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Abstract—The pure accuracy measure is used to eliminate random consistency from the accuracy measure. Biases to both majority
and minority classes in the pure accuracy are lower than that in the accuracy measure. In this paper, we demonstrate that compared
with the accuracy measure and F-measure, the pure accuracy measure is class distribution insensitive and discriminative for good
classifiers. The advantages make the pure accuracy measure suitable for traditional classification. Further, we mainly focus on two
points: exploring a tighter generalization bound on pure accuracy based learning paradigm and designing a learning algorithm based
on the pure accuracy measure. Particularly, with the self-bounding property, we build an algorithm-independent generalization bound
on the pure accuracy measure, which is tighter than the existing bound of an order O(1/

√
N) (N is the number of instances). The

proposed bound is free from making a smoothness or convex assumption on the hypothesis functions. In addition, we design a
learning algorithm optimizing the pure accuracy measure and use it in the selective ensemble learning setting. The experiments on
sixteen benchmark data sets and four image data sets demonstrate that the proposed method statistically performs better than the
other eight representative benchmark algorithms.
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1 INTRODUCTION

DURING the process of decision-making, decision mak-
ers often make random guesses, which may generate

consistency with the true state. We call this kind of con-
sistency as random consistency. Designed by humans and
induced from some limited data, the learning algorithms
analogously have probabilities to generate randomness [1]
and random consistency [2], [3]. However, in the area of
classification, simple consistency measures, which are de-
fined as general functions of the entries in confusion matrix,
are generally used to evaluate the performance of the algo-
rithms. For instance, the accuracy measure is the summation
of the true positive and the true negative, the F-measure and
the G-mean measure are defined as the harmonic mean and
the geometrical mean of the precision rate and the recall
rate, respectively. They do not take the random consistency
into consideration. Evaluation results with containing the
random consistency may lead to a deceptive feedback loop
and then make an influence on the improvement of the
learning system.

Nowadays, eliminating random consistency from consis-
tency measures has become a hot research topic. This topic
originated from the area of educational psychology [4]–[7].
The researchers anticipated the expected score of the accu-
rate answer not by reason and logic would be zero instead
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of one. With the zero baseline for a right guess, reviewer
may improve the reliability of assessment and facilitate the
examinees to increase their performance in a proper way.
Various approaches to correct chance agreement have been
proposed. One of the most used ones is to penalize the right
scores by wrongs with a factor that can ensure the expected
score of a pure guess is zero. Another one is to define
statistics that penalize the total agreement by the associa-
tivity degree of examinees’ marginal distributions, such as
Cohen’s κ [8], Scott’s π [9], Goodman and Kruskal’s λ [10],
Mak’s ρ and Hamann’s η [11]. These statistics are built for
hypothesis testing in inferential statistics and used to make
inferences about some unknown distribution parameters.

In the field of clustering, eliminating random consistency
recently serves as an important technique to evaluate the
quality of clustering results. Adjusted Rand Index, a popular
evaluation measure in clustering, is defined by eliminating
random consistency from the Rand Index [12]. Some other
similarity measures like Jaccard coefficient and information-
entropy based measures are also promoted as correction
measures [13]–[15]. Furthermore, the information-entropy
based measures after correction show unbiasedness to the
number and the size of clusters [13]–[15]. As far as we
know, the above mentioned measures are often used in the
final evaluation stage and do not participate in the process
of learning.

A learning problem is a problem that considers two
topics: designing algorithms that can automatically improve
a performance measure from the experience data and esti-
mating the generalization ability of the learning algorithms.
In previous decades, the accuracy measure has been the
fundamental performance measure in learning. It has been
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well-studied that the traditional algorithms, including l-
ogistic regression, support vector machine and Adaboost
are designed to optimize convex surrogate loss functions
of the error probability (one minus accuracy) [16], [17].
And in ensemble learning, accuracy has been used as the
preferential measure to evaluate the performance of inte-
gration [18], [19]. In addition, almost all learning theories
focus on searching the generalization bounds with respect
to the error probability [20]–[24].

With the interest in eliminating random accuracy from
the accuracy measure, Wang et.al [2] has defined a pure
accuracy measure (PA). Some classifiers that optimize PA
have been developed, which contain plug-in rule [2] and
support vector machine model (SVM) [3]. In [2], it has been
proved that learning by PA implies a good A by showing the
lower bound and the upper bound of the error probability
of the optimal rule in the sense of PA. In addition, the
learnability of PA has been shown in both finite and infinite
hypothesis spaces.

However, the proposed plug-in rule is incapable of
providing a group of weight to show the importance of
input features, which hinders its use feature selection or
in selective ensemble learning. The proposed SVM model
approximately maximizes PA with fixing the positive prob-
ability of the output label larger than that of the training
label. In this paper, we attempt to design an algorithm that
optimizes PA, which applies to the learning settings with
a linear combination of input as the decision function. We
also aim to survey the generalization performance of PA by
a tighter generalization bound.

The pure accuracy measure belongs to the class of
linear-fractional performance measures. Such measures in-
clude the well-known Jaccard coefficient, F-measure and so
on. The linear-fractional measures are non-decomposable,
namely, they cannot be represented as a summation over
individual instances [25]–[27]. This property causes difficul-
ties in estimating the measures without bias and the failure
of the traditional gradient methods in optimizing them.

Recently, much interest has been put in the linear-
fractional measures, including some theoretical analysis
on the surrogate consistency between the linear-fractional
measures with other losses [25], [26], [28], the consistency
analysis of the two-step approach to optimize the linear-
fractional measures [29]–[31], and the generalization perfor-
mance analysis of the linear-fractional measures [32]. It is
worth mentioning that Dembczyński et.al [32] provided a
Rademacher complexity based generalization bound with
an order of O(1/

√
N) for the linear-fractional measures

by applying the property of p-Lipsitz continuity and the
Hoeffding’s inequality.

In designing algorithms, there are two types of meth-
ods: indirect method and direct method. Indirect methods
proceed by formalizing a sequence of cost-sensitive classi-
fiers or plug-in rules to optimize the linear-fractional mea-
sures [29]–[31], [33]–[35]. But the cost-sensitive classifiers
are trapped in the determination of combination coefficient
for losses from different classes, and the plug-in rules need
more training data because it is a two-step process con-
sisting of learning the posterior probability and searching
the truncated threshold to maximize the specified measure.
Direct methods directly connect the model parameters with

the measures [27], [36], [37]. AMP (Alternate Maximization
Procedure) method [36] used the lower level sets of the
the linear-fractional measures and alternatively maximized
the level value and the model parameters to optimize the
measures. Bisection method [31] used the same idea as AMP
method and searched the optimal level value in binary.
These two methods used the same strategy that introduced
a parameter to transform the problem of optimizing the
interesting measure to a linear one. This strategy is efficient
but may fail when the objective function also contains
a regularization term. SVMperf [37] optimized a convex
relaxation of the interested measure, which required that the
margin between the true label vector and the other possible
label vectors should be larger than the score evaluated by
the specified measure. Gradient method [38], [39] is an
extension of SVMperf. It inferred two label vectors to define
the gradient of the linear-fractional measure and searched
the optimal model parameter by gradient descent method.
SVMperf and Gradient are novel but are restricted by the
large computational complexity. Although the above algo-
rithms effectively optimize the linear-fractional measures,
there still exists much room to promote the optimization
performance.

From the above reviews, we aim to develop a tighter
generalization bound and design a more direct learning
algorithm on the pure accuracy measure. The major con-
tributions of this paper are summarized as follows:

• Firstly, we build a generalization bound on PA based
on the Rademacher complexity and the number of
instances N . It declines faster than O(1/

√
N) with

considering the self-bounding property.
• Secondly, we design a method that directly optimizes

the pure accuracy measure. This method is used in
the scene of ensemble learning, and the corresponding
algorithm is called PASE. PASE does not use a relax-
ation loss and can be extended to optimize the models
containing regularization terms. Experimental results
demonstrate the effectiveness of PASE.

The organization of this paper is as follows. We give the
definition and the advantages of pure accuracy in Section
2. In Section 3, an existing bound on pure accuracy is re-
viewed, then a tighter concentration inequality and a tighter
generalization bound on PA are shown. In Section 4, first-
ly, the benchmark algorithms are reviewed. Then PASE is
presented and its performance is validated through sixteen
benchmark data sets and four image data sets. Section 5
concludes this paper. All the proofs and some experimental
results are provided in the Supplementary Material.

2 PURE ACCURACY AND ITS ADVANTAGES OVER
ACCURACY

In this paper, binary classification is considered. It aims to
learn a classifier h(X) mapping from the feature space X ∈
X ⊆ Rd to the binary label space Y ∈ Y = {+1,−1}. The
classifiers are learnt from a hypothesis space H. To evaluate
the classifiers, the confusion matrix is often used, which is
defined as Table 1.
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TABLE 1: Confusion Matrix

h(X)

Y
Y = +1 Y = −1 Total(h)

h(X) = +1 TP FP q(h)

h(X) = −1 FN TN 1− q(h)

Total(Y ) p 1− p 1

In Table 1,

TP = PX,Y (h(X) = +1, Y = +1), (1)
FP = PX,Y (h(X) = +1, Y = −1), (2)
FN = PX,Y (h(X) = −1, Y = +1), (3)
TN = PX,Y (h(X) = −1, Y = −1), (4)

and the positive class probabilities of h and Y are

q(h) = PX(h(X) = +1), p = PY (Y = +1), (5)

respectively. In a learning task, p is taken as a constant, and
q(h) is an unknown quantity w.r.t the output of the classifier.

Based on the confusion matrix, the accuracy measure (A)
and the error probability (L) are defined as

A(h(X), Y ) = PX,Y (h(X) = Y ) = TP + TN, (6)
L(h(X), Y ) = PX,Y (h(X) 6= Y ) = FP + FN, (7)

respectively.
The underlying probability distribution of X × Y is

usually unknown. We only have a collection of empiri-
cal data drawn independently from it, denoted as SN =
{(x1, y1), ..., (xN , yN )}. In the empirical situation, the letter
with a hat and a subscript N denotes the corresponding
empirical measure. For example, the empirical measure of
TP is

T̂PN =
1

N

N∑
i=1

I[h(xi) = +1, yi = +1], (8)

where I is the indictor function.

2.1 A Framework of Pure Consistency Measure

To evaluate the performance of the classifier, a consistency
measure (CM) is usually introduced.

Definition 1. For two random discrete variables Z1 and
Z2, a measure is a CM, if for ∀ z ∈ Z , it increases
monotonically with pz = PZ1,Z2(Z1 = z, Z2 = z), where
Z is the domain of the variables.

The accuracy increases monotonically with TP and TN.
Then, A is a consistency measure of h(X) and Y , while the
error probability is not.

For two discrete variables, if at least one of them is a
totally random variable, there also exists consistency be-
tween them. Consistency generated by randomness rather
than by logic may influence the objectivity and reliability of
the evaluation result. To measure this kind of consistency,
random consistency measure (RCM) is defined as follows.

Definition 2. A measure is a RCM if it can measure the
consistency that is generated by randomness.

To measure the pure consistency, a general framework of
pure consistency measure (PCM) is defined as follows [8],
[12].
Definition 3. For two random discrete variables Z1 and Z2,

PCM is defined as

PCM(Z1, Z2) (9)

=
CM(Z1, Z2)−RCM(Z1, Z2)

maxZ1,Z2
CM(Z1, Z2)−RCM(Z1, Z2)

.

The framework of PCM is to subtract a random consis-
tency measure from the original consistency measure and
then to normalize the maximal value to 1 by an upper
bound. When PCM=0, the consistency of Z1 and Z2 is
considered to be generated completely by randomness.

2.2 The Definition of Pure Accuracy

We give the concrete formulation of RCM and PCM in
the context of accuracy, and call the random consistency
in accuracy as Random Accuracy (RA) and the eliminated
measure as Pure Accuracy (PA). How to define RA is crucial
to formulize PA.

Here, we follow the definition of RA in [2], [3], where RA
is defined as the mean accuracy over a binary partition class.
For the classifier h(X) to be evaluated, the binary partition
class Hq(h) contains all the possible binary partitions that
have the same class distribution as h(X). That is,

Hq(h) = {h′|PX(h′(X) = +1) = q(h), h′(X) ∈ {+1,−1}}.
(10)

Different with partitions in [40], the partitions in Hq(h) are
independent ofX . ForN instances, a partition inHq(h) is a 1
byN vector with each element taking values from {+1,−1}.
Each element corresponds to a predict label of each instance.

