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frequently brings us nothing because any two different samples are separated from each
other, though these two samples have the same label. If the radius is growing, then there
is a serious risk that samples with different labels may fall into the same neighborhood.
Obviously, the radius based neighborhood relation does not take the labels of samples into

ﬁ{r‘;\g):gjreduction account, which will lead to unsatisfactory discrimination. To fill such gap, a pseudo-label
Conditional discrimination index strategy is systematically studied in rough set theory. Firstly, a pseudo-label neighborhood
Conditional entropy relation is proposed. Such relation can differentiate samples by not only the distance but
Neighborhood decision error rate also the pseudo labels of samples. Therefore, both the neighborhood rough set and some
Il;leiggbolrhbot;d rough set corresponding measures can be re-defined. Secondly, attribute reductions are explored
seudo-labe

based on the re-defined measures. The heuristic algorithm is also designed to compute
reducts. Finally, the experimental results over UCI data sets tell us that our pseudo-label
strategy is superior to the traditional neighborhood approach. This is mainly because the
former can significantly reduce the uncertainties and improve the classification accuracies.
The Wilcoxon signed rank test results also show that neighborhood approach and pseudo-
label neighborhood approach are so different from the viewpoints of the measures and
attribute reductions in rough set theory.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Up to now, neighborhood rough set has witnessed a great success in the development of rough set theory due to the
following reasons. Firstly, the neighborhood relation derived from the distance function provides us a valuable framework
for analyzing data with continuous or even mixed values [10,16]. Secondly, samples can be separated from each other by
adopting different radii, it follows that different granularities for discriminating samples can be obtained, i.e., the structure
of multi-granularity [3,4,20,21,24,27,59,61,62] is naturally obtained. Finally, neighborhood rough set is an effective tool for
incremental learning tasks [19,28,33,39,46,63], this is mainly because the neighborhood can be updated by using both the
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Fig. 1. Two neighborhoods with different radii. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

raw neighborhood and the updated part of the data without re-scanning the whole data [9,35,50,65]. In the light of these
merits, neighborhood rough set has been successfully applied to different fields [2,22,23,26,30,55,67].

Generally speaking, the size of the neighborhood is a key factor in neighborhood rough set. The commonly used radii
and distances have immediate effects on such size. For example, given a radius, if it is less than the distance between two
samples, then these two samples are considered as distinguishable; if such radius is greater than or equal to the distance
between two samples, then these two samples will fall into the same neighborhood, they are regarded as undistinguishable.
From this point of view, the radius and distance will determine the number of samples in neighborhood and then the size
of neighborhood.

Nevertheless, the above approach may have some inherent limitations. On the one hand, though smaller radius may
result in a higher discrimination, it is very possible that two samples with the same label have been separated from each
other. This is mainly because two samples with same label do not always have higher similarity in some practical applica-
tions. On the other hand, if the radius becomes greater, then intuitively, there is a serious risk that samples with different
labels fall into the same neighborhood. The reason is that the lower quality of the conditional attributes (features) may re-
sult in a higher similarity between two samples with different labels. For such reasons, we can observe that the traditional
way to construct neighborhood does not take the label information of samples into consideration.

Take the following Fig. 1 as an example. Obviously, the radius in the sub-figure (b) is smaller than that in sub-figure (a).

e In sub-figure (b), by the definition of rough set, sample y does not belong to the lower approximation of the class of
triangle. This is mainly because: 1) x4 is very close to y; 2) x4 and y have different labels. It is a typical inconsistent
case. Moreover, if the value of radius is increased as sub-figure (a) shows, then more samples whose labels are different
from the label of y will fall into the neighborhood of y, e.g., x3 and xs. The inconsistent case also holds. This example
tells us that if the labels of samples are not taken into consideration, then it is difficult to derive better approximation.

e Moreover, in sub-figure (b), y can be correctly classified by the neighborhood classifier [13,56] if the majority rule is
employed. Furthermore, if the radius value keeps reducing, then it is possible that only x4 is in the neighborhood of y
if the reflexivity is ignored, in such case, y will be misclassified. This is mainly because x4 is the nearest neighbor of
y. Such observation indicates that the computation of distance between y and x4 does not pay much attention to the
labels of these two samples and then the misclassification will happen.

From discussions above, we can see that the labels of samples may affect the immediate results of neighborhoods.
Therefore, a mechanism which contains the information provided by the labels is desired. Though the decision attribute
used in rough set theory offers us the labels of samples, these labels cannot be directly used. This is mainly because the
labels in decision attribute are used to derive decision classes for approximation. It is unreasonable to approximate the
decision classes generated by decision attribute by using the label information provided by the decision attribute itself.
Fortunately, motivated by the research results of pseudo-label strategy in unsupervised and semi-supervised learning tasks
[5,31,41-43,49,64,70], we know that the pseudo labels of samples provide us with another information of labels. From this
point of view, it is a useful attempt to introduce the pseudo-label strategy into neighborhood rough set theory, and this is
what will be mainly addressed in this paper.

From the viewpoint of Granular Computing, the neighborhood relation offers us a mechanism of information granulation.
It must be noticed that if the pseudo labels of samples are considered, then another type of information granulation can
also be executed. Consequently, more than one result of information granulation have been obtained. As it is pointed out
in References [32,38], two techniques can be employed for rough set data analysis if more than one type of information
granulation is considered: 1) fuse the results of these information granulations and then construct rough set; 2) construct
different rough sets based on different results of information granulations and then obtain multigranulation rough sets [34].
In this paper, we will adopt the former technique. The reason can be attributed to two aspects: firstly, the motivation of
our pseudo-label strategy is to improve the discrimination of neighborhood relation rather than multigranulation rough
set; secondly, since the derived pseudo labels of samples are discrete instead of continuous, pseudo-label based information
granulation will generate a partition in which the number of equivalence classes is equivalent to the number of real labels, it
follows that the lower approximations based on such partition may be very small, such result is meaningless for constructing
multigranulation rough sets.
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Fig. 2. The framework of this research.

The following Fig. 2 reports the framework of our research. Obviously, the main contribution of our approach is the
pseudo-label strategy. In other words, not only the distance, but also the pseudo labels are used for constructing the neigh-
borhoods of samples. Immediately, all concepts and approaches related to neighborhood rough set can be transformed into
the pseudo-label neighborhood based case.

The rest of the paper are organized as follows. Basic notions related to neighborhood rough set are introduced in Sec-
tion 2. Pseudo-label neighborhood rough set and the corresponding attribute reductions are studied in Section 3. The
experimental results and comparisons are discussed in Section 4. Section 5 is the conclusion of the paper.

2. Preliminary knowledge
2.1. Neighborhood relation

Without loss of generality, a neighborhood decision system can be represented as NDS =< U, A,d > in which U is the
set of samples, A is the set of condition attributes and d is a decision attribute. Vx € U, d(x) indicates the label of sample x,
and a(x) denotes its value over condition attribute a € A.

