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Abstract—Graph classification aims to predict the class labels of graphs and has a wide range of applications in many real-world
domains. However, most of existing graph neural networks for graph classification tasks use 90% of labeled graphs for training and the
remaining 10% for testing, which obviously struggle in solving the problem of the scarcity of labeled graphs in real-world graph
classification scenarios. And it is arduous to label a large number of graph examples for training because of the difficulty and resource
consumption in the tagging process. Motivated by this, we propose a novel active and semi-supervised graph neural network (ASGNN)
framework, which endeavors to complete graph classification tasks with a small number of labeled graph examples and available
unlabeled graph examples. In our framework, active learning selects high-uncertain and representative graph examples from the test
set and add them to the training set after annotation. Semi-supervised learning is utilized to select the high-confidence unlabeled graph
examples containing structural information from the test set, and add them to the training set after pseudo labeling. To improve the
generalization performance of the graph classification model, multiple GNNs are trained collaboratively for promoting the
expressiveness of each other and increasing the reliability of graph classification results. Overall, the ASGNN framework takes fully use
of unlabeled graph examples to reinforce graph classification effectively, and can be applied to any existing supervised graph neural
networks for graph classification. Experimental results on benchmark graph datasets demonstrate that the proposed framework yields
competitive performance on graph classification tasks with only a small number of labeled graph examples.

Index Terms—Graph neural networks, active learning, semi-supervised learning, graph classification

F

1 INTRODUCTION

A S a powerful data organization way, graph structured
data are ubiquitous across many domains such as

knowledge graphs, social networks, biological networks
and recommender systems [1]–[3]. Graph classification [4]
endeavors to identify the class labels of graphs and has be-
come an important research hot-spot in numerous scenarios
like text categorization, protein function prediction, chem-
ical compound classification and malicious code detection,
etc.

To tackle the task of graph classification, various preva-
lent methods are proposed. Graph kernel methods [5]–
[9] leverage on structural properties such as walks, sub-
trees, shortest path lengths or graphlets for measuring the
similarity among graphs and classify graphs into different
categories by the supervised classifiers. The advantage of
graph kernel methods is that they can be compatible with
any standard plug and play classifier (SVM, random forest,
multilayer perceptron, etc.) easily. However, they mainly fol-
low a two-stage learning framework in which graph feature
learning and classification are processed respectively. More
recently, graph neural network (GNN) as the latest research
achievement in the field of deep learning has become a
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representative tool for machine learning on graphs, espe-
cially for graph classification. Graph neural network based
methods can extract expressive and discriminative graph
structural features in a supervised end-to-end manner [10]–
[15]. In specific, graph neural networks accentuate neighbor-
hood aggregation and feature passing among nodes, both
of which are responsible for recursively learning intricate
structural information in graphs. Although graph neural
networks have achieved the state-of-the-art graph classifi-
cation results, they have one limitation that training high-
quality networks is data-hungry and often depends on the
abundant labeled graphs, since most existing graph neural
network approaches for graph classification tasks use 90% of
labeled graphs for training, and the remaining 10% for test-
ing. Unfortunately, the high dimensionality and complexity
of graph structured data [16], [17] bring great challenges
to label annotation, and it is unrealistic to obtain a large
amount of labeled graph examples for training graph neural
networks in the real-world graph classification applications.

To cope with the graph classification situation with
limited availability of class labels or no available graph
labels during training, some works [18]–[20] introduced self-
supervised learning to graph neural networks for graph
classification. Nguyen et al. [18] extended the universal
self-attention network from NLP tasks to graph classifica-
tion and proposed U2GNN for learning graph embeddings
that can memorize the dependencies among nodes and
characterize node attributes and global network properties.
Specifically, U2GNN first generates node embeddings by
optimizing the unsupervised contrastive loss and then ob-
tains the embedding representation of the entire graph by
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summing all learned node embeddings. GCC [19] presents a
self-supervised pre-training GNN framework, which treats
subgraph instance discrimination in and across networks
as a pre-training task and leverages contrastive learning to
empower graph neural networks for learning the transfer-
able structural representations. Actually, both U2GNN [18]
and GCC [19] detach the model training and subsequent
tasks, and are inclined to learn universal representations
for graph-relevant tasks. To produce more discriminative
graph representations tailored for graph classification, L-
CGNN [20] optimizes the traditional cross-entropy graph
classification loss coupled with the label contrastive coding
loss, which can utilize the available label information of
graph examples to encourage the instance-level intra-class
compactness and inter-class separability. To the best of our
knowledge, there is no work that dedicates to exploring the
strength of active learning and semi-supervised learning for
taking full use of small number of labeled examples and
available unlabeled examples to achieve desirable graph
classification to date, which is also very important in both
industry and academic applications in reality.

Motivated by this, we propose a novel framework
named active and semi-supervised graph neural network
(ASGNN) to learn graph classification models with better
generalization through collaboratively training of multiple
graph neural networks. Specifically, we first train multiple
graph neural network models using the training set which
is continuously expanded by active learning. Active learn-
ing exploits multiple GNNs to select valuable unlabeled
graph examples with high uncertainty and representative-
ness from the test set, and add them to the training set
after annotation so as to improve the graph classification
performance. Then, semi-supervised learning uses multiple
graph neural networks to select many high-confidence un-
labeled graph examples from the test set, and add them
to the training set after pseudo labeling to further promote
the model performance. To avoid performance degradation
of the model due to the accumulation of mislabeled graph
examples in the training set, we take out the pseudo labeled
graph examples and relabel unlabeled graph examples at
specific intervals. In a nutshell, the key contributions of this
paper can be summarized as follows:

• A universal active and semi-supervised graph neural
network (ASGNN) framework is proposed to tackle
the challenge of the scarcity of labeled graph exam-
ples in real-world graph classification tasks.

• Active learning and semi-supervised learning mod-
ules designed in our framework exploit multiple
graph neural networks to collaboratively select the
valuable graph examples from the test set and add
them to the training set after true or pseudo anno-
tation, which can reliably enhance the generalization
performance of graph classification models.

• Empirical evaluation on several real-world datasets
demonstrate that our framework yields superior per-
formance on graph classification tasks with a small
amount of labeled graph examples and available
unlabeled graph examples.