In [2], it has been proved that when the partitions h′

in Hq(h) follow the uniform distribution, their true positive
number N · T̂PN (h′) follows the hypergeometric distribu-
tion with the parameter Nq(h) and Np. That is,

N · T̂PN (h′) ∼ PHG
(
Nq(h), N,Np

)
, (11)

where the function PHG(Nq(h), N,Np) represents the prob-
ability of obtaining exactlyN ·TP (h′) positive instances and
Nq(h) − N · TP (h′) negative instances if Nq(h) instances
are chosen at random without replacement from a finite
population containing N instances of which Np are the
number of positive instances and N − Np are the number
of negative instances. Thus, according to the properties
of hypergeometric distribution, the expectation value 1 of
T̂PN (h′) is

Eh′:h′∈Hq(h)
T̂PN (h′) = pq(h). (12)

The true negative number N · TN(h′) follows the hyperge-
ometric distribution with the parameters N(1 − q(h)) and
N(1− p),

N · T̂NN (h′) ∼ PHG
(
N(1− q(h)), N,N(1− p)

)
, (13)

1. For a learning task, the true label of instance is fixed. The partitions
in Hq(h) are the possible predict vectors with the same class distribu-
tion. They have different accuracy values. The expectation is calculated
over these values.
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and

Eh′:h′∈Hq(h)
T̂NN (h′) = (1− p)(1− q(h)). (14)

Thanks to the partitions having the same class distribu-
tion and following the uniform distribution, the expectation
of their T̂PN (h′) and T̂NN (h′) have the above simple
formulations. Then the random accuracy has the following
simple formulation.
Definition 4. ( [2], [3])RA of h(X) is defined as

RA(h) = pq(h) + (1− p)(1− q(h)). (15)

Definition 5. ( [2], [3]) Under the framework of PCM, PA of
h(X) is defined as

PA(h(X), Y ) =
A(h(X), Y )−RA(h(X), Y )

1−RA(h(X), Y )
. (16)

Note that the formulation of PA coincides with the defi-
nition of Cohen’s κ statistic [8], which measures the chance
agreement between two raters by assuming the raters are
statistically independent. However, the way we define RA
may inspire the other new formulations by attaching more
complex distribution on Hq(h) or using the other estimators
except expectation over the partitions.

In the area of detecting the dependence between func-
tions, the indeed independence statistics are derived, which
satisfy the property that their value are zero when the func-
tions are statistically independent. Based on the statistics,
superior independence test and regression method have
been developed [41], [42]. The RA measure is a kind of
independence criterion between the output label of classifier
and the true label. The PA measure is indeed a dependence
criterion due to minus RA from A, i.e., PA satisfies the
property that its value is zero if and only if the output label
of classifier and the true label are statistically independent.

For simplicity, we omit the functional dependence on
X and Y in the following notations. Here, we give some
representations of PA for further analysis.
Definition 6. The linear-fractional measure [28] is defined as

Ψ(h(X), Y ) =
a0 + a1TP + a2FP + a3FN + a4TN

b0 + b1TP + b2FP + b3FN + b4TN
,

(17)
where ai, bi, i = 0, ..., 4 are constants.

Due to L(h) = 1−A = FP+FN and q(h) = p+FP−FN ,
PA can be represented as

PA = 1− L(h)

p+ (1− 2p)q(h)
, (18)

= 1− FP + FN

2p(1− p) + (1− 2p)(FP − FN)
. (19)

Obviously, PA belongs to the linear-fractional measures.
To give more intuition of PA, we show some learning

settings that PA and A are linear.
Theorem 1. PA and A are linear in the following cases: (1)

when p = 1
2 , PA = 2A − 1; (2) when q(h) = q0, q0 is a

constant taking value in [0, 1], PA = 1− A
p+(1−2p)q0

.

We omit the proof of Theorem 1 because it can be easily
obtained by definition.

The first case of Theorem 1 corresponds to a learning
problem where the class distribution is totally balanced.
The second case means the positive class probability of
the classifier is fixed, which may occurs in the proportion
learning problem [43]. In this problem, the training data is
provided in groups and only the proportion of each class
in each group is known. In such two cases, the evaluation
results of PA and A are consistent, and PA can be maximized
through maximizing A.

2.3 Advantages of Pure Accuracy
In [2], we have shown that compared with A, PA is class
distribution insensitive and lower biased. As is well-known,
F-measure (FM) is a kind of measure suited to learning [44].
Here, we aims to compare PA with A and FM in the view of
class distribution insensitivity and discrimination.

Far more than the class imbalance of data, many factors
can influence the class distribution of classifier, such as
noise, overlap and even human-bias [45]. These factors often
exists together in a learning task. For a learning task, the
property of class distribution insensitivity helps the learning
algorithm get closer to the true class distribution.

Advantage 1 (Class distribution insensitivity).
As the definition of RA, a binary partition can be deemed

as an output of a classifier. By enumerating all possible
binary partitions, we study how the value of A, FM and
PA change with the class distribution of classifier. When
N = 100, p = 0.3 and N = 500, p = 0.02, we calculate
the values of the measures and the positive-class probability
of the binary partition. Figure 1 visualizes the calculation
results. From Figure 1(a) and Figure1(b), it can be observed
that the leftmost point is far higher than the rightmost point,
indicating that the accuracy value plane is inclined. From
Figure 1(c) and Figure 1(d), it can be observed that the
rightmost point is not equal to the leftmost point, indicating
that the F-measure value plane is inclined. From Figure 1(e)
and Figure 1(f), it can be observed that both the leftmost
point and the rightmost point are equal to zero, indicating
that the pure accuracy plane is not inclined. These signifies
that PA is a performance evaluation measure that is more
insensitive to the class distribution of classifier than A and
FM.

Next, we give some brief theoretical analysis on the class
distribution insensitivity of PA and FM. It has been shown
that the optimal rule of a a linear fractional measure has
the formulation of η(x) > ρ [2], where η(x) = P(y = 1|x)
and ρ ∈ [0, 1]. In Theorem 1 of [2], it has been shown that
for PA, the decision value ρPA = η(x) > ( 1

2 − p)PA
∗ + p,

where PA∗ = PA(h∗PA), h∗PA(x) = arg maxh PA(h) and
p = P(Y = +1). By the same technique in proving
Theorem 1 of [2], we obtain that for FM, the decision
value is ρFM = 1

2FM
∗, where FM∗ = FM(h∗FM ) and

h∗FM (x) = arg maxh FM(h).
Obviously, ρPA is a function related to p, while ρFM is

not related to p. This signifies that the optimal rule learned
by PA is able to tune with the class distribution of the true
label. This makes PA not be biased to different classes. Thus
PA is class distribution insensitive. However, from ρFM , we
cannot obtain such observation.

Next, we will show that compared with FM, learning by
PA is better.
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(a) N = 100, p = 0.3
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(b) N = 500, p = 0.02
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(d) N = 500, p = 0.02
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(f) N = 500, p = 0.02

Fig. 1: Comparison on class distribution insensitivity.

TABLE 2: An example on distinction ability of A and PA

X x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 A PA
Y −1 −1 −1 −1 −1 −1 −1 −1 +1 +1

h1 −1 −1 −1 −1 −1 −1 +1 +1 +1 +1 0.8 0.5455

h2 −1 −1 −1 −1 −1 −1 −1 +1 +1 −1 0.8 0.3750

h3 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0.8 0

Theorem 2. For two classifiers hi, i = 1, 2, satisfying{
PA(h1) ≥ PA(h2)

FM(h1) ≤ FM(h2),
(20)

we have {
L(h1) ≤ L(h2)

q(h1) ≤ q(h2)
(21)

From Theorem 2, we can conclude that for a classifier
with a bigger PA but a smaller FM, both the error probability
and positive class probability are smaller. This signifies that
when the evaluation results of PA and FM are inconsistent,
the evaluation of PA is more reasonable because it rewards
the classifier with a higher accuracy value and a lower
probability to output the minority class.

Advantage 2 (More Discriminative). Accuracy is the
expectation of 0−1 step function. The value range of it is
limited. As shown in Table 2, although h1, h2 and h3 make
different predictions on ten instances, they are assigned
with the same A value. However, they have different PA
values. Furthermore, we have the following result on the
discrimination ability of PA and A.
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FM1 ≥ FM2, Bias1 ≤ Bias2, A1 ≥ A2

Fig. 2: Comparison on distinction ability

Theorem 3. Let Table = (TP, FP, FN, TN) denote the
confusion matrix. Suppose the number of instances is
N , for two confusion matrices Tablei, i = 1, 2, let

P = {(Table1, Table2)|PA1 6= PA2, A1 = A2}, (22)
Q = {(Table1, Table2)|A1 = A2},

we have |P| → |Q| as N →∞.

The set |P| contains the pair of classifiers that are as-
signed the same A value but different PA value. The set |Q|
contains the pair of classifiers that are assigned the same A
value. Theorem 3 tells us that with the number of instances
tends to infinity, the size of |P| tends to the size of |Q|,
which signifies that PA can distinguish almost all classifier
pairs that cannot be distinguished by A.

Next, we compare the distinction ability of PA and FM
for good classifiers. A classifier is good if its bias is low and
accuracy is high. The bias is defined as

Bias =
∣∣P(h(X) = +1|Y = −1)− P(h(X) = −1|Y = +1)

∣∣
(23)

=

∣∣∣∣ FP1− p
− FN

p

∣∣∣∣,
which measures the difference between the error probability
of the two classes. Figure 2 depicts three groups of bar when
N = 100. From left to right, the bars are the number of pairs
that h1 is better than h2, the number of better classifiers that
PA can distinguish and the number of better classifiers that
FM can distinguish, respectively. That is, the bars are the
size of the set B = {(Table1, Table2)|A1 ≥ A2, Bias1 ≤
Bias2}, the number of table pairs that satisfies PA1 ≥ PA2

in B and the number of table pairs that satisfies FM1 ≥
FM2 in B, respectively. From Figure 2, we observe that the
bars of PA are higher than the ones of FM under different
numbers of positive instances. This means that PA has a
better distinction ability for good classifiers than FM.

3 THE GENERALIZATION ABILITY OF LEARNING
BY PA
Through the training data set, classifiers can be obtained by
optimizing some performance measures. How the classifiers
perform on the new data is known as the generalization
ability or the learning ability. The generalization ability
investigation about PA can be summarized as bounding the
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deviation between the true PA and the empirical PA, which
is

|PA(L, p, q)− P̂AN (L̂N , p̂N , q̂N )
∣∣. (24)

The generalization bound is of great importance for us
to understand what factors influence the performance. A
tighter bound maybe helpful to design an algorithm with
a fast speed of convergence and high generalization ability.
Many effort have been put on developing tighter general-
ization bound [24], [46]–[50]. In this section, we investigate
the learning ability of PA by giving a tighter generalization
bound.

3.1 An Existing O(1/
√
N) Bound of PA

Concentration inequalities provide bounds on how a ran-
dom variable deviates from its expected value. For simple
random variables and their summations, these kind of in-
equalities have been thoroughly studied and well develope-
d [51].

There are two obstacles of using concentration inequali-
ties on the linear-fractional measures. One is that the empir-
ical measure is not an unbiased estimation of the true mea-
sure. The other is that the linear-fractional measures cannot
be obtained by summations on individual instances. To
solve these obstacles, K. Dembczyński et.al. [32] employed
the p-Lipschitz continuity, which is a generalized property
of the Lipschitz continuity with replacing the Lipschitz
constant by a parameter in terms of p.

Definition 7. (p-Lipschitz [32]) For performance measure
Ψ(Z, p, q), it is p-Lipschitz with respect to Z, p, q. If for
any feasible Zi, pi, qi, i = 1, 2, it satisfies∣∣Ψ(Z1, p1, q1)−Ψ(Z2, p2, q2)

∣∣ (25)

≤ Zp
∣∣Z1 − Z2

∣∣+ Pp
∣∣p1 − p2

∣∣+Qp
∣∣q1 − q2

∣∣,
where Zp, Pp, Qp are constants depended on p.

Thus, the upper bound of the deviation on Ψ can be
obtained by combining the bounds of deviations on Z, p, q.

The complexity parameter of the hypothesis space is a
key factor in developing a generalization bound. In [52],
a more practical complexity parameter and a theoretical
framework for deriving bounds based on it for preference-
based learning are proposed. In [53], non-trivial bounds
of some complexity parameters are determined, based on
which the proposed algorithm was proved to be near-
optimal. In binary classification, the Rademacher complexity
is a good choice for infinite hypotheses space. Based on
Rademacher complexity, one can obtain tighter bounds than
based on the growth function and the VC-dimension [54].
Rademacher complexity measures the data description ca-
pability of the hypothesis space by measuring the fitting
ability to the random uniform noise.

Definition 8. ( [54]) The Rademacher complexity of a hy-
pothesis class F is defined as

R(F) = Eσ,X sup
f∈F

∣∣∣∣ 2

N

N∑
i=1

σif(xi)

∣∣∣∣, (26)

where σi are r.v. with P(σi = +1) = P(σi = −1) = 1
2 .

