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Abstract— Learning from categorical data plays a fundamental
role in such areas as pattern recognition, machine learning,
data mining, and knowledge discovery. To effectively discover
the group structure inherent in a set of categorical objects,
many categorical clustering algorithms have been developed in
the literature, among which k-modes-type algorithms are very
representative because of their good performance. Nevertheless,
there is still much room for improving their clustering
performance in comparison with the clustering algorithms for the
numeric data. This may arise from the fact that the categorical
data lack a clear space structure as that of the numeric data.
To address this issue, we propose, in this paper, a novel
data-representation scheme for the categorical data, which
maps a set of categorical objects into a Euclidean space.
Based on the data-representation scheme, a general framework
for space structure based categorical clustering algorithms
(SBC) is designed. This framework together with the
applications of two kinds of dissimilarities leads two versions
of the SBC-type algorithms. To verify the performance of
the SBC-type algorithms, we employ as references four
representative algorithms of the k-modes-type algorithms.
Experiments show that the proposed SBC-type algorithms
significantly outperform the k-modes-type algorithms.

Index Terms— Categorical data, clustering, dissimilarity,
k-modes-type algorithms, space structure.

I. INTRODUCTION

IN DATA mining and knowledge discovery, there are many
types of data, including the numeric data, the categorical

data, the text data, the image data, the audio data, and so on.
Transforming the unstructured data into the structured data
is one of the common research methods. The existing data
processing methods often map these data types to one of the
numeric data or the categorical data [14], [15], [21], [32], [62].
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Specially, data mining from the categorical data is an important
research topic, in which several types of methods have been
developed, such as decision trees [44], rough sets [38], [42],
[45], [47], [48], concept lattice [52], [54], granular computing
[43], [46], [49], [59], [61], and others.

Clustering is an important tool in data mining and
knowledge discovery, which is used to discover the grouping
structure inherent in a set of objects. It has many applications
in areas, such as text mining, granular computing, information
retrieval, bioinformatics, Web data mining, customer analysis,
and scientific data exploration [1], [6]–[8], [19], [41], [53].
The objective of a clustering algorithm is to group a set of
unlabeled objects into several meaningful clusters so that
the objects within the same clusters are close to each other
and those from different clusters are very dissimilar with
objects within other clusters. To address this problem, many
types of clustering algorithms have been proposed for various
clustering tasks in [3], [6], [9], [12], [16], [17], [20], [25],
[26], [56], and [57].

In a clustering algorithm, a predefined similarity/
dissimilarity measurement among objects is one of its
key concepts, which significantly affect the clustering results
of the objects and the performance of the algorithm.

For the numeric data, many successful algorithms
have been developed according to various data
distributions. The k-means-type algorithms are very
representative [28], [30], [35], [60], which can effectively and
efficiently organize the objects into several clusters [29], [37].
In k-means-type algorithms, all objects are described by
several features with numeric domains. Therefore, these
objects can be considered in a Euclidean space, and the
dissimilarity/similarity between two objects can be measured
by a Euclidean distance, a cosine distance, and so on [29].
When the dimensionality of a given data set is small, the
Euclidean distance is often used, and when the dimensionality
of a given data set is big, the cosine distance is usually
employed.

Recently, increasing attention has been paid to the clustering
categorical data, in which the objects are made up of nonnu-
merical data [13], [25], [55]. In fact, how to learn dissimilarity
among the categorical data is a difficult problem all the time.
For a supervised setting, Xie et al. [55] repeatedly updated
the assignment of categorical symbols to real numbers to
minimize the classification error based on the nearest neighbor
technique. For an unsupervised setting, Alamuri et al. [2]
gave a survey of distance/similarity measures for the cate-
gorical data. More generally, the 0–1 distance or its exten-
sions are widely used for analyzing the categorical data.
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To discover the grouping structures of categorical data,
several algorithms have also been reported [2], [3], [6], [12],
[17], [20], [25], [26], [56]. Among these algorithms, the
k-modes-type clustering algorithms are very representative and
popular techniques, which can be used to the quickly clus-
tering categorical data. This type of algorithms can overcome
the limitation of the k-means-type algorithms only working on
the numeric data. The k-modes-type algorithm was originally
proposed in [25]–[27], which adopts the same paradigm as the
k-means-type algorithms. Therefore, the k-modes algorithm
can effectively cluster large categorical data sets from real-
world databases. In recent years, several extended versions of
the k-modes algorithm have been published [4], [5], [11], [22],
[31], [34], [39], [40], [51]. In this paper, we call the k-modes
algorithm and their extensions the k-modes-type algorithms.1

There are two key issues in the k-modes-type algorithms.
One is how to measure the dissimilarity between two objects
and the other is how to update each of cluster modes in
each iteration. The former is addressed by introducing a
0–1 distance or its extensions, and the latter is solved by com-
bining the frequencies of feature values in each feature domain
in a cluster to represent the cluster in each iteration. Although
the k-modes-type algorithms have good performance, one may
consider the following problems.

1) Whether the performance of the clustering algorithms
for the categorical data can be further enhanced or not.

2) Whether the 0–1 distance and its extensions are effective
in revealing the grouping structure of objects or not.

