2ðwwÞ; (63)

It is easy to solve program (62). The difficulty of program
(63) is that F1ðwwðrÞÞ is an implicit function the variable r. R.
W. Freund [59] provided two sophisticated linear support
functions on F1ðwwðrÞÞ=r and adaptively solving the the opti-
mal r in different divisions. Particularly, in each interval
½rðiÞ; rðiþ1Þ�, 0 � rðiÞ � rðiþ1Þ, let

F ðrÞ ¼ min
ww

�
F1 wwð Þ

r

����F2ðwwÞ 
 r; ww 2 W

	
; (64)

eFiðrÞ ¼ min
ww

�
F1ðwwÞ
rðiþ1Þ

����F2ðwwÞ 
 r; ww 2 W

	
; (65)

then R. W. Freund [59] proved that

F1 wwðrÞð Þ
r


 F ðrðiÞÞ þ F 0
i ðr� rðiÞÞ ¼ F ðrÞ; (66)

F1 wwðrÞð Þ
r


 F ðrðiþ1ÞÞ þ �F ðr� rðiþ1ÞÞ; (67)

where

F 0
i ¼

rðiþ1Þ

rðiÞ
eFiðrðiÞÞ � F ðrðiÞÞ
rðiþ1Þ � rðiÞ

;

and �F is the Lagrange multiple of the program eFiðrðiþ1ÞÞ.
Here, we use the right-hand support function to

approach F1ðwwðrÞÞ=r and the optimal r	 will be searched by
finding the minimizer of F ðrÞ from the intervals.
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For searching r	, we use the a general method in solving
One-Dimensional Global Optimization (ODGO) [59], [60].
For completeness, we present ODGO in Algorithm 1.

Algorithm 1. ODGO

INPUT: The fractional measure F1=F2

PROCEDURE:
1: Determine rð1Þ ¼ minwwF2ðwwÞ , rð2Þ ¼ maxwwF2ðwwÞ
2: Initialize the index i ¼ 1, rlist ¼ frð1Þ; rð2Þg, ~rlist ¼ f1g,eFlist ¼ f1g
3: while jrðiÞ � rðiþ1Þj > � do
4: Set r̂ ¼ ðrðiÞ þ rðiþ1ÞÞ=2
5: Solve the programs

eFL ¼ minr2½rðiÞ;r̂�F ðrÞ; eFR ¼ minr2½r̂;rðiþ1Þ�F ðrÞ;

and obtain the solution ~rL and ~rR, respectively
6: Update rlist ¼ frð1Þ; . . . ; rðiÞ; r̂; rðiþ1Þ; . . . ; rðtÞg
7: Update

eFlist ¼ f eF ð1Þ
; . . . ; eF ði�1Þ

; eFL; eFR; eF ðiþ1Þ
; . . . ; eF ðtÞg

8: Update

~rlist ¼ f~rð1Þ; . . . ; ~rði�1Þ; ~rL; ~rR; ~rðiþ1Þ; . . . ; ~rðtÞg

9: Find the index i ¼ argminjf eF ðjÞ
; 1 � j � tþ 1g

10: end while
11: r	 ¼ ~rðiÞ

OUTPUT: r	

Now, we present the selective algorithm based on
optimizing PA in Algorithm 2 and name it as PASE. The
Step 2-Step3 of PASE finds the optimal weight vector
which maximizes the pure accuracy, then the classifiers
with a weight above the average value will be preserved.
In prediction, the selected classifiers make a majority
vote for the test data. That is, the test data will be classi-
fied into the class that is assigned by most of the selected
classifiers.

Algorithm 2. PASE

INPUT: The training data SN , classifier set H ¼
fh1; h2; . . . ; hTg, where hj ¼ ðhjðxx1Þ; . . .; hjðxxNÞÞT .

PROCEDURE:
1: Initialize ww0 ¼ ð0; 0; . . . ; 0Þ.
2: Solve r	 by Algorithm 1.
3: Solve ww	 by the interior-point method

ww	 ¼ argmax
ww

2

r	
L̂N;sðwwÞ;

s:t:ð1� 2p̂NÞq̂N;sðwwÞ 
 r	 � p̂N :

OUTPUT: The model parameter ww	 and the set H	 ¼
fhjjw	

j > 1
T

PT
k¼1 w

	
k; j ¼ 1; 2; . . .Tg

Absolutely, Algorithm 2 can also be used to build linear
classifiers with replacing the classifiers set with the feature

set and it can also be extended to kernel method with
replacing the classifiers set with the kernel matrix.