Based on the property of p-Lipschitz continuity and the
Rademacher complexity, a generalization bound for perfor-
mance measures is given [32].

Theorem 4. ( [32]) Let Ψ(TP, p, q) be a p-Lipschiz continuous
performance measure w.r.t TP, p, q. Then, for all h ∈ H,
t > 0, with a probability at least 1 − exp{−t} over the
random choice of sample SN , we have∣∣Ψ(TP, p, q)− Ψ̂N (TP, p, q)

∣∣ (27)

≤ max{TPp, Pp, Qp}
(

2R(H) + 3

√
t+ ln 4

2N
+

1√
N

)
.

By simple calculation, we know that PA is p-Lipschitz
w.r.t TP, p, q with the constant max{TPp, Pp, Qp} = 3/p.

Corollary 1. (Corollary of Theorem 4) For all h ∈ H, t > 0,
with a probability at least 1− exp{−t} over the random
choice of sample SN , we have∣∣∣∣PA(y, h(x)

)
− P̂AN

(
y, h(x)

)∣∣∣∣ (28)

≤ 3

p

(
2R(H) + 3

√
t+ ln 4

2N
+

1√
N

)
.

Generally, the order of the Rademacher complexity is
O(1/

√
N) [50]. Corollary 1 gives a generalization bound of

PA in an O(1/
√
N) order. From Corollary 1, we can draw

a conclusion that the gap between the true PA value and
the empirical one tends to zero with the instances tends to
infinity and the rate of decline is O(1/

√
N).

3.2 A Tighter Concentration Inequality for Bounding PA

The self-bounding property and a sub-poissonian concen-
tration inequality are presented in this subsection. The
property of self-bounding was firstly proposed by S.
Boucheron [55]. With the self-bounding property, the vari-
ance of variables can be dominated by their expectations,
which signifies that most of the distribution information
is concentrated around the expectation. Popular complexity
measures are self-bounding, such as the VC-dimension and
the Rademacher complexity.

Definition 9. (Self-bounding [55]) For independent random
variables X1, ..., XN ∈ X , let X = (X1, ..., XN ) ∈ XN ,
andX

(i)
= (X1, ...Xi−1, Xi+1, ..., XN ) ∈ XN−1 for each

i. A measurable function Z : X → R satisfies the self-
bounding property, if there exists a measurable function
Zi : X

(i) → R, such that, for every X ∈ XN , we have

0 ≤ Z(X)− Zi(X
(i)

) ≤ 1, (29)
N∑
i=1

(
Z(X)− Zi(X

(i)
)
)
≤ Z(X). (30)

The self-bounding property is more advanced than the
commonly-used bounded difference. The bounded differ-
ence property is the foundation of the widely-used McDi-
armids inequality, which is the foundation of Theorem 4
and Corollary 1. The self-bounding facilitates the following
tighter Sub-Poissonian concentration inequality.
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Fig. 3: Comparison of the Elementary Functions.

Lemma 1. (A Sub-Poissonian Inequality [55]) If Z is a self-
bounding function, then for all ε > 0, we have

P
(
Z ≥ EZ + ε

)
≤ exp

{
− EZϕ

(
ε

EZ

)}
. (31)

Moreover for 0 < ε < EZ holds

P
(
Z ≤ EZ − ε

)
≤ exp

{
− EZϕ

(
ε

EZ

)}
, (32)

where ϕ(u) = (1 + u) ln(1 + u)− u, for u ≥ −1.

Sub-Poissonian inequality gives a bound in terms of
the expectation. The bound has no connection with the
variance or some variance-like terms, which will be helpful
to develop a tighter bound.

From the concentration inequality, we are more inter-
ested in estimating the deviation upper bound ε with a
specified confidence level. But the inverse function of ϕ(u)
in Lemma 1 is not closed. This hinders the functional expres-
sion of the deviation bound with respect to the confidence
level. To handle this, one often further amplifies the inequal-
ity by an elementary inequality [51]

ϕ(u) ≥ ϕ2(u) =
u2

2 + 2u/3
.

Here, we use ϕ1(u) to amplify ϕ(u)

ϕ1(u) = 3(3 + u−
√

9 + 6u).

The inverse function of ϕ1(u) is closed, and the proposed
lower bound ϕ1(u) is larger than the usually used ϕ2(u). As
shown in Figure 3, ϕ1(u) locates between ϕ(u) and ϕ2(u).
Based on ϕ1(u), we have
Corollary 2. If Z is a self-bounding function and satisfies

EZ > 0, then for all t > 0, we have

P
(
Z ≥ EZ +

t

3
+
√

2tEZ
)
≤ exp{−t}, (33)

moreover for t > 4EZ , we have

P
(
Z ≤ EZ − t

3
−
√

2tEZ
)
≤ exp{−t}. (34)

Next, we extend Corollary 2 to general functions.
Lemma 2. Let F : R → [0, 1] be a non-zero measurable and

additive 2 function class defined on random variables Z .
Then, for all f ∈ F , t > 0, with a probability at least

2. Here, the additive property means that ÊNf(z) = 1
N

∑N
i=1 f(zi).

1−exp{−t} over the i.i.d. sample set DN = {z1, ..., zN},
we have

Ef(z) ≤ ÊNf(z) +R(F) +
t

3N
+

√
2tR(F)

N
, (35)

and

ÊNf(z) ≤ Ef(z) +R(F) +
t

3N
+

√
2tR(F)

N
. (36)

Lemma 2 is a major result. It provides an upper and low-
er bound for the expectation of general additive functions.
The bound is based on the Radermacher complexity R(F),
the number of instances N and the confidence level term t.
Its order is O(1/N+1/

√
N). Lemma 2 improves the bounds

of Theorem 3.1 in [54].
Lemma 2 and its proof skills can be extended to rein-

forcement learning and stochastic convex optimization set-
tings to improve the existing generalization bound, which
maybe helpful to design algorithms with a fast convergence
rates.

Based on Lemma 2, a generalization bound on the prob-
ability of error can be developed.
Theorem 5. Suppose that φ1,φ2:R → [0, 1] satisfies: φ2(u) ≤

I[u ≤ 0] ≤ φ1(u). For every h ∈ H, t > 0, with a
probability at least 1− exp{−t} over the random choice
of sample SN , we have

P
(
yh(x) ≤ 0

)
≤ ÊN

(
φ1(yh(x)

)
+R(φ̃1 ◦ H) (37)

+
t

3N
+

√
2tR(φ̃1 ◦ H)

N
,

and

P
(
yh(x) ≤ 0

)
≥ ÊN

(
φ2(yh(x)

)
−R(φ̃2 ◦ H) (38)

− t

3N
−

√
2tR(φ̃2 ◦ H)

N
,

where φ̃i ◦ H = {(x, y)→ φi(yh(x))− φi(0), h ∈ H, i =
1, 2}.

Theorem 5 provides an upper and lower bound for the
expectation of the error probability. The bound is based on
some empirical loss φ, the Radermacher complexity R(F),
the number of instances N and the confidence level term
t. Its order is O(1/N + 1/

√
N). Theorem 5 improves the

bounds of Theorem 7 in [22].

3.3 A Tighter Generalization Bound of PA

Generalization bounds for PA is based on the above prelim-
inary results, including Corollary 2, Lemma 2 and Theorem
5. Firstly, we use the p-Lipschitz continuous property to
handle PA.
Lemma 3. PA is p-Lipschitz continuous with respect to

L, p, q. That is, for ∀Li, pi, qi, i = 1, 2, we have∣∣PA(L1, p1, q1)− PA(L2, p2, q2)
∣∣ (39)

≤ 2

p

(∣∣L1 − L2

∣∣+
∣∣p1 − p2

∣∣+
∣∣q1 − q2

∣∣),
(40)
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where L is the error probability and p, q is the positive-
class probability of the true label and the classifier,
respectively.

Theorem 6. For every h ∈ H and a large enough t > 0, with
a probability at least 1− exp{−t}, we have∣∣∣∣PA(y, h(x)

)
− P̂AN

(
y, h(x)

)∣∣∣∣ ≤ 4

p

(
R(H)+ (41)

t+ ln 6

2N
+

√
2(t+ ln 6)

N

(√
R(H) +

√
p

2

))
.

Theorem 6 gives a generalization bound of PA in an
O(1/N + 1/

√
N) order. The bound is based on the Ra-

dermacher complexity, which is suited to both finite and
infinite hypothesis space. From Theorem 6, we can draw
a conclusion that the gap between the true PA value and
the empirical ones tends to zero with the instances tends to
infinity and the rate of decline is O(1/N+1/

√
N). Theorem

6 considers the same factors as Corollary 1. Next, we show
that with a large number of instances, the bound in Theorem
6 is tighter than the existing bound in Corollary 1.
Corollary 3. Using B1(N) to denote the bound in Corollary

1 and B2(N) denote the bound in Theorem 6, i.e.,

B1(N) =
3

p

(
2R(H) + 3

√
t1
N

+
1√
N

)
, (42)

and

B2(N) =
2

p

(
2R(H) +

t2
N

+

√
2t2
N

(
2
√
R(H) +

√
p
))
,

(43)
where t1 = t+ln 4

2 , t2 = t+ ln 6, R(H) is the Rademacher
complexity of the hypothesis space H, N is the number
of instances, p is the probability of positive class and t is
a term in confidence level. If

√
N >

t2

3
√
t1 + 1−

√
t2(2

√
R(H) +

√
p)
, (44)

we have that B1(N) > 3
2B2(N).

The bounds in Corollary 3 are based on the Rader-
macher complexity, which are suited to both finite and
infinite hypothesis space. However, for some infinite hy-
potheses, the computation of Radermacher complexity is
hard. To visually compare the bounds, we further ampli-
fy the Radermacher complexity by Massart’s Lemma [54].
Massart’s Lemma bounds the Radermacher complexity by
the size of the hypothesis. Thus, the bounds can be calcu-
lated and depicted for some finite hypothesis space. Let
γmax = maxf(xi)(

∑N
i=1 f(xi)2)1/2, Massart’s Lemma tells

us that the Radermacher complexity can be bounded by

R(F) ≤ γmax
√

2 log |F|
N

, (45)

where |F| is the size of F .
Now, we compare the tightness of the bounds in a simple

weighted ensemble learning scene.
Given T base classifiers h1, h2, . . . , hT , for the weighted

ensemble learning, the prediction of an instance can be
formulated as hw(x) =

∑T
j=1 wjhj(x). Here, we consider

a simple weighted ensemble scene, where the weight of
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Fig. 4: Comparison of B̄1(N) and B̄2(N)
in the simple weighted ensemble learning scene.

each base classifier takes value from w ∈ {−1, 0, 1}. The
hypothesis space of this weight ensemble learning is Hw =
{w|w = (w1, w2, ..., wT ), wi ∈ {−1, 0, 1}, 0 ≤ i ≤ T}. For T
classifiers, we have |Hw| = 3T because the weight of each
classifier has three values.

To depict the bounds, we set p = 0.3, t = ln(1/0.95),
γmax =

√
N . Thus,

R(Hw) ≤ γmax
√

2T log 3

N
=

√
2T log 3√
N

. (46)

Putting the above size-based upper bound of Raderma-
cher complexity in Bi(N), we can obtain the upper bound
ofBi(N) and denote the upper bound as B̄i(N), i = 1, 2. As
shown in Figure 4, We can see that in this simple weighted
ensemble learning scene, B̄2(N) (the red curve) falls faster
than B̄1(N)(the blue curve).

4 SELECTIVE ENSEMBLE LEARNING BASED ON
PA
In this section, we design a learning algorithm that applies
to any learning setting using a linear combination model
of the input as the decision function. Such settings include
the traditional classification which uses a linear combination
of the features as the decision function, the kernel method
which uses a linear combination of the features as the de-
cision function, and the selective ensemble learning which
uses a combination function of the base classifiers as the
decision function.

In this paper, we use the algorithm in the setting of
selective ensemble learning. The reason is that the selec-
tive ensemble learning does not contain too many learning
tricks, such as kernel functions or data normalization. Thus,
compared with other settings, it can highlight the role of
performance measures.