3) Whether the method of updating cluster prototypes has
the same excellent performance as that of computing the
mean value of objects in a cluster with the k-means-type
algorithms or not. These three problems induce the most
important problem.

4) Whether the numeric data and the categorical data can
intrinsically be unified in a clustering algorithm or not.

The above four problems are the main motivations of this
paper. Unlike numeric data, the categorical data have no
clear linear space, which brings a challenge for effectively
discovering the grouping structure of objects. In this paper,
we will not be concerned with how to improve the k-modes-
type algorithms themselves. Instead, we will focus on how to
construct a space structure for the categorical data and propose
a new type of algorithms based on this space structure for
organizing the categorical data.

In this paper, we first present a new data-representation
scheme for mapping the objects of a categorical data set
into a Euclidean space, in which each categorical data object
represents a single coordinate. Based on the space structure,
we then give a new type of algorithm (just SBC) for the
clustering categorical data, which combines the construction
of the space structure of the categorical data and the
k-means algorithm paradigm together. The framework
of SBC algorithms does not change the convergence of

1In fact, there is another k-modes algorithm (originated in [10]) that works
with continuous data, which uses a local bandwidth at each point rather than a
global one. Because we only pay attention to how to organize the categorical
data, in this paper, the discussed k-modes algorithm especially refers to the
method proposed in [25]–[27].

k-means-type algorithms, and can simultaneously minimize
the within cluster dispersion. Finally, we employ a Euclidean
distance and a cosine distance for verifying the validity of
the SBC algorithm. By incorporating these two distances into
the SBC algorithm, we obtain two versions of the algorithm.
Numerical experiments on nine real data sets from the
UCI repository show that each of these two versions always
converges, and statistically possesses much better performance
than the k-modes-type algorithms for clustering categorical
data. It is worth noting that the clustering performance of the
SBC algorithm with the cosine distance is getting better as
the size of the categorical data set increasing.

The rest of this paper is organized as follows. The
k-modes-type algorithms are briefly reviewed in Section II.
In Section III, through analyzing the challenge of the clus-
tering categorical data, we establish a space structure for
representing a categorical data set, which maps all the objects
into a Euclidean space. In Section IV, a general framework of
algorithms based on the space structure is introduced to cluster
a categorical data set, just named SBC. In Section V, we give
a series of experimental analyses that include the rationality,
the validity, and the efficiency of the SBC algorithm. Finally,
Section VI concludes this paper with some remarks.

II. k-MODES-TYPE ALGORITHMS

In this section, we will review the theoretical framework of
the k-modes-type algorithms with some remarks.

We assume the set of objects U = {x1, x2, . . . , xn} to
be clustered is stored in a database table T defined by
a set of features, A = {a1, a2, . . . , am}. Each feature a j

describes a domain of values, denoted by V (a j ), associated
with a defined semantic and a data type. A domain V (a j )
is defined as categorical if it is finite and unordered,
i.e., V (a j ) = {a(1)

j , a(2)
j , . . . , a

(n j )

j }, where n j is the number
of categories of feature a j , 1 ≤ j ≤ m. In this paper, we only
consider a data set with a single data type. If each feature in A
is categorical, then U is called a categorical data set.

The k-modes-type algorithms use the k-means-type
paradigm to organize the categorial data. The objective
function of clustering n categorical objects into k clusters is
to find W and Z that minimize [25], [26]

F(W, Z) =
k∑

l=1

n∑

i=1

wli d(zl, xi) (1)

subject to
⎧
⎪⎨

⎪⎩

wli ∈ {0, 1}, 1 ≤ l ≤ k, 1 ≤ i ≤ n
k∑

l=1
wli = 1, 1 ≤ i ≤ n

(2)

where n is the number of objects in U , and k is the known
number of clusters. W = [wli ] is a k-by-n matrix, wli shows
whether xi belongs to the lth cluster, and wli = 1 if xi belongs
to the lth cluster and 0 otherwise. Z = {z1, z2, . . . , zk} ⊆ R,
where R = V (a1) × V (a2) × · · · × V (am) and
zl = [zl1, zl2, . . . , zlm ] are the lth cluster prototype
with categorical features a1, a2, . . . , am . d(zl , xi ) is the
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simple matching dissimilarity measure between xi and the
prototype zl of the lth cluster, which is defined as

d(zl, xi ) =
m∑

j=1

δ(zl j , xi j ) (3)

where

δ(zl j , xi j ) =
{

1, zl j �= xi j

0, zl j = xi j .

The above optimization problem can be solved by
iteratively solving the following process of the k-modes
algorithm [25]–[27].

Step 1: Choose k initial cluster prototypes Z (1) ⊆ R.
Determine W 1 such that F(W 1, Z (1)) is minimized. Set t = 1.

Step 2: Determine Z (t+1) such that F(W t , Z (t+1)) is mini-
mized. If F(W t , Z (t+1)) = F(W t , Z (t)), then stop; otherwise
go to Step 3.

Step 3: Determine W (t+1) such that F(W t+1, Z (t+1)) is
minimized. If F(W t+1, Z (t+1)) = F(W t , Z (t+1)), then stop;
otherwise set t = t + 1 and go to Step 2.

However, the clustering result obtained by the above
k-modes algorithm may not be a globe optimization, but a
local optimization.

