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 

Abstract—Fuzzy rough set is an important rough set model 

used for feature selection. It uses the fuzzy rough dependency as a 

criterion for feature selection. However, this model can merely 

maintain a maximal dependency function. It does not fit a given 

data set well and cannot ideally describe the differences in sample 

classification. Therefore, in this study, we introduce a new model 

for handling this problem. First, we define the fuzzy decision of a 

sample using the concept of fuzzy neighborhood. Then, a parame- 

terized fuzzy relation is introduced to characterize the fuzzy 

information granules, using which the fuzzy lower and upper 

approximations of a decision are reconstructed and a new fuzzy 

rough set model is introduced. This can guarantee that the 

membership degree of a sample to its own category reaches the 

maximal value. Furthermore, this approach can fit a given data 

set and effectively prevents samples from being misclassified. 

Finally, we define the significance measure of a candidate attr- 

ibute and design a greedy forward algorithm for feature selection. 

Twelve data sets selected from public data sources are used to 

compare the proposed algorithm with certain existing algorithms, 

and the experimental results show that the proposed reduction 

algorithm is more effective than classical fuzzy rough sets, 

especially for those data sets for which different categories exhibit 

a large degree of overlap. 

 
Index Terms—Dependency function, Fuzzy rough set, Fuzzy 

similarity relation, Feature selection.  

 

I. INTRODUCTION 

ith the development of computer and database technology, 

a large number of attributes can be acquired and stored in 

databases for several real-world applications. Some of the attri- 

butes may be irrelevant or redundant for classification learning; 

they may greatly reduce the performance of classifiers and lead  
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to a high degree of computational complexity. Therefore, before 

using a data set, it is necessary to preprocess the data to remove  

redundant features. Feature selection or attribute reduction, an 

important technique for reducing the number of redundant 

features, is used to find an optimal feature subset for perfor- 

ming classification under the premise of maintaining classific- 

ation accuracy. In recent years, feature selection has been 

widely used in data processing, pattern recognition, and machine 

learning [12], [21], [27], [50]–[59]. 

There are two main problems related to feature selection that 

must be solved: one is the construction of a feature evaluation 

function, the other is the application of a strategy to the search 

for optimal features. A feature evaluation function is used to 

measure the quality of a candidate subset. This is related to the 

classification ability of a feature subset. In general, a good feature 

evaluation function can lead to high classification accuracy. 

The search strategy involves finding an optimal feature subset 

according to a certain evaluation function. This includes 

sequential forward search and backward selection algorithms. 

Greedy searching [20], [23], genetic algorithms [32], [34], and 

branch and bound [33], [47] are well-known search strategies. 

The feature evaluation plays a very important role in feature 

selection. To determine the relevance between a decision and 

features, many feature evaluation functions have been investi- 

gated in recent years. Distance [26], [45], correlation [11], 

consistency [6], and mutual information [25], [37], [48] are 

usually regarded as being feasible feature evaluation functions. 
The classical rough set model, introduced by Pawlak [35], 

has been successfully used as a feature selection tool [22], [24], 

[28], [39], [46]. In this model, a crisp equivalence relation and 

crisp equivalence classes are used to characterize the depende- 

ncy function between decision and condition attributes. The 

dependency function is used to determine the relevance 

between the decision and conditional attributes and to evaluate 

the classification ability of the attributes. For a given data set, it 

is possible to find a minimal subset of the conditional attributes 

that are the most informative using the dependency function. 

However, numerical data sets must be discretized before 

attribute reduction. Unfortunately, discretization greatly reduces 

the difference between the attribute values and leads to 

information loss [15], [17]. 

The combination of rough sets and fuzzy sets, as proposed by 

Dubois and Prade [7] gives rise to the notion of fuzzy rough sets. 

This provides an effective means of overcoming the problem of 

discretization and can be directly applied to the reduction of 

numerical or continuous attributes [5], [29], [36], [38], [57]. In 

the framework of fuzzy rough sets, a fuzzy similarity relation is 

defined by real-valued conditional attributes and is employed to 
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measure the similarity between samples. The fuzzy upper and 

lower approximations of a decision are then defined based on a 

fuzzy similarity relation. Numerical attribute values are no 

longer needed for discretization before attribute reduction. 

Rather, they are converted to the corresponding membership 

degrees of samples to the upper and lower approximations. As 

fuzziness is introduced into the rough set theory, more 

classification information related to the continuous attributes is 

easily held. In recent years, fuzzy rough sets have attracted 

considerable attention [30], [31], [38], [40], [44], [54], [60]. 

Jensen and Shen first introduced the concept of a dependency 

function in a classical rough set model into the fuzzy case and 

proposed an attribute reduction algorithm based on fuzzy rough 

sets [16]. Some research efforts into attribute reduction with 

fuzzy rough sets mainly aimed at improving the pioneering 

algorithm. In [1], the authors presented the concept of a 

computational domain to improve the computational efficiency 

of the algorithm in [16]. In [17]–[19], the algorithm based on 

the fuzzy rough sets was further improved and developed with 

several heuristic algorithms to find optimal reducts. Meanwhile, 

the classical fuzzy rough set model was also improved to 

analyze the noisy data [3], [13], [41], [58]. In 2004, a model 

based on variable-precision fuzzy rough sets was introduced in 

[41], where the fuzzy memberships of a sample to the lower and 

upper approximations were computed with fuzzy inclusion. In 

2009, Zhao et al. constructed a new model, called fuzzy vari- 

able-precision rough sets, to handle noise of misclassification 

and perturbation [58]. Another class of attribute reduction 

algorithm with fuzzy rough sets is based on a discernibility 

matrix. Skowron and Rauszer first presented an attribute reduc- 

tion method based on a discernibility matrix in the context of 

Pawlak’s rough sets [46]. Chen et al. extended the idea to fuzzy 

rough sets and proposed the concept of a fuzzy discernibility 

matrix for application to attribute reduction [3], [4], [49]. In 

addition, Hu et al. introduced information entropy to fuzzy 

rough sets to measure the dependency between conditional 

attributes and decisions [14], and applied the proposed measure 

to calculate the uncertainty in the fuzzy-rough approximation 

space [15]. 