In the scene of optimization based selective ensemble
learning, the combination terms are the base classifier-
s. Let the base classifier set be H = {h1, h2, . . . , hT },
where hj = (hj(x1), ..., hj(xN )). Let the weight vector be
w = (w1, w2, . . . , wT ) ∈ R+. Following the traditional
setting, the classifiers are combined by the weighted vote
hw(x) =

∑T
j=1 wjhj(x) during training, and the prediction

label for x is +1 if hw(x) > 0; otherwise, the output is −1.
With optimizing some specified performance measure, the
optimal weight vector w∗ is obtained, and the classifiers
with a weight above a threshold will be selected.
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In past decades, there are several optimization methods
to select classifiers. In the following, we list two representa-
tive methods which optimized accuracy related measures:

• GASEN [18] significantly improved the performance of
neural network ensemble through selective learning,
which employed the empirical error probability as the
performance measure:

1

N

N∑
i=1

(
I
[
yihw(xi) < 0

]
+

1

2
I
[
yihw(xi) = 0

])
. (47)

The optimal weights is found by the genetic algorithm.
• RSE [56] solved the problem of selective ensemble un-

der the regularization framework. The objective func-
tion is the hinge loss function with a graph Laplacian
regularizer. The hinge loss function is

1

N

N∑
i=1

max{0, 1− yihw(xi)}. (48)

The optimal weights is found by the quadratic program.

In this paper, we aim at developing a selective method
based on PA. The linear learning algorithm optimizing PA
can be formalized as:

min
w

L̂N (w)

p̂N + (1− 2p̂N )q̂N (w)
, s.t. w > 0, (49)

where L̂N (w) = 1
N

∑N
i=1 I

[
yihw(xi) < 0

]
and q̂N (w) =

1
N

∑N
i=1 I

[
hw(xi) > 0

]
. This is a model of optimizing the

non-convex linear-fractional measures Ψ (defined in Def-
inition 6). Traditional gradient methods can not obtain a
satisfactory solution for these measures. Besides, both the
numerator and denominator of the objective function con-
tain the non-smooth indicator function. Directly optimizing
it leads to an NP-hard combinatorial problem. Thus, firstly,
we need to approach the indicator function by some smooth
functions. Here, we use the sigmoid function. Particularly,
L̂N (w) and q̂N (w) are substituted by:

L̂N,s(w) =
1

N

N∑
i=1

1

1 + eyihw(xi)
, (50)

q̂N,s(w) =
1

N

N∑
i=1

1

1 + e−hw(xi)
. (51)

As is well known, there are many convex functions that
can be used to surrogate the indicator function, such as
the hinge function, the exponential function, the logarithmic
function and so on [16]. We choice the sigmoid function due
to its boundness property. This property will be helpful for
optimization.

4.1 Reviews on the Models of Optimizing Linear-
Fractional Measures

Now we make a review on the existing models of opti-
mizing the linear-fractional measures, including the plug-in
method, SVMperf [37], the bisection method [31] and the
gradient method [38].

4.1.1 Plug-in

The plug-in rule [28] refers to the rule with a formulation
of h(x) = sign(η̂(x)− δ∗), where η̂(x) is an estimator of the
posterior probability η(x) = P(Y = +1|X = x) and δ∗ is a
threshold. The plug-in method is a two-step method, which
includes learning η̂(x) through minimizing a proper loss
function and searching δ∗ through maximizing the empirical
fractional-measure. This method requires to estimate the
posterior probability and to learn a proper threshold. Thus,
it needs more data to avoid over-fitting.

4.1.2 SVMperf

The basis idea of SVMperf [37] is that the margin deviation
between the true label vector and the others should be lager
than their Ψ value:

min
w,ξ≥0

1

2
‖w‖2 + Cξ (52)

s.t. ∀ȳ′ ∈ Y\ȳ : ȳhTw(x)− ȳ′hTw(x) ≥ Ψ(ȳ, ȳ′)− ξ, (53)

where hw(x) is the prediction result, Y = {±1}N is the
space of label vector and y = (y1, y2, ..., yN ) is the true
label vector. The time consuming of SVMperf is intolerable,
because the number of constraints is 2N−1. T. Joachims [37]
iteratively solved the program with a sparse subset of the
constraints set and the most violative constraint is added in
each iteration.

4.1.3 Bisection

In the area of fractional program, there exists a method to
solve the linear-fractional optimization problem by intro-
ducing a parameter.

Theorem 7. (Parameter-based Method [57], [58]) For pro-
gram with a ratio of two functions as the objective
function

min
w

F1(w)

F2(w)
, s.t. w ∈ W, (54)

where F2(w) > 0, the optimal solution can be obtained
by the following program

min
w
F1(w)− λ∗F2(w), (55)

where λ∗ is the zero root of

f(λ) = min
w
F1(w)− λF2(w). (56)

Theorem 7 implies that the fractional measure can be
equivalently transformed to a linear one f(λ). The bisection
method [31] is based on this idea. Firstly, it learns a posteri-
ori probability η̂(x). In each iteration, with the current λ, the
cost matrix is updated according to the function f(λ). Then,
based on η̂(x) and f(λ), the classifier point-wisely outputs
the label that minimizes the posteriori cost-sensitive loss.
The optimal λ is searched in binary.
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4.1.4 Gradient Method
The gradient method [38], [39] is an extension of the SVM-
perf method. Hazan et.al. [38] proved that in the binary
classification, the gradient of the linear-fractional measure
Ψ is

OwΨ(ȳ, ȳw) =
1

ε

( N∑
i=1

xiȳloss,i −
N∑
i=1

xiȳw,i

)
, (57)

where the two label vectors ȳw and ȳloss are

ȳw = argmax
ȳ′∈Y

ȳ′hTw(x), (58)

ȳloss = argmax
ȳ′∈Y

{Ψ(ȳ, ȳ′) + εȳ′hTw(x)}, (59)

respectively. ȳloss is exactly the label vector that most vio-
lates the constraint in SVMperf. With the proved gradient,
the weight vector can be updated by

wt+1 = wt − λOwΨ(ȳ, ȳw), (60)

where λ is the update step.

4.2 PASE: Pure Accuracy Based Selective Ensemble
Learning
It seems that the model (49) can be easily solved by a divide-
and-conquer strategy. Namely, one can fix the class distri-
bution q̂N,s(w) at a constant q0. Then, with the linear con-
straint, an optimal solution can be found by optimizing the
L̂N,s(w). Through varying q̂N,s(w) at all feasible constants,
one can obtain multiple solutions and fetch the optimal one
among them. This strategy is natural and straightforward,
while it is too time-consuming and the feasible range of q0

is difficult to determine. Here, we introduce the following
theorem to solve the model
Theorem 8. ( [59]) For program with a ratio of two positive

functions as the objective function

min
w

F1(w)

F2(w)
, s.t. w ∈ W. (61)

Let

w(r) = argmin
w∈W

F1

(
w
)

r
, s.t.F2(w) ≥ r. (62)

The optimal solution of (61) can be obtained by w(r∗) if
and only if r∗ is the optimal solution of:

min
r

F1

(
w(r)

)
r

s.t. min
w∈W

F2(w) ≤ r ≤ max
w∈W

F2(w),

(63)

It is easy to solve program (62). The difficulty of program
(63) is that F1

(
w(r)

)
is an implicit function the variable r.

R. W. Freund [59] provided two sophisticated linear support
functions on F1

(
w(r)

)
/r and adaptively solving the the

optimal r in different divisions. Particularly, in each interval
[r(i), r(i+1)], 0 ≤ r(i) ≤ r(i+1), let

F (r) = min
w

{
F1

(
w
)

r

∣∣∣∣F2(w) ≥ r,w ∈ W
}
, (64)

F̃i(r) = min
w

{
F1(w)

r(i+1)

∣∣∣∣F2(w) ≥ r,w ∈ W
}
, (65)

Algorithm 1 ODGO

INPUT: The fractional measure F1/F2

PROCEDURE:
1: Determine r(1) = minw F2(w) , r(2) = maxw F2(w)
2: Initialize the index i = 1, rlist = {r(1), r(2)}, r̃list = {1},
F̃ list = {1}

3: while |r(i) − r(i+1)| > ε do
4: Set r̂ = (r(i) + r(i+1))/2
5: Solve the programs

F̃L = min
r∈[r(i),r̂]

F (r), F̃R = min
r∈[r̂,r(i+1)]

F (r),

and obtain the solution r̃L and r̃R, respectively
6: Update rlist = {r(1), . . . , r(i), r̂, r(i+1), . . . , r(t)}
7: Update

F̃ list = {F̃
(1)
, . . . , F̃

(i−1)
, F̃L, F̃R, F̃

(i+1)
, . . . , F̃

(t)
}

8: Update
r̃list = {r̃(1), . . . , r̃(i−1), r̃L, r̃R, r̃

(i+1), . . . , r̃(t)}
9: Find the index i = argminj{F̃

(j)
, 1 ≤ j ≤ t+ 1}

10: end while
11: r∗ = r̃(i)

OUTPUT: r∗

then R. W. Freund [59]proved that

F1

(
w(r)

)
r

≥ F (r(i)) + F ′i (r − r(i)) = F (r), (66)

F1

(
w(r)

)
r

≥ F (r(i+1)) + λF (r − r(i+1)), (67)

where

F ′i =
r(i+1)

r(i)

F̃i(r
(i))− F (r(i))

r(i+1) − r(i)
,

and λF is the Lagrange multiple of the program F̃i(r
(i+1)).

Here, we use the right-hand support function to ap-
proach F1

(
w(r)

)
/r and the optimal r∗ will be searched by

finding the minimizer of F (r) from the intervals.
For searching r∗, we use the a general method in solving

One-Dimensional Global Optimization (ODGO) [59], [60].
For completeness, we present ODGO in Algorithm 1.

Now, we present the selective algorithm based on op-
timizing PA in Algorithm 2 and name it as PASE. The Step
2-Step3 of PASE finds the optimal weight vector which max-
imizes the pure accuracy, then the classifiers with a weight
above the average value will be preserved. In prediction, the
selected classifiers make a majority vote for the test data.
That is, the test data will be classified into the class that is
assigned by most of the selected classifiers.

Absolutely, Algorithm 2 can also be used to build linear
classifiers with replacing the classifiers set with the feature
set and it can also be extended to kernel method with
replacing the classifiers set with the kernel matrix.

Both the bisection method and PASE turn the fractional
program to an easy-to-solve program with respect to the
model parameters (termed as the master program) and a
one-dimensional program with respect to an introduced
parameter. Their differences are
• The bisection method is based on Theorem 7, and PASE

is based on Theorem 8. The master program of Theo-
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Algorithm 2 PASE

INPUT: The training data SN , classifier set H =
{h1, h2, . . . , hT }, where hj = (hj(x1), ..., hj(xN ))T .
PROCEDURE:

1: Initialize w0 = (0, 0, . . . , 0).
2: Solve r∗ by Algorithm 1.
3: Solve w∗ by the interior-point method

w∗ = argmin
w

2

r∗
L̂N,s(w),

s.t.(1− 2p̂N )q̂N,s(w) ≥ r∗ − p̂N .

OUTPUT: The model parameter w∗ and the set H∗ =
{hj |w∗j > 1

T

∑T
k=1 w

∗
k, j = 1, 2, . . . T}

rem 7 uses the introduced parameter to trade off the
numerator and the denominator, while PASE uses the
introduced parameter to substitute the denominator.
Thus, the bisection is finished by minimizing a cost-
sensitive loss, while Algorithm 2 is finished by directly
optimizing the objective measure after adaptively find-
ing the optimal denominator.

• In solving the one-dimensional program, the bisection
method uses the binary search method, while PASE is
based on Algorithm 1. The binary method searches in
one direction and is easy to find a local optimal solu-
tion; however, Algorithm 1 stores the optimal solution
from both left and right directions in each iteration,
which will be helpful to find a global optimal solution.

• Due to Theorem 8, PASE can be easily extended to
the models with some regularization terms, such as
the SVM model with maximizing the linear-fractional
measures, while the bisection method cannot.

4.3 Experimental Comparison with Selective Ensemble
Learning Algorithms

In this subsection, the performance of PASE is verified on
sixteen benchmark data sets and four image data sets. Their
information is presented in Table 3, in which MicroMass,
Parkinson’s Disease and DrivFace are from UCI [61] and the
remaining sets are from KEEL [62].

The image classification tasks are Scene, Butterflies, An-
imals and Vehicles data set. Please refer to the supplemen-
tary material for more detailed descriptions. We extract
vectorized features from each image in the data set with
the pre-trained VGG-16 convolutional neural network [63].
Following the structure of VGG-16, the image is scaled to
224 × 224. The 1000-dimensional output of the final fully
pooling layer is obtained as the pre-extracted feature vector.

Each data set is randomly divided into a training set and
a test set at a ratio of 7:3. On each division, we run every
method 30 times to evaluate the average performance. The
performance is evaluated in terms of pure accuracy, TP and
accuracy.

The base classifier is the binary decision tree (abbreviate
as DT). The set of trees H = {h1, h2, . . . , hT } is generated
by bagging technical. In bagging, T samples are randomly
sampled from the training data with replacement, then each
tree is constructed on each sample. T is set up at 101.