Given a neighborhood decision system, assume that the values of decision attribute are discrete, then an equivalence
relation over d can be defined such that INDg = {(x, y) € U x U : d(x) =d(y)}. By INDg, a partition U/INDg = {X1, X2, ..., Xq}
is induced. In rough set theory, X; € U/INDy is called the k-th decision class. Especially, Vx € U, the decision class which
contains sample x is denoted by [x]g.

Moreover, a relation can also be defined in terms of condition attributes. Since the values of most of the condition
attributes are continuous in real applications, then VB C A, Hu et al. [13] have defined a neighborhood relation such that
Ng={(,y)eU x U :Ap(x,y) <0o}.In N, o is the radius such that o >0, and Ag(-, ) is the distance function [48] with
respect to B, which satisfies the following properties.

1) Non-negativity: Vx,y € U, Ap(x,y) >0, and Ap(x,y) =0 if and only if x=y.

2) Symmetry: Vx,y € U, Ap(x,y) = Ap(y, Xx).

3) Triangle inequality: Vx, y,ze€ U, Ap(x,z) < Ap(x,y) + Ap(y, 2).

In the context of this paper, Euclidean distance is employed, i.e., Ag(x,y) = Z (a(x) —a(y))z. By N, the neighbor-
aeB
hood of sample x is formed such that Ng(x) ={y € U : (x, y) € Np}. To avoid sample x from being the only sample in the
neighborhood of x, which may bring us difficulty for constructing neighborhood classifier, Hu et al. [13] have modified the
radius of o for each x € U such that

o= yergi_n{x} [AB(X, y)] +o- (yer?];u?x} [AB(X, y)} - yeﬂt}i_n{x} [AB(X, y)])~ M

Following Equation (1), the updated neighborhood relation is denoted by §p such that §p = {(x,y) e U x U : Agp(x,y) <
dx}, then the neighborhood of x is g () ={y € U : Ap(X, ¥) < x}.

2.2. Neighborhood rough set

Following the neighborhood we mentioned above, the lower and upper approximations can be defined as follows.

Definition 1. [13] Given a neighborhood decision system NDS, U/INDg = {X1, X2, ..., Xq}, VB C A, the neighborhood lower
and upper approximations of d with respect to B are
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Table 1
An example of neighborhood decision system.
a a a3 a4 as d
X1 0.2518 0.9827 0.9063 0.0225 0.4229 1
X2 0.2904 0.7302 0.8797 0.4253 0.0942 1
X3 0.6171 0.3439 0.8178 0.3127 0.5985 2
X4 0.2653 0.5841 0.2607 01615 0.4709 2
Xs 0.8244 0.1078 0.5944 0.1788 0.6959 2
q
8p(d) = 85(X). ()
k=1
q
55(d) = |_J 85(Xe). (3)
k=1
where VX € U/INDg,
3p(Xp) ={x € U :38p(x) C Xy}, (4)
8p(Xp) = {x € U : 8p(x) N X # V). (5)

The pair [8g(Xk), 85(Xk)] is called a neighborhood rough set of Xj.
2.3. Some measures in neighborhood decision system

Approximation quality is a frequently used measure for describing the degree of certain belongingness in rough set
theory. Following Definition 1, the corresponding approximation quality is defined as follows.

Definition 2. [13] Given a neighborhood decision system NDS, VB C A, the approximation quality of d with respect to B is
defined as

|85 (d)]
yp(d) = T

where | X| denotes the cardinality of the set X.

(6)

Approximation quality reflects the percentage of the samples which belong to one of the decision classes by the expla-
nation of neighborhood lower approximation. Therefore, the higher the value of the approximation quality, the higher the
degree of certain belongingness. Obviously, 0 < yg(d) <1 holds.

Furthermore, through a large number of experiments, it should be noticed that VB C A, yp(d) < ya(d) does not always
hold. The main reason is that with the variations of the used attributes, the modified radius § obtained by Equation (1) will
also change. An example is presented as follows.

Example 1. Let NDS =< U, A,d > be a neighborhood decision system shown in Table 1, where U = {x1, X2, X3, X4, X5}, A =
{ay,az,as3,aq,as} and d(x) € {1, 2}. Let radius o be 0.3.

By Equation (1), if A is used, then the modified radii § for the five samples are 0.7466, 0.7313, 0.5382, 0.7614 and
0.6344, respectively. Consequently, it is obtained that y4(d) =0.8.

Suppose that the condition attribute a; is deleted from the neighborhood decision system and then let B = {ay, as, a4, as},
following Equation (1), the modified radii § for the five samples are 0.7001, 0.6892, 0.5123, 0.7455 and 0.5879, respectively.
Therefore, yp(d) = 1. Obviously, ys(d) > ya(d).

Conditional entropy is another measure which characterizes the discriminating ability of B C A relative to d. Generally
speaking, the higher the discrimination of B C A relative to d, the lower the uncertainty in the neighborhood decision
system. Presently, with respect to different requirements, many different definitions of conditional entropies have been
proposed [6,7,14,15,25,68,69]. A widely used form of conditional entropy is shown in the following definition.

Definition 3. [66] Given a neighborhood decision system NDS, VB C A, the conditional entropy of d with respect to B is
defined as

1
U]

) N
ENT (@) = — - 3 |350 1 114 tog P2 el (7)
xeU

168 ()]
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Algorithm 1 Neighborhood Classifier (NEC).

Inputs: NDS=< U, A,d >, B C A, test sample y ¢ U and radius o;
Outputs: Predicted label Preg(y).
1. VxeU, compute Ag(y,X);

Compute modified radius 8y, and obtain 8(y);
Compute U/INDy;
) N X
VX € U/INDg, compute the probability Pr(Xy|8p(y)) = %‘
B

Xi = argmax{Pr(Xy|8p(y)) : VX; € U/INDg};
Find the corresponding label Preg(y) in terms of decision class X;;
Return Prep (y).

New A wN

It can be proved that 0 < ENTp(d) < |U|/e holds [66]. Similar to what has been addressed for approximation quality,
VB C A,ENTg(d) > ENT4(d) does not always hold.

By Equation (7), we can see that the value of conditional entropy can be obtained if and only if the neighborhoods of
all samples have been obtained. The process of deriving neighborhoods by neighborhood relation is very time-consuming
because the time complexity is O (|U|?). Therefore, Wang et al. [44] have proposed the concept of conditional discrimination
index which can be directly obtained by the neighborhood relation instead of neighborhoods.

Definition 4. [44] Given a neighborhood decision system NDS, VB C A, the conditional discrimination index of d with respect
to B is defined as

|85

Hp(d) = log — 281
B (@) =log o INDy |

(8)

The lower the value of the conditional discrimination index, the higher the consistent degree of the neighborhood deci-
sion system. Obviously, 0 < Hg(d) < log |U| holds. For example, if §p is an identity relation, then Hp(d) achieves the minimal
value 0. The identity relation indicates that any two samples in U can be separated from each other by B, it follows that
8p € INDy and then NDS is completely consistent. Another extreme example, if §g = {(x,y) : VX, y € U} and INDy is the
identity relation, then Hp(d) achieves the maximal value log|U|. In such case, g ¢ INDy and then NDS is completely in-
consistent. It should be noticed that in Reference [44], Wang et al. have pointed out that conditional discrimination index is
not monotonic, i.e., VB C A, Hg(d) > Ha(d) does not always hold.

