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Abstract—Ordinal classification is an important classification
task, in which there exists a monotonic constraint between
features and the decision class. In this paper, we aim at developing
a method of fusing ordinal decision trees with fuzzy rough
set based attribute reduction. Most of the existing attribute
reduction methods for ordinal decision tables are based on the
dominance rough set theory or significance measures. However,
the crisp dominance relation is difficult in making full use
of the information of attribute values; and the reducts based
on significance measures are poor in interpretability and may
contain unnecessary attributes. In this paper, we firstly define
a discernibility matrix with fuzzy dominance rough set. With
this discernibility matrix, multiple reducts can be found, which
provide multiple complementary feature subspaces with original
information. Then diverse ordinal trees can be established from
these feature subspaces, and finally, the trees are fused by
majority voting. The experimental results show that the proposed
fusion method performs significantly better than other fusion
methods using dominance rough set or significance measures.

Index Terms—Ordinal classification, ensemble learning, at-
tribute reduction, fuzzy dominance rough set, discernibility
matrix

I. INTRODUCTION

FUZZY rough set theory is known as a powerful model for
analyzing uncertainty in big data [1]–[5]. In the rough

case, a crisp set is provided with a lower approximation
and an upper approximation, which allow for a granular
representation of knowledge and an excellent description of
the uncertain region. In the fuzzy case, relations between
objects and sets or relations among objects are characterized
by degrees of membership. This allows for great flexibility in
dealing with imprecise information. Fuzzy rough set theory
combines the advantages of fuzzy sets and rough sets. It can
handle uncertainty in nominal or real-valued attributes and has
been successfully applied to machine learning, logical rea-
soning, pattern recognition, intelligent information processing,
and other fields [6]–[10].

An important achievement of rough set theory is that of
attribute reduction in the decision table. Attribute reduction
removes the redundant attributes and preserves the necessary
attributes that can maintain the same discrimination informa-
tion as the original decision table. Great progress has made
on attribute reduction in the past few decades. Ślezak [11]
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reviewed the attribute reduction methods that kept the entropy
invariant. Tsang et al. [12] developed a granularity and re-
duction theory of fuzzy rough sets. Chen et al. [13] proposed
a reduction method based on fuzzy rough sets with Gaussian
kernel. Wang et al. [14] proposed a task fitting selection model
with fuzzy rough sets to guarantee that the membership degree
of a sample reaches the maximal value in its class. Ding and
Lin et al. proposed a series of efficient reduction methods for
large scale databases with fuzzy rough sets [15]–[17].

Ordinal classification problems widely exist in practical
scenarios such as credit risk assessment, product performance
evaluation, university ranking and so on [18], [19]. In ordinal
decision tables, the values of attributes are characterized by
preference relationships. In addition, there is a monotonic
relationship between the feature attribute and the decision
attribute. Generally, the objects with better feature values
should not belong to a worse decision class, such as the
students with higher scores should have higher grades. Sai
and Yao et al. [20] gave the precise definition of general
ordinal tables and proposed a framework to transform the
ordinal table into a traditional one. Another effective approach
to solve ordinal classification is the dominance rough set based
methods [21]. Dominance rough set replaces the equivalence
relation in the classical rough set with the dominance relations.
Based on dominance rough set, Hu et al. [7] defined the
monotonic rank information entropy to measure the quality of
attributes in the ordinal decision tables, and then proposed a
monotonic decision tree REMT to solve ordinal classification
problem. Just as CART for traditional classification, REMT
plays an important role in obtaining monotone consistent,
noise robust and highly interpretable rules.

To further improve the performance of REMT, Qian et al.
[8] and Wang et al. [22] employed ensemble learning method.
Ensemble learning is one of the most promising methods to
improve the generalization performance of learning systems,
especially for decision tree systems [23]–[30]. The main idea
of ensemble learning is to fuse multiple different classifiers
with weak performance. The diversity and accuracy of the base
classifiers are two crucial factors in determining the ensemble
performance. To guarantee the performance of ensemble, Qian
et al. [8] and Wang et al. [22] employed attribute reduction
based on dominance rough set to generate multiple feature
subsets, and then constructed multiple monotonic decision
trees on these subsets. The fusion of the monotonic trees
performances better than the individual one. This inspires us
that the strategy of attribute reduction can be well applied
to ensemble learning. In this paper, we aim to use ensemble
learning with attribute reduction technique to solve the ordinal
classification problem.