TABLE 3: Data Sets Description

ID Name Objects Attributes IR
1 Crx 653 15 1:1.21
2 Australian 690 14 1:1.25
3 MicroMass 931 1300 1:1.59
4 Wdbc 569 30 1:1.68
5 Bands 365 19 1:1.70
6 Ionoshpere 351 33 1:1.79
7 Pima 768 8 1:1.87
8 Titanic 2201 3 1:2.10
9 German 1000 20 1:2.33
10 Parkinson’s Disease 756 752 1:2.94
11 Segment 2310 19 1:6.02
12 Dermatology 366 34 1:16.9
13 DrivFace 606 6400 1:21.45
14 Winequality-red-4 1599 11 1:29.17
15 Wine-White-3-9-VS-5 1482 11 1:58.28
16 Abalone-20-vs-8-9-10 1916 8 1:72.69
17 Scene 738 1000 1:1.03
18 Butterflies 176 1000 1:3.19
19 Animals 234 1000 1:5.88
20 Vehicles 888 1000 1:9.10

The plug-in rule does not output a weight vector that
optimizes the linear-fractional measure, and thus can not be
used to select classifiers. We compare PASE with GASEN,
RSE, SVMperf, bisection, gradient. The objective measure
of SVMperf is Gmean, the objective measure of bisection
is F-measure and the objective measure of gradient is the
Balanced Accuracy(BA). The trade-off parameter of SVM-
perf (C in model (52)) is set as 1. The maximal number of
iteration of the bisection and the gradient is set as 20.

All of the benchmark methods will output a weight
vector. Each weight signifies the important degree of each
base classifier. We compare the performance of algorithms
in two ensemble settings: selective ensemble and weight
ensemble. In the first setting, the classifiers with a weight
above the mean value are chosen. The set of the chosen
classifiers is

H∗ = {hj |w∗j >
1

T

T∑
k=1

w∗k, j = 1, 2, . . . T}.

Then, the chosen classifiers are combined by majority vot-
ing. That is, the final prediction for each instance is positive
if
∑
hj∈H∗ hj(x) > 0. Otherwise, the prediction is negative.

In this setting, we also present the selected number of clas-
sifiers of each method. To show the efficiency of the learned
weight, we rank the base trees by their weight values and
present the vote performance of the ordered trees.

In the second setting, all the classifiers are combined
by the learned weight. That is, the final prediction for
each instance is positive if hw(x) > 0, where hw(x) =∑T
j=1 wjhj(x). Otherwise, the prediction is negative. The

performance of the two settings are compared in terms of
PA, TP and A.

Table 4, Table 5 and Table 6 record the comparison results
of algorithms in the setting of selective ensemble learning.
Each element in the tables denotes the average value ± the
standard deviation in terms of the evaluation measure. In
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each row, the method with the maximum mean value is
in bold font; the method is marked a black dot if PASE is
significantly better than it in the sense of the pairwise right-
tailed Student’s test with a confidence level at 90 percent.
On each data, the methods are sorted in descending order
in terms of the evaluation values. The last row records the
average rank of the methods.

From Table 4-Table 6, it is easy to observe that PASE
obviously improves the pure accuracy, TP and accuracy
values on most data sets. The tables show that PASE obtains
the maximal mean values on 14, 13, 9 data sets with respect
to pure accuracy, TP and accuracy respectively. According
to the last rows in the tables, PASE consistently obtains
the first average rank, which indicates that PASE generally
outperforms the other methods.

Table 7, Table 8 and Table 9 record the comparison results
of algorithms in the setting of weight ensemble learning. The
elements in the tables are the same as the ones in Table 4-
Table 6. From Table 7-Table 8, we observe that PASE obtains
the highest PA and TP value in most cases. From Table 9,
we observe that PASE obtains a comparable A value with
RSE, while the TP value of RSE is lower. The results signify
that PA is a more balanced performance measure, and both
the weight learned by optimizing PA and the algorithm
that optimizes PA are efficient. We also show the number
of selected trees in Table S1 in the supplementary material.

In optimization based selective ensemble learning, it is a
traditional method to set the mean weight as the threshold
for choosing classifiers. In this paper, we follow this tradi-
tional method. To give more insight into the weight learned
by different methods and the threshold used in truncating
the weights, we present the performance of bagging with
ordered trees. That is, for each method, the base trees are
ranked according to the value of weight, and then used to
ensemble. Concretely, for T trees {h1, h2, . . . , hT }, suppose
their weight order is w∗r1 > w∗r2 > ... > w∗rT , then the
tree is ranked as hr1 , hr2 , ..., hrT , where ri ∈ {1, 2, ..., T}.
Then an odd number of ordered trees are used to ensemble
by voting. Figure 5 shows the average train and test pure
accuracy curves of ordered ensemble with the increasing of
the ensemble number. The points on the curve present the
performance of combining 1, 3, .., T ordered trees in turn.
On each data, the top curves are the results on the training
data sets and the down ones are on the test data sets. From
Figure 5, it is easy to observe that in most cases, PASE
obtains the best performance if the selective number is the
same. This signifies that compared with the traditional algo-
rithms, the weight learned by PASE is effective in selecting
classifiers and the thresholds for selecting the good set of
classifiers are broad.

To further analyze the results, we compare the difference
between the significant better and the significance worse at
the significance level of 95% [64]. The bars of Figure 6 depict
the results. From Figure 6, we observe that PASE obtains the
largest gap, which indicates that PASE is significantly better
than the other methods. Please refer to the supplementary
material for more details about how to depict the bars of
Figure 6.
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Fig. 6: Statistical Comparison Results

4.4 Experimental Comparison with Boosting Algo-
rithms

In ensemble learning, the strength and the diversity of
the base classifiers are two key factors for the ensemble
performance. For bagging, the strength of the base classi-
fiers is strong while their diversity is small. However, for
boosting, the base classifiers are complementary while their
performance only needs to be slightly better than a weak
classifier (the classifier with performance comparable with
random guess).

As is well known, a weak classifier is proven to be
equivalent to a strong classifier through boosting by the
boosting algorithms. In this subsection, through the image
data sets, we investigate which type of base classifiers that
PASE applies to, and compare PASE with AdaboostM1 and
Gradient Boosting Decision Tree (GBDT). The AdaboostM1
is implemented by the Fitensemble package in MATLAB.
The GBDT is implemented by XGboost and the objective
function of GBDT is AUC.

The strength of the base tree can be controlled by the
maximal number of decision splits. The more the decision
splits is, the deeper the tree is and the stronger the per-
formance is. We compare the performance of algorithms
under different maximal number of decision splits. The
experimental data sets are still the twenty data sets in Table
3. Each data set is randomly divided into a training set
and a test set at a ratio of 7:3. On each division, we run
every method 12 times to evaluate the average performance.
The performance is evaluated in terms of pure accuracy,
as shown in the Figure 7. We also respectively show the
associated results w.r.t TP and accuracy in Figure S3 and
Figure S4 in the supplementary material.
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TABLE 4: PA value of Selective Ensemble

Pure Accuracy
Data ID DT GASEN RSE SVMperf-Gmean Bisection-FM Gradient-BA PASE
1 0.6685 ±0.0227 • 0.7270 ±0.0384 0.7244 ±0.0379 0.7264 ±0.0350 0.7251 ±0.0384 0.7167 ±0.0316 • 0.7375 ±0.0405
2 0.6460 ±0.0311 • 0.7134 ±0.0472 0.7185 ±0.0535 0.7160 ±0.0473 0.7227 ±0.0544 0.7130 ±0.0475 0.7220 ±0.0472
3 0.7145 ±0.0207 • 0.8772 ±0.0295 • 0.8823 ±0.0299 • 0.8754 ±0.0394 • 0.8924 ±0.0281 0.8789 ±0.0319 • 0.8968 ±0.0208
4 0.8374 ±0.0217 • 0.9032 ±0.0299 0.9035 ±0.0332 0.9072 ±0.0343 0.9039 ±0.0413 0.9082 ±0.0347 0.9098 ±0.0337
5 0.1522 ±0.0264 • 0.2745 ±0.0999 • 0.2246 ±0.0604 • 0.2433 ±0.0915 • 0.2891 ±0.0934 • 0.2431 ±0.0827 • 0.3237 ±0.0930
6 0.7360 ±0.0338 • 0.8307 ±0.0550 0.8239 ±0.0519 0.8388 ±0.0539 0.8271 ±0.0549 0.8380 ±0.0538 0.8325 ±0.0524
7 0.3596 ±0.0309 • 0.4465 ±0.0624 • 0.4309 ±0.0532 • 0.4498 ±0.0562 • 0.4553 ±0.0576 0.4438 ±0.0568 • 0.4741 ±0.0604
8 0.4092 ±0.0298 • 0.4055 ±0.0307 • 0.3997 ±0.0351 • 0.4059 ±0.0343 • 0.4121 ±0.0420 • 0.3934 ±0.0392 • 0.4277 ±0.0441
9 0.2444 ±0.0138 • 0.3184 ±0.0433 • 0.2847 ±0.0389 • 0.2988 ±0.0449 • 0.3388 ±0.0592 • 0.2814 ±0.0452 • 0.3825 ±0.0499
10 0.4044 ±0.0280 • 0.5887 ±0.0709 0.5643 ±0.0703 • 0.6085 ±0.0532 0.6095 ±0.0614 0.5972 ±0.0486 0.6070 ±0.0607
11 0.9561 ±0.0098 • 0.9721 ±0.0137 0.9683 ±0.0178 0.9728 ±0.0126 0.9748 ±0.0118 0.9726 ±0.0123 0.9752 ±0.0121
12 0.9286 ±0.0590 • 0.9558 ±0.0865 • 0.8768 ±0.0921 • 0.9550 ±0.0921 0.9585 ±0.0713 0.9634 ±0.0858 0.9836 ±0.0334
13 0.6021 ±0.0513 • 0.7549 ±0.1086 0.7020 ±0.1432 0.7329 ±0.1123 0.7393 ±0.1071 0.7261 ±0.1133 0.7598 ±0.0937
14 0.8749 ±0.0191 • 0.9239 ±0.0291 0.9234 ±0.0315 0.9210 ±0.0312 0.9267 ±0.0305 0.9210 ±0.0311 0.9247 ±0.0281
15 0.0598 ±0.0256 • -0.0003 ±0.0160 0.0073 ±0.0323 0.0112 ±0.0440 0.0205 ±0.0518 0.0162 ±0.0474 0.0354 ±0.0646
16 0.1155 ±0.0710 0.1110 ±0.1188 0.0964 ±0.1152 0.1242 ±0.1214 0.1270 ±0.1338 0.1290 ±0.1256 0.1435 ±0.1248
17 0.1851 ±0.0795 0.1488 ±0.1317 0.1016 ±0.1408 • 0.1260 ±0.1326 • 0.1658 ±0.1587 0.1226 ±0.1256 • 0.2080 ±0.1771
18 0.8788 ±0.0160 • 0.9160 ±0.0235 0.9200 ±0.0226 0.9109 ±0.0211 0.9193 ±0.0228 0.9080 ±0.0204 • 0.9182 ±0.0230
19 0.8519 ±0.0283 • 0.9686 ±0.0427 0.9636 ±0.0501 0.9477 ±0.0611 0.9572 ±0.0501 0.9454 ±0.0621 0.9688 ±0.0367
20 0.7434 ±0.0521 • 0.9019 ±0.0838 • 0.8181 ±0.1303 • 0.9097 ±0.0768 0.9254 ±0.0787 0.9123 ±0.0721 0.9282 ±0.0738
Ave. Rank 6.1000 4.2000 5.2000 4.0000 2.5500 4.5000 1.4500