As we know, Z of the k-modes algorithm is determined
based on the frequencies of feature values in the cluster.
The most frequent feature value in each feature domain in a
cluster is selected to represent the cluster in each iteration,
which can minimize the within-cluster dissimilarity.
As Bai et al. [4] pointed out, however, this updated
method of cluster prototypes ignores the representability
of other feature values, which may effect the clustering
performance of algorithms for categorical data sets. In order
to overcome this limitation, several improved algorithms were
proposed in [4], [5], [11], [22], [31], [34], [39], [40], and [51],
where a prototype in a cluster is a list of several categorical
values in the feature with their frequencies in the cluster as
the weights in each iteration of a k-modes algorithm. This
idea implies that the higher the weight of a categorical value
in the cluster is, the more representability the categorical
value has in the cluster. These clustering methods can further
improve the performance of the original k-modes algorithm,
which all can be induced to a framework of the k-modes-type
algorithms.

III. SPACE STRUCTURE OF THE CATEGORICAL DATA

In this section, we first analyze dissimilarity measures in
the k-modes-type algorithms and its shortcomings. Based on
the analysis, we propose a new data-representation scheme of
categorical data with a space structure. Finally, we discuss
several advantages of the data-representation scheme.

From the working mechanism of the k-modes-type
algorithms, it can be seen that its validity depends on
two core concepts: 1) the dissimilarity measure and 2) the
updating method of cluster prototypes.

Given a database table with the categorical data T = (U, A),
where U = {x1, x2, . . . , xn} be a set of objects, and
A = {a1, a2, . . . , am} is a set of features. The dissimilarity

TABLE I

CATEGORICAL DATA SET

measure between two objects is defined by (3). For determin-
ing the cluster label of each object, it is solved by the following
method:

∀xi, if d(xi, zl) ≤ d(xi, zh), 1 ≤ h ≤ k

then xi belongs to the cluster wl .
For updating cluster prototypes, it is solved by

zl j = a(r)
j ∈ V (a j )

where
∑

xi j =a(r)
j ,xi∈U

wli = max
n j
q=1{

∑
xi j =a(q)

j ,xi∈U
wli } for

1 ≤ j ≤ m. Here, n j is the number of categories of
feature a j for 1 ≤ j ≤ m. In essence, the method of updating
cluster prototypes can also be equivalently characterized by
the following form:

d
(

xi j , z(r)
l j

)
=

n j

min
q=1

{
d

(
xi j , z(q)

l j

)}
(4)

for 1 ≤ j ≤ m, where z(q)
l j is the object described by the

feature a j in the cluster wl .
Although in several modified versions [4], [5], [11], [22],

[31], [34], [39], [40], [51], a prototype is often updated by
combining several categorical values in the feature with their
frequencies in a cluster as the weights, they have the same
working mechanism as the classical k-modes algorithm.

From the above analysis, one can see that the dissimilarity
measure d is the most important concept in the k-modes-type
algorithms, which significantly affects the clustering perfor-
mance of a categorical data set. However, the 0–1 distance
may not be a finer-grained metric for measuring the difference
between two categorical objects, and the method of updating
cluster prototypes determined by the 0–1 distance may not be
a much better solution. Specially, the limitation brings a pity,
i.e., we cannot use some of existing proven methodologies for
the numeric data to deal with the categorical data. Hence, it
is also difficult for the numeric data and the categorical data
to be clustered together in a semantically unified framework.2

To address the above issue, in what follows, we will try to
give a new data-representation scheme for the categorical data,
such that a categorical data set can possess a space structure
like the numeric data.

To facilitate discussion, we give a categorical data set in the
table form, which is shown in Table I.

2It is a very important issue to cluster a mixed data set with the numeric
data and the categorical data. Several researchers have tried to solve it
in [20], [23], [24], [26], [34], and [36]. In these studies, a usual method is
to fuse these two types of features with a variable weight. Lee and Yun [33]
proposed a new procedure using multidimensional scaling for the clustering
categorical and the numerical data. In existing approaches, in essence, the
numeric data and the categorical data are still dealt with separately, which is
not really unified semantically.
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TABLE II

SPACE STRUCTURE MATRIX OF THE CATEGORICAL DATA

In this table, U = {x1, x2, . . . , xn} are n categorical objects
and A = {a1, a2, . . . , am} are m categorical features with
weights W = {w1, w2, . . . , wm}, where ai(x j ) is the categori-
cal value of the object x j under the feature ai . Now, we give a
new data-representation scheme of a categorical object. First,
we compute the probability that any two categorical objects
are equal to each other, which is formally defined as

pi j =
m∑

k=1

wkθk(xi, xj)
/ m∑

k=1

wk (5)

where

θk(xi, xj) =
{

1, ak(xi ) = ak(x j )

0, ak(xi ) �= ak(x j ).

Through rerepresenting these objects of the categorical data
set, we can obtain a space structure (it is a Euclidean space)
described by the probabilities of similarities among objects.
With loss of generality, we assume that all attributes have the
same weight in this paper. In this method, one describes an
object with a set of new dimensions {ci = xi , 1 ≤ i ≤ n},
which is shown in Table II.

Its working mechanism is illustrated by the following
example.

Example 1: Given a categorical data set about
three hexahedrons with six features, which is shown
in Table III. Without loss of generality, we assume that the
features have the same weight w1 = w2 = · · · = w6 = 1/6.