The above measures are all defined from the viewpoints of the certainty or uncertainty in neighborhood decision system.
Nevertheless, the classification performance of neighborhood approach is also worthy to be investigated. Therefore, Hu et al.
[11] have proposed a measure called neighborhood decision error rate in neighborhood decision system. Such measure can
be obtained by the neighborhood classifier shown in Algorithm 1.

Based on the neighborhood classifier, neighborhood decision error rate is defined as follows.

Definition 5. [11] Given a neighborhood decision system NDS, VB C A, the neighborhood decision error rate of d with
respect to B is defined as
[{x € U : Preg(x) # d(x)}|

NDERg (d) = Ul : (9)

For each computation of Preg(x) in Equation (9), x is considered as a test sample and used as an input in Algorithm 1.
If the predicted label of x is obtained, then it can be compared with the true label of x. This process implies that the
neighborhood decision error rate is actually generated by a leave-one-out validation strategy. Therefore, NDERg (d) reflects
the percentage of the misclassified samples. Obviously, 0 < NDERg(d) < 1 holds.

2.4. Attribute reduction in neighborhood decision system

Since the above four measures are not always monotonic with the variations of used condition attributes, then by these
measures, we can re-define the corresponding criteria for attribute reductions. Different from traditional attribute reductions
[11,17,52,53] in rough set theory, these criteria aim to decrease the uncertainties or improve the classification performance
instead of preserving them.

Definition 6. Given a neighborhood decision system NDS, VB C A,

1. B is referred to as an Approximation Quality-reduct(y -reduct) if and only if yp(d) > ya(d) and VC C B, yc(d) < ya(d);
2. B is referred to as a Conditional Entropy-reduct(CE-reduct) if and only if ENTg(d) < ENT4(d) and VC C B, ENT¢(d) >
ENT4(d);
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3. B is referred to as a Conditional Discrimination Index-reduct(CDI-reduct) if and only if Hg(d) < Ha(d) and VC C B,
Hc(d) > Ha(d);

4. B is referred to as a Neighborhood Decision Error Rate-reduct(NDER-reduct) if and only if NDERg(d) < NDER4(d) and
VC C B, NDER(¢(d) > NDER4 (d).

Following Definition 6, we can see that a y-reduct is actually a minimal subset of A, which will not contribute to a
lesser value of the approximation quality. Similarly, the other three reducts are also minimal subsets of A, which will not
increase the values of the corresponding measures, respectively. It should be emphasized that though the explanations of
these reducts are slightly different, these reducts can be derived by a similar heuristic algorithm, see References [1,12,18,36,
37,40,45,47,51,54,57,58] for more details about heuristic algorithm used in rough set.

3. Pseudo-label neighborhood decision system

By the neighborhood relation shown in the above section, we can clearly observe that different radii o will result in
different levels of discriminations. The smaller the value of o is, it is possible that more samples can be separated from
each other. However, according to what has been discussed in Section 1, the information provided by labels of samples has
been ignored in deriving neighborhood relation. Therefore, it is possible that two samples with different labels may fall into
the same neighborhood, which will make it difficult in generating satisfactory approximations. For such reason, to improve
the discrimination ability of neighborhood relation, the labels of samples should be taken into account. Furthermore, it
should be noticed that the real labels of samples cannot be used directly, it is mainly because we cannot approximate the
decision classes generated by decision attribute by using the label information provided by the decision attribute itself.
Therefore, in Section 3.1, a pseudo-label neighborhood strategy will be proposed. Such pseudo-label strategy is realized by
using a pseudo-label attribute which is different from the decision attribute in the traditional decision system.

3.1. Pseudo-label neighborhood rough set

Formally, a pseudo-label neighborhood decision system can be represented as a generalization of the neighborhood
decision system such that NDS?" =< U, A, d, d"l >, in which df! is referred to as the pseudo-label attribute. Vx € U, d(x)
expresses the pseudo label of x, which can be derived from a learning approach based on A, and the learning approaches
may be clustering analysis, classification analysis or the label propagation [29], etc.

Since both condition attributes and pseudo labels of samples exist in the pseudo-label neighborhood decision system,
we can define the following pseudo-label neighborhood relation for replacing the traditional neighborhood relation shown
in Section 2.1.

Definition 7. Given a pseudo-label neighborhood decision system NDS'', VB C A, the pseudo-label neighborhood relation is
defined such that

SEE={(x,y) €U x U: Ap(x,y) <8x Ady-(x) =d5-(n), (10)

in which 8y is the modified radius shown in Equation (1).

The pseudo-label neighborhood relation shown in the above definition tells us that two samples are regarded as indis-
tinguishable if and only if: 1) their distance are less than or equal to the radius; 2) such two samples should have the same
pseudo label.

Following Definition 7, the pseudo-label neighborhood of x is then defined as

Spr(x)={y eU: Ap(x,y) <& Ady-(x) =dg-(n)}. (11)

Proposition 1. Given a pseudo-label neighborhood decision system NDSF*, VB C A, we have 85 C 85 and 85" = 85 N INDr. where
INDg = {(x.y) €U x U (B () =dBE ().

Proof. It can be derived directly by the forms of 8§ and 8. O

The above proposition tells us that by the pseudo-label strategy, we can obtain a finer neighborhood relation which
provides higher performance of discrimination.

Proposition 2. Given a pseudo-label neighborhood decision system NDSFY, VB C A and Vx € U, we have

88 (x) € 8p(%). (12)
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Proof. It can be derived directly by the definitions of §5-(x) and 8z(x). O
Immediately, a pseudo-label neighborhood rough set can be defined as follows.

Definition 8. Given a pseudo-label neighborhood decision system NDS'', U/INDg = {X1, X, ..., Xq}, VB C A, the pseudo-
label neighborhood lower and upper approximations of d with respect to B are

q
85 = 85" (X0, (13)
% (@ =U)%
_ 9
8- = 85X (14)
k=1

where VX € U/INDg,
S5 (Xi) = {x € U : 85-(x) S Xy}, (15)

SPL(Xp) = {x € U : 85 (x) N Xy £ 0. (16)
The pair [SEL(Xk), (S_EP;L(Xk)] is referred to as a pseudo-label neighborhood rough set of Xj.

Proposition 3. Given a pseudo-label neighborhood decision system NDS'Y, VX, € U/INDg4, we have Sp(Xk) < SEL(Xk) where § > 0 is
the given radius. T

Proof. Vx € §g(X), by Equation (4), we have 8p(x) € Xi. Moreover, by the result of Proposition 2, we know that SgL(x) -
85(x), it follows that 85(x) C Xy and then x € 85" (Xy) holds, i.e., 85(Xi) €85 (Xp). O

3.2. Some measures in pseudo-label neighborhood decision system

Similar to what we have discussed in neighborhood decision system, the four measures can also be defined in pseudo-
label neighborhood decision system. The details will be addressed as follows.