The basic idea of the fuzzy rough model is that a fuzzy 

similarity relation is used to construct the fuzzy lower and 

upper approximations of a decision. The sizes of the lower and 

upper approximations reflect the discriminating capability of a 

feature subset. The union of fuzzy lower approximations forms 

the fuzzy positive region of decision. As the membership 

degree of a sample to the positive region increases, the possibi- 

lity of it belonging to some category also increases. The fuzzy 

dependency is defined as the ratio of the sizes of the positive 

region over all the samples in the feature space. It is used to 

evaluate the significance of a subset of features. When a 

candidate feature is added to the existing feature pool and 

produces the greatest significance increment, the candidate 

feature will be regarded as being optimal and is therefore 

adopted into the feature pool. However, the definition of the 

classical fuzzy positive region cannot accurately reflect the 

classification ability of a subset of features because it only 

maintains the maximal dependency function and cannot 

guarantee the maximal membership degree of a sample to its 

own category. According to the definition of the fuzzy lower 

approximation, a training sample belonging to class A can be 

classified into class B by using the maximum membership 

principle. Thus, the classical fuzzy rough set model does not fit 

the training data set well and cannot ideally describe the 

differences in the sample classification. In particular, when 

different categories of a data set exhibit a large degree of 

overlap, it easily results in the samples being misclassified. 

This issue will be discussed in detail in Section 3. 
In this study, we introduce a new fuzzy rough set model. It 

can fit a given data set and guarantee the maximal membership 

degree of a sample to its own category. It provides an effective 

means of preventing the misclassification of the training 

samples. First, we define the fuzzy decision of a sample by 

using the concept of fuzzy neighborhood. A parameterized 

fuzzy relation is introduced to characterize fuzzy information 

granules for the analysis of real-valued data sets, and a new 

fuzzy dependency function is proposed. Then, we define the 

significance measure of a candidate attribute, and present a 

greedy forward algorithm for attribute reduction. Finally, we 

compare the proposed algorithm with existing algorithms. The 

experimental results show that the proposed reduction 

algorithm is more feasible and effective, especially for those 

data sets for which different categories exhibit a large degree of 

overlap. 
This paper is organized as follows. In Section 2, we review 

some basic concepts related to classical fuzzy rough sets and 

introduce the rough approximation of the fuzzy decision of 

samples. In Section 3, we develop a fitting fuzzy rough set 

model. In Section 4, we present a heuristic algorithm for feature 

selection. In Section 5, we verify the feasibility and stability of 

the proposed algorithm. Section 6 concludes the paper. 

II. ROUGH APPROXIMATIONS OF FUZZY DECISION 

Suppose U  is a universe and  ( ) : 0,1A U   is a mapping 

function, A  is then called a fuzzy set on U ; for any x U , 

 A x  is called the membership degree of x  to A . The class of 

all fuzzy sets on U is denoted as ( )F U . Obviously, a crisp set 

is a special fuzzy set. 

The domain of a membership function is  0,1 . As the value 

of  A x  approaches 1, the degree of x  belonging to A  incr- 

easees. As an upper bound,   1A x  , it indicates that x  comp- 

letely belongs to A ; otherwise, as the value of  A x  approa- 

ches 0, the degree of x  belonging to A  falls. As a lower bound, 

  0A x  , it indicates that x  does not belong to A  at all. 

Let B be a subset of real-valued attributes describing an 

object set 1 2{ , , , }nU x x x , on which these attributes can 

induce a fuzzy binary relation BR . We say that BR  is a fuzzy 

similarity relation if it satisfies 

(1) Reflexivity: ( , ) 1BR x x  , x U  ; 

(2) Symmetry: ( , ) ( , )B BR x y R y x , ,x y U  ; 

The fuzzy similarity class [ ]Bx  associated with x  and BR  is 

a fuzzy set on U . It is also called the fuzzy neighborhood of x , 

i.e., [ ] ( ) ( , )B Bx y R x y , y U .  
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Assume that D is a decision attribute on U and partitions 

the sample set U  into r crisp equivalence classes 

1 2{ , , }rU D D D D  . In the following, we introduce the concept 

of the fuzzy decision of a sample. 

Definition 1. Let U  be a universe and  1 2, , , rD D D    be a 

family of fuzzy sets on U , then  1 2, , , rD D D    is called a 

fuzzy partition if they satisfy  
1

1,
r

i

i

D x x U


    . 

Definition 2. Assume that D  is a decision attribute and 

1 2{ , , , }rU D D D D  , BR  is a fuzzy similarity relation on U  

induced by B . x U  , the fuzzy decision of x , is defined as 

follows. 

 
[ ]

[ ]

B i

i

B

x D
D x

x


 ， 1,2, ,i r  ， x U , 

where iD  is a fuzzy set and  iD x  indicates the membership 

degree of x  to iD . We call 1 2{ , , }rD D D   the fuzzy decision 

of samples induced by the decision D and the attribute subset 

B . Obviously, 1 2{ , , }rD D D    is a fuzzy partition on U . 

Based on fuzzy similarity relations and the fuzzy decision of 

samples, fuzzy rough sets were introduced as follows. 

Let 1 2{ , , , }nU x x x  be a set of objects, AT  be a set of 

real-valued attributes, D be a decision attribute defined on U , 

B AT . Assume that a decision D partitions the objects 

into r crisp equivalence classes 1 2{ , , , }rU D D D D  . BR  is a 

fuzzy similarity relation induced by B , 1 2{ , , }rD D D    is the 

fuzzy decision of samples induced by D  and AT . Given a 

decision equivalence class 1 2{ , , , }i rD D D D , the fuzzy 

lower and upper approximations are defined as follows, 

respectively. 

   inf max 1 ( , ), ( )i B i
y U

BD x R x y D y


   , 

   maxinf ( , ), ( )i B i
y U

BD x R x y D y


  . 

The membership of an object x U to the fuzzy positive 

region is given by 

1

( )( ) ( )
r

B i

i

POS D x BD x


 . 

With the definition of fuzzy positive region, one can 

compute the fuzzy dependency function by using the following 

formula: 

 
( )( )

.
| |

x U B

B

POS D x
D

U






 

The fuzzy dependency is defined as the ratio of the sizes of 

the positive region over all the samples in the feature space. It is 

used to evaluate the significance of a subset of features. 

However, the definition of the fuzzy positive region can only 

maintain the maximal dependency function. It cannot guarantee 

the maximal membership degree of a sample to its own categ- 

ory. Therefore, such fuzzy dependency easily results in the 

training samples being misclassified and it cannot accurately 

reflect the classification ability of a subset of features. 

III. FITTING MODEL BASED ON FUZZY ROUGH SETS 

The structure of a dataset used for classification learning can 

be written as a decision table and be denoted by , ,U A D  , 

where 1 2{ , , , }nU x x x  is a nonempty set of samples, called a 

universe; 1 2{ , , , }mA a a a   is a set of conditional attributes 

for characterizing the samples, and D is a decision attribute. In 

the following discussion, we assume that the universe is 

partitioned into r crisp equivalence classes by the decision D , 

denoted as 1 2{ , , }rU D D D D  , and that the corresponding 

fuzzy decision of samples is induced by D  and A  and 

denoted as 1 2{ , , }rD D D   . Let B A , a B , and aR be a 

fuzzy similarity relation induced by the attribute a , then 

B aa B
R R


 . 