The remainder of this paper is organized as follows.
Related works are reviewed in the next section. We then

elaborate the proposed framework in Section 3. Experimen-
tal setup and discussion of results are provided in Section 4.
Finally, we conclude the paper and give future directions.

2 RELATED WORK

In this section, we review related works strongly related to
our work, including graph neural networks, active learning
and semi-supervised learning.

2.1 Graph Neural Networks
Graph neural network based methods for graph classifi-
cation represent each graph as a low-dimensional vector,
which is usually constructed based on the learned node
representations that preserve the global structure of a whole
graph. By virtue of graph neural networks, two similar
graphs can be mapped into the embedding space closely.
Recently, a great many graph neural networks are devel-
oped to tackle the problem of graph classification. MPNN
[10] contemplates that related graph neural network models
can be boiled down to a universal neural message pass-
ing framework, which is composed of a message passing
phase for neighboring node feature aggregation and a read-
out phase for generating graph representations. A back-
trackless aligned-spatial graph convolutional network [12] is
proposed to learn effective features for graph classification,
which is inspired by the idea of the arbitrary-sized graphs
can be transformed into fixed-sized back-trackless aligned
grid structures. Chen et al. [14] devised a simple lightweight
graph feature network, which uses a simplified GNN with
linear graph filtering and non-linear set function to conduct
graph classification tasks with a fraction of computation
cost. However, these variants usually perform the graph
classification task with 90% labeled graph examples for
training and the remaining 10% graph examples for vali-
dation. In many real-world application scenarios, labeling
graph data is very difficult and laborious owing to the
high structural complexity, which often leads to the lack of
sufficient labeled graph data for graph classification tasks.
Therefore, how to use a small amount of labeled graph data
and available unlabeled graph data to complete the task of
graph classification is a challenging problem.

2.2 Active Learning
Active learning focuses on promoting the classification per-
formance of the model with a small amount of labeled
examples and less label cost as much as possible. It first
selects the data with high representativity from the test
set by certain query strategies [21]. After being manually
labeled by experts, the selected data coupled with their
category labels are incorporated into the training set to
iteratively promote the model performance. The key point
of active learning is the query strategy which usually
contains multiple indicators for obtaining examples with
high representativity from test set. Recently, active learning
mainly contains two categories of query methods, query
synthesizing and query acquiring/pool based. The query
synthesizing methods directly generate example data for
model training by using generative models such as gener-
ative adversarial networks. In recent years, most of active
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learning methods are query acquiring based, i.e., designing
query strategies to select the valuable example data. Joshi
et al. [22] developed a multi-class active learning setup
and a value-of-information algorithm for multi-class image
classification. To solve the text classification task, Goudjil et
al. [23] presented an active learning method based on sup-
port vector machine to reduce the labeling effort, without
compromising the classification accuracy, by intelligently
selecting the examples to be labeled. Cai et al. [24] proposed
an active graph embedding framework in order to optimize
the node classification performance by actively selecting
the labeled training nodes. However, to the best of our
knowledge, there is no method focusing on applying active
learning to GNNs for graph classification tasks. Inspired by
this, we attempt to incorporate active learning for tackling
graph classification tasks.

2.3 Semi-supervised Learning

Semi-supervised learning acts as a classical learning
paradigm between supervised learning and unsupervised
learning, and has attracted increasing attention in the field
of pattern recognition and machine learning [25], [26]. Semi-
supervised learning makes an effort to effectively enhance
the performance of machine learning models by utilizing a
small number of labeled examples and available unlabeled
examples. In fact, both unlabeled examples and labeled
examples are obtained from the total examples of indepen-
dently and identically distributed, and unlabeled examples
containing the data distribution information enable improv-
ing the generalization ability of machine learning model-
s. Therefore, a few works have begun to investigate the
use of semi-supervised learning on graph neural networks
for node classification [27]. Wang et al. [28] proposed an
adaptive multi-channel graph convolutional network (AM-
GCN) for semi-supervised node classification, which ade-
quately preserves the topological structures, node features
and their correlated information to improve the capability
of GCNs. Liao et al. [29] introduced graph partition neu-
ral networks (GPNNs) to handle extremely large graph-
s for semi-supervised node classification, which alternate
between locally propagating information among nodes in
small subgraphs and globally propagating information a-
mong the subgraphs. All these methods demonstrate that
semi-supervised learning can help boost the performance
of node classification tasks remarkably. As a matter of fact,
promoting the performance of various classification tasks
by using semi-supervised learning has made great strides.
Jakob et al. [30] designed a semi-supervised approach using
the tags associated with labeled and unlabeled images to
learn a classifier for image classification. Zhu et al. [31]
presented a multi-view semi-supervised learning frame-
work, which leverages the information contained in pseu-
do labeled images to improve the prediction performance
of image classification using multiple views of an image
[32]. These research efforts indicate that semi-supervised
learning can improve the performance of classification tasks
in many cases. However, they paid scant attention on the
truth that a small amount of training graph data may not
achieve valuable results, and there is no work applying
semi-supervised learning to GNNs for graph classification

tasks. To tackle this, we incorporate semi-supervised learn-
ing and active learning to graph neural networks for graph
classification tasks for the first time as far as we know.

3 METHODOLOGY

This section first introduces the problem definition and
notations. Then we describe the proposed active and semi-
supervised graph neural network framework for graph
classification. Next, we expound on how our framework
incorporates active learning and semi-supervised learning
to improve the performance of graph classification with less
labeled graphs in detail.

3.1 Problem Statement and Notations
3.1.1 Graph Classification
A graph is represented as Gm = (V,E), where V is a set of
nodes, E is a set of edges. Given the input space of graphs
{Gm}Mm=1 and a set of class labels Y , the goal of graph clas-
sification is to learn a mapping function f : {Gm}Mm=1 → Y .

3.1.2 Supervised Graph Classification
Given a training set Gtraining = {G1, . . . ,Gl} that contains
a certain number of labeled graph examples, supervised
graph classification aims at learning a mapping function f
to predict the class labels for unlabeled graph examples in
the test set Gtest = {Gl+1, . . . ,Gl+u}.

3.1.3 Active Graph Classification
Given a training set Gtraining = {G1, . . . ,Gl} and a test
set Gtest = {Gl+1, . . . ,Gl+u}, active graph classification
attempts to select a set of graphs Gselect = {Gl+1, . . . ,Gl+k}
from the test set and adds them to the training set after
annotation, so as to utilize the new training set Gtraining =
{G1, . . . ,Gl,Gl+1, . . . ,Gl+k} to predict the class labels for
unlabeled graph examples in the new test set Gtest =
{Gl+k+1, . . . ,Gl+u}.