Definition 9. Given a pseudo-label neighborhood decision system NDS,

d with respect to B is defined as

PLg) |85 (@)
VB T

VB C A, the pseudo-label approximation quality of

(17)

The higher the value of the pseudo-label approximation quality, the higher the degree of certain belongingness in
pseudo-label neighborhood decision system. Obviously, 0 < ygL(d) <1 holds. If (Sg'-(d) =), then pseudo-label approximation

quality will achieve the minimal value 0; if 5EL(d) = U, then pseudo-label approximation quality will achieve the maximal

value 1.

Moreover, ¥B C A, y§*(d) < y}*(d) does not always hold. There are two reasons. On the one hand, with the variations of
the used attributes, the modified radius § obtained by Equation (1) will change. On the other hand, different pseudo-labels
of samples will be derived from a given learning approach when different attributes are used. An example is presented as
follows.

Example 2. Let NDS =< U, A,d > be a pseudo-label neighborhood decision system shown in Table 2, where U =
{X1,X2,X3,X4,X5}, A ={a1,0a2,03,04,0as}, d(x) € {1,2}, d"} is the pseudo-label decision attribute such that df € {x, x}. Let
radius o be 0.6.

By Equation (1), if A is used, then the modified radii § for the five samples are 0.8653, 0.9351, 0.7665, 0.7751 and
0.8255, respectively. Therefore, it is obtained that y£"(d) =0.2.

Assuming that the condition attribute a; is deleted from the neighborhood decision system and then B = {ay, as, a4, as}.
It should be emphasized that the pseudo labels of the five samples should be re-derived based on B. Let’s say the obtained
pseudo labels are %, %, %, % and *, respectively. Moreover, by Equation (1), the modified radii § for the five samples are
0.8194, 0.8892, 0.6652, 0.7258 and 0.7742, respectively. Consequently, y;"(d) = 0.6. Obviously, y*(d) > yf*(d) holds.

Proposition 4. Given a pseudo-label neighborhood decision system NDS'¥, VB C A, we have yg L(d) > yp(d).



X. Yang et al. / International Journal of Approximate Reasoning 105 (2019) 112-129 119

Table 2
An example of pseudo-label neighborhood decision system.

ay az as ag as

X1 0.6401 0.4230 0.5055 0.0323 0.2277
X2 0.2360 0.1091 0.2719 0.7036 0.9019
X3 0.7737 0.0333 0.6002 0.2800 0.3518
Xa 0.2458 0.2427 0.7494 0.3817 0.5664
X5 0.6148 0.4514 0.1644 0.6846 0.1889

NN = =
* % b b

Proof. By Proposition 3, we have §p(Xy) € SEL(Xk). Therefore, by Equations (2) and (13), we obtain (SEL(CI) 2 8p(d). Following
Definitions 2 and 9, it is obvious that y£(d) > y5(d) holds. O

The above proposition implies that the pseudo-label strategy will bring us higher approximation quality when compared
with the traditional neighborhood rough set approach.

Definition 10. Given a pseudo-label neighborhood decision system NDS™, VB C A, the pseudo-label conditional entropy of
d with respect to B is defined as
|8E-(%) N [X]4]

18
1850 (18)

ENTEL(d) = 10 Z |85 (%) N [x]4| log

xeU

The lower the value of the pseudo-label conditional entropy, the higher the certainty degree of the pseudo-label neigh-
borhood decision system.

Proposition 5. Given a pseudo-label neighborhood decision system NDSFX, VB C A, we have ENTEL(d) < ENTg(d).

Proof. Note that |85(x)| = [85(X) N [X]g| + |85 (X) N (U — [x]g)| and [85-(0)| = 85 (x) N [X]4] + 85 (%) N (U — [X]g)]. Let |85 (x) N
[Xlgl =m%, [85(x) N (U — [x]g)| =m3, [85-(0) N [x]gl =n% and [85(x) N (U — [x]g)| = n3. Therefore,

X

ENTp (d) = Zml g — +m
1 2
PL 1 X )1(
ENT, (d) = nj log .
B Ul =~ n¥ +n¥
S s af t S
Let f(s,t) = —slog—t where s >0,t>0and r= ol it follows that P e loga =—1+r—logr and
9 1 d
8—{ = Ss? > 0. Since (—1+r —1logr) =1 — - and r € (0, 1], then a_Jsc > 0 also holds. Therefore, the function f(-,-) is

increasing with respect to the first and second arguments, respectively.
By Proposition 2, we have SEL(X) C 8p(x) for each x € U, it follows that nf <mf and n} <mj, which yields f(n},n}) <
f(m¥, m}). Therefore, 3", f(n},n%) <3y f(m§, md), ie, ENTE(d) < ENTg(d) holds. O

The above proposition implies that by the pseudo-label based neighborhood, lower conditional entropy will be achieved
when compared with the traditional neighborhood approach.

Proposition 6. Given a pseudo-label neighborhood decision system NDS™, VB C A, we have 0 < ENTEL(d) < |U|/e.

Proof. Firstly, let us prove that if ¥x € U, 85(x) = U and [x]q = |U|/e, then ENTE"(d) achieves the maximal value.
Suppose that there is a x € U and SEL(X) # U, the obtained pseudo-label conditional entropy is greater than

85 ()N[x1al

the above maximal value, we then have _I]TI > veu 1855 (x) N [x]ql log Herime —‘17‘ Y lUN [x],ﬂlog% =

|U\ 2 _xeu I[Xlallog lﬁﬁ?‘

s
Similar to what have been addressed in Proposition 5, since the function f(s,t) = —slog T(s > 0,t > 0) is increasing

with respect to the first and second arguments, respectively, then we know that — |U| Y xeu |8PL(x) N [x]ql log%(mx[ﬁ]dl <
1x1al

|U‘ Y xeu I[Xlallog 5t because by the assumption, 3x € U such that 8L (x) N [xlg C [xlq and 8E'(x) C U. This result con-
tradicts the assumption.
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Following the above proof, ¥x € U, if §5-(x) = U, then ENTE(d) = —ﬁ > eu X4l log % Let f(s) = slog gy, then
f'(s)=1+1log Ilsl_l and f(s) = % > 0. If s =|U|/e, then f’(so) =0 implies f(sg) = min f(s) = —|U|/e. Therefore, if [x]q =
|U|/e for each x € U, then the obtained maximal value of ENT‘;L(d) is |U|/e.

By Proposition 5, since the function f(s,t) = —slog ss—t(s > 0,t > 0) is increasing with respect to the first and second
arguments, respectively, then f(s,t) achieves the minimal value if both s and t are minimal values. Since pseudo-label
neighborhood relation is at least reflexive, then the minimal value of |SEL(X) N [x]4] is 1 when 85"(}() = {x}, correspondingly,
185(x) N (U — []¢)| achieves the minimal value 0. In other words, if 85'(x) = {x} for each x € U, then the minimal value of
ENTE'(d) is 0. O

Definition 11. Given a pseudo-label neighborhood decision system NDS™L, VB C A, the pseudo-label conditional discrimina-
tion index of d with respect to B is defined as

PL
HE (d) = log b (19)
o

NINDy|

The lower the value of the pseudo-label conditional discrimination index, the higher the degree of certainty in neighbor-
hood decision system.

