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A Regret-Based Three-Way Decision Model Under
Interval Type-2 Fuzzy Environment
Tianxing Wang, Huaxiong Li, Yuhua Qian, Bing Huang, Xianzhong Zhou

Abstract—Three-way decision provides a new perspective for
dealing with uncertainty and complexity in decision-making
problems. However, behaviors of decision-makers may be in-
fluenced by different risk attitudes in reality. To address this
problem, we construct a regret-based three-way decision model
under interval type-2 fuzzy environment. Basically, regret theory
and interval type-2 fuzzy set are utilized to improve three-
way decision in coping with the risk and uncertainty. Two
core issues focus on the determination of decision rules and
estimation of conditional probabilities for different decision-
makers under interval type-2 fuzzy environment. The maximum-
utility decision rules are derived based on regret theory. An
interval type-2 fuzzy technique for order preference by similarity
to ideal solution (TOPSIS) method is utilized to estimate the
conditional probability. The results of the illustrative example
show that the proposed model can effectively solve uncertain
decision problems. The comparative analysis and experimental
evaluations are utilized to elaborate on the performance of the
regret-based three-way decision model.

Index Terms—Three-way decision, regret theory, interval type-
2 fuzzy set, uncertain decision-making.

I. INTRODUCTION

THREE-WAY decision (3WD), as a novel methodology
to deal with imprecise and uncertain data, has developed

rapidly in recent years. It has received extensive attention since
it was proposed by Yao [1]. The idea of three-way decision
originated from rough set, which also constituted a prominent
knowledge discovery method for uncertain and incomplete
issues [2]–[13]. The key semantic interpretation of three-way
decision is to divide the whole set of objects into three disjoint
regions. With respect to three regions, three-way decision pro-
vides decision-makers with three decision actions in the form
of acceptance, non-commitment and rejection, respectively.
The research results of three-way decision are fruitful and
have been applied into numerous practical application fields
[14]–[17]. For example, Li et al. [18] utilized a sequential
three-way decision method for cost-sensitive face recognition.
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Jia et al. [19] developed a feature fusion method for Chinese
irony detection in microblog based on three-way decision
model. Zhan et al. [20] incorporated 3WD into multi-attribute
decision-making based on an outranking relation and solved
a problem of enterprise project investment target selections.
Campagner et al. [21] introduced a framework based on 3WD
and the trisecting-acting-outcome model to handle uncertainty
in machine learning. In summary, the studies of three-way
decision mainly consist of two aspects.

• Several scholars concentrated on the expansion of the
reasonable semantic interpretation of the traditional three-
way decision model [22]–[24]. As an example, Yao
[25] introduced a model of three-way conflict analysis
based on the philosophy, methodology, and mechanism
in threes. Yue et al. [26] constructed shadowed neighbor-
hoods based on fuzzy rough transformation for three-way
classification. Jia and Liu [27] proposed a novel decision
model based on the combination of three-way decisions
and multi-criteria decision-making.

• Some researches focused on the development of sequen-
tial three-way decision and granular computing [28]–
[30]. For instance, Li et al. [31] proposed a sequential
granular feature extraction method based on deep neural
networks. Liu et al. [32] discussed the methodology of
3WD via granular computing with “multi-level” strategy
and “multi-view” strategy. Zhang et al. [33] developed
a sequential three-way decision model in autoencoder
based classifications and decisions.

In the case that decision-makers cope with imprecise and
uncertain decision issues through three-way decision, they may
be confronted with various extents of risk and uncertainty.
In the practical environment, decision-makers are not entirely
rational and take different decision behaviors and risk prefer-
ences. To address this problem, researchers have introduced
several scientific behavioral decision theories into three-way
decision, such as prospect theory and cumulative prospect
theory [34]–[37]. In recent years, regret theory, proposed by
Bell [38], Loomes and Sugden [39], has received sustained
attention in many risk decision-making areas. It has been
noted in some literature that regret theory has some advantages
over prospect theory and cumulative prospect theory [40].
As an example, when using regret theory, decision-makers
do not need to provide the reference point and involved
parameters are fewer and simpler. Nowadays, regret theory has
been successfully applied in diverse areas and achieved good
results [40], [41]. For example, Peng et al. [42] established an
applicable decision support model based on regret theory to
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address new energy investment risk evaluation problems. Wang
[43] proposed a regret-based automated Bayesian sequential
decision-making strategy for the optimal allocation of manual
and autonomous sensing modes. Thus, we introduce regret
theory into three-way decision to describe decision-makers’
risk attitudes.

Although three-way decision is a valid tool to handle
decision problems under risks, it still requires to improve
the capacity to process the vagueness [34]. Currently, many
researches have focused on the applications with type-1 fuzzy
set and achieved good performance when facing the actual
decision problems [44]–[48]. Inspired by these observations,
various scholars have extended three-way decision into uncer-
tain circumstance with type-1 fuzzy set due to the constant
change of fuzziness and complexity [41], [49]–[51]. As an
example, Lang et al. [52] contributed to three-way conflict
analysis based on Pythagorean fuzzy set theory. Liang et
al. [53] combined the hesitant fuzzy information system and
loss functions together via error analysis. However, some
researches have indicated that interval type-2 fuzzy set (IT2FS)
can achieve good performance and advantages when solving
problems in uncertain and fuzzy environments [34], [54],
[55]. Typically, IT2FS is regarded as an expanding format
of interval type-1 fuzzy set and has been applied to dispose
the ambiguity of many actual decision-making problems [56]–
[58]. For instance, Dalman and Bayram [59] presented an
interactive fuzzy goal programming approach for solving
multiobjective nonlinear programming problems with interval
type-2 fuzzy numbers (IT2FNs). Eyoh et al. [60] presented
an approach to prediction based on a new interval type-2
Atanassov intuitionistic fuzzy logic system. Therefore, we
construct the regret-based 3WD model with IT2FS to enhance
its ability to deal with vagueness and uncertainty.

In three-way decision, another crucial problem is how to es-
timate and evaluate the conditional probability. In the majority
of three-way decision models, the conditional probability is
calculated by utilizing the equivalence class and information
table, where one of the prerequisites is the decision attribute
[1], [28], [61]. However, we may confront a universal circum-
stance in the actual decision environment that the information
system does not have the class label or the decision attribute.
For example, in many multi-attribute decision-making prob-
lems, there are only conditional attributes involved but no
decision attribute in the information table [51], [62], [63]. To
solve the problem in this case, Liang et al. [61] effectively
utilized the technique for order preference by similarity to
ideal solution (TOPSIS) method to determine the conditional
probability in the Pythagorean fuzzy information system. Un-
der interval type-2 fuzzy environment, many researches have
extended TOPSIS method with IT2FS and achieved good per-
formance and results [63], [64]. Inspired by these observations
and successes, we effectively utilize the interval type-2 fuzzy
TOPSIS method to figure out the conditional probability in
the interval type-2 fuzzy information system. Liu et al. [65]
indicated that the psychological factors of the decision-makers
should be taken into account in the multi-attribute decision-
making problem. Thus, we also introduce regret theory into
TOPSIS method to describe decision-makers’ psychological

risk attitudes and calculate the conditional probability.
In order to depict decision-makers’ risk attitudes and im-

prove the capability of three-way decision to process the
ambiguity and vagueness, we introduce regret theory and
interval type-2 fuzzy set into three-way decision in this paper.
On the whole, we sum up the mainly accomplished researches
of our work. A regret-based three-way decision model is
proposed with the trapezoidal IT2FNs. The interval type-2
fuzzy regret-based utility functions are calculated based on the
interval type-2 fuzzy outcome matrix. The maximum-utility
decision rules are determined by ranking the interval type-2
fuzzy expected utilities. Then, as the conditional probability
plays an important role in three-way decision, we utilize
the interval type-2 fuzzy TOPSIS method to estimate the
conditional probability based on regret theory. Meanwhile,
the whole decision-making process for deriving three-way
decision rules is presented.