TABLE 5: TP value of Selective Ensemble

TP
Data ID DT GASEN RSE SVMperf-Gmean Bisection-FM Gradient-BA PASE
1 0.3703 ±0.0141 • 0.3969 ±0.0187 0.3949 ±0.0206 0.3984 ±0.0207 0.3949 ±0.0231 0.3978 ±0.0241 0.3984 ±0.0217
2 0.3492 ±0.0167 • 0.3729 ±0.0235 0.3718 ±0.0248 • 0.3726 ±0.0220 • 0.3774 ±0.0228 0.3704 ±0.0249 • 0.3814 ±0.0238
3 0.3172 ±0.0098 • 0.3452 ±0.0118 • 0.3406 ±0.0140 • 0.3457 ±0.0153 • 0.3505 ±0.0111 0.3471 ±0.0125 • 0.3524 ±0.0108
4 0.3391 ±0.0072 • 0.3516 ±0.0100 0.3495 ±0.0097 • 0.3520 ±0.0086 0.3532 ±0.0109 0.3525 ±0.0096 0.3535 ±0.0099
5 0.1543 ±0.0123 • 0.1284 ±0.0313 • 0.0925 ±0.0234 • 0.1171 ±0.0337 • 0.1589 ±0.0504 • 0.1101 ±0.0321 • 0.1706 ±0.0330
6 0.2965 ±0.0097 • 0.3177 ±0.0165 0.3124 ±0.0163 • 0.3154 ±0.0166 0.3162 ±0.0165 0.3154 ±0.0166 0.3185 ±0.0148
7 0.1919 ±0.0109 • 0.1981 ±0.0217 • 0.1875 ±0.0185 • 0.1986 ±0.0191 • 0.2071 ±0.0184 • 0.1960 ±0.0212 • 0.2266 ±0.0179
8 0.1277 ±0.0126 • 0.1185 ±0.0171 • 0.1202 ±0.0211 • 0.1208 ±0.0214 • 0.1282 ±0.0261 • 0.1161 ±0.0219 • 0.1404 ±0.0271
9 0.1215 ±0.0067 • 0.1068 ±0.0163 • 0.0911 ±0.0131 • 0.1043 ±0.0174 • 0.1207 ±0.0223 • 0.0961 ±0.0205 • 0.1556 ±0.0280
10 0.1342 ±0.0088 • 0.1420 ±0.0225 0.1313 ±0.0201 • 0.1478 ±0.0167 0.1452 ±0.0195 0.1452 ±0.0154 0.1459 ±0.0203
11 0.1378 ±0.0024 • 0.1388 ±0.0025 0.1377 ±0.0038 • 0.1390 ±0.0023 0.1396 ±0.0023 0.1389 ±0.0023 0.1396 ±0.0025
12 0.0528 ±0.0039 • 0.0542 ±0.0047 • 0.0501 ±0.0076 • 0.0542 ±0.0054 • 0.0538 ±0.0062 • 0.0550 ±0.0041 • 0.0561 ±0.0000
13 0.0277 ±0.0024 • 0.0314 ±0.0056 0.0264 ±0.0076 • 0.0308 ±0.0055 0.0310 ±0.0057 0.0310 ±0.0055 0.0321 ±0.0044
14 0.3209 ±0.0088 • 0.3364 ±0.0121 0.3321 ±0.0130 0.3360 ±0.0119 0.3350 ±0.0128 0.3362 ±0.0124 0.3362 ±0.0121
15 0.0023 ±0.0007 • 0.0001 ±0.0004 • 0.0002 ±0.0006 • 0.0003 ±0.0010 • 0.0006 ±0.0011 0.0004 ±0.0010 • 0.0008 ±0.0013
16 0.0022 ±0.0014 0.0017 ±0.0019 0.0012 ±0.0013 • 0.0019 ±0.0019 0.0019 ±0.0020 0.0019 ±0.0019 0.0023 ±0.0024
17 0.0026 ±0.0012 • 0.0014 ±0.0012 • 0.0009 ±0.0012 • 0.0013 ±0.0014 • 0.0017 ±0.0016 0.0012 ±0.0012 • 0.0022 ±0.0018
18 0.4628 ±0.0060 • 0.4718 ±0.0077 0.4715 ±0.0087 0.4733 ±0.0072 0.4713 ±0.0068 0.4718 ±0.0084 0.4729 ±0.0079
19 0.2166 ±0.0097 • 0.2355 ±0.0123 0.2325 ±0.0170 0.2317 ±0.0168 0.2370 ±0.0110 0.2309 ±0.0175 0.2362 ±0.0111
20 0.1113 ±0.0096 • 0.1280 ±0.0127 0.1091 ±0.0244 • 0.1309 ±0.0135 0.1314 ±0.0124 0.1314 ±0.0117 0.1320 ±0.0111
Ave. Rank 5.2000 4.0500 6.2000 3.700 3.0000 4.4000 1.4500

From Figure 7, we observe that Adaboost applies to
boosting weak classifiers on 9/20 data sets (Wdbc, Ionosh-
pere, Segment, DrivFace, Wine-White-3-9-VS-5, Scene, But-
terflies, Animals, Vehicles), while PASE and GBDT apply
to boosting classifier of various strengths. In addition, we
observe that PASE obtains the highest test PA value on most
of the split numbers on 10/20 data sets. The names of these
data sets in the subgraphs are in bold. Further, PASE obtains
the lowest train PA value on most of the split numbers
on 6/10 of the above bold data sets. The names of these
data sets in the subgraphs are underlined. On 5/20 data
sets, whose names in the subgraphs are italic, PASE obtains
comparable test PA value with GBDT and higher values
than Adaboost in many cases. Above all, we can conclude

that PASE is not easy to overfit and performs better than the
two boosting algorithms in most cases.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we worked on the pure accuracy measure,
which eliminates random consistency from the accuracy
measure. We illustrated that the pure accuracy measure is
more class distribution insensitive and more discriminative
than accuracy and F-measure. We proposed a tighter con-
centration inequality and then developed a generalization
bound on the pure accuracy measure, which is tighter than
the existing bound. After that, we designed a learning
algorithm optimizing the pure accuracy measure and used
it into the selective ensemble learning. Experimental results
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TABLE 6: A value of Selective Ensemble

Accuracy
Data ID DT GASEN RSE SVMperf-Gmean Bisection-FM Gradient-BA PASE
1 0.8358 ±0.0113 • 0.8641 ±0.0195 0.8629 ±0.0192 0.8637 ±0.0177 0.8633 ±0.0191 0.8588 ±0.0162 • 0.8694 ±0.0203
2 0.8259 ±0.0149 • 0.8586 ±0.0231 0.8613 ±0.0261 0.8599 ±0.0232 0.8630 ±0.0267 0.8586 ±0.0230 0.8624 ±0.0230
3 0.8648 ±0.0094 • 0.9425 ±0.0137 • 0.9452 ±0.0136 • 0.9416 ±0.0181 • 0.9495 ±0.0130 0.9432 ±0.0148 • 0.9515 ±0.0095
4 0.9235 ±0.0104 • 0.9546 ±0.0142 0.9549 ±0.0158 0.9565 ±0.0162 0.9549 ±0.0196 0.9570 ±0.0164 0.9577 ±0.0160
5 0.6156 ±0.0112 • 0.6969 ±0.0395 0.6892 ±0.0214 • 0.6866 ±0.0334 • 0.6914 ±0.0338 • 0.6899 ±0.0296 0.7031 ±0.0419
6 0.8788 ±0.0157 • 0.9223 ±0.0253 0.9196 ±0.0235 0.9265 ±0.0244 0.9208 ±0.0250 0.9261 ±0.0243 0.9230 ±0.0241
7 0.7149 ±0.0144 • 0.7588 ±0.0270 0.7550 ±0.0229 0.7603 ±0.0238 0.7597 ±0.0265 0.7583 ±0.0242 0.7621 ±0.0283
8 0.7773 ±0.0090 0.7800 ±0.0098 0.7765 ±0.0098 0.7792 ±0.0095 0.7785 ±0.0102 0.7759 ±0.0105 • 0.7797 ±0.0102
9 0.7014 ±0.0072 • 0.7515 ±0.0160 0.7468 ±0.0137 0.7436 ±0.0157 0.7520 ±0.0193 0.7415 ±0.0138 • 0.7509 ±0.0199
10 0.7802 ±0.0098 • 0.8622 ±0.0201 0.8574 ±0.0194 • 0.8671 ±0.0167 0.8691 ±0.0176 0.8636 ±0.0150 0.8678 ±0.0168
11 0.9892 ±0.0024 • 0.9932 ±0.0033 0.9923 ±0.0042 0.9934 ±0.0031 0.9938 ±0.0029 0.9933 ±0.0030 0.9939 ±0.0029
12 0.9924 ±0.0063 • 0.9951 ±0.0098 • 0.9869 ±0.0097 • 0.9951 ±0.0101 0.9959 ±0.0067 0.9959 ±0.0098 0.9981 ±0.0038
13 0.9664 ±0.0057 • 0.9807 ±0.0094 0.9798 ±0.0085 0.9785 ±0.0111 0.9791 ±0.0103 0.9776 ±0.0112 0.9804 ±0.0091
14 0.9432 ±0.0085 • 0.9653 ±0.0132 0.9653 ±0.0140 0.9639 ±0.0141 0.9666 ±0.0136 0.9639 ±0.0140 0.9657 ±0.0126
15 0.9511 ±0.0029 • 0.9645 ±0.0026 0.9658 ±0.0018 • 0.9642 ±0.0034 0.9630 ±0.0037 0.9647 ±0.0029 0.9642 ±0.0033
16 0.9729 ±0.0032 • 0.9789 ±0.0037 0.9814 ±0.0037 • 0.9792 ±0.0043 0.9788 ±0.0050 0.9799 ±0.0040 • 0.9780 ±0.0047
17 0.9797 ±0.0017 • 0.9855 ±0.0022 0.9858 ±0.0019 0.9850 ±0.0020 0.9850 ±0.0028 0.9848 ±0.0025 0.9850 ±0.0034
18 0.9394 ±0.0080 • 0.9580 ±0.0118 0.9600 ±0.0113 0.9555 ±0.0106 0.9596 ±0.0114 0.9540 ±0.0102 • 0.9591 ±0.0115
19 0.9458 ±0.0103 • 0.9887 ±0.0154 0.9872 ±0.0170 0.9811 ±0.0218 0.9842 ±0.0186 0.9804 ±0.0221 0.9887 ±0.0133
20 0.9381 ±0.0144 • 0.9760 ±0.0221 • 0.9606 ±0.0268 • 0.9777 ±0.0202 0.9817 ±0.0208 0.9783 ±0.0194 0.9823 ±0.0199
Ave. Rank 6.8500 3.5000 4.0500 3.950 3.1000 4.4500 2.1000

TABLE 7: PA value of Weight Ensemble

Pure Accuracy
Data ID Bagging GASEN RSE SVMperf-Gmean Bisection-FM Gradient-BA PASE
1 0.7240 ±0.0332 0.7228 ±0.0355 0.7251 ±0.0318 0.7231 ±0.0344 0.7248 ±0.0397 0.7252 ±0.0344 0.7335 ±0.0394
2 0.7157 ±0.0456 0.7140 ±0.0460 0.7203 ±0.0457 0.7161 ±0.0463 0.7230 ±0.0540 0.7153 ±0.0452 0.7268 ±0.0489
3 0.8858 ±0.0262 • 0.8792 ±0.0291 • 0.8881 ±0.0293 • 0.8814 ±0.0370 • 0.8902 ±0.0264 • 0.8858 ±0.0262 • 0.9027 ±0.0232
4 0.9063 ±0.0359 0.9032 ±0.0322 0.9077 ±0.0352 0.9062 ±0.0352 0.9073 ±0.0342 0.9063 ±0.0359 0.9103 ±0.0325
5 0.2697 ±0.0774 • 0.2851 ±0.0916 • 0.2600 ±0.0852 • 0.2673 ±0.0779 • 0.2915 ±0.0713 • 0.2622 ±0.0810 • 0.3303 ±0.0908
6 0.8356 ±0.0552 0.8284 ±0.0564 0.8346 ±0.0543 0.8348 ±0.0554 0.8364 ±0.0584 0.8364 ±0.0556 0.8335 ±0.0564
7 0.4460 ±0.0536 • 0.4469 ±0.0550 • 0.4454 ±0.0562 • 0.4460 ±0.0538 • 0.4472 ±0.0558 • 0.4489 ±0.0541 • 0.4775 ±0.0564
8 0.4054 ±0.0339 • 0.4068 ±0.0327 • 0.3963 ±0.0358 • 0.4054 ±0.0339 • 0.4080 ±0.0347 • 0.4030 ±0.0332 • 0.4315 ±0.0392
9 0.3124 ±0.0468 • 0.3180 ±0.0485 • 0.3140 ±0.0481 • 0.3122 ±0.0473 • 0.3307 ±0.0497 • 0.3079 ±0.0467 • 0.3907 ±0.0390
10 0.6076 ±0.0600 0.5869 ±0.0684 • 0.6071 ±0.0599 0.6083 ±0.0599 0.6079 ±0.0594 0.6072 ±0.0595 0.6149 ±0.0571
11 0.9730 ±0.0127 0.9723 ±0.0129 0.9733 ±0.0120 0.9735 ±0.0128 0.9728 ±0.0127 0.9730 ±0.0127 0.9757 ±0.0114
12 0.9596 ±0.0863 0.9558 ±0.0865 0.9404 ±0.0858 • 0.9596 ±0.0863 0.9596 ±0.0863 0.9596 ±0.0863 0.9798 ±0.0368
13 0.7547 ±0.0994 0.7482 ±0.1100 0.7547 ±0.1047 0.7547 ±0.0994 0.7547 ±0.0994 0.7547 ±0.0994 0.7624 ±0.1007
14 0.9226 ±0.0311 0.9226 ±0.0310 0.9239 ±0.0310 0.9226 ±0.0311 0.9222 ±0.0319 0.9226 ±0.0311 0.9261 ±0.0287
15 0.0127 ±0.0393 -0.0001 ±0.0159 0.0134 ±0.0401 0.0127 ±0.0393 0.0127 ±0.0393 0.0127 ±0.0393 0.0292 ±0.0675
16 0.1218 ±0.1184 0.1114 ±0.1202 0.1165 ±0.1220 0.1211 ±0.1174 0.1213 ±0.1183 0.1218 ±0.1184 0.1575 ±0.1321
17 0.1325 ±0.1256 0.1479 ±0.1312 0.1264 ±0.1297 0.1325 ±0.1256 0.1413 ±0.1236 0.1325 ±0.1256 0.2049 ±0.1764
18 0.9178 ±0.0229 0.9167 ±0.0234 0.9189 ±0.0227 0.9174 ±0.0230 0.9189 ±0.0242 0.9178 ±0.0229 0.9218 ±0.0230
19 0.9770 ±0.0341 0.9665 ±0.0452 0.9791 ±0.0304 0.9770 ±0.0341 0.9770 ±0.0341 0.9770 ±0.0341 0.9750 ±0.0341
20 0.9235 ±0.0848 0.9094 ±0.0731 • 0.9204 ±0.0802 0.9235 ±0.0848 0.9212 ±0.0851 0.9212 ±0.0851 0.9310 ±0.0750
Ave. Rank 3.6000 5.7500 4.4500 4.4500 3.4500 4.8000 1.5000