Both the bisection method and PASE turn the fractional
program to an easy-to-solve program with respect to the
model parameters (termed as the master program) and a
one-dimensional program with respect to an introduced
parameter. Their differences are

� The bisection method is based on Theorem 7, and
PASE is based on Theorem 8. The master program of
Theorem 7 uses the introduced parameter to trade
off the numerator and the denominator, while PASE
uses the introduced parameter to substitute the
denominator. Thus, the bisection is finished by mini-
mizing a cost-sensitive loss, while Algorithm 2 is fin-
ished by directly optimizing the objective measure
after adaptively finding the optimal denominator.

� In solving the one-dimensional program, the bisec-
tion method uses the binary search method, while
PASE is based on Algorithm 1. The binary method
searches in one direction and is easy to find a local
optimal solution; however, Algorithm 1 stores the
optimal solution from both left and right directions
in each iteration, which will be helpful to find a
global optimal solution.

� Due to Theorem 8, PASE can be easily extended to
the models with some regularization terms, such as
the SVM model with maximizing the linear-frac-
tional measures, while the bisection method cannot.

4.3 Experimental Comparison With Selective
Ensemble Learning Algorithms

In this subsection, the performance of PASE is verified on
sixteen benchmark data sets and four image data sets. Their
information is presented in Table 3, in which MicroMass,
Parkinson’s Disease and DrivFace are from UCI [61] and the
remaining sets are from KEEL [62].

TABLE 3
Data Sets Description

ID Name Objects Attributes IR

1 Crx 653 15 1:1.21
2 Australian 690 14 1:1.25
3 MicroMass 931 1300 1:1.59
4 Wdbc 569 30 1:1.68
5 Bands 365 19 1:1.70
6 Ionoshpere 351 33 1:1.79
7 Pima 768 8 1:1.87
8 Titanic 2201 3 1:2.10
9 German 1000 20 1:2.33
10 Parkinson’s Disease 756 752 1:2.94
11 Segment 2310 19 1:6.02
12 Dermatology 366 34 1:16.9
13 DrivFace 606 6400 1:21.45
14 Winequality-red-4 1599 11 1:29.17
15 Wine-White-3-9-VS-5 1482 11 1:58.28
16 Abalone-20-vs-8-9-10 1916 8 1:72.69
17 Scene 738 1000 1:1.03
18 Butterflies 176 1000 1:3.19
19 Animals 234 1000 1:5.88
20 Vehicles 888 1000 1:9.10
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The image classification tasks are Scene, Butterflies, Ani-
mals and Vehicles data set. Please refer to the supplemen-
tary material for more detailed descriptions, available
online. We extract vectorized features from each image in
the data set with the pre-trained VGG-16 convolutional neu-
ral network [63]. Following the structure of VGG-16, the
image is scaled to 224� 224. The 1000-dimensional output
of the final fully pooling layer is obtained as the pre-
extracted feature vector.

Each data set is randomly divided into a training set and
a test set at a ratio of 7:3. On each division, we run every
method 30 times to evaluate the average performance. The

performance is evaluated in terms of pure accuracy, TP and
accuracy.

The base classifier is the binary decision tree (abbreviate
as DT). The set of trees H ¼ fh1; h2; . . . ; hTg is generated by
bagging technical. In bagging, T samples are randomly sam-
pled from the training data with replacement, then each tree
is constructed on each sample. T is set up at 101.