Most of the existing researches for ordinal attribute re-
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duction are based on the dominance rough set theory. Qian
et al. [8] defined a variable monotonic dependency measure
based on dominance relation to conduct attribute reduction.
Wang et al. [22] defined a discernibility matrix preserving the
monotonic consistency based on dominance rough set theory.
However, the dominance rough set is an extension of the
classical rough set theory. It inherits the limitation of the rough
set theory: poor ability to deal with real-valued attributes, such
as having a bias to the attributes with more values. Fuzzy
dominance rough set theory uses fuzzy dominance relation
instead of crisp dominance relation to measure the relationship
between objects. Fuzzy dominance relation can not only get
a preference relation between attribute values but also get a
preference degree [31]. In the area of fuzzy rough set, Hu
et al. [32] defined three significance measures and then used
the forward heuristic algorithm for ordinal attribute reduction.
However, a reduction method based on the heuristic algorithms
may contain unnecessary attributes [33]. Besides, the heuristic
algorithms usually get one reduct and the result is easily
affected by the reading order of attributes.

In addition to the reduction methods based on the signifi-
cance measures, Skowron and Rauszer put forward a reduc-
tion method with a discernibility matrix and a discernibility
function [34]–[36]. Each element of the discernibility matrix
stores an attribute subset which distinguishes a pair of objects
in some specified sense. The discernibility function performs
conjunction and disjunction operation on the elements of the
discernibility matrix to get multiple attribute subsets. The
reduction result based on the discernibility function is usually
called as a complete reduct because this kind of result con-
tains all possible attribute subsets defined in the discernibility
matrix. In addition, the attribute subsets generated by the
discernibility matrix maintain the discrimination information
of the original attribute set from different dimensions, which
provides a good foundation for establishing multiple classifiers
with certain accuracy and diversity. Thus, the result of attribute
reduction based on a discernibility matrix is more suitable to
the requirements of ensemble learning than that based on the
significance measures.

According to the above analysis, we focus on using en-
semble learning with discernibility-matrix-based attribute re-
duction technique to improve the performance of ordinal
classifiers. Particularly, we firstly propose the definition of
upward and downward local positive region of the ordinal
decision table. Based on the definition of lower approximation
in [12], we propose a discernibility matrix that preserves the
upward local positive region invariant. Then, based on the
discernibility matrix, multiple reducts can be obtained. Finally,
each attribute subset is used to construct a fuzzy rank entropy
monotonic decision tree, and all of them are fused to obtain
the final predicted results.

The rest of the paper is organized as follows. In Section II,
we introduce the definitions of rough set theory and present
the existing methods of attribute reduction for ordinal decision
table. In Section III, we give the definition of discernibility
matrix preserving the upward local positive region invariant.
We also present the algorithms for fusing fuzzy monotonic
decision trees in this section. The experimental results and

analyses are presented in Section IV. In the end, we conclude
and put forward the future work in Section V.

II. PRELIMINARIES

In this section, we give the fundamental definitions in
dominance rough set theory and introduce some discernibility
matrixes and some significance measures, which were pro-
posed for attribute reduction for ordinal decision table.

A. Dominance Based Rough Sets

Let DT = (U,A ∪ {d}) be an ordinal decision table,
where U = {x1, x2, · · · , xn} is a set of objects, A =
{a1, a2, · · · , am} is a set of feature attributes and d is the
decision class with values {d1, d2, ..., dK}. Let v(x, a) be the
value of x with respect to the attribute a ∈ A, we consider
that v(x, a) ∈ Z or v(x, a) ∈ R, where Z or R are the integer
or real number area, respectively. Without loss of generality,
we assume that d1 6 d2 6 ... 6 dK . Preference relations
exist in decision table: >a, >d, 6a and 6d, which signify
the relation of no worse than or no better than with respect
to a or d, respectively. For a subset of attributes B ⊆ A,
we define x >B y as x >a y for all a ∈ B. We say
DT is monotone increasing consistent with respect to B, if
∀x, y ∈ U , B ⊆ A, x >B y, then x >d y; otherwise, DT
is monotone increasing inconsistent with respect to B. Based
on the preference relations, the x-dominated or x-dominating
sets in terms of D and B are defined. For x, y ∈ U , d ⊆ D,
a ∈ A, B ⊆ A,

[x]>D = {y : y >d x}, [x]6D = {y : y 6d x}, (1)

[x]>B = {y : y >B x}, [x]6B = {y : y 6B x}. (2)

For decision di, let d>i = ∪Kj>idj and d6i = ∪Kj6idj , where
dj is the set of objects with decision dj . We have that d>i ⊇
d>j and d6i ⊆ d6j for i 6 j. The lower approximations of
d>i , d

6
i ⊆ U with respect to attribute subset B are defined as:

B>d>i = {y : [x]>B ⊆ d
>
i }, B6d6i = {y : [x]6B ⊆ d

6
i }.