The remainder of the paper is set out as follows. Section II
reviews several basic concepts of three-way decision, interval
type-2 fuzzy sets and regret theory. Section III constructs the
regret-based 3WD model in interval type-2 fuzzy environment.
Section IV utilizes an interval type-2 fuzzy TOPSIS method to
estimate the conditional probability. The illustrative example
of an investment assessment problem is given to elaborate the
effectiveness in Section V. Sections VI and VII implements the
comparative analysis and experimental evaluations to verify
the performance of the proposed model. Section VIII presents
the conclusion and discusses future studies.

II. PRELIMINARIES

This section consists of three subsections to concisely ret-
rospect varieties of notions and models of three-way decision
[1], interval type-2 fuzzy set [54], [62]–[64], [66] and regret
theory [38]–[40], [67].

A. Three-way decision
Yao [1] proposed the classical three-way decision model

with the aid of Bayesian decision procedure. The classical
3WD model consists of two states and three actions. A set
of states Ω = {C,¬C} indicates the object x is in a decision
class C and not in class C. Let A = {πP , πB , πN} be a set of
actions. πP , πB and πN denote the acceptance, deferment and
rejection decisions respectively in classifying x into the posi-
tive region POS(C), boundary region BND(C) and negative
region NEG(C). Let λij (i = P,B,N ; j = P,N ) denote the
cost of taking actions πP , πB , πN respectively when x is in a
decision class C and not in class C. Thus, the cost matrix can
be given by Table I. In Table I, λPP , λBP , λNP denote the
costs of taking actions πP , πB and πN when x belongs to C
respectively. λPN , λBN , λNN denote the costs of taking πP ,
πB and πN when x belongs to ¬C. Let us represent Pr(C|x)
as the conditional probability of x belongs to C. Then, the
expected cost R(πi|x) for each object x is calculated by the
following formula:

R(πP |x) = λPPPr(C|x) + λPNPr(¬C|x),

R(πB |x) = λBPPr(C|x) + λBNPr(¬C|x),

R(πN |x) = λNPPr(C|x) + λNNPr(¬C|x). (1)
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TABLE I
THE COST MATRIX FOR CLASSICAL 3WD MODEL

C ¬C

πP λPP λPN

πB λBP λBN

πN λNP λNN

By Bayesian decision procedure, the minimum-cost decision
rules can be induced as:

(P0) If R(πP |x) ≤ R(πB |x) and R(πP |x) ≤ R(πN |x),

decide x ∈ POS(C);

(B0) If R(πB |x) ≤ R(πP |x) and R(πB |x) ≤ R(πN |x),

decide x ∈ BND(C);

(N0) If R(πN |x) ≤ R(πP |x) and R(πN |x) ≤ R(πB |x),

decide x ∈ NEG(C).

According to decision rules (P0) − (N0), the action with
the minimum expected cost is chosen as the best action.

B. Interval type-2 fuzzy set

Definition 1: [54] In the universe of discourse X , a type-
2 fuzzy set Ã can be represented by a type-2 membership
function µÃ(x, u) as follows:

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]}, (2)

where µÃ(x, u) denotes the membership function of Ã and
satisfies: 0 ≤ µÃ(x, u) ≤ 1. In this situation, Ã can also be
represented as:

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u), (3)

where
∫ ∫

denotes union over all admissible x and u, and Jx
is the primary membership of x.

Definition 2: [54] Let Ã be a type-2 fuzzy set in the universe
of discourse X . If all µÃ(x, u) = 1, then Ã is called an IT2FS,
which is expressed as:

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u). (4)

In the cause of the simplification and expression of the study
in this article, we utilize the trapezoidal interval type-2 fuzzy
number proposed in [68]. The definition of the trapezoidal
IT2FN is expressed as follows:

Definition 3: [68] Let Ã = (A+, A−) be a trapezoidal
IT2FN in the universe of discourse, as shown in Fig. 1, where
A+ and A− are two generalized trapezoidal fuzzy numbers:

Ã = (A+, A−)

= ((a+, b+, c+, d+; s+, t+), (a−, b−, c−, d−; s−, t−)),
(5)

where a+ ≤ b+ ≤ c+ ≤ d+, a− ≤ b− ≤ c− ≤ d−, 0 ≤
s− ≤ s+ ≤ 1, 0 ≤ t− ≤ t+ ≤ 1. s+ and t+ denote the
membership values of elements b+ and c+. s− and t− denote
the membership values of elements b− and c−.
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Fig. 1. The trapezoidal interval type-2 fuzzy number Ã.

Definition 4: [68] Let Ã1 = (A+
1 , A

−
1 ) and Ã2 = (A+

2 , A
−
2 )

be two trapezoidal IT2FNs, where Ã1 and Ã2 are written as:

Ã1 = (A+
1 , A

−
1 )

= ((a+
1 , b

+
1 , c

+
1 , d

+
1 ; s+

1 , t
+
1 ), (a−1 , b

−
1 , c
−
1 , d

−
1 ; s−1 , t

−
1 )),

Ã2 = (A+
2 , A

−
2 )

= ((a+
2 , b

+
2 , c

+
2 , d

+
2 ; s+

2 , t
+
2 ), (a−2 , b

−
2 , c
−
2 , d

−
2 ; s−2 , t

−
2 )).

(6)

Then, the arithmetic operations of two trapezoidal IT2FNs Ã1

and Ã2 are represented as follows:
(1) Addition operation

Ã1 ⊕ Ã2 = (A+
1 , A

−
1 )⊕ (A+

2 , A
−
2 )

=


(a+

1 + a+
2 , b

+
1 + b+2 , c

+
1 + c+2 , d

+
1 + d+

2 ;

min{s+
1 , s

+
2 },min{t+1 , t

+
2 }),

(a−1 + a−2 , b
−
1 + b−2 , c

−
1 + c−2 , d

−
1 + d−2 ;

min{s−1 , s
−
2 },min{t−1 , t

−
2 })

 . (7)

(2) Subtraction operation

Ã1 	 Ã2 = (A+
1 , A

−
1 )	 (A+

2 , A
−
2 )

=


(a+

1 − d
+
2 , b

+
1 − c

+
2 , c

+
1 − b

+
2 , d

+
1 − a

+
2 ;

min{s+
1 , s

+
2 },min{t+1 , t

+
2 }),

(a−1 − d
−
2 , b
−
1 − c

−
2 , c
−
1 − b

−
2 , d

−
1 − a

−
2 ;

min{s−1 , s
−
2 },min{t−1 , t

−
2 })

 . (8)

(3) Multiplication operation

Ã1 ⊗ Ã2 = (A+
1 , A

−
1 )⊗ (A+

2 , A
−
2 )

=


(a+

1 × a
+
2 , b

+
1 × b

+
2 , c

+
1 × c

+
2 , d

+
1 × d

+
2 ;

min{s+
1 , s

+
2 },min{t+1 , t

+
2 }),

(a−1 × a
−
2 , b
−
1 × b

−
2 , c
−
1 × c

−
2 , d

−
1 × d

−
2 ;

min{s−1 , s
−
2 },min{t−1 , t

−
2 })

 . (9)

(4) Multiplication by real number operation

If k ≥ 0, kÃ1 =

(
(ka+

1 , kb
+
1 , kc

+
1 , kd

+
1 ; s+

1 , t
+
1 ),

(ka−1 , kb
−
1 , kc

−
1 , kd

−
1 ; s−1 , t

−
1 )