Fuzzy rough sets employ fuzzy similarity relations to 

construct a fuzzy rough dependency function at one level of 

granularity. In fact, more classification information can be 

acquired if a dependency function is constructed at different 

levels of granularity. We can study the influence of different 

granularities on the results of feature selection and select an 

optimal feature subset by adjusting the granularity [3], [13]. In 

addition, a multiple-granularity rough set model is also helpful 

for controlling the noise in data [41], [58]. The membership 

degree of one sample pair to a fuzzy similarity relation reflects 

the relationship tie of the sample pair. When the relationship tie 

of two samples is very weak, the membership degree of the 

sample pair can be regarded as being zero because this kind of 

weak relationship tie may be caused by data noise. To achieve 

this, a parameterized fuzzy information granule is constructed 

by introducing a parameter  , as follows: 

0, ( , ) ,
[ ] ( )

( , ), ( , ) ,

B

B

B B

R x y
x y

R x y R x y







 



 

 where [0,1)  . According to the above definition, we can 

easily see that the parameter   influences the size of a fuzzy 

information granule. We refer to   as the radius of the fuzzy 

neighborhood of a sample. 

We can see that there are two factors impacting the memb- 

ership degrees of a fuzzy similarity relation. One is parameter  , 

the other is feature subset B . For a given parameter  , the 

membership degrees become smaller as the number of features 

in B  increases. Given a decision table , ,U A D  , 0 1  , 

and B A , BR  is the fuzzy similarity relation on U induced 

by   and B . We denote it by BR . From the above discussion, 

we can derive the following properties. 

Proposition 1. Let B A , then A BR R  . 

Proposition 2. Let 1 2  , then 2 1

B BR R
 
 . 

Attribute reduction with the dependency function of classical 

fuzzy rough sets can only maintain the maximal fuzzy 

dependency. It does not fit a given data set well and cannot 

guarantee the maximal membership degree of a sample to its 

own category. An example is given as follows. 
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Example 1. A decision table , ,U A D  is given in Table 1, 

where U is an object set and  1 2 3 4, , ,U x x x x ,  1 2, ,A a a
 

3 4,a a is a conditional attribute set, D is a decision attribute. 

TABLE 1 

DECISION TABLE 

U a1 a2 a3 a4 D 

x1 3 5 3 6 1 

x2 4 3 2 7 1 

x3 0 1 4 2 2 

x4 9 3 1 3 3 

 

First, all the numerical attributes are normalized into the 

interval [0, 1]. Then, we use the following formula to compute 

the fuzzy similarity degree ijr  between objects ix and jx  with 

respect to the attribute set A . 

1

1
1 ( ) ^ 2

m

ij ik jk

k

r x y
m 

   . 

Thus, we obtain 

1 0.95 0.8 0.85

0.95 1 0.75 0.8

0.8 0.75 1 0.95

0.85 0.8 0.95 1

AR

 
 
 
 
 
 

. 

The decision attribute D  partitions objects U  into three 

parts, that is, 1 2 3{ , , }U D D D D , where 1 1 2{ , }D x x , 1D   

3{ }x , 1 4{ }D x . 

x U  , we can compute the fuzzy decision of x  using the 

following formula:  

 
[ ]

[ ]

A i

i

A

x D
D x

x


 , 1, 2, ,i r  . 

Therefore, we can obtain the fuzzy decision matrix of objects, 

as follows:  

1 2 3

0.54 0.22 0.24

0.56 0.21 0.23
, ,

0.44 0.29 0.27

0.46 0.26 0.28

D D D D

 
 
      
 
 

    , 

where  1 0.54,0.56,0.44,0.46
T

D  ,  2 0.22,0.21,0.29,0.26
T

D  , 

 3 0.24,0.0.23,0.0.27,0.0.28
T

D  . Here, T stands for the tran- 

spose operation of matrix. This gives:  

   1 1 1 1( ) inf max 1 ( , ), ( )A
y U

R D x R x y D y


    

inf (0.54,0.56,0.44,0.46)
y U


 

= 0.44. 

Similarly, we have that  1 2( ) 0.44R D x  ,  1 3( ) 0.44R D x  , 

 1 4( ) 0.44R D x  ;  2 1( ) 0.21R D x  ,  2 2( ) 0.21R D x  ,  2 3( )R D x  

0.22 ,  2 4( ) 0.21R D x  ;  3 1( ) 0.23R D x  ,  3 2( )R D x   

0.23 ,  3 3( ) 0.24R D x  ,  3 4( ) 0.23R D x  . 

TABLE 2 

LOWER APPROXIMATION OF THE DECISION 

U R (D1) R (D2) R (D3) 

x1 0.44 0.21 0.23 

x2 0.44 0.21 0.23 

x3 0.44 0.22 0.24 

x4 0.44 0.21 0.23 

From Table 1, we can see that samples 3x  and 4x  belong to 

the second and third categories, respectively. However, both 

are grouped into the first category according to the lower 

approximations of decision and the maximum membership 

decision principle. This shows that the classical fuzzy rough set 

model does not fit a given data set well and cannot ideally 

describe differences in the sample classifications. To overcome 

this problem, the following definition is given. This definition 

can guarantee the maximal membership degree of a sample to 

its own category and fit a given data set well. 

Definition 1. Given a decision table , ,U A D  , U D   

1 2{ , , }rD D D , 1 2{ , , }rD D D   is the fuzzy decision of samples 

induced by A and D , 0 1  , and B A . BR  is the fuzzy 

similarity relation on U  induced by   and B , the lower and 

upper approximations of decision D  with respect to B  are 

defined as: 

 min max 1 ( , ), ( ) , ;
( )( )

0, .

B i i
x U

B i

i

R x y D x y D
R D y

y D



 

  
 




 

 max min ( , ), ( ) , ;
( )( )

0, .

B i i
x U

B i

i

R x y D x y D
R D y

y D



 

 
 




 

The fuzzy lower approximation of decision equivalence 

class iD  is also called the fuzzy positive region of iD . 

In the same way as in the case of classical rough sets, fuzzy 

rough sets employ the fuzzy neighborhood and fuzzy decision 

of an object to determine its membership degree to any one 

decision class. ( )( )B iR D y  indicates the membership degree of 

an object y certainly belonging to class i . ( )( )B iR D y  repress- 

ents the membership degree of an object y possibly belonging 

to class i . 

There are two main differences between the proposed model 

and classical fuzzy rough sets. 