(3)
Based on the dominance rough set theory, Qian et al. [8]

presented a discernibility matrix for monotone increasing
consistency decision table:

Definition 1: A monotone consistent discernibility matrix
is defined as:

cij =

{
{a ∈ A : xj ∈ [xi]

>
a }, if xj ∈ [xi]

>
D;

∅, otherwise.
(4)

Definition 2: The discernibility function with respect to a
discernibility matrix MA(D) = {cij} is defined as:

f(MA(D)) = ∧{∨(cij)|∀i, j = 1, ..., n, cij 6= ∅}. (5)

where ∨ and ∧ are the disjunction and conjunction operator,
respectively.

By transforming the disjunction norm form into the conjunc-
tion norm form through the absorption law and the distribution
law, one can obtain multiple reducts, that is, the terms of the
conjunction norm form.
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Considering the influence of noisy objects, Qian et al. [8]
also proposed β-variable (β ∈ [0, 0.5]) upward lower and
upper approximations of the decision class:

R>
B(d

>
i ) =

{
x ∈ U |

|[x]6B ∩ d
>
i |

|[x]6B |
> 1− β

}
, (6)

R>
B(d

>
i ) =

{
x ∈ U |

|[x]6B ∩ d
>
i |

|[x]6B |
> β

}
, (7)

where |S| is the cardinality of the set S. Based on these, the
significance measures of the attribute a w.r.t B are defined as:

Sigβinner(a,B, d) = γβB(d)− γ
β
B−{a}(d), (8)

Sigβouter(a,B, d) = γβB∪{a}(d)− γ
β
B(d), (9)

where γβB(d) is defined as:

γβB(d) =

∣∣U− K⋃
i=1

(
R

>
B(d

>
i )−R>

B(d
>
i

)∣∣
|U | .

Actually, γβB(d) measures the monotonic consistency between
B and d, and the parameter β reflects the tolerance degree to
noise, so as to control the relaxation degree of the model.

B. Fuzzy Dominance Based Rough Sets

Let DT = (U,A ∪ {d}) be an ordinal decision table. We
define U/d> = {D>

i , i = 1, 2, ...,K} and U/d6 = {D6
i , i =

1, 2, ...,K}, where D>
i or D6

i is the membership function of
set d>i or d6i satisfying D>

i (x) ⊇ D
>
j (x) or D6

i (x) ⊆ D
6
j (x)

for i 6 j, respectively. We introduce the sigmoid function
to measure the fuzzy preference degree [32]. For x, y ∈ U ,
the fuzzy dominating relation and fuzzy dominated relation
between x and y in terms of a are defined as:

R>a (x, y) =
1

1 + e−k(v(x,a)−v(y,a))
, (10)

R<a (x, y) =
1

1 + ek(v(x,a)−v(y,a))
. (11)

It is easy to observe that R>a (x, y) +R>a (y, x) = 1. R>a (x, y)
measures the preference degree of x over y: R>a (x, y) = 1

2
indicates v(a, x) = v(a, y), R>a (x, y) >

1
2 shows v(a, x) >

v(a, y), and R>a (x, y) <
1
2 shows v(a, x) < v(a, y). The fuzzy

dominance relation based on the sigmoid function does not
satisfy the properties of reflexivity and symmetry, but it is
sup-min transitive. That is:

Property 1: Let R>a be a fuzzy dominance relation based
on sigmoid function, then

(1) R>a (x, x) 6= 1;
(2) R>a (x, y) 6= R>a (y, x);
(3) supzmin{R>a (x, z), R>a (z, y)} 6 R>a (x, y).

The properties are also applied to R<a .
The fuzzy dominance relation degrades into the dominance

relation when k → ∞. If R>a (x, y) and R<a (x, y) are not
participated into the calculation process of learning models,
the value of k dose not make any difference. The reason is that
they are just used to compare relatively in the same dimension.