)
;

If k < 0, kÃ1 =

(
(kd+

1 , kc
+
1 , kb

+
1 , ka

+
1 ; s+

1 , t
+
1 ),

(kd−1 , kc
−
1 , kb

−
1 , ka

−
1 ; s−1 , t

−
1 )

)
. (10)
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TABLE II
LINGUISTIC TERMS AND THEIR CORRESPONDING INTERVAL TYPE-2

FUZZY SETS

Linguistic terms Interval type-2 fuzzy sets

Very Poor (VP) ((0, 0, 0, 1; 1, 1), (0, 0, 0, 0.5; 0.9, 0.9))

Poor (P) ((0, 1, 1, 3; 1, 1), (0.5, 1, 1, 2; 0.9, 0.9))

Medium Poor (MP) ((1, 3, 3, 5; 1, 1), (2, 3, 3, 4; 0.9, 0.9))

Medium (M) ((3, 5, 5, 7; 1, 1), (4, 5, 5, 6; 0.9, 0.9))

Medium Good (MG) ((5, 7, 7, 9; 1, 1), (6, 7, 7, 8; 0.9, 0.9))

Good (G) ((7, 9, 9, 10; 1, 1), (8, 9, 9, 9.5; 0.9, 0.9))

Very Good (VG) ((9, 10, 10, 10; 1, 1), (9.5, 10, 10, 10; 0.9, 0.9))

In [66], Hu et al. proposed a method to rank the trapezoidal
IT2FNs by calculating the ranking values. The definition is
presented as follows:

Definition 5: [66] Let Ã be a trapezoidal IT2FN. The
ranking value of Ã can be defined using the following form:

η(Ã) =

∑
l∈{a,b,c,d}

∑
•∈{+,−} l

•

8
×
∑
h∈{s,t}

∑
•∈{+,−} h

•

4
.

(11)

Assuming that Ã1 and Ã2 are two trapezoidal IT2FNs. Then,
we get Ã1 � Ã2 if and only if η(Ã1) > η(Ã2).

In many researches of interval type-2 fuzzy sets [62]–[64],
interval type-2 fuzzy sets are represented and evaluated by
using linguistic terms provided by experts, since the linguistic
evaluation is more practical and better described quantitatively.
Therefore, all the interval type-2 fuzzy variables are assessed
by linguistic terms in this paper. For clarity, the linguistic terms
and their corresponding interval type-2 fuzzy sets are presented
in Table II. For Table II, seven linguistic terms “Very Poor
(VP)”, “Poor (P)”, “Medium Poor (MP)”, “Medium (M)”,
“Medium Good (MG)” , “Good (G)”, “Very Good (VG)”
and their corresponding interval type-2 fuzzy sets are given,
respectively.

C. Regret theory
Regret theory was initially proposed by Bell [38], Loomes

and Sugden [39], respectively. In the decision process, they
believe that decision-makers will compare the results of their
own choices with those of the other options. If decision-makers
find that they can achieve better results by choosing another
option, they will regret. On the contrary, they will rejoice.
Therefore, the decision-maker may anticipate the regret or joy
of the options during the decision process and try to avoid the
choice that they will regret.

A decision-maker’s comparison of two choices according
to regret theory is expressed as follows. Let z1 and z2 be
the outcomes obtained after selecting choices π1 and π2,
respectively. The decision-maker’s perceived utility for the
choice π1 is

v1 = u(z1) + r(u(z1)− u(z2)), (12)

where u(zi) denotes the utility function when taking the option
πi. Based on [42], the utility function u(zi) is given as

u(zi) =
1− e−θzi

θ
, (13)

-5 -4 -3 -2 -1 0 1 2 3 4 5

u

-4
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1
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u

)
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 = 0.3

Fig. 2. The effect of δ on the regret-rejoice function r(∆u).

where θ is the risk aversion coefficient of the decision-maker
and satisfies: 0 < θ < 1. For (13), the utility function u(zi)
will change with the variation of zi and is monotonically
increasing with the increase of zi.

With respect to (12), the regret-rejoice function r(∆u)
measures the regret or rejoice by comparing the differences in
utility between choosing π1 and π2. ∆u denotes the difference
in the utility value of two different choices. In [42], Peng et
al. gave a form of the regret-rejoice function r(∆u), which
was defined as follows:

r(∆u) = 1− e−δ∆u, (14)

where δ denotes the regret aversion coefficient and is in the
range [0,+∞).

For the regret-rejoice function r(∆u) in (14), Fig. 2 shows
the influence of δ on the regret-rejoice function r(∆u). The
regret-rejoice function r(∆u) is also a monotonically increas-
ing function with the increase of ∆u. According to regret
theory [38], [39], when r(∆u) > 0, r(∆u) denotes the rejoice
value; when r(∆u) < 0, r(∆u) represents the regret value.

Considering the situation that the decision problem contains
various options in the real world, Quiggin [67] expanded the
application range of regret theory into multiple action sets to
choose the optimal alternative. The decision-maker’s perceived
utility for the choice πi is defined as:

vi = u(zi) + r(u(zi)− u(z∗)), (15)

where z∗ = max{zi}. r(u(zi) − u(z∗)) denotes the regret
value, which is always non-positive.

III. THREE-WAY DECISION BASED ON REGRET THEORY

As is mentioned in Section II, the classical three-way deci-
sion model deduced the minimum-cost decision rules with the
aid of Bayesian decision procedure and cost matrix. However,
in the practical decision process, we need to consider the
influence of different attitudes for the risk. In this section, we
focus on the description on decision-makers’ risk attitudes and
preferences through the three-way decision model based on
regret theory with trapezoidal interval type-2 fuzzy numbers.
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TABLE III
THE INTERVAL TYPE-2 FUZZY OUTCOME MATRIX

C ¬C

πP z̃PP = (z+PP , z
−
PP ) z̃PN = (z+PN , z

−
PN )

πB z̃BP = (z+BP , z
−
BP ) z̃BN = (z+BN , z

−
BN )

πN z̃NP = (z+NP , z
−
NP ) z̃NN = (z+NN , z

−
NN )

The regret-based three-way decision model also consists
of two states Ω = {C,¬C} and three actions A =
{πP , πB , πN}. On the basis of interval type-2 fuzzy sets and
regret theory, we can take linguistic terms to evaluate the
outcomes in different states when taking each action. Then, the
linguistic outcomes are represented by interval type-2 fuzzy
sets based on Table II. Assume that z̃ij (i = P,B,N ; j =
P,N ) is utilized to represent the interval type-2 fuzzy outcome
in different states under interval type-2 fuzzy environment. All
the interval type-2 fuzzy outcomes can be given by Table III.
z̃PP , z̃BP , z̃NP denote the interval type-2 fuzzy outcomes
of taking πP , πB and πN when x belongs to C respectively.
z̃PN , z̃BN , z̃NN denote the interval type-2 fuzzy outcomes of
taking πP , πB and πN when x belongs to ¬C. To depict the
interval type-2 fuzzy outcome z̃ij in detail, it is expressed as:

z̃ij = (z+
ij , z

−
ij) =

(
(az,+ij , bz,+ij , cz,+ij , dz,+ij ; sz,+ij , tz,+ij ),

(az,−ij , bz,−ij , cz,−ij , dz,−ij ; sz,−ij , tz,−ij )

)
.