on twenty data sets indicated that PASE outperforms the
other eight representative learning algorithms, including
AdaboostM1 and GBDT. It is worth mentioning that GBDT
could be extended to optimize the PA, by means of a gra-
dient approach, which would be very interesting to study
in the future. Besides, we are interested in axiomatically
defining the pure consistency measure in other popular
learning tasks, such as, imbalanced learning, multi-class
classification, multi-label learning and deep learning.
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Fig. 5: The average train and test pure accuracy curves of ordered ensemble with
the increasing of the ensemble number.
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Fig. 7: The average train and test pure accuracy curves with the increasing of
the maximal number of decision splits.
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This document includes:
1. Proofs of Theorems, Corollary and Lemma in Section

2.3 and Section 3 of the main manuscript.
2.1. Descriptions of the Image Data Sets, which are used

in Section 4.3 of the main manuscript,.
2.2. The number of selected trees in the setting of weight

ensemble learning, which is the associated result of Table 7,
Table 8 and Table 9 in Section 4.3.

2.3. How to depict the bars of Figure 6 in the main
manuscript. Figure 6 is shown in Section 4.3.

2.4. Comparison results w.r.t TP and accuracy with
boosting algorithms, which are the associated results of
Figure 7 in Section 4.4.

1 PROOFS

Theorem 2. For two classifiers hi, i = 1, 2, satisfying{
PA(h1) ≥ PA(h2)
FM(h1) ≤ FM(h2),

(1)

we have {
L(h1) ≤ L(h2)
q(h1) ≤ q(h2)

(2)

Proof of Theorem 2. By definition,

FM =
2TP

2TP + FP + FN
, (3)

= 1− L(h)

p+ q(h)
,

∗: The corresponding author.
J.T. Wang, Y.H. Qian and F.J. Li are with the Institute of Big Data Science
and Industry, Shanxi University, Taiyuan 030006, Shanxi Province, China;
Y.H. Qian and J.Y. Liang are with the Key Laboratory of Computational Intel-
ligence and Chinese Information Processing of Ministry of Education, Shanxi
University, Taiyuan 030006, Shanxi Province, China; Q. Zhang is with the
Department of Computer Science, City University of Hong Kong, Hong
Kong, China. (e-mail: jietingwang@email.sxu.edu.cn; jinchengqyh@126.com;
feijiangli@email.sxu.edu.cn; ljy@sxu.edu.cn; qingfu.zhang@cityu.edu.hk.)

For the two classifiers satisfying
L1

p+ (1− 2p)q1
≤ L2

p+ (1− 2p)q2
L1

p+ q1
≥ L2

p+ q2
,

(4)

we have{
p(L1 − L2) + (1− 2p)(L1q2 − L2q1) ≤ 0

p(L1 − L2) + L1q2 − L2q1 ≥ 0.
(5)

Using the second inequality to minus the first one and using
1− 2p to product the second inequality and then minus the
first one, we have{

2p(L1q2 − L2q1) ≥ 0

2p2(L1 − L2) ≤ 0,
(6)

which is equivalent to 
L1 ≤ L2

q1 ≤
L1

L2
q2,

(7)

from which, we have {
L1 ≤ L2

q1 ≤ q2.�
(8)

Theorem 3. Let Table = (TP, FP, FN, TN) denote the
confusion matrix. Suppose the number of instances is N ,
for two confusion matrices Tablei, i = 1, 2, let

P = {(Table1, Table2)|PA1 6= PA2, A1 = A2}, (9)
Q = {(Table1, Table2)|A1 = A2},

we have |P| → |Q| as N →∞.
Proof of Theorem 3. Taking Q as the universal set, then the
complementary set of P is

Pc = {(Table1, Table2)|PA1 = PA2, A1 = A2} (10)
= {(Table1, Table2)|FP1 = FP2, FN1 = FN2}.
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Next, we calculate the cardinality of Pc and Q by
counting the number of possible tables under the empirical
situation. The letter with a hat and a subscript N denotes
the corresponding empirical measure.

The value ranges of F̂PN and F̂NN are

F̂PN ∈
{
0,

1

N
, ...,

N(1− p̂N )

N

}
, (11)

F̂NN ∈
{
0,

1

N
, ...,

Np̂N
N

}
,

then,

|Pc| =
(
N(1− p̂N ) + 1

)(
Np̂N + 1

)
. (12)

Without loss of generality, suppose that p̂N < 1 − p̂N ,
according the ranges of F̂PN and F̂NN , the value range
of L̂1,N = L̂2,N can be divided into three parts{

0,
1

N
, ...,

Np̂N
N

}
, (13){

Np̂N + 1

N
,
Np̂N + 2

N
, ...,

N(1− p̂N )

N

}
,{

N(1− p̂N ) + 1

N
,
N(1− p̂N ) + 2

N
, ..., 1

}
.

In different parts, the value range of
(F̂P 1,N , F̂N1,N , F̂P 2,N , F̂N2,N ) is different.

In the first range, when

L̂1,N = L̂2,N =
j

N
∈
{
0,

1

N
, ...,

Np̂N
N

}
, (14)

the value range of F̂P i,N is{
0,

1

N
, ...,

j

N

}
,

and the value range of F̂N i,N is{
j

N
,
j − 1

N
, ..., 0

}
.

Thus, the number of (F̂P 1,N , F̂N1,N , F̂P 2,N , F̂N2,N ) is

Np̂N∑
j=0

(j + 1)2 =
(Np̂N + 1)(Np̂N + 2)(2Np̂N + 3)

6
.

In the second range, when

L̂1,N = L̂2,N =
j

N
∈
{
Np̂N + 1

N
, ...,

N(1− p̂N )

N

}
, (15)

the value range of F̂P i,N is{
j

N
,
j − 1

N
, ...,

j −Np̂N
N

}
,

and the value range of F̂N i,N is{
0,

1

N
, ...,

Np̂N
N

}
.

Thus, the number of (F̂P 1,N , F̂N1,N , F̂P 2,N , F̂N2,N ) is
N(1− 2p̂N )(Np̂N + 1)2.

In the third range, when

L̂1,N = L̂2,N =
j

N
∈
{
N(1− p̂N ) + 1

N
, ..., 1

}
, (16)

the value range of F̂P i,N is{
N(1− p̂N )

N
,
N(1− p̂N )− 1

N
, ...,

j −Np̂N
N

}
,

and the value range of F̂N i,N is{
j −N(1− p̂N )

N
,
j −N(1− p̂N ) + 1

N
, ...,

Np̂N
N

}
.

Thus, the number of (F̂P 1,N , F̂N1,N , F̂P 2,N , F̂N2,N ) is

N∑
j=N(1−p̂N )+1

(N − j + 1)2 (17)

=

Np̂N∑
j=1

j2

=
Np̂N (Np̂N + 1)(2Np̂N + 1)

6
.

By summing the number of possible tables in the three
ranges, the cardinality of Q is

|Q| = 1

3

(
Np̂N+1

)(
(3p̂N−4p̂2N )N2+(3−2p̂N )N+3

)
. (18)

The cardinality of P is

|P| = |Q| − |Pc| (19)

=
1

3
(Np̂N + 1)((3p̂N − 4p̂2N )N2 +Np̂N ),

Above all, we have

lim
N→∞

|P|
|Q|

=
(3p̂N − 4p̂2N )N2 +Np̂N

(3p̂N − 4p̂2N )N2 + (3− 2p̂N )N + 3
(20)

= 1.�

Corollary 2. If Z is a self-bounding function and satisfies
EZ > 0, then for all t > 0, we have

P
(
Z ≥ EZ +

t

3
+
√
2tEZ

)
≤ exp{−t}, (21)

moreover for t > 4EZ , we have

P
(
Z ≤ EZ − t

3
−
√
2tEZ

)
≤ exp{−t}. (22)

Proof of Corollary 2. We provide an elementary inequality
for all u ≥ −1

ϕ(u) = (1 + u) ln(1 + u)− u (23)

≥ ϕ1(u) = 3(3 + u−
√
9 + 6u). (24)

Firstly, we give the inverse function of ϕ1(u) in its domain
u ≥ −3/2.

By equivalent transformation,

2ϕ1(u) = 9 + 6u− 6
√
9 + 6u+ 9 (25)

= (
√
9 + 6u− 3)2. (26)
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Fig. S1: The inverse function of ϕ1(u).

According to
√
9 + 6u > 3 when u > 0 and

√
9 + 6u ≤ 3

when − 3
2 ≤ u ≤ 0, we obtain

√
9 + 6u =


3 +

√
2ϕ1(u), u > 0

3−
√
2ϕ1(u), −

3

2
≤ u ≤ 0.

(27)

Squaring both sides and then simplifying, we get

u =


ϕ1(u)/3 +

√
2ϕ1(u), u > 0

ϕ1(u)/3−
√
2ϕ1(u), −

3

2
≤ u ≤ 0.

(28)

Further, when u > 0, ϕ1(u) > 0, the domain of ϕ−11 (u)
is [0,+∞); and when −3/2 ≤ u ≤ 0, 0 ≤ ϕ1(u) ≤ 9/2, the
domain of ϕ−11 (u) is [0, 9/2].

Hence, we obtain that when the domain of ϕ1(u) is
u > 0 and − 3

2 ≤ u ≤ 0, its inverse function is ϕ−11 (u) =

u/3 +
√
2u, u > 0 and ϕ−11 (u) = u/3 −

√
2u, 0 ≤ u ≤ 9

2 ,
respectively. As shown in Figure S1, when u > 0 and
− 3

2 ≤ u ≤ 0 , ϕ1(u) is symmetric with the function
u/3+

√
2u, u > 0 and u/3−

√
2u, 0 ≤ u ≤ 9

2 about φ(u) = u,
respectively.