Proposition 7. Given a pseudo-label neighborhood decision system NDS™, ¥B C A, we have HE-(d) < Hg(d).

Proof. By Equation (8), Equation (19) and Proposition 1, we have

HE (d) — Hp(d) = log B 15|

B |8PL N INDy| 155 N INDg|
g 1380 INDg 155
~ 7 18p NINDgeL N INDy| |83 NINDy|
— log |6g MINDpL| . |6 NINDy]|

[6g NINDge N INDy| |6B]
g NIND §g NIND
Therefore, to prove HP'(d) < Hp(d), it should be proved that log 1% " | . 198 dl <0, ie,
165 N INDgn. N INDg] 15|

6 MINDyee| - [8p N IND,
|88 qeL| - 10B al < 1. Moreover, &g, INDg and INDg considered in this paper are at least reflexive, it follows
|85 N INDgrL N INDg| - |85

[6g MINDgpe| - |8 M INDg| - |6 MINDgype| - [8p N INDg|
|6g NINDge NINDy| - [8g] — [6g NMINDge NINDy| - [U]|

thep 198 NINDgn| -85 NINDg| _ |U]-|U| _
|55 NINDge NINDg| - 18] — [U]-|U|

To sum up, the proposition is proved. O

that . Here, |§p| = |U| indicates that 8p is an identity relation and

The above proposition tells us that by comparing with the traditional neighborhood approach, the pseudo-label based
neighborhood will generate the lower conditional discrimination index.

Proposition 8. Given a pseudo-label neighborhood decision system NDS™, ¥B C A, we have 0 < HPL(d) < log|U|.

(SPL
Proof. Obviously, 8f' N INDg C 8f" holds and then we have W > 1. Immediately, the minimal value of
B d
85|

—— B i5 0 when 8P CIND;.
& 15801 INDy| g =""rd

SPL . ) shL . .
195 wants to achieve the maximal value, then 135 1 should be the maximal one, i.e., |5EL|

|85 N INDy| |85 N INDy|
should achieve the maximal value and [85" N IND4| should achieve the minimal value. Obviously, 65| will be the maximal
one if and only if 85" = U x U. Therefore, when 8f' = U x U holds, the minimal value of |s§' NINDg4| will be achieved if and
only if INDg = {(x, y) € U x U : x = y}. Consequently, the maximal value of HE'(d) is log|U|. O

Moreover, if log

In Section 2.3, it has been pointed out that the concept of the neighborhood decision error rate can be used to char-
acterize the classification performance of neighborhood classifier. Similarly, the pseudo-label neighborhood decision error
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Algorithm 2 Pseudo-label Neighborhood Classifier (PNEC).

Inputs: NDS?' =< U, A, d,d™ >, B C A, test sample y ¢ U and radius o;
Outputs: Predicted label Prel’(y).
1. VxeU, compute Ap(y,X);

Compute modified radius § and obtain pseudo-label neighborhood (SEL(y) by Equation (11);
. o I8P (y) N Xl
VX € U/INDg, compute the probability Pr(Xy|55"(y)) = W
B (¥

Xi = argmax({Pr(Xg|85"(y)) : ¥Xi € U/INDg};
Find the corresponding Prefl (y) in terms of X;;
Return Pref(y).

Sk W N

rate can also be defined. To achieve that, the neighborhood classifier should be redesigned. Different from the traditional
neighborhood classifier, pseudo-label neighborhood classifier uses the pseudo-label neighborhood instead of the traditional
neighborhood. Nevertheless, the majority principle is still used in pseudo-label neighborhood classifier. The detailed process
of pseudo-label neighborhood classifier is shown in the following Algorithm 2.

Based on Algorithm 2, the classification performance of pseudo-label neighborhood classifier can be evaluated as follows.

Definition 12. Given a pseudo-label neighborhood decision system NDSP, VB C A, the pseudo-label neighborhood decision
error rate of d with respect to B is defined as

l{x e U : Prefl (x) £ d(x)}|
U]

NDEREM(d) = (20)

For each computation of PregL(x) in Equation (20), x is considered as a test sample and used as an input of Algorithm 2.
Then the predicted label of x is obtained, and it can be compared with the true label of x. Obviously, 0 < NDERgL(d) <1
also holds. However, different from the previous three measures, NDEREL(d) < NDERp(d) does not always hold.

3.3. Attribute reduction in pseudo-label neighborhood decision system

By the above measures defined in the pseudo-label neighborhood decision system, attribute reductions can be redefined
as follows.

Definition 13. Given a pseudo-label neighborhood decision system NDS™, VB C A,

1. B is a Pseudo-label Approximation Quality-reduct(PL-y -reduct) if and only if yf'(d) > y!'(d) and VC C B, yft@) <
YRH(d);

2. B is a Pseudo-label Conditional Entropy-reduct(PLCE-reduct) if and only if ENTE'(d) < ENTEL(d) and VC C B, ENTPL(d) >
ENTHL (d);

3. B is a Pseudo-label Conditional Discrimination Index-reduct(PLCDI-reduct) if and only if HE"(d) < HR'(d) and VC C B,
HE (d) > HEL(@);

4. B is a Pseudo-label Neighborhood Decision Error Rate-reduct(PLNDER-reduct) if and only if NDERE"(d) < NDERF!(d) and
¥C C B, NDER (d) > NDEREL(d).

To compute the above four pseudo-label reducts by heuristic algorithm, the significance functions are separately designed
as follows.
Definition 14. Given a pseudo-label neighborhood decision system NDSF-
respect to four different pseudo-label measures are:

, if B C A, then Va € A — B, its significances with

Sigrr(a, B, d) = Y5y (d) — v5-(d); (21)
Sigexr(a. B, d) = ENTR"(d) — ENTRy . (d): (22)
Sigjy (a, B.d) = Hy"(d) — Hypq (@) (23)
SigNper (@, B, d) = NDERG"(d) — NDERG!(, (d). (24)

In pseudo-label neighborhood decision system, all the significance functions presented above satisfy that the higher the
value, the more significant the condition attribute a. For example, if Sigkk gz (a1, B, d) > Sighnygz (a2, B, d) where aq,a; € A—B,
then we have NDERE! (@ < NDER';b[azl(d). such result indicates that compared with a, if a; is added into B, then the
derived pseudo-label neighborhood decision error rate will be much lower.
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Algorithm 3 Heuristic Algorithm for Computing PL-y -reduct.

Inputs: NDS™' =< U, A, d,d™ >, and radius o;
Outputs: A PL-y-reduct B.