(16)

Suppose there are totally g decision-makers in a specific de-
cision problem. Let E = {e1, e2, . . . , eg} denote the decision-
maker set. Regret theory illustrates that decision-makers may
take different risk aversion and regret aversion coefficients.
For clarity, the risk aversion coefficient of the k-th decision-
maker is defined as θk, which satisfies: 0 < θk < 1. The regret
aversion coefficient of the k-th decision-maker is defined as
δk, which satisfies: δk ≥ 0. As seen in (13) and (14), the
utility function and regret-rejoice function both contains the
crisp value and the exp function. Thus, we give the definition
of the crisp value and exp operation of trapezoidal IT2FNs.

Definition 6: Let v be a crisp value. The trapezoidal interval
type-2 fuzzy representation of the crisp value v is defined as
((v, v, v, v; 1, 1), (v, v, v, v; 1, 1)).

Definition 7: Let Ã = (A+, A−) be a trapezoidal interval
type-2 fuzzy number. Then, the exp operation of a trapezoidal
IT2FN Ã is represented as follows:

eÃ =

(
(ea

+

, eb
+

, ec
+

, ed
+

; s+, t+),

(ea
−
, eb

−
, ec

−
, ed

−
; s−, t−)

)
. (17)

Let us define the utility function that does not consider the
regret values as the common utility function. The interval type-
2 fuzzy common utility function of ek is denoted as:

ũkij = (uk,+ij , uk,−ij )

=

(
(ak,u,+ij , bk,u,+ij , ck,u,+ij , dk,u,+ij ; sk,u,+ij , tk,u,+ij ),

(ak,u,−ij , bk,u,−ij , ck,u,−ij , dk,u,−ij ; sk,u,−ij , tk,u,−ij )

)
.

(18)

TABLE IV
THE INTERVAL TYPE-2 FUZZY REGRET-BASED UTILITY FUNCTION MATRIX

C ¬C

πP ṽkPP = (vk,+PP , v
k,−
PP ) ṽkPN = (vk,+PN , v

k,−
PN )

πB ṽkBP = (vk,+BP , v
k,−
BP ) ṽkBN = (vk,+BN , v

k,−
BN )

πN ṽkNP = (vk,+NP , v
k,−
NP ) ṽkNN = (vk,+NN , v

k,−
NN )

With the interval type-2 fuzzy outcomes, the interval type-2
fuzzy common utility functions of the k-th decision-maker in
different states are calculated based on (13):

ũkij =
1

θk
(1	 e−θk z̃ij ). (19)

By Definition 6, we can transform the real number 1 into
a trapezoidal IT2FN: ((1, 1, 1, 1; 1, 1), (1, 1, 1, 1; 1, 1)). Based
on Definition 4 and (17), we further calculate the interval type-
2 fuzzy common utility functions as follows.

ũkij =



(
1− e−θka

z,+
ij

θk
,

1− e−θkb
z,+
ij

θk
,

1− e−θkc
z,+
ij

θk
,

1− e−θkd
z,+
ij

θk
; sz,+ij , tz,+ij ),

(
1− e−θka

z,−
ij

θk
,

1− e−θkb
z,−
ij

θk
,

1− e−θkc
z,−
ij

θk
,

1− e−θkd
z,−
ij

θk
; sz,−ij , tz,−ij )


. (20)

According to regret theory, decision-makers will compare
the results of their own choices with those of the other options.
Since there are totally three actions in A = {πP , πB , πN}, we
utilize regret theory in the multiple action sets [67] to construct
our model. Let us define the utility function that considers the
regret values as the regret-based utility function. Similar to
the interval type-2 fuzzy outcomes, the interval type-2 fuzzy
regret-based utility functions can be also represented by a 3×2
matrix, as shown in Table IV. For clarity, the interval type-2
fuzzy regret-based utility function of ek is denoted as:

ṽkij = (vk,+ij , vk,−ij )

=

(
(ak,v,+ij , bk,v,+ij , ck,v,+ij , dk,v,+ij ; sk,v,+ij , tk,v,+ij ),

(ak,v,−ij , bk,v,−ij , ck,v,−ij , dk,v,−ij ; sk,v,−ij , tk,v,−ij )

)
.

(21)

Based on (15), in order to compute the interval type-2 fuzzy
regret-based utility functions, we should select the decision
option with the maximum outcome to calculate the regret
values. Under interval type-2 fuzzy environment, we need to
calculate the ranking values of all the interval type-2 fuzzy
outcomes based on (11). The computed results of the ranking
values of the interval type-2 fuzzy outcomes are presented as
follows:

η(z̃ij) =

∑
l∈{a,b,c,d}

∑
•∈{+,−} l

z,•
ij

8

×
∑
h∈{s,t}

∑
•∈{+,−} h

z,•
ij

4
. (22)
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When the object x belongs to C or ¬C, we select the
interval type-2 fuzzy outcome with the highest ranking value,
which is represented as follows:

z̃∗j = arg max
z̃ij

{η(z̃ij)}. (23)

At this moment, the interval type-2 fuzzy regret-based utility
function ṽkij is calculated based on (15):

ṽkij = ũkij ⊕ r(ũkij 	 u(z̃∗j)). (24)

Based on the algebraic operations of trapezoidal IT2FNs,
we can calculate the interval type-2 fuzzy regret-based utility
function ṽkij as follows:

ṽkij =



(ak,u,+ij + 1− e−δk(ak,u,+
ij −dk,u,+

∗j ),

bk,u,+ij + 1− e−δk(bk,u,+
ij −ck,u,+

∗j ),

ck,u,+ij + 1− e−δk(ck,u,+
ij −bk,u,+

∗j ),

dk,u,+ij + 1− e−δk(dk,u,+
ij −ak,u,+

∗j );

min{sk,u,+ij , sk,u,+∗j },min{tk,u,+ij , tk,u,+∗j }),

(ak,u,−ij + 1− e−δk(ak,u,−
ij −dk,u,−

∗j ),

bk,u,−ij + 1− e−δk(bk,u,−
ij −ck,u,−

∗j ),

ck,u,−ij + 1− e−δk(ck,u,−
ij −bk,u,−

∗j ),

dk,u,−ij + 1− e−δk(dk,u,−
ij −ak,u,−

∗j );

min{sk,u,−ij , sk,u,−∗j },min{tk,u,−ij , tk,u,−∗j })



. (25)

For each decision-maker, with interval type-2 fuzzy regret-
based utility functions and the conditional probability, we can
calculate the interval type-2 fuzzy expected utility Ũk(πi|x)
with respect to different actions in A = {πP , πB , πN}. For
an object x and the k-th decision-maker, the interval type-2
fuzzy expected utility Ũk(πi|x) is expressed by the following
formula:

Ũk(πi|x) = Pr(C|x)ṽkiP ⊕ Pr(¬C|x)ṽkiN . (26)

With the aid of algebraic operations of trapezoidal IT2FNs,
the interval type-2 fuzzy expected utility Ũk(πi|x) can be
further calculated as:

Ũk(πi|x) =



(ak,v,+iP Pr(C|x) + ak,v,+iN Pr(¬C|x),

bk,v,+iP Pr(C|x) + bk,v,+iN Pr(¬C|x),

ck,v,+iP Pr(C|x) + ck,v,+iN Pr(¬C|x),

dk,v,+iP Pr(C|x) + dk,v,+iN Pr(¬C|x);

min{sk,v,+iP , sk,v,+iN },min{tk,v,+iP , tk,v,+iN }),
(ak,v,−iP Pr(C|x) + ak,v,−iN Pr(¬C|x),

bk,v,−iP Pr(C|x) + bk,v,−iN Pr(¬C|x),

ck,v,−iP Pr(C|x) + ck,v,−iN Pr(¬C|x),

dk,v,−iP Pr(C|x) + dk,v,−iN Pr(¬C|x);

min{sk,v,−iP , sk,v,−iN },min{tk,v,−iP , tk,v,−iN })



.