(1) For a given decision equivalence class iD  and a sample 

y U , according to the classical fuzzy rough sets, the 

membership degree of y  to the fuzzy lower approximation of 

iD is computed by  ( )( ) minmax 1 ( , ), ( )B i B i
x U

R D y R x y D x 


    

regardless of the category to which the sample belongs. This 

easily results in the samples being misclassified when using the 

maximum membership principle because the model cannot 

ensure the maximal membership degree of a sample to its own 

category. Thus, the classical model cannot fit the given data set 

or satisfactorily describe the differences in sample classification. 

In contrast, the proposed model considers two different cases 

when it computes the membership degree. This overcomes the 
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drawbacks with the classical model and results in the data 

fitting well.  

(2) The proposed model is somewhat less complex than the 

classical model. For any sample, the classical model computes 

the membership degree of the sample for each decision 

equivalence class, while the proposed model only considers the 

decision equivalence class to which the sample belongs. 

Definition 2. Given a decision table , ,U A D  , 0 1  , 

B A , and 1 2{ , , }rU D D D D  , 1 2{ , , }rD D D    is the 

fuzzy decision for the samples induced by A and D . The 

fuzzy positive region of decision D  with respect to B  is 

defined as 
1

( ) ( )
r

B B i

i

POS D R D 



 . 

The fuzzy positive region is defined as the sum of the lower 

approximations of the decision equivalence classes. The 

advantage of the new fuzzy rough set model lies in the fact that, 

as the membership degree of a sample to the positive region 

increases, so too does the possibility of it belonging to its own 

category. Intuitively, those samples with large membership 

degrees are easily classified into their respective decision 

equivalence class. The size of the positive region reflects the 

classification ability of the condition attributes. Classification 

tasks in different feature subspaces have different fuzzy 

positive regions. One usually attempts to find a feature subset in 

which a classification task has a great positive region. The 

significance of a feature subset can be described by the fuzzy 

positive region and is formally defined as follows. 

Definition 3. Given a decision table , ,U A D  , 0 1  , 

B A , and 1 2{ , , }rU D D D D  , the dependency degree of 

decision D  to B  is defined as  

1

( )( )
( )( )

( )
| | | |

i i

r

B i i
B ix U x U i

B

R D x
POS D x

D
U U




   
  


. 

The dependency degree is also called the fuzzy dependency 

function. Obviously, 0 ( ) 1B D   . This reflects the classific- 

ation power of a conditional attribute subset. We can say that 

decision D is completely dependent on B  if ( ) 1B D  ; 

otherwise, D  depends on B  in the degree of ( )B D . Each sa- 

mple in B  belongs entirely to its own decision equivalence 

class when ( ) 1B D  . Intuitively, we hope to find a feature 

subspace in which the value of the fuzzy dependency function 

is a maximum because the error rate of classification is smaller 

in such a case. 

Theorem 1. Given a decision table , ,U A D  and 0 1  , 

if 1 2B B A  , then 
1 2
( ) ( )B BPOS D POS D  . 

Proof. As 1 2B B , we have
2 1B BR R   according to Proposi- 

tion 1. For any iy D  and x U , we have
2

1 ( , ) 1BR x y    

1
( , )BR x y

. From the definition of lower approximation, it follo- 

ws that
1 2
( )( ) ( )( )B i B iR D y R D y  . Hence, 

1 2
( ) ( )B BPOS D POS D  . 

 Theorem 2. Given a decision table , ,U A D   and 0 1  , 

if 1 2  , then 1 2( ) ( )B BPOS D POS D
 

 . 

Proof. As 1 2  , we have 2 1

B BR R
 
  according to Propos- 

ition 2. For any iy D  and x U , we have 21 ( , )BR x y


   

11 ( , )BR x y


 . Given the definition of lower approximation, it 

follows that 1 2( )( ) ( )( )B i B iR D y R D y
 

 . Hence, 1 2( ) ( )B BPOS D POS D
 

 .  

Obviously, the dependency function has the following 

properties.  
Theorem 3. Given a decision table , ,U A D   and 0 1  , 

if 1 2 mB B B A    , then 
1 2
( ) ( ) ( )

mB B BD D D        . 

Theorem 4. Given a decision table , ,U A D   and 0 1i  , 

if 1 2 m     , then 1 2( ) ( ) ( )m

B B BD D D
       . 

The above theorems show that the dependency function 

monotonically increases with the size of the attribute subset and 

the parameter  . Such property is very important for designing 

a forward algorithm because it guarantees that adding a 

candidate feature to the existing feature subset will not decrease 

the dependency of the new subset. When such a dependency 

function is employed as a criterion for feature selection, the step 

for search stop should be easily implemented. 

Definition 4. Given a decision table , ,U A D  , 0 1  , 

and B A , for any a B , if ( ) ( )B a BD D 

   , we say attribute 

a  is indispensable in B . Otherwise, we say a  is redundant or 

superfluous in B . If any attribute a  in B  is indispensable, we 

say B  is independent. 

If an attribute is redundant, it can be removed because the 

dependency does not change. A redundant attribute does not 

provide more classification information. Rather, it confuses the 

learning algorithm during training. Therefore, it must be 

deleted from the condition attribute set before classification 

learning. 

Definition 5. Given a decision table , ,U A D  , 0 1  , 

and B A , we say B  is a reduct of A  if it satisfies 

 (1) a B  , ( ) ( )B a BD D 

   ; (2) ( ) ( )A BD D    . 

According to this definition, a reduct of A  is a minimal 

subset of those attributes that have the same classification 

ability as the whole set of attributes 

IV. ATTRIBUTE REDUCTION ALGORITHM BASED ON FITTING 

FUZZY ROUGH SET MODEL 

In this section, we first present the definition of significance 

measure of a candidate feature, then propose a greedy forward 

algorithm for attribute reduction and discuss its time complexity. 

Definition 6. Given a decision table , ,U A D  , B A , 

and a A B  , the significance of a  with respect to B  is 

defined as { }( , , ) ( ) ( )B a BSIG a B D D D      . 

This definition is used to compute the increment of the 

classification ability that is introduced by an attribute. It can be 

used as the significance measure of a candidate feature. With 

the proposed measure, we construct a heuristic algorithm for 

attribute reduction as follows. The algorithm starts with an 

empty set, and adds one attribute with the greatest significance 

into a feature pool at each iteration until the value of the 

dependency does not increase further. 



> IEEE TRANSACTIONS ON FUZZY SYSTEMS < 

 

6 

To make full use of the classification information contained 

in the data and demonstrate the performance of the proposed 

attribute reduction method, we introduce another parameter 

[0,1)   to control the fuzzy decision of the samples. Given a 

decision table , ,U A D  , assume that decision D partitions 

the objects into r crisp equivalence classes 1 2{ , , , }rU D D D D  , 

AR  is a fuzzy similarity relation on U  induced by A . x U  , 

the fuzzy decision  iD x of x  is computed by 

 
[ ]

[ ]

A i

i

A

x D
D x

x






 , 1, 2i r  , 

where [ ]Ax   is a parameterized fuzzy set and is defined as: 

 
0, ( , ) ,

[ ]
( , ), ( , ) .