Using classical set theory, one can obtain set relationships
among these three objects for each of six features, as shown
in Fig. 1(a). Indeed, it can describe the grouping structure of
the data set in each of the features. However, this method
cannot well discover the grouping structure inherent in the
data set in the entire feature space.

In what follows, we establish its space structure. First, from
Table III, one can compute the probability of xi = xj for any
two objects in the categorical data set. Through computing,
their results are shown in Table IV.

Through the space structure matrix, the original categorical
data set is transformed into a Euclidean space with three new
features c1 = x1, c2 = x2, and c3 = x3. The geometric
structure of these three objects can clearly be given, in which
objects x1 and x2 seem to be much closer.

Let (U, C) be a Euclidean space mapped by a categorical
data set (U, A). In order to differentiate objects in (U, C) and
those in (U, A), we denote a vector in (U, C) by xC and that
in (U, A) by xA, respectively.

Property 1: Let (U, C) be a Euclidean space mapped by a
categorical data set (U, A). The following properties hold.

1) ∀xC lies in the first quadrant of (U, C).
2) xC = yC if xA = yA.
3) pi j = 1 − (1/m)d(xi A, xj A).
4) 0 ≤ 〈xC , yC〉 ≤ 90°.
In our opinion, though the 0–1 distance had widely been

used for the clustering categorical data, it may not be a much
finer-grained metric for measuring the difference between two
categorical objects. After we transform an original categorical
data set into its corresponding Euclidean space, the metric D
on the Euclidean space would have much finer-grained per-
formance than the 0–1 distance. It can be revealed by the
following theorem. Easily, we assume that D = |xC − yC|2 is
a metric on (U, C).

Theorem 1: Let (U, A) be a categorical data set,
xi , x j , xk ∈ U , and (U, C) be the corresponding Euclidean
space mapped by (U, A). If d(xi A, xj A) = d(xi A, xk A), then
D(xiC , xjC) = D(xiC , xkC) may not hold.

Proof: From d(xi A, xj A) = d(xi A, xk A) and (5), one has
that pi j = pik . Then

D(xiC , xjC ) − D(xiC , xkC )

= |xiC − xjC |2 − |xiC , xkC |2

=
⎛

⎝(pii − p j i)
2 + (pi j − p j j)

2 + (pik − p jk)
2

+
n∑

t=1,t �=i, j,k

(pit − p j t)
2

⎞

⎠

−
⎛

⎝(pii − pki )
2 + (pi j − pkj )

2 + (pik − pkk)
2

+
n∑

t=1,t �=i, j,k

(pit − pkt )
2

⎞

⎠

=
n∑

t=1,t �=i, j,k

(pit − p j t)
2 −

n∑

t=1,t �=i, j,k

(pit − pkt )
2.

In this equation, p j t and pkt may not be equal. Hence,
D(xiC , xjC), and D(xiC , xkC) may also not be equal.

If we adopt one of the other metrics on an Euclidean space,
the above theorem may also hold. We do not prove them one-
by-one because of paper’s compactness.

Theorem 1 implies such a phenomena that when
objects y and z with respect to x on the original feature set A
cannot be distinguished, they could be still differentiated on
the Euclidean space induced by the new data-representation
scheme. Hence, the new data-representation scheme can
provide much finer characterization for relationships among
categorical objects than the original one.

We can observe several advantages of the data-
representation scheme as follows.

1) The object values under all features and their weights
can be fused together into the data-representation
scheme without loss of any information.

2) The objects can be described by a normalized form, in
which each object value lies in the interval [0, 1].
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TABLE III

DESCRIPTION OF SOME HEXAHEDRONS

Fig. 1. Set relationship of the categorical data and its space structure. (a) Set relationship of three objects. (b) Space structure of three objects.

TABLE IV

SPACE STRUCTURE MATRIX OF THE DATA IN EXAMPLE 1

3) The space structure is a Euclidean space, which elimi-
nates the limitation of the classical data-representation
scheme without a clear structure among categorical
objects.

4) Through transforming the categorical data to a Euclidean
space, we can use many existing excellent theories and
methods for data mining and knowledge discovery from
a categorical data set.

Due to these four advantages above, the new data-
representation scheme will be very helpful for discovering the
grouping structure inherent in a set of categorical objects.

IV. STRUCTURE-BASED CLUSTERING ALGORITHM

Based on the data-representation scheme in Section III,
we can map a categorical data set into s Euclidean space
with new dimensions. This allows us to take the advantage
of the existing k-means-type algorithms for the clustering
categorical data. In this section, we discuss the dissimilarity
measure among objects in the space structure and propose a
structure-based clustering algorithm.

In real applications, the scale of a categorical data set may
be very large. When it is mapped into a Euclidean space, the
dimensionality of the space will be much higher. Hence, we
first introduce the following dissimilarity measure:

d1(x, y) = √
2(1 − cos〈x, y〉) (6)

where cos〈x, y〉 = xT y/‖x‖‖y‖.

In general, the size of the data set for discovering its
grouping structure is often of large scale. When the original
categorical data was mapped to its corresponding Euclidean
space, the updated data set will possess much higher
dimensionality. In this paper, therefore, we will use this
distance to quantify the difference between the objects in the
Euclidean space. Based on the distance d1, we can construct
a corresponding objective function for a clustering algorithm
for the categorical data.