(27)

Regret theory illustrates that decision-makers will select
the decision option with the maximum utility. For the regret-
based 3WD model, decision-makers will select the action

with the maximum expected utility among three actions in
A = {πP , πB , πN}. Therefore, the maximum-utility decision
rules of the regret-based three-way decision model in interval
type-2 fuzzy environment are expressed as follows:

(P1) If Ũk(πP |x) � Ũk(πB |x) and

Ũk(πP |x) � Ũk(πN |x), decide x ∈ POS(C);

(B1) If Ũk(πB |x) � Ũk(πP |x) and

Ũk(πB |x) � Ũk(πN |x), decide x ∈ BND(C);

(N1) If Ũk(πN |x) � Ũk(πP |x) and

Ũk(πN |x) � Ũk(πB |x), decide x ∈ NEG(C).

For decision rules (P1)− (N1), we further rank the interval
type-2 fuzzy expected utility Ũk(πi|x) with (11). The ranking
value of the interval type-2 fuzzy expected utility is calculated
as:

η(Ũk(πi|x)) =∑
l∈{a,b,c,d}

∑
•∈{+,−}

(lk,v,•iP Pr(C|x) + lk,v,•iN Pr(¬C|x))

8

×
∑
h∈{s,t}

∑
•∈{+,−}min{hk,v,•iP , hk,v,•iN }

4
. (28)

Therefore, the maximum-utility decision rules (P2)− (N2)
are further induced as:

(P2) If η(Ũk(πP |x)) ≥ η(Ũk(πB |x)) and η(Ũk(πP |x))

≥ η(Ũk(πN |x)), decide x ∈ POS(C);

(B2) If η(Ũk(πB |x)) ≥ η(Ũk(πP |x)) and η(Ũk(πB |x))

≥ η(Ũk(πN |x)), decide x ∈ BND(C);

(N2) If η(Ũk(πN |x)) ≥ η(Ũk(πP |x)) and η(Ũk(πN |x))

≥ η(Ũk(πB |x)), decide x ∈ NEG(C).

IV. THE INTERVAL TYPE-2 FUZZY TOPSIS METHOD

In Section III, we discuss the determination of maximum-
utility decision rules based on regret theory in interval type-2
fuzzy environment. However, how to estimate the conditional
probability has not yet been proposed. In this section, we firstly
discuss the calculation of the conditional probability by the
interval type-2 fuzzy TOPSIS method. Then, the key steps
and the whole decision procedure of the regret-based 3WD
model are emphasized.

A. The estimation of the conditional probability

In three-way decision, another crucial problem is how to
estimate and evaluate the conditional probability. As shown
in (26) and (27), we should firstly calculate the conditional
probability Pr(C|x) for each object before determining the
interval type-2 fuzzy expected utility Ũk(πi|x). In most 3WD
models, the conditional probability is calculated by utilizing
the equivalence class and information table, where the prereq-
uisite is the decision attribute [1], [28], [51], [61]. However, in
the real world, we may confront a common information system
without the class label. Inspired by [61], [63]–[65], we utilize
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the interval type-2 fuzzy TOPSIS method to figure out the
conditional probability in the interval type-2 fuzzy information
system and involve regret theory in TOPSIS method to reflect
decision-makers’ psychological risk attitudes and preferences.

Let X = {x1, x2, . . . , xm} be a set of objects. The attribute
set of the interval type-2 fuzzy information system is expressed
as F = {f1, f2, . . . , fn}. W = {w1, w2, . . . , wn}T is the
weight vector of all attributes, where wq is the real number
and satisfies: 0 ≤ wq ≤ 1 and

∑n
q=1 wq = 1. As is

mentioned in Section III, θk and δk are denoted as the risk
aversion and regret aversion coefficients of the decision-maker
ek respectively. Note that the interval type-2 fuzzy information
system in this paper does not have the class label.

According to interval type-2 fuzzy sets in Section II, we
take the linguistic terms represented by IT2FS to obtain the
evaluation information under interval type-2 fuzzy environ-
ment. Thus, the evaluation results in the information system
are firstly assessed by linguistic terms provided by experts,
and then transformed into trapezoidal IT2FNs by Table II.
For clarity, the interval type-2 fuzzy information system is
illustrated in Table V, where the evaluation result Ãpq is the
trapezoidal IT2FN and denoted as follows:

Ãpq = (A+
pq, A

−
pq) =

(
(a+
pq, b

+
pq, c

+
pq, d

+
pq; s

+
pq, t

+
pq),

(a−pq, b
−
pq, c

−
pq, d

−
pq; s

−
pq, t

−
pq)

)
. (29)

The motivation of the TOPSIS approach is to pick up the
alternative which takes the shortest distance from the positive
ideal solution and the farthest distance from the negative ideal
solution. According to the risk aversion coefficient θk, all
the evaluation results in the interval type-2 fuzzy information
system should be transformed into the evaluation utilities for
the decision-maker ek based on (13) as follows:

uk(Ãpq) =
1

θk
(1	 e−θkÃpq ). (30)

Based on the arithmetic operations of trapezoidal IT2FNs,
we further calculate the interval type-2 fuzzy evaluation utility
uk(Ãpq) as follows.

uk(Ãpq) =



(
1− e−θka

+
pq

θk
,

1− e−θkb
+
pq

θk
,

1− e−θkc
+
pq

θk
,

1− e−θkd
+
pq

θk
; s+
pq, t

+
pq),

(
1− e−θka

−
pq

θk
,

1− e−θkb
−
pq

θk
,

1− e−θkc
−
pq

θk
,

1− e−θkd
−
pq

θk
; s−pq, t

−
pq)


. (31)

Then, for every decision-maker ek, we can calculate the
ranking value of uk(Ãpq) in the interval type-2 fuzzy infor-
mation system as:

ηu,kpq =η(uk(Ãpq))

=

∑
l∈{a,b,c,d}

∑
•∈{+,−} (1− e−θkl

•
pq )/θk

8

×
∑
h∈{s,t}

∑
•∈{+,−} h

•
pq

4
, (32)

TABLE V
THE INTERVAL TYPE-2 FUZZY INFORMATION SYSTEM

f1 f2 . . . fn

x1 Ã11 Ã12 . . . Ã1n

x2 Ã21 Ã22 . . . Ã2n

. . . . . . . . . . . . . . .

xm Ãm1 Ãm2 . . . Ãmn

where 1 ≤ p ≤ m and 1 ≤ q ≤ n.
Afterwards, we need to determine the positive ideal solution

x+
k = (v+,k

1 , v+,k
2 , . . . , v+,k

n ) and the negative ideal solution
x−k = (v−,k1 , v−,k2 , . . . , v−,kn ), where

v+,k
q = max

1≤p≤m
{ηu,kpq }, (33)

and

v−,kq = min
1≤p≤m

{ηu,kpq }. (34)

Subsequently, we should calculate the distance d+
k (xp)

between each object xp and the positive ideal solution x+
k , and

the distance d−k (xp) between each object xp and the negative
ideal solution x−k . Motivated by regret theory, the calculation
of distances may also consider the regret or rejoice values
between objects and ideal solutions based on (14), which is
shown as follows:

d+
k (xp) =

√√√√ n∑
q=1

wq × (ηu,kpq + 1− e−δk(ηu,k
pq −v+,k

q ) − v+,k
q )2,

d−k (xp) =

√√√√ n∑
q=1

wq × (ηu,kpq + 1− e−δk(ηu,k
pq −v−,k

q ) − v−,kq )2.