A

A

A A

R x y
x y

R x y R x y







 


 

We call   the radius of the fuzzy neighborhood of D .  

Algorithm: Heuristic algorithm based on fitting fuzzy rough 

sets (NFRS) 

Input: Decision table , ,U A D  , thresholds   and  //  is 

the threshold for the fuzzy neighborhood of a sample. 

similarity.   is the threshold for the fuzzy neighbor- 

ood of decision D .  

Output: One reduct red . 

1: a A  : compute the relation matrix aR ; 

2: Compute the fuzzy decision 1 2{ , , }rD D D D    ; 

3: Initialize: red   , B A red  , start = 1; // red is the pool 

containing the selected attributes and B is for the 

left attributes. 

4: while start 

5: T   

6:         for each ia B   

7:            { }iT red a  ; 

8:            Compute fuzzy similarity relation TR . 

9:            for each jx U , suppose j ix D ; 

10:                 Compute fuzzy lower approximation ( )( )T i jR D x
.  

11:           end for 

12:             
ired a D

 =sum( ( max ( )
i

T i
D U D

R D


)/n; 

15:       end for 

16:       Find attribute ka  with maximum value  
kred a D

 . 

17:       Compute ( , , ) ( ) ( )
kk red a redSIG a red D D D     . 

18:        if ( , , )kSIG a red D  0 

19:            kred red a  ; 

20:            B B red  ; 

21:        else  

22:            start=0; 

23:        end if 

24:  end while 

25:  return red  

As described above, this algorithm terminates when the 

addition of any remaining attribute does not increase the 

dependency ( )B D . If there are N condition attributes, the time 

complexity for computing the fuzzy similarity relations is N , 

and the worst search time for a reduct will result in N N  

evaluations of the dependency function. The overall time 

complexity of the algorithm is 2( )O N . 

V. EXPERIMENTAL ANALYSIS 

In this section, we compare the proposed algorithm (NFRS) 

with existing attribute reduction algorithms. The existing 

algorithms are the classical rough set based algorithm (RS)[35], 

fuzzy information entropy based algorithm (FISEN)[14], [15] 

and algorithm of fuzzy rough dependency constructed from the 

intersection operations of fuzzy similarity relations (FRSA) 

[16]. These algorithms employ a sequential forward-search 

strategy to identify the optimal features. The experimental 

comparison is conducted based on a 10-fold cross-validation. 

That is to say, the original data set is randomly divided into ten 

subsets, of which nine are used as the training data and the 

remaining one is used for testing. Feature selection is 

performed on the training set; the reduced training set and test 

set are then sent to a classifier to attain the classification 

accuracy. After 10 rounds, the average value and variation of 

the classification accuracies are computed as the final 

performance. In the experiments, three indices, including the 

number of selected features, classification performance, and 

running time, are used in the comparison. All the algorithms are 

performed in Matlab 2013b and run in a hardware environment 

with a Intel (R) Core (TM) i7-4790 CPU @ 3.60 GHz, with 

16.0 GB RAM. 

TABLE I 

DESCRIPTION OF DATA SETS 

No Data sets Sample Attributes Classes 

1 Glass 214 10 6 

2 Wdbc 569 30 2 

3 Ionos 351 33 2 

4 Sonar 208 60 2 

5 Diabetes 768 8 2 

6 Gearbox 1603 72 4 

7 Segment 2310 19 7 

8 Brain 90 5920 5 

9 Breast 84 9217 5 

10 AMLALL 72 7129 2 

11 Prostate1 136 12600 2 

12 Prostate2 102 10509 2 

Two classical classifiers are employed to evaluate the 

classification accuracies of the original and reduced data. They 

are the support vector machine (RBF-SVM) and k-nearest 

neighbor rule (K −  NN, K = 3). Twelve data sets are used in the 

experimental analysis, some are selected from the UCI 

Machine Learning Repository [2], the others are downloaded at 

Keng Ridge Bio-medical (KRBM) Data Set Repository [61]. 

The information contained in these data sets is outlined in Table 

I. All of the numerical attributes are first normalized into the 

interval [0, 1]. The fuzzy similarity degree ijr  between objects 

ix and jx  with respect to an attribute is computed by 
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As the classical rough set considers only categorical data, it 

is necessary to preprocess numerical data by a discretization 

algorithm such as equal scale, equal frequency, maximum 

entropy, and so forth [15], [42], [43]. In general, different 

discretization methods may result in selecting different feature 

subsets. The problem has been intensively studied [42], [43]. 

The experimental results described in ref. [15] show that fuzzy 

C-means discretization offers a better level of performance than 

either equal scale or equal frequency. In the following numeri- 

cal experiments, we employ a fuzzy C-means clustering (FCM) 

technique to discretize numerical data before attribute reduc- 

tion with classical rough sets. The numeric attributes are discre- 

tized into four intervals. To compare the NFRS and FRSA 

algorithms, two parameters  and  are also introduced into 

the FRSA algorithm in the same way as the NFRS algorithm. 

They are used to control the fuzzy neighborhood and fuzzy 

decision of a sample, respectively. They have a great impact on 

different data sets. We set   to a value between 0.1 and 0.5 in 

steps of 0.05 and   to a value between 0.1 and 0.6 in steps of 

0.1. As different learning algorithms may require different 

feature subsets to produce the best classification accuracy, all 

of the experimental results in the following tables are presented 

with the highest classification accuracy based on 10-fold 

cross-validation. 

Table II presents the four algorithms for reducing the features 

of data sets. The average sizes of the feature subsets selected 

with FCM + RS are smaller than those selected with the other 

algorithms in most cases. The reason for this result may be due 

to the information loss caused by data discretization. The 

average subset sizes with FISEN, NFRS, and FRSA are roughly 

the same except for the Sonar and Brain data sets. However, the 

FCM + RS algorithm yields an empty set when it is applied to 

the Diabetes data set. This is because the dependency of each 

single feature is zero in the first loop of each training fold and 

the algorithm stops at the last fold. To obtain a feature subset 

for classification learning, we randomly select a feature in this 

case. Thus, the FCM + RS algorithm continues to run rather 

than stopping. Finally, a subset of the features is selected and 

the corresponding average subset size is marked by an asterisk, 

as shown in Table II. 