The objective of clustering a set of n categorical objects
into k clusters is to find Z that minimizes

F1(Z) =
k∑

j=1

∑

x∈ω j

d1(x, zj) (7)

where k(≤ n) is a known number of clusters,
Z = {z1, z2, . . . , zk}, zj is the j th cluster center, and
d1(x, zj) = (2(1 − cos〈x, zj〉))(1/2).

In what follows, we discuss the dissimilarity measure in a
data set with a much smaller scale.

Given a database table with the numeric data T = (U, A),
where U = {x1, x2, . . . , xn} be a set of objects, and
A = {a1, a2, . . . , am} is a set of features. Unlike the
0–1 distance in (3), in the classical k-means-type algorithms,
a Euclidean distance is often employed for measuring the
difference between two objects x and y, which is formally
defined as follows:

d ′(x, y) = ||x, y||p = ((x − y)p)
1
p (8)

where || · ||p is a p-norm in a finite linear space. Moreover, it
can be represented as

d ′(x, y) =
(

m∑
k=1

(ak(x) − ak(y))p
) 1

p

where m is the number of features of the numeric data set.
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If we transform objects in a categorical data set T = (U, A)
into a Euclidean space (U, C) with n new features
C = {c1, c2, . . . , cn}, then the distance in (5) can be rewritten
as follows:

d2(x, y) =
( n∑

k=1

(ck(x) − ck(y))p
) 1

p

(9)

where n is the number of new features in the Euclidean space
(U, C), and ck(x) is computed by (5).

Based on the Euclidean distance, the objective of clustering
a set of n categorical objects into k clusters is to find Z that
minimizes

F2(Z) =
k∑

j=1

∑

x∈ω j

d2(x, zj) (10)

where k(≤ n) is a known number of clusters,
Z = {z1, z2, . . . , zk}, zj is the j th cluster center, and
d2(x, zj) = ‖x, zj‖p .

For these two measures above, the Euclidean distance
measures the relative distance between two objects, whereas
the cosine distance measures the angular distance between
two objects. Many existing distance measures including them
all can be used to measure the distance between two objects
in the corresponding Euclidean space. The main motivation
of this paper is to propose one type of space structure-
based algorithm for clustering a categorical data set, in which
every distance measure can generate its corresponding
version.

In what follows, we propose one type of space structure-
based algorithm for clustering a categorical data set, in which
the space structure construction and the mechanism of the
k-means algorithm are combined together.

In Algorithm 1 (its code can be downloaded [64]), the
time complexity of mapping n objects into a space structure
is O(n2). In addition, the time complexity of determining
class labels of n objects at each iteration is O(kn). Let the
iterative times be p when the algorithm stops, one easily
knows that the time complexity of the SBC algorithm is
determined by n2 and pkn. For clustering on many data sets,
due to pk < n, its time complexity is often written as O(n2).
Although the time complexity of the SBC is nonlinear,
it may not be disappointing because of its better clustering
performance. This can be seen in the experiment analyses
in Section V.

Because of the convergence of the k-means-type algorithms,
the minimization of F in (7) and that in (10) can also
be finished by the SBC algorithm when the distance
D = d1 and d2, respectively.

V. EXPERIMENTAL ANALYSIS

The primary objective of clustering algorithms is to discover
the grouping structures inherent in the data. As the assumption
is that a certain structure may exist in a given data set,
a clustering algorithm is used to verify the assumption and
recover the inherent structure. If an algorithm can discover
the structure, then it may be a good solution.

Algorithm 1 Space Structure-Based Algorithm for Clustering
a Categorical Data Set (SBC)
Input: A set of categorical objects U = {x1 A, x2 A, . . ., xn A}

and features A = {a1, a2, . . . , am};
Output: k clusters.

(1) Mapping all objects into a space structure (U, C) =
{pi j , 1 ≤ i, j ≤ n} by Equation (5), and generat-
ing corresponding n objects {xiC : i ≤ n}, where
xiC = (pi1, pi2, . . . , pin).

(2) In the space structure, randomly choose k objects as
initial cluster centers: z1

0, z2
0, . . . , zk

0. Let l = 0.
(3) If D(xiC , zc

(l)) = min
j

{D(xiC , zj
(l))}, i = 1, 2, . . . , n,

then put xiC into the cluster ω
(l+1)
c , which generates new

clusters ω
(l+1)
j ( j = 1, 2, . . . , k).

(4) Computing the center of each new cluster by

zj
(l+1) = 1

n(l+1)
j

∑

xiC∈ω
(l+1)
j

xiC , j = 1, 2, . . . , k

where n(l+1)
j is the number of objects in the cluster ω

(l+1)
j .

(5) If zj
(l+1) = zj

(l) ( j = 1, 2, . . . , k), then the algorithm
stops; otherwise, l = l + 1, go to (3).

In this section, we aim to verify the rationality, the clus-
tering performance, and the computational efficiency of the
SBC algorithm for pattern recognition from a categorical
data set.

The nine categorical data sets used in the experiments are
outlined in Table V, which were all downloaded from UCI
repository of machine learning databases [63]. In this table,
the class distribution shows the real partition status of each of
these nine categorical data sets.