(35)

Finally, the relative closeness of xp to the positive ideal
solution x+

k can be computed as follows:

RCk(xp) =
d−k (xp)

d+
k (xp) + d−k (xp)

. (36)

Liang et al. [61] indicated that the relative closeness can
reflect the conditional probability of the object that belongs
to C. Let us denote the conditional probability of the object
xp for the decision-maker ek as Prk(C|xp). Therefore, for
each decision-maker ek ∈ E and object xp ∈ X , we estimate
the conditional probability of the object xp as: Prk(C|xp) =
RCk(xp).

B. The whole decision procedure of regret-based three-way
decision model

By concluding the aforementioned models and approaches,
we outline core steps of the whole decision procedure for
the regret-based 3WD model under interval type-2 fuzzy
environment. The evaluation and decision process is shown
in Fig. 3. For the description of the whole decision procedure
of the proposed regret-based 3WD model in Fig. 3, decision-
makers may select different risk aversion and regret aversion
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Select the risk aversion and 

regret aversion coefficients 

Construct the interval type-2 

fuzzy outcome matrix

Collect evaluation results for 

the interval type-2 fuzzy 

information system

Compute the interval type-2 

fuzzy regret-based 

utility functions

Estimate the conditional 

probability

Calculate the ranking values 

of all the interval type-2 

fuzzy expected utilities

Calculate the interval type-2 

fuzzy expected utilities

    Generate the decision rules

          based on     (P2) (N2)-

Fig. 3. The whole decision-making process of the regret-based 3WD model.

coefficients according to their own decision preferences. Then,
different interval type-2 fuzzy regret-based utility functions
and conditional probabilities may be obtained, which will
derive diverse decision rules and results for each decision-
maker. In order to better illustrate the whole decision process
of the proposed model, six key steps are summarized as
follows:

Step 1: For the decision-maker ek ∈ E, select the risk
aversion coefficient θk and the regret aversion coefficient δk.

Step 2: Construct the interval type-2 fuzzy outcome matrix.
Then, compute the interval type-2 fuzzy regret-based utility
function ṽkij .

Step 3: Collect evaluation results for the interval type-2
fuzzy information system. Subsequently, calculate the relative
closeness RCk(x) for x ∈ X and estimate the conditional
probability.

Step 4: Compute the interval type-2 fuzzy expected util-
ity Ũk(πi|x) with respect to different actions in A =
{πP , πB , πN} with (27).

Step 5: Calculate the ranking value η(Ũk(πi|x)) of the
interval type-2 fuzzy expected utility with (28).

Step 6: Compare the ranking value η(Ũk(πi|x)) to generate
the three-way decision rules with (P2)− (N2) for x ∈ X .

V. ILLUSTRATIVE EXAMPLE

In this section, we utilize the regret-based three-way deci-
sion model to solve an investment assessment problem under
interval type-2 fuzzy environment.

A. Problem description
With the continuous development of the economy, China’s

consumption of natural resources is also increasing [69].

TABLE VI
THE LINGUISTIC OUTCOME MATRIX OF THE ILLUSTRATIVE EXAMPLE

C ¬C

πP MG P
πB M MP
πN VP MG

TABLE VII
THE LINGUISTIC INFORMATION SYSTEM OF THE ILLUSTRATIVE EXAMPLE

f1 f2 f3 f4

x1 G G MG G
x2 G M G VG
x3 VG M G MG
x4 VG G MG M
x5 VG VG MP MG
x6 G VG MP M

However, the limitation of local resources is restricting future
development, so more and more companies choose over-
seas countries to seek investment opportunities [70]. Suppose
the overseas investment department of a company decides
to conduct an assessment of six candidate countries and
choose the suitable countries for the investment. With re-
spect to this investment assessment problem, assume that
there are four factors of evaluation, including “Resources”,
“Politics and Policy”, “Economy”, and “Infrastructure” [66].
For six candidate countries and four factors, we obtain:
X = {x1, x2, x3, x4, x5, x6} and F = {f1, f2, f3, f4}. In
this investment assessment problem, suppose there are six
decision-makers assessing the candidate countries, which are
denoted as E = {e1, e2, e3, e4, e5, e6}.

For this investment assessment problem, we utilize the
proposed regret-based 3WD model in this paper to solve
the problem. For each candidate country, it has two states
Ω = {C,¬C} and three actions A = {πP , πB , πN}. As
is mentioned in Section II, the corresponding information
system and outcome matrix are represented and evaluated by
using linguistic terms provided by experts. Table VI presents
the linguistic outcome matrix of the investment assessment
problem. The corresponding linguistic information system is
presented in Table VII. In this investment assessment prob-
lem, the weight vector of all attributes is directly given as:
W = {0.25, 0.2, 0.25, 0.3}T .

B. Decision analysis with the proposed model

With the aid of the proposed regret-based 3WD model, we
discuss the evaluation of the investment assessment problem
and determine the corresponding decision steps in detail as
follows:

Step 1: For all six decision-makers in E, they need to
select the risk aversion coefficient θk and the regret aversion
coefficient δk according to their own decision preferences. In
this problem, the risk aversion and regret aversion coefficients
of six decision-makers are all given in Table VIII.
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TABLE VIII
THE RISK AVERSION AND REGRET AVERSION COEFFICIENTS OF SIX

DECISION-MAKERS

e1 e2 e3 e4 e5 e6

θk 0.55 0.45 0.35 0.25 0.15 0.05
δk 0.25 0.2 0.15 0.1 0.05 0

TABLE IX
THE DECISION RESULTS OF EACH CANDIDATE FOR EVERY

DECISION-MAKER

POS(C) BND(C) NEG(C)

e1 {x1} {x2, x3, x4, x5, x6} ∅
e2 {x1} {x2, x3, x4, x5, x6} ∅
e3 {x1} {x2, x3, x4, x5} {x6}
e4 {x1} {x2, x3, x4, x5} {x6}
e5 {x1, x2} {x3, x4, x5} {x6}
e6 {x1, x2, x3} {x4} {x5, x6}

Step 2: Based on Tables II and VI, we construct the
interval type-2 fuzzy outcome z̃ij of the investment assessment
problem. Then, we compute the interval type-2 fuzzy regret-
based utility function ṽkij for each decision-maker according
to the risk aversion and regret aversion coefficients in Table
VIII.

Step 3: Based on Tables II and VII, we collect the interval
type-2 fuzzy evaluation result Ãpq for the interval type-2
fuzzy information system. Subsequently, the relative closeness
RCk(x) for all six candidate countries is calculated and
we estimate the conditional probability Prk(C|x) for each
candidate and decision-maker with the regret-based TOPSIS
approach.

Step 4: By combining the interval type-2 fuzzy regret-
based utility function ṽkij and the conditional probability
Prk(C|x), we further compute the interval type-2 fuzzy
expected utility Ũk(πi|x) with respect to different actions in
A = {πP , πB , πN} with (27).

Step 5: We calculate the ranking value η(Ũk(πi|x)) of
the interval type-2 fuzzy expected utility with (28) for every
decision-maker.

Step 6: In light of the decision rules (P2)− (N2), we can
deduce all the decision results for six candidate countries and
decision-makers, which are shown in Table IX. From Table IX,
the detailed results and conclusions are discussed as follows:

(1) For the decision-makers e1 and e2, the decision re-
sults are deduced as: POS(C) = {x1}, BND(C) =
{x2, x3, x4, x5, x6}. The decision results imply that the
decision-makers e1 and e2 should both accept the can-
didate country x1. Meanwhile, x2, x3, x4, x5, x6 need to
be further investigated for their judgements.

(2) For the decision-makers e3 and e4, the decision results for
six candidate countries are determined: POS(C) = {x1},
BND(C) = {x2, x3, x4, x5}, NEG(C) = {x6}. They
indicate that the decision-makers e3 and e4 should accept
x1, reject x6 and reconsider x2, x3, x4, x5.
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Fig. 4. Sensitivity analysis of the ranking values of the interval type-2 fuzzy
expected utilities Ũ(πi|x1) and Ũ(πi|x4) for varying values of θ and δ.