The plug-in rule does not output a weight vector that
optimizes the linear-fractional measure, and thus can not
be used to select classifiers. We compare PASE with
GASEN, RSE, SVMperf, bisection, gradient. The objective
measure of SVMperf is Gmean, the objective measure of

TABLE 5
TP Value of Selective Ensemble

TABLE 4
PAValue of Selective Ensemble

WANG ETAL.: GENERALIZATION PERFORMANCE OF PURE ACCURACYAND ITS APPLICATION IN SELECTIVE ENSEMBLE LEARNING 1809

Authorized licensed use limited to: Shanxi University. Downloaded on August 27,2023 at 08:57:22 UTC from IEEE Xplore.  Restrictions apply. 



bisection is F-measure and the objective measure of gra-
dient is the Balanced Accuracy(BA). The trade-off param-
eter of SVMperf (C in model (52)) is set as 1. The
maximal number of iteration of the bisection and the
gradient is set as 20.

All of the benchmark methods will output a weight
vector. Each weight signifies the important degree of
each base classifier. We compare the performance of
algorithms in two ensemble settings: selective ensemble
and weight ensemble. In the first setting, the classifiers
with a weight above the mean value are chosen. The set
of the chosen classifiers is

H	 ¼ fhjjw	
j >

1

T

XT
k¼1

w	
k; j ¼ 1; 2; . . .Tg:

Then, the chosen classifiers are combined by majority
voting. That is, the final prediction for each instance is
positive if

P
hj2H	 hjðxxÞ > 0. Otherwise, the prediction is

negative. In this setting, we also present the selected
number of classifiers of each method. To show the effi-
ciency of the learned weight, we rank the base trees by
their weight values and present the vote performance of
the ordered trees.

TABLE 6
AValue of Selective Ensemble

TABLE 7
PAValue of Weight Ensemble
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In the second setting, all the classifiers are combined by the
learned weight. That is, the final prediction for each instance is
positive if hwwðxxÞ > 0, where hwwðxxÞ ¼

PT
j¼1 wjhjðxxÞ. Other-

wise, the prediction is negative. The performance of the two
settings are compared in terms of PA, TP andA.

Tables 4, 5 and 6 record the comparison results of algo-
rithms in the setting of selective ensemble learning. Each
element in the tables denotes the average value  the stan-
dard deviation in terms of the evaluation measure. In each
row, the method with the maximum mean value is in bold
font; the method is marked a black dot if PASE is signifi-
cantly better than it in the sense of the pairwise right-tailed

Student’s test with a confidence level at 90 percent. On each
data, the methods are sorted in descending order in terms
of the evaluation values. The last row records the average
rank of the methods.

From Tables 4, 5, and 6, it is easy to observe that PASE
obviously improves the pure accuracy, TP and accuracy val-
ues on most data sets. The tables show that PASE obtains
the maximal mean values on 14, 13, 9 data sets with respect
to pure accuracy, TP and accuracy respectively. According
to the last rows in the tables, PASE consistently obtains the
first average rank, which indicates that PASE generally out-
performs the other methods.

TABLE 8
TP Value of Weight Ensemble

TABLE 9
AValue of Weight Ensemble
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Tables 7, 8 and 9 record the comparison results of algo-
rithms in the setting of weight ensemble learning. The ele-
ments in the tables are the same as the ones in Tables 4, 5,
and 6. From Tables 7 and 8, we observe that PASE obtains
the highest PA and TP value in most cases. From Table 9,
we observe that PASE obtains a comparable A value with
RSE, while the TP value of RSE is lower. The results signify
that PA is a more balanced performance measure, and both
the weight learned by optimizing PA and the algorithm that
optimizes PA are efficient. We also show the number of
selected trees in Table S1 in the supplementary material,
available online.

In optimization based selective ensemble learning, it is
a traditional method to set the mean weight as the
threshold for choosing classifiers. In this paper, we

follow this traditional method. To give more insight into
the weight learned by different methods and the thresh-
old used in truncating the weights, we present the per-
formance of bagging with ordered trees. That is, for each
method, the base trees are ranked according to the value
of weight, and then used to ensemble. Concretely, for T
trees fh1; h2; . . . ; hTg, suppose their weight order is w	

r1
>

w	
r2

> . . . > w	
rT
, then the tree is ranked as

hr1 ; hr2 ; . . .; hrT , where ri 2 f1; 2; . . .; Tg. Then an odd
number of ordered trees are used to ensemble by voting.
Fig. 5 shows the average train and test pure accuracy
curves of ordered ensemble with the increasing of the
ensemble number. The points on the curve present the
performance of combining 1; 3; ::; T ordered trees in turn.
On each data, the top curves are the results on the

Fig. 5. The average train and test pure accuracy curves of ordered ensemble with the increasing of the ensemble number.
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training data sets and the down ones are on the test data
sets. From Fig. 5, it is easy to observe that in most cases,
PASE obtains the best performance if the selective num-
ber is the same. This signifies that compared with the
traditional algorithms, the weight learned by PASE is
effective in selecting classifiers and the thresholds for
selecting the good set of classifiers are broad.