TEBLE II 

AVERAGE SIZES OF FEATURE SUBSETS  

Data sets Raw data FCM+RS FISEN NFRS FRSA 

Glass 10 5.9 4.9 3.6 4.4 

Wdbc 30 8.2 12.2 9.5 11.3 

Ionos 33 9.0 7.8 10.5 10.8 

Sonar 60 6.1 28.7 19.7 19.4 

Diabetes 8 7.0* 5.1 6.1 5.2 

Gearbox 72 7.7 9.1 9.2 9.2 

Segment 19 12.4 9.7 8.9 8.8 

Brain 5920 4.8 10.6 15.6  15.2 

Breast 9217 4.2 12.6 10.0 10.3 

AMLALL 7129 2.5 7.8 5.1 4.9 

Prostate1 12600 6.6 9.5 8.2 9.3 

Prostate2 10509 3.7 8.6 6.7 8.0 

Average 3800.58 6.46 10.55 9.43 9.73 

Tables III and IV present the comparative performance of the 

four reduction algorithms, where the underlined symbols 

indicate the highest classification accuracies among the reduced 

data sets. From the results listed in Tables III and IV, it is easy to 

see that the classification accuracies based on the NFRS and 

FISEN methods are comparable with but obviously higher than 

the other two methods in most cases. Out of the 24 cases, the 

NFRS and FISEN methods achieve the highest classification 

accuracies in 13 and 9 cases, respectively. The FRSA method 

obtains it in 3 cases, and FCM + RS attains it for 2 case. Most 

cases of the NFRS algorithm are higher than the FRSA 

algorithm. In particular, the accuracies of the Sonar, Diabetes 

and Prostate1 data sets have been greatly improved. This shows 

that different categories of these data sets exhibit a large degree 

of overlap. Because the FRSA algorithm cannot guarantee that 

the membership degree of a sample to its own category is 

maximal, the resulting classification accuracies of these data 

sets are relatively low. Thus, the NFRS algorithm is more 

effective than the FRSA algorithm. It should be pointed out that 

the accuracies of the FCM + RS algorithm are zeros when it is 

applied to the Diabetes data set. As mentioned above, regarding 

the data set, no feature is selected in the first loop. Therefore, 

their classification accuracies are zeros. As a feature is random- 

ly selected in this case, we obtain the classification accuracies 

of the data set as shown in Tables III and IV, where the 

corresponding accuracy is also marked by an asterisk. 

TABLE III  

COMPARISION OF CLASSIFICATION ACCURACIES OF REDUCED DATA WITH SVM 

Data sets Raw data FCM + RS FISEN NFRS FRSA 

Glass 93.22 ± 5.74 92.93 ± 6.86 94.84 ± 4.75 93.36 ± 5.88 92.38 ± 5.12 

Wdbc 96.52 ± 2.05 96.13 ± 2.59 96.66 ± 2.38 97.19 ± 2.22 96.90 ± 1.45 

Ionos 90.52 ± 4.65 93.16 ± 4.31 94.29 ± 3.57 94.22 ± 3.14 94.29 ± 3.31 

Sonar 85.44 ± 7.88 75.09 ± 7.15 84.61 ± 7.71  87.62 ± 8.16 84.24 ± 7.72 

Diabetes 76.16 ± 4.12 75.47 ± 4.48* 77.22 ± 4.79 76.43 ± 6.09 68.35 ± 3.98 

Gearbox 98.88 ± 1.26 99.50 ± 0.39 99.50 ± 0.71 99.19 ± 1.51 98.63 ± 1.62 

Segment 95.10 ± 1.17 95.84 ± 1.28 95.41 ± 2.08 95.19 ± 1.57 95.11 ± 1.54 

Brain 66.67 ± 11.71 76.67 ± 11.77 82.22 ± 11.94 84.44 ± 10.54 81.11 ± 11.05 

Breast 39.17 ± 12.67 73.33 ± 13.37 92.25 ± 5.49 91.37 ± 8.44 91.37 ± 9.22 

AMLALL 65.24 ± 13.66 93.49 ± 8.71 97.14 ± 6.03 98.57 ± 6.03 97.46 ± 4.52 

Prostate1 72.29 ± 11.97 87.86 ± 10.45 92.57 ± 4.85 93.57 ± 6.26 93.29 ± 5.39 

Prostate2 61.17 ± 16.45 91.00 ± 7.38 92.33 ± 8.76 94.33 ± 7.87 94.17 ± 6.89 

Average 78.36 ± 7.78 87.54 ± 6.75 91.59 ± 5.26 92.01 ± 5.64  90.61 ± 5.15 
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TABLE IV 

COMPARISION OF CLASSIFICATION ACCURACIES OF REDUCED DATA WITH 3NN 

Data sets Raw data FCM + RS FISEN NFRS  FRSA 

Glass 90.80 ± 7.35 89.28 ± 8.04 94.44 ± 6.58 95.31 ± 2.26 93.16 ± 4.94 

Wdbc 97.00 ± 2.24 94.20 ± 2.03 96.13 ± 3.27 97.36 ± 1.91 97.01 ± 1.87 

Ionos 85.96 ± 5.38 88.88 ± 4.16 90.89 ± 3.98 92.02 ± 4.63 91.95 ± 5.41 

Sonar 83.33 ± 8.06 73.71 ± 9.66 85.94 ± 7.99 84.29 ± 8.99 83.28 ± 6.35 

Diabetes 

 
74.00 ± 4.83 73.33 ± 4.56* 72.14 ± 5.38 73.56 ± 8.55 67.71 ± 5.13 

Gearbox 99.69 ± 1.44 99.63 ± 0.32 99.69 ± 0.33 99.50 ± 1.07 98.81  ± 1.72 

Segment 96.01 ± 1.16 96.23 ± 1.16 96.45 ± 1.18 95.76 ± 1.38 95.71 ± 1.89 

Brain 86.67 ± 10.03 72.22 ± 10.21 82.03 ± 12.83 82.82 ± 10.73 81.91 ± 12.36 

Breast 71.25 ± 13.24 70.50 ± 14.20 90.42 ± 8.84 92.67 ± 12.91 92.67 ± 12.91 

AMLALL 85.71 ± 9.52 94.02 ± 8.46 94.60 ± 7.03 97.89 ± 6.45 98.76 ± 6.03 

Prostate1 77.14 ± 15.36 85.43 ± 7.69 89.71 ± 7.61 89.00 ± 9.60 85.14 ± 8.44 

Prostate2 84.33 ± 11.17 84.33 ± 12.78 93.33 ± 9.03  94.07 ± 6.69 93.33 ± 6.44 

Average 85.99 ± 7.48 85.14 ± 7.16 90.48 ± 6.17 91.19 ± 6.26 89.95 ± 6.12 

 

For SVM, NFRS outperforms all the raw data sets for 

classification tasks. At the same time, NFRS outperforms the 

raw data 8 times with respect to 3NN. Moreover, the average 

accuracies of NFRS are also comparable to any other feature 

selection algorithm in terms of SVM and 3NN learning 

algorithms. 