(3) For the decision-maker e5, we deduce the decision results
as: POS(C) = {x1, x2}, BND(C) = {x3, x4, x5},
NEG(C) = {x6}. Therefore, the decision-maker ought
to accept x1, x2, reconsider x3, x4, x5 and reject x6.

(4) For the decision-maker e6, the decision results are ex-
pressed as: POS(C) = {x1, x2, x3}, BND(C) = {x4},
NEG(C) = {x5, x6}. The results show that x1, x2, x3

should be accepted and x5, x6 will be rejected. Mean-
while, the candidate country x4 needs to be further
investigated.

C. Sensitivity analysis

With above discussion, it is essential to note that the risk
aversion coefficient θ and the regret aversion coefficient δ are
two fundamental components of the regret-based three-way
decision model. As θ and δ are two free parameters, we can
limit their values to study the change of the decision rules and
results from the viewpoint of the ranking values of the interval
type-2 fuzzy expected utilities. For simplicity, we only study
the change rule of the objects x1 and x4 in this section.

For two candidate countries x1 and x4, we have experi-
mented with 25 different values of θ from 0.02 to 0.50 with a
step size of 0.02. The value 0.00 of θ is not taken into account
since the denominator of (13) cannot be the zero. At the same
time, 31 different values of δ are considered from 0.00 to 0.30
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Fig. 5. Comparative analysis of the decision rules and results between the
regret-based 3WD model and classical 3WD model.

with a step size of 0.01. Therefore, with the change of values
of θ and δ, the detailed results of the ranking values of the
interval type-2 fuzzy expected utilities are shown in Fig. 4. For
Fig. 4, we present a kind of three-dimensional plot for varying
values of θ and δ. We observe that the ranking values of the
interval type-2 fuzzy expected utility may exhibit different
trends for increasing values of θ and δ associated with taking
each action. The research indicates that the selection of the
risk aversion coefficient θ and the regret aversion coefficient
δ takes great influence on decision rules and results.

VI. COMPARATIVE ANALYSIS

In this section, we make the comparative analysis to analyze
the effectiveness and superiority of the proposed model.

A. Comparative analysis with the classical 3WD model

Firstly, we make the comparative analysis of our model
with the classical 3WD model [1]. For fair comparison, we
generalize the classical three-way decision model [1] into
the interval type-2 fuzzy environment and compare it with
our model, since the classical 3WD model was originally
constructed with real numbers. The classical 3WD model is
also utilized to deal with the above investment assessment
problem. Since the classical 3WD model utilizes the cost
matrix to derive decision rules, we make a transformation on
the linguistic outcomes of the investment assessment problem
in Table VI by transforming the index of linguistic terms in
the linguistic term set for simplicity. Then, based on Table II,
we can similarly obtain the interval type-2 fuzzy cost matrix
for the classical 3WD model.

By using the TOPSIS method in [63], we can also determine
the conditional probability of the classical 3WD model under
interval type-2 fuzzy environment based on Tables II and VII.
With interval type-2 fuzzy costs and conditional probabilities,
we compute the interval type-2 fuzzy expected costs and their
ranking values. Then, we similarly generate the minimum-
cost decision rules, and deduce the decision results for six
candidate countries and decision-makers. As a result, for all
the six decision-makers, the decision results for six candi-
date countries are determined: POS(C) = {x1, x2, x3, x4},
NEG(C) = {x5, x6}. The decision results imply that all

TABLE X
THE COMPARATIVE ANALYSIS BETWEEN THREE 3WD MODELS

Model in [34] Model in [41] Our model

Risk attitude X X X

Fuzzy environment X X X

Utility-based decision rules X X X

IT2FS X × X

Gain and loss X × X

Preference for Pr(C|x) × × X

Parameter number 3 2 2

Note: X denotes yes and × denotes no.

the six decision-makers will accept x1, x2, x3, x4 and reject
x5, x6.

As the decision results of the regret-based 3WD model and
the classical 3WD model are both determined, we further
compare the decision rules and results between two 3WD
models, as shown in Fig. 5. With regard to Fig. 5, x-coordinate
denotes the decision-makers and y-coordinate pertains to the
number of candidates classified in each region. For Fig. 5, we
obtain that the decision rules and results of the classical 3WD
model are not going to change with the variation of different
decision-makers in interval type-2 fuzzy environment. On the
contrary, the decision rules and results of the regret-based
3WD model are varied for different decision-makers, since the
risk aversion coefficient θk and regret aversion coefficient δk
are both considered in the proposed model. Besides, the results
of Fig. 5 indicate that the proposed method can manage to
magnify or reduce the size of the boundary region in the actual
decision circumstance according to decision-makers’ decision
preferences.

B. Comparative analysis of the risk attitude with other two
3WD models

In [34], [41], Liang et al. also constructed two different
three-way decision models to describe and reflect decision-
makers’ risk attitudes. Thus, we further make the comparative
analysis and discussions between our proposed regret-based
3WD model and two 3WD models in [34], [41].

For clarity, all the similarities and differences are summed
up in Table X. As shown in Table X, 3WD model in [34], 3WD
model in [41] and our model have three same characteristics.
The risk attitude, fuzzy environment and utility-based decision
rules are all considered in three different models. This can also
reflect to some extent that it is very important and reasonable
to improve the capacity of three-way decision to process the
risk and vagueness under uncertainty.

By comparing the 3WD model in [34] and our model, two
different 3WD models also have two other same characteris-
tics, apart from the above three similarities. Both two 3WD
models utilize IT2FS to cope with fuzzy environment and
describe the risk attitude from the perspective of gain and
loss. However, as shown in Table X, two main contributions
and advantages are obtained in our model. First, our model in-
troduces regret theory into TOPSIS to estimate the conditional
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TABLE XI
THE CONDITIONAL PROBABILITY RESULTS OF THREE METHODS

Pr3(C|x2) Pr6(C|x2) Rank of candidate countries

Method in [61] 0.6397 0.6397 x1�x2�x3�x4�x5�x6
Method in [51] 0.5566 0.5566 x2�x1�x3�x5�x4�x6

Our method 0.7242 0.6501 x1�x2�x3�x4�x5�x6

probability, where the preferences of different decision-makers
are also involved. Second, the parameter number of our model
is smaller than that of the 3WD model in [34], which is simpler
in the actual circumstance.

Then, we also make the comparison and discussion between
the 3WD model in [41] and our model. For Table X, three
main differences between two 3WD models are included. First,
IT2FS is utilized in our model, while the 3WD model in [41]
considers the interval-valued environment. Second, our model
describes the risk attitude from the perspective of both gain and
loss, while the 3WD model in [41] derives the decision rules
only from loss functions. Finally, our model introduces regret
theory into TOPSIS to estimate the conditional probability,
where the preferences of different decision-makers are also
involved.

C. Comparative analysis of the determination of the condi-
tional probability with other two methods

In the universal circumstance that the information system
does not have the class label or the decision attribute, Liang
et al. [61] effectively utilized TOPSIS method to determine the
conditional probability in the Pythagorean fuzzy environment.
Besides, Liu et al. [51] used grey relational degree to calculate
the conditional probability with intuitionistic fuzzy numbers.
In order to verify the effectiveness and superiority of the
proposed regret-based TOPSIS method, we further extend
two methods in [51], [61] into the interval type-2 fuzzy
environment to deal with the above investment assessment
problem and make the comparative analysis between three
different approaches.