A. Correlation Analysis

To demonstrate how the proposed data representation
can reflects the distribution information in an original
categorical data set, this section first test the correlation
between its original categorical data space and its
corresponding Euclidean space, where the former refers to
the original structure of the data induced by the 0–1 distance
measure.

To conveniently address this issue, we construct the variable
X = {X1, X2, . . . , XC2

n
} from an original categorical data set

and the variable Y = {Y1, Y2, . . . , YC2
n
} from its corresponding

Euclidean space, where Xi means the value of normalized
0–1 distance between the i th pair of objects in an original
categorical data set, and Y j means the value of normalized
cosine distance (or normalized Euclidean distance) between
the j th pair of objects in its corresponding Euclidean space.
In this experiment, through employing these two variables, we
analyze the correlation between the new represented data and
the original categorical data, which is quantified by the Pearson
correlation coefficient [50]. Given two variables X and Y ,
the Pearson correlation coefficient ρX,Y between X and Y
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TABLE V

DESCRIPTION OF THE NINE PUBLIC DATA SETS FROM UCI

Fig. 2. Correlation analysis between the original categorical data space and the corresponding Euclidean space. (a) Fitting contact lenses. (b) Balloon.
(c) Space shuttle autolanding. (d) Soybean-small. (e) Hayes-Roth–Hayes-Roth. (f) Lymphography Domain. (g) Vote. (h) Breast cancer. (i) Promoters.

is defined by

pX,Y = cov(X, Y )

σX σY
= E[(X − μX )(Y − μY )]

σXσY
(11)

where σX and σY are the standard deviations of
X and Y , respectively, and μX and μY are the means

of X and Y , respectively. The correlation analysis results and
their Pearson correlation coefficients are shown in Fig. 2.

From Fig. 2, an obvious positive correlation between two
variables X and Y can be observed. For example, the values of
Pearson correlation coefficients between X in an original space
and Y (induced by the cosine distance) in its corresponding
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Fig. 3. Difference analysis between the original categorical data space and the corresponding Euclidean space. (a) Fitting contact lenses. (b) Balloon.
(c) Space shuttle autolanding. (d) Soybean-small. (e) Hayes-Roth–Hayes-Roth. (f) Lymphography Domain. (g) Vote. (h) Breast cancer. (i) Promoters.

Euclidean space are beyond 0.9 on eight data sets. The
strong positive correlation between X and Y means that a
larger X is likely to result in a larger value of Y . This
implies that the mapped Euclidean space almost reflect the
original structure information of a categorical data set. Besides
this advantage, it can be seen from Fig. 3 that the mapped
Euclidean space can provide more distinct information. When
two pairs of categorical objects cannot be distinguished with
the 0–1 distance measure, they may be differentiated in its
corresponding Euclidean space. This mechanism may improve
the clustering performance of a categorical data set. Hence,
we can effectively organize a categorical data set on its
corresponding Euclidean space.

B. Clustering Performance Analysis

Many k-modes-type algorithms have been developed for the
categorical data [4], [5], [11], [22], [31], [34], [39], [40], [51].
In order to verify the clustering performance of the proposed
SBC algorithm, we employ four representative k-modes-type
algorithms for organizing the categorical data, which are

the classic k-mode algorithm [25], Chan’s algorithm [11],
Mkm-nof algorithm [4], and Mkm-ndm algorithm [4].
The objective of the following experiments is to show the
performance of the proposed SBC algorithm for clustering a
categorical data set.

We first consider a widely used index [accuracy (AC)] for
evaluating the performance of a clustering algorithm, which
is suitable for both the numeric data and the categorical
data. This type of methods can be regarded as set matching.
The main idea is to measure the shared set cardinality
between two clustering results on a given data set. The set
matching technique is an external criterion, in which external
information-class labels need be used. It computes the best
matches between clusters from each of the two clustering
results and returns a value equaling to the total number of
points shared between pairs of matched clusters. In this type
of techniques, the set matching AC [58] is the simplest form,
which is defined as

AC =
k∑

i=1

max{ni j : j ≤ k ′}
n

(12)
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TABLE VI

NOTATIONS ON TWO CLUSTERING RESULTS FROM THE SAME DATA SET

where k and k ′ are the values from Table VI, and
ni j = |ci ∩ p j | is the number of common objects of cluster ci

and cluster p j . Table VI is a contingency table including two
clustering results {c1, c2, . . . , ck} and {p1, p2, . . . , pk′ } on a
data set with n objects, in which

⋃k
i=1 ci = ⋃k′

j=1 p j = n
and ci ∩ ci ′ = p j ∩ p j ′ = Ø, 1 ≤ i �= i ′ and 1 ≤ j �= j ′′.
The AC index will be equal to its maximum value 1 when
the clustering result and its real partition are equivalent. If the
clustering result is much closer to the true class distribution,
the value of the AC will also be much higher.