1. B <« #;
2. Compute modified radius § and obtain pseudo-label approximation quality yAPL(d) by Equation (11);
3. Do

1) ¥a € A — B, derive pseudo-label attribute dit,
2) Compute Sig}'(a, B, d); | y;"(d) =0;
3) Select b such that Sig]' (b, B, d) = max {Sig}(a, B,d) : Va € A — B};
4) B < BU [b};
5) Compute y£L(d)
Until y§-(d) > yfH(d);

4. Return B.

Table 3

Data sets description.
ID Data set Number of samples Number of attributes Number of decision classes
1 Breast Tissue 106 9 6
2 Cardiotocography 2126 21 10
3 Dermatology 366 34 6
4 Ecoli 336 7 8
5 Forest Type Mapping 523 27 4
6 Glass Identification 214 9 6
7 Libras Movement 360 90 15
8 Parkinsons 195 23 7
9 Statlog (Image Segmentation) 2310 18 7
10 Statlog (Vehicle Silhouettes) 846 18 4
11 Wine 178 13 3
12 Yeast 1484 8 10

Take the PL-y-reduct as an example, the following Algorithm 3 will find such reduct by the significance function shown
in Equation (21).

In Algorithm 3, note that the pseudo label of each sample should be re-derived for each iteration. Similarly, it is not
difficult to revise Algorithm 3 for generating the other three reducts by using Equations (22), (23) and (24), respectively.

To facilitate the discussion of the time complexity of Algorithm 3, assuming that the pseudo labels of samples are
derived from k-means clustering. Firstly, Sigf}(a, B,d) is computed at most (1 + |A|)|A|/2 times in Algorithm 3. Secondly,
the producing of pseudo labels requires extra time. Assume that the number of clusters is K and the iteration times of
k-means is T, then the time complexity of producing pseudo labels is O (KT|U||A|?). Such time complexity is based on the
two facts: 1) the time complexity of k-means is O(KT|U||A|); 2) pseudo labels are produced (1 + |A[)|A|/2 times. Finally,
the time complexity of Algorithm 3 is O (JU2|A|? + KT|U||A]®).

4. Experiments
4.1. Data sets

To verify the effectiveness of our pseudo-label strategy, 12 UCI data sets have been selected to conduct the experiments.
Their details are displayed in Table 3. Note that the “Number of attributes” column refers to the number of condition
attributes. For all experiments in this section, 10 different o have been selected, they are 0 =0.1,0.2,---,1.0.

4.2. Experimental results and experimental analyses

In this section, two groups of comparative experiments have been designed. Both of them are conducted on a personal
computer with Intel i7-6700HP CPU (2.60 GHz) and 8 GB memory. In the experiments, k-means clustering is employed to
produce pseudo labels, and the value of k is same as the number of decision classes in data.

4.2.1. Comparisons of the performances with respect to some measures

In this experiment, we will compare the performances of the neighborhood decision system and the pseudo-label neigh-
borhood decision system with respect to the four measures considered in this paper. Figs. 3 and 4 report the detailed results
of comparisons.

In Fig. 3, “y” expresses the approximation quality, while the pseudo-label approximation quality is denoted by “PL-y”;
“CE” is represented as the conditional entropy, and “PLCE” represents the pseudo-label conditional entropy.

With a careful investigation of Fig. 3, it is not difficult to observe the following.
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Fig. 3. Comparisons based on approximation qualities and conditional entropies.

. If the value of o increases, then the increasing trends have been obtained for both approximation quality and pseudo-
label approximation quality, the decreasing trends have been obtained for both conditional entropy and pseudo-label
conditional entropy. In other words, our pseudo-label strategy will not change the trends of the variations of approxi-
mation quality and conditional entropy.

. For the 10 used values of o, the values of pseudo-label approximation qualities are greater than or equal to those of
traditional approximation qualities. Take for instance “Statlog (Image Segmentation)”, if o = 0.3, then ya(d) = 0.1420
while y};L(d) = 0.2398. Such observation implies that our pseudo-label strategy is useful in improving the degree of
certain belongingness from the viewpoint of rough set. This observation is corresponding to what has been addressed
in Proposition 4.

. The pseudo-label conditional entropies are less than or equal to the traditional conditional entropies. Such case is
significant when o > 0.3 for all the data sets we tested. Take for instance “Ecoli”, if o = 0.3, then ENT4(d) = 32.4848
and ENT;L(d) =4.7554. In other words, our pseudo-label strategy will effectively decrease the uncertainty degree from
the viewpoint of neighborhood based information theory. This observation corresponds to what has been addressed in
Proposition 5.

. For each data set, the value of approximation quality achieves 0 when o = 1. This is mainly because all samples in the
data have been grouped into the neighborhood of each sample and then the lower approximation of each decision class
may be an empty set. Correspondingly, no certainty is obtained. Nevertheless, the value of pseudo-label approximation
quality may be greater than 0. For example, consider “Dermatology”, if o =1, then y4(d) =0 and yEL(d) =0.1366.
The reason is that though the samples cannot be distinguished by traditional neighborhood relation, the pseudo labels
obtained from k-means clustering will provide us some degrees of discrimination for constructing pseudo-label neigh-
borhood relation. Such extreme case indicates that pseudo-label strategy is effective in improving the certainty from
the viewpoint of rough set.

In Fig. 4, “NDER” refers to the neighborhood decision error rate, “PLNDER” refers to the pseudo-label neighborhood

decision error rate, “CDI” refers to the conditional discrimination index, and “PLCDI” refers to the pseudo-label conditional
discrimination index.

With a deep investigation of Fig. 4, it is not difficult to observe the following.
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Fig. 4. Comparisons based on neighborhood decision error rates and conditional discrimination indexes.

1. If the value of o increases, then both neighborhood decision error rate and pseudo-label neighborhood decision error
rate show increasing trends, and both conditional discrimination index and pseudo-label conditional discrimination
index show increasing trends. It should be noticed that such two trends are not necessarily monotonic. Take “Breast
Tissue” as an example, if 0 = 0.1, then NDER4(d) = 0.5189; if 0 = 0.2, then NDER,4 (d) = 0.4881. Another example can
be found in “Parkinsons”, if o = 0.2, then Hx (d) = 1.8140; if 0 = 0.3, then Hy(d) = 1.8114.

2. Generally speaking, the values of pseudo-label neighborhood decision error rates are less than those of neighborhood
decision error rates. Moreover, with the greater value of o, a significant difference between such two values is wit-
nessed. Take for instance “Wine”, if o = 0.6, then NDER4(d) = 0.1348 and NDERZL(d) = 0.0506. Moreover, if 0 = 0.7,
then NDERy4 (d) =0.3989 and NDEREL(d) =0.1798. Such case indicates that our pseudo-label strategy contributes a bet-
ter classification performance if the value of o is set to be higher. This is mainly because most of the samples whose
labels are different from the true label of the test sample have be deleted by pseudo-label strategy.

3. The values of pseudo-label conditional discrimination indexes are less than or equal to those of conditional discrimina-
tion indexes. An example can be observed in “Parkinsons”, if o = 0.1, then Hx(d) = 1.6766 and HZL(d) = 1.5928. That is
to say, pseudo-label strategy is useful for decreasing the uncertainty in neighborhood decision system because pseudo-
label strategy may offer a better neighborhood relation for distinguishing the samples. This observation corresponds to
what has been addressed in Proposition 7.