3.1.4 Semi-supervised Graph Classification
Given a training set Gtraining = {G1, . . . ,Gl,Gl+1, . . . ,Gl+u}
that contains l labeled graph examples and u unlabeled
graph examples, the purpose of semi-supervised graph clas-
sification is to predict the class labels for unlabeled graph
examples in the test set Gtest = {Gl+1, . . . ,Gl+u}.

A description of the notations used in this paper is given
in TABLE 1.

3.2 Framework
The typical graph neural network based methods usually
require a large amount of labeled graph examples to ac-
complish the graph classification task. However, graph clas-
sification tasks are frequently faced with a problem of the
scarcity of labeled graph examples since large-scale labeled
graph datasets often mean the high cost of time and labor.
Fortunately, active learning and semi-supervised learning
are two classical learning paradigms which can be utilized
in the training process to solve the problem of the scarcity
of labeled graph examples by enlarging the training set. In
specific, active learning can select the graph examples with

Authorized licensed use limited to: Shanxi University. Downloaded on March 02,2022 at 03:39:30 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2021.3140205, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 4

GNN1

GNN2
DU 

Predicting

Phase 1: Active Learning Phase 2: Semi-supervised Learning

DU   

Predicting

IntersectingIntersecting

Predicting

Predicting

Output: Graph Classification Accuracy for DU

DL 

DU

DL

Input: DL and DU

DL

Truly annotating some 

graph examples

Pseudo labeling some 

graph examples 

Fig. 1: Graphical illustration of our proposed active and semi-supervised graph neural network framework for graph
classification. With labeled graph examples from DL and unlabeled graph examples from DU , our framework explores
active learning and then semi-supervised learning to train two graph neural networks (GNN1 and GNN2). In the phase
of active learning, each GNN selects the graph examples with high uncertainty and representativity, followed by which
we take out the graph examples that two GNNs simultaneously consider valuable from the test set, and add them to the
training set after truly annotation. In the phase of semi-supervised learning, two GNNs select the graph examples with
high confidence level by soft clustering respectively, and then add the intersection of them to the training set after pseudo
labeling. Finally, we can confidently output the graph classification accuracy for DU .

TABLE 1: The Notations Used in This Paper.

Notations Explanations

G A graph example
V Set of nodes in a graph
E Set of edges in a graph
y The class label of a graph
Y Set of class labels

Gtraining The training set for graph classification
Gtest The test set for graph classification
Θ The parameter matrix

NNΘ A neural network
N(vi) The neighbor set of node vi
hG The graph feature representation of G

readout() A readout function to obtain the graph-level representation
DL The set of labeled graph examples
DU The set of unlabeled graph examples
pE The entropy percentage
pd The euclidean percentage
al k Graph examples selected by active learning per epoch
ss k Graph examples selected by semi-supervised learning per epoch

AL K Proportion budget of graph examples selected by active learning
SS K Proportion budget of graph examples selected by semi-supervised learning
invl Interval of epochs for taking out pseudo labeled graph examples

high value from the test set, and semi-supervised learning
can select the graph examples with high confidence level
from test set. The graph examples selected by active learning
or semi-supervised learning can be added into training set
after truly annotation or pseudo labeling respectively.

Motivated by this, we propose a novel active and semi-
supervised graph neural network framework for graph
classification, whose graphical illustration is shown in Fig.
1. The proposed framework includes two paradigms, i.e.,
active learning and semi-supervised learning, which are
efficiently applied to multiple GNNs for promoting the
graph classification performance. In this way, although the
graph examples with high value selected from test set in
active learning by only one GNN probably are not reliable,
this framework selects the graph examples that are com-

monly recognized as valuable to the performance gain of
graph classification models through multiple GNNs, and
then adds them into the training set after human annotation.
As for semi-supervised learning, our framework selects the
unlabeled graph examples with high confidence level in soft
clustering jointly by multiple GNNs, and adds them to the
training set after pseudo labeling for improving the graph
classification results.

Graph structured data is originally organized in non-
Euclidean geometric space and should first be represented
as feature vectors so as to be convenient for subsequent
graph classification tasks. In order to generate the graph-
level representation hGm for a graph Gm, we first learn the
low-dimensional embedding features for each node by a
powerful aggregation function:

h(t)
vi

= NNΘ
(t)

h(t−1)
vi

+
∑

vj∈N (vi)

h(t−1)
vj

 (1)

where htvi
denotes the feature vector of node vi at t-th layer,

N (vi) represents the set of neighboring nodes of node vi,
NNΘ is a neural network such as multi-layer perceptron
and Θ is the parameter matrix to be learned. The feature
vector of node vi at t-th layer can be obtained from its
own feature vector at (t− 1)-th layer incorporated with the
aggregation of feature vectors of its neighboring nodes at
(t−1)-th layer. Then, a readout function is used to yield the
graph-level representation hGm generally as the following
form:

hGm = readout
({
h(T )
vi
| vi ∈ Gm

})
(2)
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where T denotes the number of layers in the graph neu-
ral network. The readout function can be instantiated by
a global sum/mean pooling, followed by fully connected
and softmax layers to generate the categorical output. The
training loss of two graph neural networks can be defined
by:

Ltra =
∑
Gm

(−
L∑

l=1

yl[Gm] log (pl[Gm])) (3)

where L denotes the number of categories of graph exam-
ples, yl[Gm] represents the indicator variable (if the category
l is the same as the category of a graph example Gm, yl[Gm]
is 1, otherwise it is 0) and pl[Gm] is the predicted probability
that the graph example Gm belongs to the category l.

To enhance the graph classification performance, we
make graph neural networks see more data. Active learning
is utilized to select the graph examples that contain rich
information from test set, and then these examples are
added into the training set after annotation. Generally, the
more the representativeness and uncertainty of the graph
examples in a dataset, the richer the information contained
in these graph examples. We employ two indicators includ-
ing euclidean distance and information entropy to measure
the representativeness and uncertainty of graph examples,
respectively. Selecting the graph examples that contain rich
information by one GNN may be unreliable. Therefore, our
framework explores two GNNs to collaboratively select the
graph examples, and add the intersection of the selected
graph examples by the two GNNs to the training set after
human annotation to promote the performance of graph
neural networks.