In addition, we apply the Friedman test [10] and the Bonfer- 

roni–Dunn test [8] to show the statistical significance of the 

results. The Friedman statistic is defined as: 

2
2 2

1

12 ( +1)
( )

( +1) 4

k

F i

i

N k k
R

k k




   and 
2

2

(N-1)

( 1)

F
F

F

F
N k






 
, 

where N is the number of data sets, k is the number of 

algorithms, and iR is the average rank of algorithm i among all 

the data sets. FF follows a Fisher distribution with 

1k  and ( 1)( 1)k N   degrees of freedom. If the null 

hypothesis is rejected under the Friedman test statistic, a 

post-hoc test such as the Bonferroni–Dunn test can be used to 

further explore which algorithms are different in statistical 

terms. According to the results of this test, the performance of 

two algorithms is regarded as being significantly different if the 

distance of the average ranks exceeds the critical distance  

( 1)

6

k k
CD q

N
 


 , 

where q  is the critical tabulated value for this test [9]. 

To explore whether the classification performances of each 

classifier with the four feature selection algorithms are 

significantly different, we performed two Friedman tests. The 

null hypothesis of the Friedman test is that all of the algorithms 

are equivalent in terms of the classification performance. 

Tables V and VI indicate the rankings of the four feature 

selection algorithms under different classifiers. The values of 

FF for different evaluation measures are listed in Table Ⅶ. The 

critical value of (3,33)F  for  = 0.1 is 2.23. 

From Table Ⅶ, we can reject the null hypothesis at  = 0.1 

and accept the alternative hypothesis that the four algorithms 

are different under different classifiers. Therefore, two Bonfe- 

rroni–Dunn tests were conducted. In [9], we can find that the 

critical value 0.10 2.128q  , such that 0.10 1.122CD  , 

( 4,k  12)N  . 

For both of SVM and 3NN, the Bonferroni–Dunn tests 

demonstrate that NFRS is statistically better than FCM + RS 

and FRSA with  = 0.1, respectively. There is no consistent 

evidence, however, to indicate the statistical differences from 

FISEN.  
TABLE V 

 RANK OF THE FEATURE SELECTION ALGORITHMS WITH SVM  

Data sets FCM + RS FISEN NFRS FRSA 

Glass 3 1 2 4 

Wdbc 4 3 1 2 

Ionos 4 2 2 2 

Sonar 4 2 1 3 

Diabetes 3 1 2 4 

Gearbox 1.5 1.5 3 4 

Segment 1 2 3 4 

Brain 4 2 1 3 

Breast 4 1 2.5 2.5 

AMLALL 4 3 1 2 

Prostate1 4 3 1 2 

Prostate2 4 3 1 2 

Average 3.38 2.04 1.71 2.88 

 

TABLE VI 

  RANK OF THE FEATURE SELECTION ALGORITHMS WITH SVM 

Data sets FCM + RS FISEN NFRS FRSA 

Glass 4 2 1 3 

Wdbc 4 3 1 2 

Ionos 4 3 1.5 1.5 

Sonar 4 1 2 3 

Diabetes 

 
2 3 1 4 

Gearbox 2 1 3 4 

Segment 2 1 3 4 

Brain 4 2 1 3 

Breast 4 3 1.5 1.5 

AMLALL 4 3 2 1 

Prostate1 3 1 2 4 

Prostate2 4 2.5 1 2.5 

Average 3.42 2.13 1.66 2.79 

 

TABLE Ⅶ 

The VALUE OF FF  FOR DIFFERENT CLASSIERS 

 SVM 3NN 

FF
 6.21 6.04 

file:///C:\Users\ljh\Desktop\ģ���ֲڼ�����-�����\C:UsersljhAppDataLocalYodaoDeskDictframe20150831210726javascript
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Table Ⅷ  lists the running times of the four reduction 