In the following, the Wilcoxon signed rank test [8,60] will be selected for comparing the traditional neighborhood strat-
egy and pseudo-label neighborhood strategy. Wilcoxon signed rank test is a non-parametric alternative to the paired t-test.
From the viewpoint of statistical theory, this test is safer since it does not assume normal distributions. The purpose of our
computation is trying to reject the null-hypothesis that traditional strategy and pseudo-label strategy perform equally well
from the viewpoints of measures considered in this paper.

Take for instance “Breast Tissue”, the values of approximation qualities in terms of 10 values of o are: 0.2075, 0.0566,
0.0566, 0.0377, 0.0094, 0.0000, 0.0000, 0.0000, 0.0000, and 0.0000; the values of pseudo-label approximation qualities in
terms of 10 values of o are: 0.3774, 0.2736, 0.2736, 0.2453, 0.2075, 0.2075, 0.2075, 0.1792, 0.1321, and 0.1321. Therefore,
the corresponding p-value of Wilcoxon signed rank test is 0.0020. p-value is the probability of observing the given result,
or one more extreme, by chance if the null hypothesis is true. The detailed results of p-values are shown in Table 4.
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Table 4
p-value of Wilcoxon signed rank test based on measures (poorer p-values are italic).
ID y & PL-y CE & PLCE CDI & PLCDI NDER & PLNDER
1 0.0020 0.0020 0.0020 0.0020
2 0.0313 0.0020 0.0020 0.0469
3 0.0020 0.0020 0.0020 0.0215
4 0.0020 0.0020 0.0039 0.0059
5 0.1250 0.0020 0.0020 0.0039
6 0.0625 0.0020 0.0020 0.0020
7 0.0020 0.0020 0.0020 0.0195
8 0.0313 0.0020 0.0020 0.6816
9 0.0020 0.0020 0.0020 0.0273
10 0.0625 0.0020 0.0020 0.0039
11 0.0625 0.0020 0.0020 0.1523
12 0.0625 0.0020 0.0020 0.0039

Assume that if the significance level is set by 0.05, then we reject the null-hypothesis. Following the results of Table 4, we
can observe: for the comparison between conditional entropy and pseudo-label conditional entropy, all obtained p-values
are less than 0.05; for the comparison between conditional discrimination index and pseudo-label conditional discrimina-
tion index, all obtained p-values are also less than 0.05. These results indicate that traditional neighborhood approach and
pseudo-label neighborhood approach do not perform equally well from the viewpoints of conditional entropy and condi-
tional discrimination index. Moreover, for the comparison between approximation quality and pseudo-label approximation
quality, 5 out of 12 p-values are greater than 0.05, while for the comparison between neighborhood decision error rate and
pseudo-label neighborhood decision error rate, 2 out of 12 p-values are greater than 0.05, we can conclude that traditional
neighborhood approach and pseudo-label neighborhood approach possibly do not perform equally well from the viewpoints
of approximation quality and decision error rate.

The above analyses show that traditional neighborhood approach and pseudo-label neighborhood approach are so differ-
ent in terms of the measures.

4.2.2. Comparisons of reducts

In this experiment, we will compare the reducts generated by traditional neighborhood approach and pseudo-label neigh-
borhood approach, respectively.

To test the performances of reducts, 5-folder cross-validation is employed: in each iteration, 80% of the samples in
data form the training set for computing reducts, and the rest of the 20% samples are considered as the test samples for
evaluations, i.e., use attributes in reducts derived by training set to compute four measures over test samples. The above
process is repeated 5 times. Then, the mean value of each measure is recorded. The final results are displayed in Figs. 5
and 6.

In Fig. 5, “y-reduct” denotes the results based on approximation quality-reduct [12], “PL-y -reduct” denotes the results
based on pseudo-label approximation quality-reduct, “CE-reduct” denotes the results based on conditional entropy-reduct
[6], and “PLCE-reduct” denotes the results based on pseudo-label conditional entropy-reduct.

With a careful investigation of Fig. 5, it is not difficult to observe the following.

1. If the value of o increases, then both the values of approximation qualities derived from “y-reduct” and pseudo-label
approximation qualities derived from “PL-y-reduct” are decreasing though such trend is not necessarily monotonic.
Meanwhile, both the conditional entropies derived from “CE-reduct” and the pseudo-label conditional entropies derived
from “PLCE-reduct” are increasing. Therefore, the reducts will not change the trends of the variations of approximation
quality and conditional entropy for both traditional and pseudo-label approaches.

2. The pseudo-label approximation qualities derived from “PL-y-reduct” are greater than approximation qualities derived
from “y-reduct”. Let us take “Libras Movement” as an example, if 0 = 0.3, then with the reducts, the approximation
quality and pseudo-label approximation quality obtained over the test samples are 0.0556 and 0.2806, respectively. This
is mainly because: before finding reducts, pseudo-label approximation qualities are greater than traditional approxima-
tion qualities (it has been shown in Fig. 3); the constraints of “y-reduct” (see Definition 6) and “PL-y-reduct” (see
Definition 13) require that approximation qualities and pseudo-label approximation qualities will not decrease, at least.

3. Compared with “CE-reduct”, attributes in “PLCE-reduct” will generate lower values of conditional entropies. For example,
in “Statlog (Vehicle Silhouettes)”, if 0 = 0.9, then with reducts, the conditional entropy and pseudo-label conditional
entropy over test samples are 55.3870 and 19.3757, respectively. The reason is similar to what has been analyzed in the
case of approximation quality.

In Fig. 6, “NDER-reduct” refers to the neighborhood decision error rate-reduct [11], “PLNDER-reduct” refers to the pseudo-
label neighborhood decision error rate-reduct, “CDI-reduct” refers to the conditional discrimination index-reduct [44], and
“PLCDI-reduct” refers to the pseudo-label conditional discrimination index-reduct.