To further improve the performance of graph classifi-
cation, semi-supervised learning is adopted to select the
unlabeled graph examples that are most likely belonging
to a certain category. Then graph neural networks can pseu-
do label them with predicted labels, and add the pseudo
labeled graph examples to the training set. There is no
doubt that selecting the unlabeled graph examples with
high confidence level from the test set is a crucial issue.
Soft clustering, a fuzzy clustering method, is exploited to
tackle this issue by calculating the soft clustering scores
of the graph examples and regard the graph examples
with high score of soft clustering results as the pseudo
labeled graph examples. Likewise, our framework takes
into account the intersection of unlabeled graph examples
selected by two GNNs as the graph examples waiting for
pseudo labeling. After pseudo labeling the selected graph
examples, the pseudo labeled graph examples with high
confidence are added to the graph training set expanded
by the previous active learning, and these pseudo labeled
graph examples are taken out after a specific epoch. As a
result, the performance of graph neural networks can be
effectively promoted by the pseudo labeled graph exam-
ples. After active learning and semi-supervised learning,
the label of each unlabeled graph example is determined
by the averaged predicted probability of two GNNs. For
clarity, Algorithm 1 summarizes the overall procedure of
our proposed framework.

Algorithm 1 Procedure of the proposed ASGNN framework
Input:
DL, DU

Output:
The graph classification accuracy of DU

Step 1 Initialization:
Initialize epoch = 0, al k, AL K, ss k, SS K, invl.

Step 2 Optimization:
Dwhole ← DL ∪DU

SHUFFLE(Dwhole)
Step 2.1 Active learning:
while epoch <= AL K∗|Dwhole|

al k do
(DL′ , DU ′)← Algorithm2(DL, DU , al k)
DL = DL′ , DU = DU ′

Update gradient of GNN1 and GNN2 by the SGD
algorithm.

epoch+ +
end while
Step 2.2 Semi-supervised learning:
while epoch <= SS K∗|Dwhole|

ss k do
(DL′ , DU )← Algorithm3(DL, DU , ss k)
DL = DL′

Update gradient of GNN1 and GNN2 by the SGD
algorithm.

epoch+ +
if epoch % invl = 0 then

Take out the pseudo labeled graph examples from
DL.

else
continue

end if
end while

Step 3 Output the classification results:
Output the classification accuracy of graph examples in
DU .

3.3 Active Learning
In this subsection, we illustrate the active learning module
designed in our framework in detail. As shown in Fig. 2,
the unlabeled graph example set DU and the labeled graph
example set DL are taken as the input of two GNNs. GNN1
and GNN2 collaboratively select the graph examples that
contain rich information from test set, and add them to the
training set after annotation. For the sake of measuring the
richness of the information contained in graph examples,
two indicators are employed including information entropy
and euclidean distance in our framework.

By virtue of the end-to-end graph neural networks, the
classification probability of each graph example can be
output by the Softmax formula straightforwardly as

pl[Gm] = Soft max (Sl[hGm ]) =
exp (Sl[hGm ])∑L

l′=1 exp (Sl′ [hGm ])
(4)

where Sl [hGm ] denotes the soft clustering score that a graph
example Gm is predicted to belong to class l as defined in Eq.
9. Softmax (Sl[hGm ]) is the predicted probability of a graph
Gm from DU is classified into the category l, and L indicates
the number of classes of graph examples. Furthermore, the
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Fig. 2: Graphical illustration of the process of active learning.
DU and DL denote set of unlabeled graph examples and
set of labeled graph examples, the representative graph
examples Da and Db are selected by GNN1 and GNN2
respectively. The intersection of Da and Db is utilized to
promote the classification performance of graph neural net-
works by adding them to the training set after annotation.

predicted probability can be utilized to calculate the entropy
of a graph example by the following formula so as to choose
the highly uncertain graph examples from test set

E = −
L∑

l=1

pl[Gm]∗ log (pl[Gm]) (5)

where pl[Gm] represents the probability that a graph exam-
ple Gm is predicted to belong to the class l and L denotes
the number of classes of graph examples. To quantitatively
describe the uncertainty of graph example Gm in the whole
unlabeled graph dataset DU , the proportion of all graph
examples whose entropy value is less than Gm is defined as
the entropy percentage pE of the graph example Gm. The
higher the entropy percentage of the graph example Gm,
the greater the uncertainty of the graph example Gm in the
unlabeled graph dataset DU .

Considering that only using one indicator entropy to
evaluate the information contained in a graph example
is unreliable, we further exploit euclidean distance to
measure the richness of the information contained in the
graph example. Essentially, the clustering center i.e., C =
{C1, C2, . . . , CL} of available labeled graph examples can
be obtained by the following formula:

Cl =

∑
{hl [Gm] | Gm ∈ DL and Y [Gm] = l}
|{Gm | Gm ∈ DL and Y [Gm] = l}|

(6)

where hl [Gm] represents the embedding representation of
each labeled graph example in the category l. The represen-
tativeness of unlabeled graph examples can be determined
by the Euclidean distance from each unlabeled graph ex-
ample to the nearest clustering center, which is shown as
follows:

dGm = min
l=1,...,L

{
‖hGm − Cl‖22

}
(7)

Later, we calculate the proportion of all graph examples
whose Euclidean distance is less than Gm, and define it as
the euclidean percentage pd of the unlabeled graph example
Gm. The higher the euclidean percentage of graph example

Algorithm 2 Procedure of active learning in the ASGNN
framework
Input:
DL, DU , al k

Output:
New training setDL′ and test setDU ′ after active learning

Step 1 Process:
Calculate the entropy percentage and euclidean percent-
age for each graph by GNN1 and GNN2 simultaneously.
GNN1 selects al k representative graph examples Da.
GNN2 selects al k representative graph examples Db.
Take out Da ∩ Db from DU and add them into DL after
annotation.

Step 2 Output:
Output the new training set DL′ and test set DU ′ after
active learning.

Gm, the greater the representativeness of the graph example
Gm in the unlabeled graph dataset DU .