Through using the above AC, we compare the proposed
SBC algorithm with those four representative algorithms
for the clustering categorical data, which are denoted by
k-modes, Chan, Mkm-nf, and Mkm-ndm, respectively. In order
to impartially compare, it is necessary to put each of the
algorithms into a uniform environmental condition. The uni-
form environmental condition includes two sides. One is to
set the number of clusters the same as the true number of
classes of each of the nine data sets. When the clustering result
induced by an algorithm is the closest to the true class distri-
bution, we say that the algorithm has much better clustering
performance for a given data set. The other is to randomly
generate initial cluster prototypes of each of these algorithms,
which is because the clustering performance of the k-modes-
type algorithms is dependent on the initial cluster prototypes.
Therefore, we need to investigate their performances from
the viewpoint of statistics. To solve this issue, we run each
of the five algorithms 100 times for each of the nine data
sets, in which the initial cluster prototypes of each run are
randomly regenerated. Furthermore, we compute the average
value (it can be seen as an estimate of the expectation) of
the ACs of the 100 clustering results and its standard devia-
tion on each data set. These experimental results are shown
in Table VII.

It is easy to see from Table VII that the proposed SBC
algorithm is statistically much better than each algorithm
compared for clustering the nine categorical data sets, in which
the highest value of AC is underlined for each of the nine
data sets. In these nine data sets, we can see that the two ver-
sions of the SBC algorithm get much higher ACs than the
four representative baseline algorithms for seven data sets,
while the Chan and Mkm-ndm algorithms only have the
highest AC for one data set each, respectively. Even for the
two better ones for the baselines, the clustering performance
of the SBC algorithms is very close to those of the baseline
algorithms. The clustering performance of these representative
baseline algorithms has no clear good/bad relationships for

the nine data sets. In addition, from Table VII, we also can
observe that the SBC algorithms usually have much smaller
standard deviation than each of the other four algorithms. This
implies that compared with the four representative algorithm,
the SBC algorithms have much better robustness for clustering
a categorical data set. It is worth pointing out that the SBC
algorithms can statistically and markedly improve the AC on
most data sets. For example, the average value of ACs can be
increased by 0.8878 − 0.7865 = 10.13% on the data set Pro-
moters, and can be increased by 0.7618 − 0.6589 = 10.29%
on the data set Lymphography, respectively.

In what follows, we consider another widely used index
(adjusted rand index) for evaluating the performance of
clustering algorithms from a different point of view, which
is also suitable for both the numeric data and the categorical
data. The adjusted rand index is again an external criterion
that attempts to measure the similarity between two clustering
results of objects in the same data set. The adjusted rand
index (ARI) is formally defined as [18]

ARI =
(n

2

) ∑
i j

(ni j
2

) − ∑
i

(bi
2

) ∑
j

(d j
2

)

1
2

(n
2

)[ ∑
i

(bi
2

) + ∑
j

(d j
2

)] − ∑
i

(bi
2

)∑
j

(d j
2

) (13)

where the ni j , bi and d j values from the contingency table
(see Table VI). Like the index AC, if the clustering result is
close to the true class distribution on the same data set, then
the value of the index (ARI) is high. The values of the index
ARI in these experimental results are shown in Table VIII.

It is easy to see from Table VIII that the proposed
SBC algorithm is also statistically much better than each of the
four algorithms compared for clustering the nine categorical
data sets, in which the highest value of ARI is underlined.
In these nine data sets, we can see that the two versions of
the SBC algorithm all get much higher ARI values than the
other four representative baseline algorithms in seven data sets,
while each of algorithms Chan and Mkm-ndm get only the
best in one data set each, respectively. It is worth noting that
the SBC algorithm can statistically and clearly improve the
ARI index on most of the data sets. For example, compared
with the best results clustered by the four baseline clustering
algorithms, the average value of ARI in the SBC-1 algorithm
can be increased by 0.6072 − 0.3334 = 27.38% on the data
set Promoters, and in the SBC-2 algorithm can be increased
by 0.4590 − 0.1987 = 26.03% on the data set Balloon.
For the two worse results, the clustering performance of the
SBC algorithms is still very close to that of the best one of the
other four algorithms. In addition, from Table VIII, it can be
seen that the SBC algorithm usually has much smaller standard
deviations than each of the other four algorithms. This implies
that compared with the four representative baseline algorithm,
the SBC algorithm has much better robustness for clustering
a categorical data set.

C. Computational Performance Analysis

The purpose of this experiment is to test the computational
efficiency of the SBC algorithm.

We first tested the average time of 100 runs of the
six algorithms on the nine data sets, which are shown
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TABLE VII

INDEX AC FROM FIVE DIFFERENT CLUSTERING METHODS FOR THE CATEGORICAL DATA ON THE NINE DATA SETS

TABLE VIII

INDEX ARI FROM FIVE DIFFERENT CLUSTERING METHODS FOR THE NINE DATA SETS

Fig. 4. Running time comparison of the six algorithms on the nine data sets. (a) Fitting contact lenses, Balloon and Space Shuttle Autolanding. (b) Soybean-
small, Hayes-Roth-Hayes-Roth and Lymphography Domain. (c) Vote, Breast Cancer and Promoters.

in Fig. 4(a)–(c), respectively. Each column refers to the
average time of 100 runs of an algorithm.

It can be seen from Fig. 4 that the SBC-1 algorithm with
the cosine distance consumes much longer computational time
than the four representative baseline algorithms for three data
sets, and the SBC-2 algorithm with the Euclidean distance
consumes statistically much shorter computational time for all
the nine data sets. In particular, the SBC-2 algorithm spends
the shortest computational time for five data sets. Although the
time complexity of the SBC algorithm is O(n2), it is satisfying
and acceptable from computational efficiency, especially for
small-scale data sets.