126 X. Yang et al. / International Journal of Approximate Reasoning 105 (2019) 112-129
Breast Tissue Cardiotocography Dermatology Ecoli
0.4 8 0.4 0 0. 16 07 21
o o o o
o y-reduct o 4 o
A PL—y-reduct 0.35 70 0.8 pe 14 0.64 18
O GE-reduct o y-reduct @ y-reduct o y-reduct
203 —6-PLCE-reduct] 65 2 03 —A-PL-y-reduct 60 5, 207 —A-Pl-y-reduct [ {12 5, 2 O |-A-PL-y-reduct |, >
3 ° g3 o CE-reduct g5 o © CE-reduct § go° © CEreduct |'° 5
<} £ §0.25 ~-PLCE-reduct} {50 £ G 0.6 —-PLCE-reduct| {10 £ & o —-PLCE-reduct| £
c w =3 w =3 w < 0. w
S s £ 5 S s S =
3 02 5 48 % 02 ° 408 F05 w 88 = ]
£ S E S E S E S
£ 2 £ 2 £ 2 Eo 2
S a o T 3 0.15] 303 S 0.4 s 6T s k]
g ol r S8 g S & » S & 3
Zoi - 2 < o1 o 20 o3 o 4 <
M 0.05f 2 10 02 2
LI o.a
0 2 ; 0 o998, [ 0
%102 03 04 05 06 07 08 00 %1 02 03 04 05 06 07 08 09 ‘b1 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 0.7 08 09
o o o o
Forest Type Mapping Glass Identification Libras Movement Parkinsons
o. 536 0.4 15 07 14 0.1 8
) °
o - RN SN - JNY- S
o 0.4 0 y-reduct 0.l ° 12 0.14 7
0.25] 60 30 - PL—y-reduct ) o
035
z z z ;SE?UUZ‘ ° > - o 0z 5012/ 6x
S 02 o o y-reduct 29 S o3 —reduct © w0g $ o y-reduct s 4 o y-reduct g
g A PL-y-reduct £ O £ O £ O 01 ) 5¢
< o Coreduct § g, G coa . *ZL—Treduct sl g *wareduct g
Z0.15 ~-PLCE-reduct] {18 B & T = © CE-reduct T =008 © CE-reduct 48
g o é .E § E 03 ~#-PLCE-reduct | é E —9- PLCE-reduct| §
S = £ £ £ = £ =
S o4 g 8 2 ¢ ° 2 goos 32
g | o 8 & 8 8oz 48 8 8
2 i 2 £ a o <0.04 2
o
X o
0.05 o AS 01f o 2 002 1
a
0 0 g [ 0 0
®7 02 03 04 05 06 07 08 0% 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
(s2 c c c
Statlog (Image Segmentation) Statlog (Vehicle Silhouettes) Wine Yeast
o. 160 0.1 60 0. 18 0.1 9%
o y-reduct o y-reduct ° @ y-reduct o0
07 |-&PLoyreduct 140 -&-PLy-reduct ° 08 -&-PLy-reduct | 116 1 0@
© CE-reduct 015 0 CE-reduct ° 50 07 © CE-reduct | |, 01 ° 80
206 ~9- PLCE-reduct| 09120 5 2 ~-PLCE-reduct] = 2 L] 0~ PLCE-reduct| > 2 o o y-reduct z
3 23 i 23 2
S ° s So. S Sos o128 So.08 A PL-y-reduct 64 ©
Gos ° 100 £ & £ 0 ° Z 0 o o CEroduct 2
< o &g U sos s § - PLCE-reduct =
=04 5 80 8 Z 0. s = o S =006 488
£ a2 S E g EO04 a 82 E 2
s = = £ = £ =
£03 €028 2 803 o 62 8 2
g 2 3 5™ g g° G- 8
Zo2 20 © 2 £ <
02 & 4
8 a
0.1 20 01 ° Lo
A
0

02 03 04 05 06 07 08 09
c

Q
01 02 03 04 05 06 07 08 09
o

1

(']
01 02 03 04 05 06 07 08 09
G

Fig. 5. Comparisons of reducts w.r.t. approximation quality and conditional entropy.
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Since both “NDER-reduct” and “PLNDER-reduct” are designed for improving the classification performance, classification
accuracy is then employed to evaluate the performances of them, respectively. Note that if “PLNDER-reduct” is used, then
the classification accuracies are obtained by pseudo-label neighborhood classifier while if “NDER-reduct” is used, then the
classification accuracies are obtained by traditional neighborhood classifier.

Based on Fig. 6, it is not difficult to observe the following.

1. With the increasing value of o, both the conditional discrimination indexes obtained by “CDI-reduct” and the condi-

tional discrimination indexes obtained by “PLCDI-reduct” increase though such trend is not necessarily monotonic. It
indicates that reducts will not change the trend of variation of conditional discrimination index for both traditional
and pseudo-label approaches. Meanwhile, the classification accuracies derived from attributes in “NDER-reduct” and
“PLNDER-reduct” show decreasing trends.

. For most of the data sets, if o < 0.4, then there is no much difference between the classification accuracies derived

from “PLNDER-reduct” and “NDER-reduct”. However, if o > 0.4, then the classification accuracies derived from “PLNDER-
reduct” are significantly higher than those derived from “NDER-reduct”. For example, in “Cardiotocography”, if o = 0.6,
then the classification accuracies derived from “NDER-reduct” and “PLNDER-reduct” are 0.3170 and 0.4069, respectively.
Such case shows that “PLNDER-reduct” is more effective than “NDER-reduct” if larger scale of o is considered.

. The pseudo-label conditional discrimination indexes derived from “PLCDI-reduct” are significantly lower than condi-

tional discrimination indexes derived from “CDI-reduct”. Take “Dermatology” as an example, if o = 0.5, then with
reducts, the values of conditional discrimination index and pseudo-label conditional discrimination index over test
samples are 0.7008 and 0.4890, respectively.

Moreover, similar to Section 4.2.1, the Wilcoxon signed rank test [8] is also selected for comparing the reducts generated

by traditional neighborhood and pseudo-label neighborhood approaches. This computation aims to reject the null-hypothesis
that traditional neighborhood and pseudo-label neighborhood perform equally well for computing reducts. The detailed
p-values are shown in Table 5.

Assume that if the significance level is given by 0.05, then we reject the null-hypothesis. For the reducts constrained

by measures of approximation quality, conditional entropy and conditional discrimination index, all the p-values are less
than 0.05 while for the measure of neighborhood decision error rate, 9 out of 12 p-values are less than 0.05. These results
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p-value of Wilcoxon signed rank test based on reducts (poorer p-values are italic).

ID y-reduct & CE-reduct & CDI-reduct & NDER-reduct &
PL-y-reduct PLCE-reduct PLCDI-reduct PLNDER-reduct

1 0.0020 0.0020 0.0020 0.0137

2 0.0020 0.0020 0.0020 0.0645

3 0.0020 0.0020 0.0039 0.2324

4 0.0020 0.0020 0.0020 0.0371

5 0.0020 0.0020 0.0020 0.0098

6 0.0020 0.0020 0.0020 0.0195

7 0.0020 0.0020 0.0020 0.0293

8 0.0020 0.0020 0.0020 0.0039

9 0.0020 0.0020 0.0020 0.0371

10 0.0020 0.0020 0.0137 0.1602

11 0.0020 0.0020 0.0039 0.1680

12 0.0020 0.0020 0.0020 0.0039

G

indicate that traditional neighborhood approach and pseudo-label neighborhood approach do not perform equally well from
the viewpoint of computing reducts.

5. Conclusions

In this paper, a pseudo-label strategy has been introduced into the neighborhood rough data analysis. Different from the
traditional construction of neighborhood, our pseudo-label based neighborhood is obtained by not only the distance over
condition attributes, but also the pseudo labels of samples generated by condition attributes. The pseudo-label approach may
help us to improve the discrimination between samples. The experimental results demonstrate that pseudo-label strategy
is useful in decreasing the uncertainties in neighborhood decision system. Furthermore, it is also shown that the reducts
obtained by pseudo-label strategy are also superior to the reducts derived by traditional neighborhood way in terms of four

different measures.

The following topics are challenges for our further research.
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1. In this paper, the pseudo labels of samples are derived from only k-means clustering. More approaches to produce the
pseudo-labels will be further employed in constructing pseudo-label neighborhood rough set.

2. Pseudo-label strategy can also be explored in other extended rough set models.

3. The pseudo-label neighborhood classifier will be compared with some other popular classifiers.
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