algorithms. We can find that the FCM + RS algorithm spend 

more running time in most cases than that with the other 

algorithms. This is because the algorithm not only need some 

time to reduce attributes, but also spend additional time for data 

discretization. Of the four reduction algorithms, FISEN runs 

the fastest. This is because the FISEN algorithm does not need 

to compute the lower approximation of each sample. Therefore, 

it effectively saves time. The running time of NFRS is shorter 

than that of the FRSA algorithm. From Tables III and IV, we 

know that most of the classification accuracies of the NFRS 

algorithm are higher than that of the FRSA. This shows that the 

use of the NFRS algorithm not only increases the classification 

accuracy, but also does not increase the time complexity. Thus, 

it can be seen that the NFRS method is both feasible and 

effective. 
TABLE Ⅷ 

RUNNING TIME OF REDUCTION WITH DIFFERENT ALGORITHMS 

Data sets FCM + RS FISEN NFRS FRSA 

Glass 0.65 ± 0.09 0.37 ± 0.09 0.40 ± 0.13 0.52 ± 0.19 

Wdbc 3.23 ± 0.30 2.65 ± 0.23 2.82 ± 0.36 2.88 ± 0.21 

Ionos 1.95 ± 0.25 1.32 ± 0.16 1.62 ± 0.33 1.66 ± 0.26 

Sonar 2.80 ± 0.26 1.89 ± 0.16 1.76 ± 0.20 1.62 ± 0.23 

Diabetes 

 
1.79 ± 0.33* 1.13 ± 0.13 1.15 ± 0.17 1.13 ± 0.19 

Gearbox 17.45 ± 2.12 78.58 ± 6.22 98.34 ± 10.17 107.82 ± 10.23 

Segment 5.94 ± 0.42 34.58 ± 0.99 35.95 ± 3.36 78.65 ± 9.87 

Brain 76.96  ± 11.84 25.74 ± 2.89 44.97 ± 13.54 50.70 ± 12.34 

Breast 108.17 ± 18.05 48.69 ±  6.73 33.54 ± 6.10 50.22 ± 5.56 

AMLALL 55.22  ± 6.01 17.83 ± 4.55 18.89 ± 4.19 18.59 ± 4.17 

Prostate1 383.82 ± 15.57 139.42 ± 16.83 131.11 ± 12.48 127.89 ± 10.69 

Prostate2 127.33 ± 15.22 44.34 ± 5.07 54.93 ± 11.83 53.12 ± 2.81 

Average 65.44 ± 5.87 33.05 ± 3.67 35.46  ± 5.24 41.23 ± 4.73 

TABLE Ⅸ 

THE FEATURE SUBSETS NFRS AND FRSA  ALGORITHM 

Data sets NFRS FRSA 

Glass 1, 4, 9, 7 1, 4, 9, 6, 5 

Wdbc 
28, 23, 16, 7, 22, 8, 25, 18, 

26, 21 

28, 23, 7, 22, 16, 8, 25, 6, 21, 

26, 2 

Ionos 
1, 4, 26, 23, 27, 9, 20, 7, 19, 

2, 5 

1, 4, 26, 23, 27, 9, 20, 7, 19, 2, 

5 

Sonar 

44, 21, 35, 12, 27, 29, 54, 24, 

31, 16, 8, 37, 59, 49, 32, 53, 

23, 26, 20, 55, 42 

21, 25, 36, 30, 16, 12, 54, 23, 

32, 27, 10, 45, 35, 41, 53, 49, 

37, 59 

Diabetes 2, 7, 5, 1, 8, 4 5, 7, 1, 8, 4 

Gearbox 
34, 29, 65, 20, 62, 8, 25, 56, 

2, 35, 26 
65, 20, 17, 35, 62, 26, 11, 7, 8 

Segment 18, 16,  2, 1, 17, 4, 5, 3, 13 18, 11, 2, 1,17, 4, 5, 13, 3 

Brain 

3962, 4269, 2532, 2703, 

5846, 903, 5062, 2739, 868, 

1294, 497, 5011, 1116, 1498, 

2762, 2756 

3962, 4269, 2532, 5899, 2703, 

52, 4993, 4705, 5062, 3094, 

5182, 868, 4001, 2357, 1498 

Breast 

4085, 7797, 7966, 1315, 

6383, 6436, 8506,      7489, 

4478, 5477 

4085, 7797, 7966, 6383, 6436, 

8506, 1315,    4478, 5477, 7489 

AMLALL 758, 1882, 4050, 2642, 3252 758, 1882, 4050, 4680, 1779 

Prostate1 
8850, 12067, 9850, 11125, 

2802, 6195, 6367,       231 

8850, 12067, 9850, 11125, 

2802, 6367, 3480, 11478 

Prostate2 
4823, 7372, 1899, 7310, 

10417, 6880, 5820 

4823, 5820, 7310, 8545, 7372, 

6640, 6880, 5227 

 

All of the experimental results reported above are given out 

by a 10-fold cross validation. To show the selected feature 

subset of a data set, in the following we employ the FRSA and 

FNRS algorithms to reduce the entire data set based on 

parameters where the classification accuracies are obtained in 

the above experiments. The selected feature subsets are listed in 

Table 9, which shows that most of the features selected for the 

NFRS and FRSA algorithms are the same. For the Ionos and 

Breast data sets, in particular, the selected feature subsets are 

identical and the classification accuracies for the NFRS and 

FRSA algorithms are almost the same. The slight differences 

for Ionos may be due to the fact that the selected feature subsets 

are given out by reducing the entire data set, while the 

classification accuracies are based on a 10-fold cross-validation. 

In this case, we specify the same ranking for the NFRS and 

FRSA algorithms as shown in Tables V and VI. This result 

illustrates that the NFRS algorithm constitutes an improvement 

over the FRSA algorithm. 

Finally, a series of experiments was conducted by 10-fold 

cross validation to demonstrate the variation in the classify- 

cation accuracy with  and  . We set the value of  to vary 

from 0.1 to 0.5 in steps of 0.05, and  to vary from 0.1 to 0.6 in 

steps of 0.1. Figures 1–12 show only the accuracy curves for 

some datasets with SVM. The experimental results obtained 

using 3NN are roughly consistent with SVM. 
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Fig. 1 Accuracy varying with thresholds  and  (Glass) 
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Fig. 2 Accuracy varying with thresholds  and  (Wdbc) 
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Fig. 3 Accuracy varying with thresholds  and  (Ionos) 
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Fig. 4 Accuracy varying with thresholds  and  (Sonar) 
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Fig. 5 Accuracy varying with thresholds  and  (Diabetes)   
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Fig. 6 Accuracy varying with thresholds  and  (Gearbox) 
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Fig. 7 Accuracy varying with thresholds  and  (Segment) 
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Fig. 8 Accuracy varying with thresholds  and  (Brain) 
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Fig. 9 Accuracy varying with thresholds  and  (Breast)    
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Fig. 10 Accuracy varying with thresholds  and  (AMLALL) 
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Fig. 11 Accuracy varying with thresholds  and  (Prostate1)   
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Fig. 12 Accuracy varying with thresholds  and  (Prostate2) 

Figures 1–12 show the classification accuracies varying 

with  and  . We can clearly see that most of data sets exhibit 

higher classification accuracy over a greater area. In particular, 

Ionos, Wdbc, Gearbox, Segment and Prostate1 exhibit stability 

in their respective regions. Thus, it can be seen that the NFRS 

algorithm is both feasible and stable. 

VI. CONCLUSION AND FUTURE WORK 

Feature selection is one of the important steps in classifica- 

tion learning. Reducing the number of redundant or irrelevant 

features can improve the classification performance in most 

cases. The fuzzy rough set model is one of the most important 

rough set methods used in attribute reduction. However, 

classical fuzzy-rough dependency cannot better reflect the 

classification ability of a subset of features because it merely 

keeps the fuzzy positive region maximal and cannot fit data 

well. In this study, we introduced a fitting fuzzy rough set 

model to overcome this problem. We defined the fuzzy 

decision of samples by introducing the concept of fuzzy 

neighborhood. To better determine the relevance between the 

decision and condition attributes, a parameterized fuzzy 

relation was introduced to construct a new fuzzy dependency 

function. The proposed method can fit a given data well and 

guarantee the maximal membership degree of a sample to its 

own category. The advantage of the proposed model lies in the 

fact that samples with great membership degrees can be easily 

classified into their decision equivalence class with low 

uncertainty. Twelve data sets, selected from UCI and KRBM 

are used to compare the performance of the proposed algorithm 

with that of existing algorithms. The experimental results show 

that the proposed reduction algorithm is more effective than 

classical fuzzy rough sets, especially for those data sets in 

which different categories have a large degree of overlap. 

Furthermore, most data sets can achieve a high degree of 

precision over a wide region. 

However, there are still some problems to be considered, and 

further discussion on the proposed fuzzy rough set model is 

required. For example, 1) Is there an over-fitting phenomenon 

for some data sets with respect to the proposed model? If so, 

how can we characterize it and identify an effective means of 

avoiding it? 2) Similarly for classical fuzzy rough sets, how do 

we describe the proposed model by using the concept of the 

discernibility matrix? 3) We also need to investigate how the 

proposed model can be applied to the fields of classification 

learning. Further research into these problems will aid in the 

development of a systematic theory for the analysis of real- 

valued data sets using fuzzy rough sets. 
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