Finally, the representativeness of each graph example is
determined by multiple indicators, which is advantageous
to select graph examples with high uncertainty and strong
representativeness as the graph examples with rich infor-
mation to be labeled. After selection, we add them to the
training set after annotation, so as to boost the classification
performance of GNN models and further improve the ac-
curacy of graph classification tasks. The multiple indicator
weighting formula is defined as follows:

IGm
= α∗pE + (1− α)∗pd (8)

where pE and pd represent the entropy percentage and
euclidean percentage, α and 1 − α are the weights of
two indicators, respectively. IGm

indicates the richness of
information contained in the graph example Gm. According
to the I value of each unlabeled graph example that simul-
taneously considers the uncertainty and representativeness
of the graph, the graph example with the most significant
performance gain to the training model can be selected.

For the sake of enhancing the generalization ability of
graph classification models, GNN1 selects the unlabeled
graph examples Da with rich information based on two
indicators including entropy percentage and euclidean per-
centage, and GNN2 also selects the unlabeled graph ex-
amples Db based on these two indicators. The intersection
of Da and Db is taken out from DU as the final result
of selection and is then added into DL after annotation
to promote the performance of graph neural networks for
improving the accuracy of graph classification tasks. Algo-
rithm 2 summarizes the detailed procedure of the active
learning module designed in our framework.

3.4 Semi-supervised Learning
The semi-supervised learning module designed in our pro-
posed framework attempts to select the unlabeled graph
examples that are most likely belonging to a certain cate-
gory, to pseudo label them with predicted labels, and add
these pseudo labeled graph examples to the training set for
promoting the performance of GNNs. Therefore, selecting
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the unlabeled graph examples with high confidence level
from the test set is a primary problem. We tackle this
problem by regarding the unlabeled graph examples with
high soft clustering scores as graph examples waiting to be
pseudo labeled.

Sl [Gm] =

(
‖hGm − Cl‖22

)−1

∑L
l′=1

(
‖hGm − Cl′‖22

)−1 (9)

Sl [Gm] denotes the soft clustering score that a graph exam-
ple Gm is predicted to belong to the class l and L represents
the number of categories of graph examples. Then the graph
examples that achieve the high soft clustering score can be
selected as the graph examples waiting to be pseudo labeled
for each category.

Algorithm 3 Procedure of semi-supervised learning in the
ASGNN framework
Input:
DL, DU , ss k

Output:
New training set DL′ and the original test set DU after
semi-supervised learning

Step 1 Process:
Calculate the soft clustering results of each graph by
GNN1 and GNN2 respectively according to Eq. 9.
GNN1 selects ss k high confidence level examples Da.
GNN2 selects ss k high confidence level examples Db.
Pseudo label Da ∩Db and add them into DL.

Step 2 Output:
Output the new training set DL′ and the original test set
DU after semi-supervised learning.

Likewise, our ASGNN framework considers the inter-
section of unlabeled graph examples selected by two GNNs
as the graph examples waiting for pseudo labeling. After
pseudo labeling the graph examples, the pseudo labeled
graph examples with high confidence level are added to
the training set. Every invl (such as 5) epochs, we take out
the pseudo labeled graph examples from training set, and
reselect high-confidence pseudo labeled graph examples as
shown in Algorithm 1. Because if the mis-predicted graph
examples are not taken out later, the training error will
accumulate in each iteration of training and the model per-
formance will be bound to decline in the long run. The semi-
supervised learning module designed in our framework
simultaneously selects valuable unlabeled graph examples
by multiple GNNs, and adds them into the training set
after pseudo labeling to effectively improve the classifica-
tion performance of graph neural networks. Algorithm 3
summarizes the detailed procedure of the semi-supervised
learning module designed in our framework.

3.5 Discussion

Trained on only small number of labeled graph examples,
the performance of graph neural networks is usually rele-
vantly unsatisfactory or even poor although they can work
to predict the labels for unlabeled graphs after training.

Heuristically, our whole framework attempts to spirally
improve the graph classification performance based on ac-
tive learning and semi-supervised learning, two of classical
weakly-supervised learning paradigms. Two aspects are
taken into account while designing the active and semi-
supervised graph neural network framework.

• In the early training of graph neural networks
for graph classification, directly applying semi-
supervised learning to GNNs may provide a lot of
false pseudo labels for unlabeled graph examples,
which easily lead to performance degradation due
to the accumulation of the training error. To tackle
this, an active learning strategy is presented to select
the graph examples that contain rich information and
deserve high attention, and then truly annotate them
for enlarging the training set, which empower graph
neural networks to enhance the generalization ability
promptly.

• Nevertheless, it is not only expensive and but not
necessary to continuously and truly annotate graph
examples in the whole training process, especially in
practical applications of graph classification. There-
fore, we further design a semi-supervised learning
strategy to take effective utilization of the trained
GNN itself to make prediction, and select the high-
confidence predicted graph examples for training
GNNs with better classification performance. Note
that we take out the pseudo-labeled graph examples
at every certain epoch, which endeavors to avoid the
performance decline due to the error accumulation.

Last but not least, the ASGNN framework utilizes two
graph neural networks to collaboratively select the critical
graph examples for updating model parameters, which is
conducive to achieve reliable and desirable graph classifica-
tion.

4 EXPERIMENTS

In this section, we first introduce the experimental datasets
and baselines. Then, graph classification results and the pa-
rameter sensitivity analysis are presented in detail. Finally,
we conduct the ablation study and effectiveness verification
of our proposed framework.

4.1 Datasets
To demonstrate the superiority of our proposed framework,
twelve graph classification benchmarks are employed in
the graph classification experiments, including MUTAG,
PTC MR, COLLAB, BZR MD, BZR, NCI1, PROTEINS,
ER MD, COX2 MD, DHFR, DHFR MD and PTC FR. The
MUTAG [33] dataset consists of 188 chemical compound-
s divided into two classes according to their mutagenic
effect on a bacterium. The PTC MR [33] dataset contains
compounds labeled according to carcinogenicity on male
rats. COLLAB [34] is a scientific collaboration dataset, de-
rived from 3 public collaboration datasets [35], namely,
High Energy Physics, Condensed Matter Physics and Astro
Physics. BZR MD is derived from the chemical compound
dataset BZR, which is a set of 405 ligands for the benzo-
diazepine receptor [36]. NCI1 [37] is a chemical compound
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TABLE 2: Statistics Information of Twelve Graph Classification Datasets.