To further analyze the results, we compare the difference
between the significant better and the significance worse at
the significance level of 95% [64]. The bars of Fig. 6 depict
the results. From Fig. 6, we observe that PASE obtains the
largest gap, which indicates that PASE is significantly better
than the other methods. Please refer to the supplementary
material, available online, for more details about how to
depict the bars of Fig. 6.

4.4 Experimental Comparison With Boosting
Algorithms

In ensemble learning, the strength and the diversity of the
base classifiers are two key factors for the ensemble perfor-
mance. For bagging, the strength of the base classifiers is
strong while their diversity is small. However, for boosting,
the base classifiers are complementary while their perfor-
mance only needs to be slightly better than a weak classifier
(the classifier with performance comparable with random
guess).

As is well known, a weak classifier is proven to be equiv-
alent to a strong classifier through boosting by the boosting

algorithms. In this subsection, through the image data sets,
we investigate which type of base classifiers that PASE
applies to, and compare PASE with AdaboostM1 and Gra-
dient Boosting Decision Tree (GBDT). The AdaboostM1 is
implemented by the Fitensemble package in MATLAB. The
GBDT is implemented by XGboost and the objective func-
tion of GBDT is AUC.

The strength of the base tree can be controlled by the
maximal number of decision splits. The more the decision
splits is, the deeper the tree is and the stronger the perfor-
mance is. We compare the performance of algorithms under
different maximal number of decision splits. The experi-
mental data sets are still the twenty data sets in Table 3.
Each data set is randomly divided into a training set and a
test set at a ratio of 7:3. On each division, we run every
method 12 times to evaluate the average performance. The
performance is evaluated in terms of pure accuracy, as
shown in the Fig. 7. We also respectively show the associ-
ated results w.r.t TP and accuracy in Figs. S3 and S4 in the
supplementary material, available online.

From Fig. 7, we observe that Adaboost applies to boost-
ing weak classifiers on 9/20 data sets (Wdbc, Ionoshpere,
Segment, DrivFace, Wine-White-3-9-VS-5, Scene, Butterflies,
Animals, Vehicles), while PASE and GBDT apply to boost-
ing classifier of various strengths. In addition, we observe
that PASE obtains the highest test PA value on most of the
split numbers on 10/20 data sets. The names of these data
sets in the subgraphs are in bold. Further, PASE obtains the
lowest train PA value on most of the split numbers on 6/10
of the above bold data sets. The names of these data sets in
the subgraphs are underlined. On 5/20 data sets, whose
names in the subgraphs are italic, PASE obtains comparable
test PA value with GBDT and higher values than Adaboost
in many cases. Above all, we can conclude that PASE is not
easy to overfit and performs better than the two boosting
algorithms in most cases.

5 CONCLUSION AND FUTURE WORK

In this paper, we worked on the pure accuracy measure,
which eliminates random consistency from the accuracy
measure. We illustrated that the pure accuracy measure
is more class distribution insensitive and more discrimi-
native than accuracy and F-measure. We proposed a
tighter concentration inequality and then developed a
generalization bound on the pure accuracy measure,
which is tighter than the existing bound. After that, we
designed a learning algorithm optimizing the pure accu-
racy measure and used it into the selective ensemble
learning. Experimental results on twenty data sets indi-
cated that PASE outperforms the other eight representa-
tive learning algorithms, including AdaboostM1 and
GBDT. It is worth mentioning that GBDT could be
extended to optimize the PA, by means of a gradient
approach, which would be very interesting to study in
the future. Besides, we are interested in axiomatically
defining the pure consistency measure in other popular
learning tasks, such as, imbalanced learning, multi-class
classification, multi-label learning and deep learning.

Fig. 6. Statistical Comparison Results.
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