According to Lemma 1, we set t = EZϕ1(ε/EZ),
for which u = t/EZ > 0. Under the condition of
u > 0, ϕ−11 (u) = u/3 +

√
2u. Thus, we obtain ε by

ε = EZϕ−11 (t/EZ) = t/3 +
√
2tEZ . �

Lemma 2. Let F : R → [0, 1] be a non-zero measurable
and additive function class defined on random variables Z .
Then, for all f ∈ F , t > 0, with a probability at least 1 −
exp{−t} over the i.i.d. sample set DN = {z1, ..., zN}, we
have

Ef(z) ≤ ÊNf(z) +R(F) + t

3N
+

√
2tR(F)
N

, (29)

and

ÊNf(z) ≤ Ef(z) +R(F) + t

3N
+

√
2tR(F)
N

. (30)

Proof of Lemma 2. Let the uniform deviation over DN be

D = sup
f∈F

∣∣∣∣ N∑
i=1

(
f(zi)− Ef(z)

)∣∣∣∣. (31)

We prove that D is a self-bounding function. Let g(z) =
f(z) − Ef(z), which lies in [−1, 1]. Let Dj be such one

function over DN−1 with removing the j-th instance and
fixing the others in DN , that is,

D = sup
f∈F

∣∣∣∣ N∑
i=1

g(zi)
∣∣∣∣, Dj = sup

f∈F

∣∣∣∣ N∑
i 6=j

g(zi)
∣∣∣∣. (32)

Suppose that D maximizes at ĝ and Dj maximizes at ĝj ,
By the definition, we can easily obtain that D ≥ Dj with
assuming that ĝj(zj) = 0. In addition, we have

D −Dj =

∣∣∣∣ N∑
i=1

ĝ(zi)
∣∣∣∣− ∣∣∣∣ N∑

i 6=j

ĝj(zi)
∣∣∣∣ (33)

≤ |ĝ(zj)|+
∣∣∣∣ N∑
i 6=j

ĝ(zi)
∣∣∣∣− ∣∣∣∣ N∑

i 6=j

ĝj(zi)
∣∣∣∣

≤ |ĝ(zj)| ≤ 1,

where the first inequality is due to the triangle inequality.
Then, we have 0 ≤ D −Dj ≤ 1 and

N∑
j=1

(D −Dj) ≤
N∑
j=1

|ĝ(zj)| = D. (34)

Thus, D is a self-bounding function.
According to Corollary 2 and the following symmetriza-

tion inequality [1]

EX

(
sup
f∈F

1

N

∣∣∣∣ N∑
i=1

f(Xi)− Ef(Xi)

∣∣∣∣) ≤ R(F), (35)

for all t > 0, with a probability at least 1 − exp{−t}, we
have

sup
f∈F

∣∣∣∣ 1N
N∑
i=1

(
f(zi)− Ef(z)

)∣∣∣∣ (36)

≤ E sup
f∈F

∣∣∣∣ 1N
N∑
i=1

(
f(zi)− Ef(z)

)∣∣∣∣+ t

3N
(37)

+

√√√√√2tE supf∈F

∣∣∣∣ 1N ∑N
i=1

(
f(zi)− Ef(z)

)∣∣∣∣
N

≤ R(F) + t

3N
+

√
2tR(F)
N

, (38)

Then because −D
N ≤ Ef(z) − ÊNf(z) ≤ D

N , we obtain the
inequalities in Lemma 2. �
Theorem 5. Suppose that φ1,φ2:R → [0, 1] satisfies: φ2(u) ≤
I[u ≤ 0] ≤ φ1(u). For every h ∈ H, t > 0, with a probability
at least 1− exp{−t} over the random choice of sample SN ,
we have

P
(
yh(x) ≤ 0

)
≤ ÊN

(
φ1(yh(x)

)
+R(φ̃1 ◦ H) (39)

+
t

3N
+

√
2tR(φ̃1 ◦ H)

N
,

and

P
(
yh(x) ≤ 0

)
≥ ÊN

(
φ2(yh(x)

)
−R(φ̃2 ◦ H) (40)

− t

3N
−

√
2tR(φ̃2 ◦ H)

N
,
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where φ̃i◦H = {(x, y)→ φi(yh(x))−φi(0), h ∈ H, i = 1, 2}.
Proof of Theorem 5. According the assumption on φ1, we
have

P
(
yh(x) ≤ 0

)
= EI[yh(x) ≤ 0] ≤ Eφ1

(
yh(x)

)
. (41)

Let φ̃1(u) = φ1(u) − φ1(0) (such that φ̃1(0) = 0 to satisfy
the condition of the comparison inequality [1]). φ1(0) is a
constant, which satisfies Eφ1(0) = ÊNφ1(0). Then according
to the first concentration inequality in Lemma 2, we have
the right term of the first inequality. The proof of the second
inequality follows the same mechanism by using the second
inequality in Lemma 2. �
Theorem 6. For every h ∈ H and a large enough t > 0, with
a probability at least 1− exp{−t}, we have∣∣∣∣PA(y, h(x))− P̂AN

(
y, h(x)

)∣∣∣∣ ≤ 4

p

(
R(H)+ (42)

t+ ln 6

2N
+

√
2(t+ ln 6)

N

(√
R(H) +

√
p

2

))
.

Proof of Theorem 6. According to Theorem 5 and the
property of R(cH): for every c ∈ R, R(cH) = |c|R(H),
defining φ1(u) = φ2(u) = I[u ≤ 0], with a probability at
least 1− 2 exp{−t}, we have∣∣L(y, h(x))− L̂N

(
y, h(x)

)∣∣ (43)

≤ R(H) + t

3N
+

√
2tR(H)
N

,

According to Lemma 2, with a probability at least 1 −
2 exp{−t}, we have∣∣q(h)− q̂N (h)

∣∣ (44)

=
1

N

∣∣∣∣ N∑
i=1

(
I
[
h(xi) = +1

]
− EI

[
h(xi) = +1

])∣∣∣∣
≤ R(H) + t

3N
+

√
2tR(H)
N

.

According to Corollary 2, for a large enough t > 0, with a
probability at least 1− 2 exp{−t}, we have

∣∣p− p̂N ∣∣ = 1

N

∣∣∣∣ N∑
i=1

(
I
[
yi = +1

]
− EI

[
yi = +1

])∣∣∣∣ (45)

≤ t

3N
+

√
2tp

N
.

Finally, combining Lemma 3 and the above inequalities,
for a large enough t > 0, with a probability at least 1 −
6 exp{−t}, we have∣∣∣∣PA(y, h(x))− P̂AN

(
y, h(x)

)∣∣∣∣ (46)

≤ 2

p

(
2R(H) + t

N
+

√
8tR(H)
N

+

√
2tp

N

)
.�

(a) Coast VS Mountain

(b) Black Swallowtail VS Peacock

(c) Cat VS Leopard

(d) Helicopter VS Airplane

Fig. S2: Image Data Sets

2 SOME EXPERIMENTAL METHODS AND RESULTS

2.1 Descriptions of Image Data Sets

The Scene Categories [2] contains 15 classes with almost
uniform class distribution. We choose Coast (360 pictures)
and Mountain (374 pictures) for their sizes are closest. The
Butterflies [3] data set contains 8 classes. We choose the
largest class Peacock (134 pictures) and the smallest class
Black Swallowtail (42 pictures) to form a data set. The
Caltech-101 data set contains 101 classes [4]. We choose four
classes to form two data sets and the two classes in one set
are very similar to each other. One set contains Leopard (200
pictures) and wild cat (34 pictures). The other one contains
airplane (800 pictures) and helicopter (88 pictures). Some
pictures of the four data sets are shown in Figure S2.

2.2 The Number of Selected Trees

Table S1 shows the number of selected trees in the setting of
weight ensemble learning. From Table S1, we observe that
RSE obtains the smallest average number. This is because
there is a sparsity constraint in the objective function of RSE.
The average number of PASE is slightly higher than that of
GASEN and lower than that of the other three methods.

2.3 How to Depict the Bars of Figure 6

The bars of Figure 6 in the main manuscript depict the gap
between the significant better numberBa and the significant
worse number Wa of algorithms. That is, for the algorithm
a, the corresponding bar is Ba −Wa. The terms Ba and Wa

are defined as follows.
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TABLE S1: Comparison on Selected Number

Number of Trees
Data ID GASEN RSE SVMperf-Gmean Bisection-FM Gradient-BA PASE

1 37.8000 ±3.7361 34.0667 ±3.1724 52.9333 ±5.3815 48.0333 ±4.7233 55.2333 ±5.6244 41.3667 ±4.2221
2 37.7000 ±3.3851 33.2333 ±3.4108 51.4667 ±7.1038 48.3667 ±3.0792 53.1667 ±3.1957 40.3667 ±5.5924
3 38.3667 ±4.0042 26.5667 ±2.5146 50.7667 ±10.9755 50.9333 ±11.0732 52.6000 ±3.7195 40.4333 ±8.3323
4 38.0667 ±3.7777 28.9667 ±3.6434 52.5667 ±7.4263 60.1667 ±20.1188 53.4333 ±5.2502 42.7667 ±7.0304
5 39.8000 ±3.4978 32.9333 ±2.9587 51.5333 ±7.6822 46.4667 ±4.0321 54.3333 ±2.9634 37.8667 ±5.2110
6 38.6000 ±2.5677 27.8333 ±2.7554 52.0333 ±6.4138 49.4333 ±6.1233 54.1333 ±3.9977 42.3000 ±6.5975
7 37.8000 ±3.9076 39.0667 ±3.9735 52.0667 ±6.5597 46.5667 ±3.7387 53.2333 ±3.6453 35.9333 ±4.9055
8 38.0333 ±3.3165 36.4667 ±15.9476 54.8667 ±12.2917 73.7000 ±26.0347 66.2667 ±8.6141 45.1667 ±11.1389
9 38.2000 ±3.0445 43.4667 ±3.4214 50.9000 ±6.7739 45.9667 ±3.0454 53.7333 ±3.7868 28.1667 ±8.4040

10 38.1333 ±3.3398 26.7333 ±2.7908 50.9333 ±9.8153 50.1000 ±3.4576 52.0667 ±3.4932 41.9000 ±10.1518
11 37.9667 ±3.8639 20.0333 ±2.2047 54.0667 ±9.2174 50.5333 ±2.7883 55.3333 ±4.9781 43.9000 ±10.6037
12 38.6333 ±3.4289 20.2000 ±15.0777 66.5000 ±23.3308 70.6333 ±18.9035 72.2000 ±14.3320 49.2667 ±5.3365
13 36.8667 ±3.0596 20.6667 ±4.0712 57.3667 ±6.7542 51.6667 ±2.7459 56.6667 ±5.7195 53.2667 ±11.1012
14 37.6000 ±3.7472 28.2000 ±2.8089 54.5333 ±9.2912 49.5333 ±2.8007 53.5333 ±3.9717 43.6000 ±7.1852
15 38.4333 ±3.4808 31.2000 ±4.4598 52.5667 ±8.1439 50.2667 ±2.4486 53.4333 ±4.2238 41.8000 ±9.4737
16 37.9333 ±3.8050 28.8000 ±5.1085 56.6667 ±7.2318 50.5667 ±2.3589 55.2000 ±4.5592 39.6000 ±9.5398
17 38.7333 ±3.6192 26.4000 ±5.8875 55.8333 ±8.2591 49.8333 ±3.1632 57.0667 ±4.1434 40.2333 ±8.6371
18 38.7000 ±2.8424 26.9000 ±3.4973 54.8333 ±7.5980 49.5333 ±3.1043 54.6333 ±3.9347 43.0333 ±4.7306
19 38.2333 ±3.7295 19.2333 ±4.1992 53.4667 ±11.1316 47.9667 ±6.2670 57.4667 ±7.6462 50.6333 ±5.6598
20 37.4667 ±3.2667 17.5000 ±2.7260 54.5667 ±8.3694 50.3000 ±3.0530 56.9333 ±5.7231 52.8000 ±6.1442

Average 38.1524 28.2111 53.9746 51.9651 55.8921 43.0952

For algorithms a, b, algorithm a is significant better than
algorithm b on data set d if

µa(d)− 1.96
σa(d)√

t
> µb(d) + 1.96

σb(d)√
t
, (47)

where µa(d) is the mean value of algorithm a on data set
d w.r.t. a performance measure, σa(d) is the corresponding
standard deviation (this naming mechanism is also true for
µb(d) and σb(d)), t is the comparison times and 1.96 is the
inverse cumulative distribution function for the standard
normal distribution evaluated at 0.975. Otherwise, algorith-
m a is significant worse than algorithm b on data set d. For
the set of data sets DS and the set of algorithms A, the
number of algorithm a significant better than the others is

Ba =
∑

d∈DS,b∈A
I
[
µa(d)− 1.96

σa(d)√
t

> µb(d) + 1.96
σb(d)√

t

]
,

(48)

the number of algorithm a significant worse than the others
is

Wa =
∑

d∈DS,b∈A
I
[
µa(d)− 1.96

σa(d)√
t
≤ µb(d) + 1.96

σb(d)√
t

]
.

(49)

2.4 Comparison Results w.r.t TP and accuracy with
Boosting Algorithms
From Figure S3 and Figure S4, we observe that PASE re-
spectively obtains the highest test TP and accuracy value
on most of the split numbers on 9/20 and 9/20 data sets.
The names of these data sets in the subgraphs are in bold.
Further, on most of the split numbers, PASE respectively
obtains the lowest train TP and accuracy value on 6/9 and
5/9 of the above bold data sets. The names of these data
sets in the subgraphs are underlined. On 6/20 and 5/20
data sets, whose names in the subgraphs are italic, PASE
respectively obtains comparable test TP and accuracy value

with GBDT and higher values than Adaboost in many cases.
Above all, we can conclude that PASE is not easy to overfit
and performs better than the two boosting algorithms in
most cases.
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Fig. S3: The average train and test TP curves with the increasing of
the maximal number of decision splits.
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Fig. S4: The average train and test accuracy curves with the increasing of
the maximal number of decision splits.
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