Dataset Num G Num Classes Avg. nodes Avg. edges Node labels Edge labels
MUTAG 188 2 17.93 19.79 + +
PTC MR 344 2 14.29 14.69 + +
COLLAB 5000 3 74.49 2457.78 − −
BZR MD 306 2 21.30 225.06 + +

BZR 405 2 35.75 38.36 + −
NCI1 4110 2 29.87 32.30 + −

PROTEINS 1113 2 39.06 72.82 + −
ER MD 446 2 21.33 234.85 + +

COX2 MD 303 2 26.28 335.12 + +
DHFR 467 2 42.43 44.54 + −

DHFR MD 393 2 23.87 283.01 + +
PTC FR 351 2 14.56 15.00 + +

dataset and consists of 4110 compounds, which represent
the activity against non-small cell lung cancer cell lines.
PROTEINS is a dataset obtained from [38] where nodes
are secondary structure elements and there is an edge be-
tween two nodes if they are neighbors in the amino-acid
sequence or in 3D space. The bioinformatics dataset ER MD
[36] assembles 446 estrogen receptor ligands from multiple
sources and the chemical dataset. COX2 MD [36] contains
303 cyclooxygenase-2 inhibitors. DHFR [36] is a set of 467
inhibitors of dihydrofolate reductase and DHFR MD [36] is
a subset of DHFR. PTC FR [33] consists of compounds la-
beled according to carcinogenicity on rodents of male mice.
TABLE 2 provides the summary statistics of all datasets
used in graph classification experiments, including the total
number of graphs, the number of classes of graphs, the
average number of nodes in graphs, the average number
of edges in graphs, the number of categories of nodes and
the number of categories of edges. “–” denotes the lack of
corresponding attributes.

4.2 Baselines

Two typical GNN representatives, GIN [13] and GFN [14],
are respectively adopted as baselines. GIN is one of the
provably most powerful GNNs under the neighborhood
aggregation framework endeavoring to preserve the high-
order neighborhood relations, while GFN can be seen as
a simple lightweight GNN with linear graph filtering and
non-linear set function, which is powerful enough to per-
form well than many sophisticated GNNs. To verify the
superiority of our framework, a competitive label con-
trastive coding based graph neural network (LCGNN) [20]
is compared, which shows more advantages than unsu-
pervised GCC [19] and U2GNN [18]. LCGNN utilizes the
label information effectively for graph classification tasks by
extending the contrastive learning to the supervised setting
and introducing the label contrastive coding. GIN+LCGNN
and HGP-SL+LCGNN are two implementations of LCGNN
in [20], thus we compare our ASGNN with GIN+LCGNN
that uses GIN as the graph encoders, and HGP-SL+LCGNN
that sets the graph encoders as HGP-SL [39]. Besides, a new-
ly developed method named graph multi-set transformer
(GMT) [40] is included for comparison, which explores the
multi-head attention based global pooling for characterizing
the interaction among nodes and outperforms the state-of-
the-art graph pooling methods. Our ASGNN framework
attempts to utilize a small amount of labeled data to com-

plete graph classification tasks, which is different from the
conventional methods that use 90% of labeled data. In order
to compare under the same conditions, we settle the ratio of
labeled training set and unlabeled test set to 10% and 90%,
respectively. More importantly, we present the results of ap-
plying the two modules including active learning and semi-
supervised learning designed in our framework to a single
GNN (i.e., GIN+ASGNN and GFN+ASGNN), and further
demonstrate the results of applying these two modules in
multiple GNNs (GIN+GFN+ASGNN).

4.3 Comparison with Different Methods

TABLE 3 shows the experimental results of our framework
and baselines for graph classification on twelve benchmark
datasets. GIN+ASGNN implies the two modules including
active learning and semi-supervised designed in our frame-
work are applied to a single graph neural network GIN,
and so does GFN+ASGNN. As for GIN+GFN+ASGNN,
it represents the ASGNN framework that incorporates the
graph neural networks GIN and GFN. For clarity, the bold-
face refers to the best graph classification accuracy among
different methods on each dataset.

The graph classification results of GIN and
GIN+ASGNN in TABLE 3 demonstrate that the
classification accuracy is improved when the two modules
including active learning and semi-supervised learning
designed in our framework are applied to single GIN.
The performance improvement is especially obvious on
MUTAG, PROTEINS and PTC MR datasets, which are
3.36%, 4.13% and 3.74%, respectively. When the two
modules including active learning and semi-supervised
learning carefully designed in our framework are applied
to the original GFN, the average accuracy of graph
classification increases about 0.12% to 7.89%. The diversity
in the performance improvement of our framework may
be caused by the difference of the size and structure
of graph datasets. We also observe that, compared to
the baseline methods GIN+LCGNN, GIN+ASGNN can
acquire better results on most datasets, especially on the
MUTAG, PROTEINS and PTC FR datasets, which increase
by 4.47%, 6.79% and 4.23%, respectively. Furthermore,
our framework implemented on single GIN/GFN yields
competitive or even higher graph classification results
than the state-of-the-art baseline methods GMT and HGP-
SL+LCGNN. Overall, our ASGNN framework incorporated
with multiple GNNs expresses the most evident and stable
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TABLE 3: Graph Classification Accuracy of Baseline Methods and Our Proposed Framework on Different Datasets with
Different Labeling Rate of 10%.