In what follows, we tested three types of scalability of the
SBC algorithm through artificial data sets. The first is the

scalability against the number of objects (where the number
of features is 30, and the number of clusters is 3), the second
is the scalability against the number of features (where the
number of objects is 5000, and the number of clusters is 3),
and the third is the scalability against the number of clusters
(where the number of objects is 5000, and the number of
features is 30). Fig. 5 shows the computational time of the
SBC algorithm for every clustering task.

From Fig. 5(a)–(c), one can see that the SBC-1
algorithm takes much more computational time than the
SBC-2 algorithm, which is caused by distance calculations
using cosine distance metric. From (6), one can see that
the cosine distance metric needs to compute three Euclidean
distances ‖x‖, ‖y‖ and xT y, while (8) only computes
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Fig. 5. Scalability test of the SBC algorithm. (a) Number of objects. (b) Number of features. (c) Number of clusters.

one Euclidean distance. For a given categorical data set, the
computational time of mapping it into the corresponding
Euclidean space is unchanged, which is only a very small
percentage of the entire computational time. For example,
in Fig. 5(c), mapping 5000 objects spend only almost 15 s,
while the SBC-1 version and the SBC-2 version almost spent
440 and 270 s. Each of these two versions is one of the
SBC family for the clustering categorical data.

The above experimental results thus tell us that the pro-
posed algorithms cannot only guarantee to be convergent but
also have better clustering results. The novel point of the
SBC algorithm is the finding of the space structure for
categorical data sets, which is very suitable for discovering
the grouping structure inherent in the categorical data.

D. Relative Discussions

In this section, we summarize the advantages of the space
structure-based clustering algorithm and analyze their reasons.
From the experimental analyses in Sections V-B and V-C,
one can see several advantages of the proposed SBC-type
algorithms, which are listed as follows.

1) Each of the two versions of the SBC-type algorithms
statistically obtains much better clustering results than
the k-modes-type algorithms. In Section III, we have
given the data-representation scheme of categorical
data, which maps a set of categorical objects into a
Euclidean space. This makes the difference between
two categorical objects much finer-gained to measure
than the 0–1 distance, which can be done by either a
Euclidean distance or a cosine distance. In addition, the
new cluster center induced by the mean of all objects
in a cluster may have much better representativeness
than the prototype updated by frequent feature values in
each feature domain in a cluster. Hence, the SBC-type
algorithms significantly improve the clustering
performance of the k-modes-type algorithms when
dealing with the categorical data sets.

2) The SBC algorithms possess much better clustering per-
formance through selecting a corresponding dissimilarity
measure according to the scale of a categorical data set.
From the data-representation scheme of categorical data
in Section III, we know that the number of dimensions
of the Euclidean space mapped is equal to the number

of objects for a given categorical data set. When the
categorical data set is of large scale, the SBC algorithm
with a cosine distance usually has a much better
clustering performance. When the scale of the data set is
small, the SBC algorithm with a Euclidean distance may
be a good choice. Some modified versions of the original
k-means algorithm have much better performances.
Even so, the proposed SBC algorithms still show a very
good performance for clustering a categorical data set.

3) The SBC-type algorithms can provide a semantically
unified framework for clustering a mixed data set with
the numeric data and the categorical data. In most
existing algorithms, for clustering mixed data, the usual
method is to fuse these two types of features with a vari-
able weight. In essence, the numeric data and the cate-
gorical data are processed separately, which is not really
unified semantically. In the proposed SBC algorithms
in this paper, through using the new data-representation
scheme, we can map all objects with the numeric and
the categorical features into the same Euclidean space,
and then use the same dissimilarity measure to cluster
the mixed data set. In this paper, our objective is to solve
the problem of the categorical data not having a clear
space structure. We will study the interesting problem
of clustering a mixed data set in our further work.

VI. CONCLUSION

Clustering categorical data are an important problem in
such areas as pattern recognition, machine learning, data
mining, and knowledge discovery. Many categorical clustering
algorithms have been proposed, in which the k-modes-type
algorithms are very representative because of their good
performance. Due to the fact that the categorical data have no
clear space structure like numeric data, these algorithms still
have a great room for improving the clustering performance.

For clustering categorical data, we have proposed a new
data-representation scheme for the categorical data, which is
used to transform categorical objects into a Euclidean space
with new dimensions. In this Euclidean space, each of the orig-
inal features constructs one of the new dimensions. Based on
the data-representation scheme, we have also given a general
framework of the categorical data clustering algorithms (SBC).
Through selecting various dissimilarity measures, the different
versions of the SBC-type algorithms can be obtained.
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In this paper, we have selected the Euclidean distance and
the cosine distance to construct two versions. To verify the
performance of the SBC-type algorithms, we have employed
four representative algorithms of the k-modes-type algorithms
as references or baselines. Experiments on the nine public
categorical data sets show that the SBC-type algorithms have
much better clustering performance than the k-modes-type
algorithms. In addition, it is worth pointing out that it will
be an interesting issue to cluster a data set mixed with
the numeric data and the categorical data by exploiting the
proposed SBC-type algorithms.
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