For the above investment assessment problem, the con-
ditional probabilities of six candidate countries can be all
calculated for six decision-makers by utilizing two methods in
[51], [61]. Therefore, the results of the calculated conditional
probabilities of three methods are shown in Table XI. For
simplicity, we only present the rank of six candidates for
six decision-makers and the detailed conditional probabilities
Pr3(C|x2) and Pr6(C|x2) of the candidate country x2 for
two decision-makers e3 and e6 as the example.

From Table XI, the conditional probability results indicate
that the rank result of our method is the same as that of
the method in [61], and different from that of the method in
[51]. This shows the difference in principle between TOPSIS
method and grey relational degree. From the ranks of six can-
didates in Table XI, the result reflects that the candidate coun-
tries x1, x2, x3 are most likely to be accepted and x4, x5, x6

are most likely to be rejected for all six decision-makers and
three methods, which demonstrates that our method is persua-
sive and reasonable. However, for Pr3(C|x2) and Pr6(C|x2),

TABLE XII
THE DESCRIPTION OF THE EXPERIMENTAL DATA SETS

ID Data sets Objects Attributes C : ¬C

1 Connectionist Bench 208 61 111 : 97

2 Ionosphere 351 35 225 : 126

3 Parkinson Speech 1040 29 520 : 520

4 Wdbc 569 31 357 : 212

TABLE XIII
THE LINGUISTIC OUTCOME MATRIX OF THE EXPERIMENT

C ¬C

πP MG VP
πB MP MP
πN VP G

our method can evaluate different conditional probabilities of
x2 for e3 and e6, while Pr3(C|x2) = Pr6(C|x2) holds for
other two methods in [51], [61]. This demonstrates that our
method can reflect and describe different risk attitudes and
preferences of decision-makers when evaluating the condi-
tional probability.

VII. EXPERIMENTAL EVALUATIONS

In this section, we conduct some experiments to demonstrate
the effectiveness and performance of our proposed regret-
based three-way decision model. The data sets utilized in
our experiments are downloaded from the machine learn-
ing data repository, University of California at Irvine (UCI)
(http://archive.ics.uci.edu/ml/). The description of four experi-
mental data sets is presented in Table XII. All the experiments
are implemented by using Matlab R2019b on a personal
computer with Microsoft Windows 10, Intel (R) Core (TM)
i5-8265U CPU @ 1.60 GHz and 8.00 GB memory.

Compared with the two-way decision process, the advantage
of three-way decision is to add the boundary region and take
the non-commitment as the delayed decision. Thus, we deeply
examine the influence of different values of the parameters
θ and δ to the variation of three regions, since the risk
aversion coefficient θ and regret aversion coefficient δ are
two key parameters to our model. For four different data sets,
the conditional probability of each object is calculated with
the interval type-2 fuzzy TOPSIS method. Apparently, it is
necessary to normalize different types of attributes into interval
type-2 fuzzy sets. In this experiment, the types of attributes are
first normalized into the linguistic terms, and then represented
by their corresponding interval type-2 fuzzy sets in Table II.
For the conditional attribute of each data set, we assume that
the weight is the same. The outcome matrix in this experiment
is also given by linguistic terms, which is shown in Table XIII.
With decision rules (P2) − (N2), results of the number of
objects in three different regions for each data set are shown
in Fig. 6.

For Fig. 6, we elaborately study the variation of positive,
boundary and negative regions with the change of the risk
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Fig. 6. The variation of objects in three regions with the change of the risk
aversion coefficient θ and regret aversion coefficient δ respectively.

aversion coefficient θ and regret aversion coefficient δ, respec-
tively. The x-coordinate represents the value of risk aversion
coefficient θ or regret aversion coefficient δ. The y-coordinate
concerns the number of objects. Through a detailed research of
Fig. 6, some interesting points are worth discussing carefully.

(1) We examine the variation of three regions for varying
values of θ when δ = 0.1. At this time, we have
experimented with 11 different values of θ from 0.15 to
0.3 with a step size of 0.015. From Fig. 6, we observe
that the number of objects in the boundary region will
become larger with the increase of θ. On the contrary,
the number of objects in the positive and negative regions
will become smaller with the increase of θ. The influence

of θ on the change of negative and boundary regions is
greater than that of the positive region.

(2) We research the variation of three regions for varying
values of δ when θ = 0.15. Similarly, 11 different values
of δ are considered from 0.1 to 0.4 with a step size of
0.03. From Fig. 6, the results indicate that the trends
and patterns of the change of the positive and boundary
regions with the increase of δ are as same as those with
the increase of θ. The number of objects in the negative
region will not decrease with the increase of δ, which is
different from that with the increase of θ. The effect of δ
on the change of positive and boundary regions is greater
than that of the negative region.

(3) The results of Fig. 6 also indicate that if decision-makers
would rather make certainty decision, they should set
values of θ and δ smaller. On the contrary, if decision-
makers prefer more objects should be included in the
boundary region to make delayed decision, the values of
θ and δ need to set bigger. The conclusion is consistent
with the decision results in Tables VIII and IX.

As the decision results of all the objects in four data sets
are determined in Fig. 6 with the change of θ and δ, it is
necessary to evaluate the performance of the proposed model
by utilizing the decision attribute in four data sets. Inspired
by [71], we utilize the error rate to evaluate the performance
of our proposed regret-based 3WD model. The error rate is
defined as follows [71]:

Error rate =
nC→NEG(C) + n¬C→POS(C)

N
× 100%, (37)

where N is the total number of objects in the universe.
nC→NEG(C) represents the number of objects classified into
the negative region NEG(C) belonging to C. n¬C→POS(C)

denotes the number of objects classified into the positive
region POS(C) belonging to ¬C. Apparently, the smaller of
the error rate can reflect that the performance of the proposed
regret-based 3WD model is better.

Therefore, the results of the error rates for all the objects
in four data sets are presented in Fig. 7. Fig. 7 (a) shows the
change of the error rates for four data sets with the increase of
θ when δ = 0.1, where the x-coordinate represents the value
of the risk aversion coefficient θ from 0.15 to 0.3, and the
y-coordinate concerns the error rate from 4% to 16%. Fig.
7 (b) shows the change of the error rates for four data sets
with the increase of δ when θ = 0.15, where the x-coordinate
represents the value of the regret aversion coefficient δ from
0.1 to 0.4, and the y-coordinate denotes the error rate from
0% to 15%.

From Fig. 7, we observe that the error rate is significantly
affected by the values of θ and δ. With the increase of θ or
δ, the error rate of all the four data sets is decreasing since
the boundary region BND(C) is magnified. This implies the
advantage of three-way decision over two-way decision. In the
actual decision environment, decision-makers can enlarge the
boundary region and reduce the error rate by changing risk
aversion and regret aversion coefficients θ and δ. This also
reflects the validity of the proposed regret-based three-way
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Fig. 7. The error rates of four data sets with the variation of θ and δ.

decision model in this paper and verifies its performance in
interval type-2 fuzzy environment.

VIII. CONCLUSION

In order to describe the effect of decision-makers’ risk
attitudes more appropriately, this paper proposes a regret-
based three-way decision model under interval type-2 fuzzy
environment. For the description on the psychological risk
attitudes and preferences, the regret-based 3WD model can
derive different maximum-utility decision rules for decision-
makers according to their risk aversion and regret aversion
coefficients. The conditional probability is evaluated with the
interval type-2 fuzzy TOPSIS method based on regret theory.
The proposed model is verified through an illustrative example
of an investment assessment problem and the comparative
analysis. Finally, the results of the experimental evaluations
show the effectiveness and performance of the regret-based
3WD model. In the future, we will consider the extension
of the proposed model in the multi-attribute decision-making
problem and sequential three-way decision.
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