Methods MUTAG PTC MR COLLAB BZR MD BZR NCI1 PROTEINS ER MD COX2 MD DHFR DHFR MD PTC FR
GIN 76.52±0.01 55.02±0.01 62.77±0.00 54.88±0.01 69.89±0.01 69.05±0.00 66.07±0.01 60.36±0.01 50.70±0.01 51.39±0.01 58.35±0.01 54.11±0.01
GFN 75.50±0.06 54.00±0.05 74.30±0.01 61.70±0.06 70.60±0.04 73.61±0.01 69.91±0.04 65.20±0.03 55.41±0.04 65.62±0.03 61.51±0.14 57.43±0.05
GMT 70.29±0.02 53.60±0.03 69.22±0.01 55.43±0.04 75.53±0.01 62.12±0.03 65.20±0.05 63.67±0.01 52.42±0.02 64.30±0.04 63.84±0.06 59.65±0.02
GIN+LCGNN 75.41±0.01 54.57±0.03 65.24±0.02 55.20±0.02 70.52±0.04 70.24±0.03 63.41±0.02 59.03±0.01 49.34±0.02 52.50±0.06 60.36±0.03 53.62±0.01
HGP-SL+LCGNN 68.67±0.02 55.91±0.02 67.21±0.03 54.31±0.02 72.15±0.03 60.74±0.01 64.23±0.01 60.58±0.05 50.36±0.02 55.68±0.01 61.52±0.06 56.18±0.04
GIN+ASGNN 79.88±0.01 57.75±0.02 65.32±0.06 56.44±0.01 72.07±0.00 70.34±0.01 70.20±0.01 62.17±0.01 50.88±0.01 53.34±0.01 59.81±0.02 57.85±0.01
GFN+ASGNN 79.04±0.04 57.60±0.04 74.42±0.01 65.09±0.04 78.49±0.06 74.27±0.01 72.81±0.02 66.72±0.03 56.75±0.04 69.28±0.03 62.66±0.04 58.93±0.12
GIN+GFN+ASGNN 81.83±0.03 59.10±0.04 75.56±0.01 66.86±0.05 79.73±0.02 75.53±0.01 73.92±0.03 67.84±0.03 57.92±0.04 69.89±0.03 66.01±0.02 61.15±0.04

improvement in the task of graph classification. The reason
may be that multiple GNNs are more reliable in selecting
the valuable graph examples by mutual learning in active
learning and semi-supervised learning. In specific, multiple
GNNs can confidently select the unlabeled graph examples
from different views, to simultaneously improve the model
performance of GNNs. Moreover, the gain of these graph
examples to the model performance is often higher and
more stable than the gain of the graph examples selected by
a single GNN to the performance of graph classification.

Experimental results in TABLE 3 fully reveals the effec-
tiveness of exploiting active and semi-supervised learning
for graph classification. And the two paradigms including
active learning and semi-supervised learning can be applied
to a single graph neural network to promote the generaliza-
tion performance and improve the classification accuracy
of graph classification tasks. Overall, two obvious conclu-
sions can be concluded from the experimental results. The
proposed framework incorporating two GNNs can promote
the graph classification accuracy than that only based on
single GNN. Active learning and semi-supervised learning
on multiple graph neural networks can facilitate the model
training and achieve an advanced performance increment
for graph classification results.

4.4 Parameter Sensitivity Analysis
In this section, we investigate how hyper-parameters affect
the performance of our proposed framework for graph clas-
sification. Specifically, we evaluate how three key parame-
ters AL K, SS K and α influence the graph classification
accuracy.

For the hyper-parameter AL K in the proposed frame-
work, AL K represents the proportion budget of the graph
examples selected from the test set by active learning
and we study the impact of its different values AL K ∈
{1%, 2%, 5%, 8%, 10%} on graph classification. Considering
that the results of different datasets show similar tends, we
take MUTAG, PTC MR, PROTEINS and DHFR datasets as
examples for analysis. Fig. 3 manifests how the parameter
AL K influences the graph classification accuracy on four
datasets when our framework incorporated with the single
GIN, single GFN and multiple GNNs. It demonstrates that
the performance of our proposed framework achieves an
improvement with the rise of the number of representative
examples marked by active learning.

We further investigate the influences of different SS K
of our proposed framework on MUTAG, PTC MR, PRO-
TEINS and DHFR datasets for graph classification. SS K
represents the proportion budget of the graph examples
selected from the test set by semi-supervised learning and
we set SS K ∈ {2%, 4%, 6%, 8%, 10%}. Fig. 4 presents

how the parameter SS K influences the graph classifica-
tion accuracy on MUTAG, PTC MR, PROTEINS and D-
HFR datasets when our framework incorporated with the
single GIN, single GFN and multiple GNNs. It exhibits
that the performance of our proposed framework brings an
improvement with the increase of the number of pseudo
labeled examples marked by semi-supervised learning.

Finally, the influences of the weight of entropy per-
centage α and euclidean percentage 1 − α on the
graph classification accuracy are explored. We set α ∈
{0.1, 0.3, 0.5, 0.7, 0.9} and the weight of euclidean percent-
age is correspondingly as 1−α ∈ {0.9, 0.7, 0.5, 0.3, 0.1}. Fig.
5 indicates the influence for graph classification accuracy on
MUTAG, PTC MR, PROTEINS, and DHFR datasets with
different proportions of α when our framework incorporat-
ed with the single GIN, single GFN and multiple GNNs.
Our framework yields the best graph classification accuracy
when the weight α is 0.5. Additionally, when one of the two
indicators (entropy percentage or euclidean percentage) is
assigned as high weights, the classification accuracy of our
framework is relatively decreased.

To summarize, with two hyper-parameters AL K and
SS K increasing from 0% to 10%, the accuracy of graph
classification achieves an incremental improvement. The
increment of AL K and SS K indicates that more exam-
ples with rich information are selected from test set and
added into the training set for promoting the performance
of graph neural networks. It proves that active learning
and semi-supervised learning can utilize a small number of
labeled graph examples or pseudo labeled graph examples
to expand the training set for promoting the performance
of graph neural networks. In Fig. 3(a) and Fig. 4(a), on the
small dataset MUTAG, the performance of our framework
incorporated with single GIN has a significant improvement
with the increase of AL K and SS K at the beginning. Fig.
3(c) and Fig. 4(c) show us that when the multiple GNNs
are incorporated with our framework, with the labeling
rate increasing to 10%, the classification accuracy still has
the potential to improve with the increment of AL K and
SS K. Overall, the ASGNN framework proposed in this
paper incorporated with single GNN or multiple GNNs all
achieve an improvement of graph classification accuracy. In
Fig. 5, with the weight of entropy percentage increases from
0.1 to 0.5, the performance of our framework is gradually
improved, due to more attention paid to the effect of entropy
percentage on the process of selecting examples with rich
information by active learning. When α is near 0.5, we
obtain the best classification performance. However, when
the value of α continuously increases, the classification
accuracy of our framework will drop slowly. The premier
reason may be that the model does not reasonably consider
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(c) Active learning selects examples by multi-
ple GNNs

Fig. 3: Sensitivity analysis of AL K from 0% to 10% on MUTAG, PTC MR, PROTEINS and DHFR datasets.
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(a) Semi-supervised learning selects examples
by single GIN
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(b) Semi-supervised learning selects examples
by single GFN
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(c) Semi-supervised learning selects examples
by multiple GNNs

Fig. 4: Sensitivity analysis of SS K from 0% to 10% on MUTAG, PTC MR, PROTEINS and DHFR datasets.
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Fig. 5: Sensitivity analysis of α from 0.1 to 0.9 on MUTAG, PTC MR, PROTEINS and DHFR datasets.

the influence of two indicators on the process of selecting
examples with rich information by active learning, but pays
more attention to the euclidean percentage on the selection.

4.5 Ablation Study
To demonstrate the effectiveness of two learning steps de-
signed in our framework, we conduct ablation study on
active learning and semi-supervised learning, respectively.

Finding that results of different datasets show similar tend-
s, we take MUTAG, PTC MR, PROTEINS and DHFR as
examples. The effect of removing different components in
our framework on the performance of graph classification
is shown in TABLE 4. It is obvious that both active and
semi-supervised learning steps have positive contributions
to the single GNN for graph classification, respectively.
With the integration of active learning and semi-supervised
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TABLE 4: Ablation Study on Active Learning and Semi-supervised Learning Steps of Our Framework on Different Datasets
with Labeling Rate of 10%. Bold Numbers are the Best or the Second Best Graph Classification Accuracy for clarity.

GIN GFN Active learning Semi-supervised learning MUTAG PTC MR PROTEINS DHFR
X 76.52±0.01 55.02±0.01 66.07±0.01 51.39±0.01
X X 78.26±0.02 56.51±0.01 69.02±0.03 52.29±0.05
X X 78.20±0.02 56.96±0.04 68.31±0.05 52.41±0.01
X X X 79.88±0.01 57.75±0.02 70.20±0.01 53.34±0.01

X 75.50±0.06 54.00±0.05 69.91±0.04 65.62±0.03
X X 77.44±0.02 56.00±0.03 70.51±0.01 67.39±0.02
X X 77.03±0.03 56.98±0.02 70.19±0.04 67.31±0.05
X X X 79.04±0.04 57.60±0.04 72.81±0.02 69.28±0.03

X X X X 81.83±0.03 59.10±0.04 73.92±0.03 69.89±0.03
(Improvement over the second best baselines) (1.95) (1.35) (1.11) (0.61)

learning on single GNN, the accuracy of graph classification
is further enhanced, indicating that it is feasible to exploit
the two paradigms together to improve the generalization
performance. Furthermore, our framework implemented on
two GNNs yields more desirable graph classification accura-
cy than that only based on single GNN, achieving the gain
of 0.61%-1.95% at least. All these results fully verify that
our framework incorporating with the carefully designed
active learning and semi-supervised learning strategies can
effectively select and exploit the valuable graph examples
in different phases to facilitate the model training of GNNs
and enhance the graph classification accuracy.

4.6 Verification of Effectiveness on Used Labeled Data

TABLE 5: Graph Classification Accuracy of Different Meth-
ods on Datasets with Different Amount of Labeled Data.

Methods MUTAG PTC MR PROTEINS DHFR

GIN 85.02±0.01 59.33±0.03 71.80±0.01 55.61±0.01
(90%) (90%) (90%) (90%)

GIN+ASGNN 85.82±0.03 60.78±0.02 72.42±0.01 57.87±0.02
(50%) (50%) (50%) (30%)

GFN 87.21±8.22 62.45±9.46 75.46±5.06 75.30±4.19
(90%) (90%) (90%) (90%)

GFN+ASGNN 87.94±0.05 63.60±0.03 75.70±0.02 75.51±0.01
(50%) (50%) (50%) (30%)

GIN+GFN 88.20±0.04 64.40±0.01 76.20±0.01 76.89±0.02
+ASGNN (50%) (30%) (25%) (30%)

In this section, we explore the relation between the per-
formance of the graph classification model and the amount
of training data required. Considering that results of differ-
ent datasets show similar tends, we take MUTAG, PTC MR,
PROTEINS and DHFR as examples for illustration. TABLE
5 reports the experimental results of our framework and
different methods for graph classification with different
amount of labeled data on MUTAG, PTC MR, PROTEINS
and DHFR datasets. The amount of labeled data used in
GIN and GFN is 90%, 90%, 90% and 90% for MUTAG,
PTC MR, PROTEINS and DHFR datasets, respectively. To
achieve the comparable classification accuracy, the labeled
data required in GIN+ASGNN and GFN+ASGNN is 50%,
50%, 50% and 30% for MUTAG, PTC MR, PROTEINS and
DHFR datasets, respectively. In GIN+GFN+ASGNN, the
amount of labeled data required is 50%, 30%, 25% and 30%
on MUTAG, PTC MR, PROTEINS and DHFR datasets. In
this case, the graph classification results in GIN+ASGNN
and GFN+ASGNN outperform GIN and GFN, respectively.
And GIN+GFN+ASGNN can achieve the best classification
accuracy only using the minimal number of labeled graph

examples. The main reason is that the two paradigms
including active learning and semi-supervised learning in
our framework can select the informative graph examples
and many pseudo labeled graph examples with structure
information for promoting the performance of graph classi-
fication. These results further verify the effectiveness of our
framework.

5 CONCLUSION

Graph neural networks play an increasingly important role
in solving the problem of graph classification and existing
works widely utilize a large volume of labeled graph ex-
amples for training. However, there are rare labeled graph
examples in the real-world application of graph classifica-
tion and it is very expensive to label a large number of
graph examples manually. In this paper, we propose a novel
active and semi-supervised graph neural network frame-
work to complete the graph classification tasks with a small
number of labeled graph examples and available unlabeled
graph examples. The two learning paradigms including
active learning and semi-supervised learning designed in
our framework exploit multiple GNNs for collaboratively
increasing the reliability of graph classification results. The
framework can not only gracefully explore unlabeled graph
examples for facilitating graph classification tasks, but also
can be utilized to other existing graph neural networks
for graph classification. Experimental results on benchmark
graph classification datasets manifest that the proposed
framework is effective on graph classification tasks only
with a small number of labeled examples and available
unlabeled graph examples.

For future works, we would like to further extend the
proposed framework for more complex and challenging
graph classification problems. Besides, the design of other
active and semi-supervised graph neural network frame-
works for efficient graph classification is also a promising
research direction.
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