Based on R>a , the fuzzy dominating class and fuzzy domi-
nated class for x in terms of a are defined as:

[̃x]
>

a =
R>a (x1, x)

x1
+
R>a (x2, x)

x2
+ ...+

R>a (xn, x)

xn
, (12)

[̃x]
<

a =
R<a (x1, x)

x1
+
R<a (x2, x)

x2
+ ...+

R<a (xn, x)

xn
. (13)

If the intersection operator is used to integrate the preference
relations generated by multiple attributes, then for B ⊆ A, we
have:

R>B(x, y) = ∩a∈BR
>
a (x, y) = min

a∈B
R>a (x, y), (14)

R<B(x, y) = ∩a∈BR
<
a (x, y) = min

a∈B
R<a (x, y). (15)

Obviously, R>B(x, y) > R>A(x, y) and R<B(x, y) > R<A(x, y).
The upward and downward fuzzy lower approximation in

terms of a are defined as:

R>a (D
>
i )(x) = inf

z∈U
max{1−R>a (z, x), D

>
i (z)}, (16)

R<a (D
6
i )(x) = inf

z∈U
max{1−R<a (z, x), D

6
i (z)}. (17)

Specifically, if D>
i is the crisp set with D>

i (y) = 1 for y ∈
d>i and otherwise D>

i (y) = 0. then the upward fuzzy lower
approximation is degraded into:

R>a (D
>
i )(x) = inf

z 6∈d>i
1−R>a (z, x). (18)

In this case, the membership of x to the lower approximation
of d>i is larger if x is better than the greatest objects from the
inferior classes. The larger the membership degree, the greater
the dependence of decision attribute on feature attribute or the
larger the consistency degree between them. In this paper, we
consider the crisp ordinal decision class.

With fuzzy rough set, Hu et al. [32] considered the summa-
tion of all objects’ lower approximation degrees to all decision
classes as the approximation quality of feature attributes to the
decision attribute. Based on the idea, the upward, downward
and global significance of attribute a relative to B are defined
as Eq. 19-Eq.21. Then incorporating the significance measures
into Algorithm 1, an upward reduct, a downward reduct and
a global reduct can be obtained. However, the summation
operator is not robust to noise objects, and Algorithm 1 usually
gets a reduct with some unnecessary attributes [33].

C. FREMT: Fuzzy Rank Entropy based Monotonic tree

For ordinal classification, ranking mutual information (RMI)
and fuzzy ranking mutual information (FRMI) are proposed
in [37]. Both RMI and FRMI are important measures of
attributes, which can be used as heuristic criterions to evaluate
and to select features.

Definition 3: Given DT = (U,A ∪ D), where D = {d},
for B ⊆ A ∪ D, the upward ranking mutual information of
the set U in terms of B and D is defined as:

RMI>(B,D) = (22)

− 1

|U |

n∑
i=1

log

∣∣[xi]>B∣∣× ∣∣[xi]>d ∣∣
|U | ×

∣∣[xi]>B ∩ [xi]
>
d

∣∣ .



1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2953024, IEEE
Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. X, MONTH YEAR 4

sig>(a,B,D) =

∑
i

∑
x∈d>i

(
R>{B∪a}D

>
i −R>BD

>
i

)
∑
i |d

>
i |

, (19)

sig<(a,B,D) =

∑
i

∑
x∈d6i

(
R<{B∪a}D

6
i −R<BD

6
i

)
∑
i |d

6
i |

, (20)

sig(a,B,D) =

∑
i |d

>
i |sig>(a,B,D) +

∑
i |d

6
i |sig<(a,B,D)∑

i |d
>
i +

∑
i |d

6
i |

. (21)

Algorithm 1 Forward greedy search for a reduct

Require: Ordinal decision table DT = (U,A ∪ {d})
Ensure: An ordinal reduct of DT : B

1: B = ∅
2: for each feature ai ∈ A−B, do
3: Compute significance degree of attribute a by signifi-

cance measures SIG(ai, B,D) \\ such as Eq. 7, Eq.8
and Eq. 19-Eq.21

4: end for
5: SIG(ak, B,D) = maxi SIG(ai, B,D)
6: if SIG(ak, B,D) > 0 then
7: B = B ∪ ak;
8: Go to Step 2;
9: end if

10: END

Definition 4: Given DT = (U,A ∪ D), where D = {d},
for B ⊆ A∪D, the upward fuzzy ranking mutual information
of the set U in terms of B and D is defined as:

FRMI>(B,D) = (23)

− 1

|U |

n∑
i=1

log

∣∣[̃xi]>B∣∣× ∣∣[̃xi]>d ∣∣
|U | ×

∣∣[̃xi]>B ∩ [̃xi]
>

d

∣∣ .
A monotonic decision tree based on RMI, the so-called

REMT, is established in [7]. REMT is capable to capture
the monotonic structure in ordinal classification. Replacing
RMI with FRMI in REMT, we obtain the fuzzy rank entropy
based monotonic decision tree (FREMT), which is suitable
for ordinal classification and captures more information than
REMT. The algorithm of FREMT is shown as Algorithm 2.
FREMT is a binary tree. The structure of FREMT is the same
as that of the famous CART algorithm, while the difference
is that CART adopts the Gini index as the heuristic criterion.

III. FUSING FUZZY MONOTONIC DECISION TREES USING
FUZZY DOMINANCE ROUGH SET

In this section, we define a discernibility matrix for ordinal
decision table using fuzzy dominance rough set and present
the fusion algorithm for ordinal classification.

A. Discernibility Matrix with Fuzzy Dominance Rough Set

Although some significance measures of attributes have
been proposed, the reduction methods with them are based
on the forward heuristic algorithm. Generally, the heuristic

Algorithm 2 FREMT

Require: Ordinal decision table OD = (U,A ∪ d); stoping
criterion of FREMT: ε

Ensure: A monotonic decision tree T .
1: If the number of objects is 1 or all objects are from the

same class, then the branch stops growing.
2: otherwise,
3: for each feature ai, do
4: for each cj ∈ Vai (Vai is the domain of value of ai),

do
5: Divide objects into two subsets according to cj ,
6: if f(ai, x) ≤ cj then
7: Put x into one subset, and set f(ai, x) = 1,
8: else
9: Put x into the other subset, and set f(ai, x) = 2.

10: end if
11: Denote the binarized feature in terms of ai

and cj as ai(cj) and compute FRMIcj =
FRMI≥({ai(cj)}, {d}).

12: end for j
13: c∗j = argmaxj FRMIcj .
14: end for i
15: Select the best feature a∗ and the corresponding point c∗:

(a∗, c∗) = argmaximaxj FRMI≥({ai(cj)}, {d}).
16: If FRMI≥({a∗}, {d}) < ε, then stop.
17: Build a new node and split objects with a∗ and c*.
18: Recursively produce new splits according to the above

procedure until stopping criterion is satisfied.

reduction algorithm can only get a reduct and is easily affected
by the reading order of attributes. To get multiple reducts,
researchers often permute the attributes [38]. This strategy
makes the relation of the multiple attributes subsets unclear
and lack of interpretability. In this subsection, we define
a discernibility matrix for ordinal attribute reduction. The
subsets of attributes based on the discernibility matrix are
complete and diverse.

In the classical rough set, the union of the lower approx-
imation to each decision class, the so-called positive region,
is often used to define the discernibility matrix. However, in
the ordinal decision table, there is an inclusion relationship
between the hierarchical decision classes (d>i or d6i ), which
leads to the union of the lower approximations is equal to
the lower approximation of the universal set. Firstly, we give
the definition of the local positive region, then based on
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the definition of lower approximation in [12], we obtain a
discernibility matrix.

Definition 5: For each object x, the upward local positive
region with respect to R>A and and the downward local positive
region with respect to R<A are defined as:

LPosR>
A
(D)(x) = ∪

D
>
i ∈U/d>,di>dx

R>A(D
>
i )(x), (24)

LPosR<
A
(D)(x) = ∪

D
6
i ∈U/d6,di6dx

R<A(D
6
i )(x). (25)

By definition, we have that LPosR>
A
(D)(x) takes its maxi-

mum at R>A(D
>
x )(x) and LPosR<

A
(D)(x) takes its maximum

at R<A(D
6
x )(x):

LPosR>
A
(D)(x) = R>A(D

>
x )(x), (26)

LPosR<
A
(D)(x) = R<A(D

6
x )(x). (27)

This is consistent with the situation in the fuzzy rough set
that the positive region of an object is equal to the lower
approximation of its own decision class [12], [14]. Compared
with taking the summation over the lower approximations
as a significance measure, considering each object’s lower
approximation is expected to be robust to noisy object.

Next, we will introduce another way to define the lower
approximation, which is helpful to find the discernibility
attributes for each pair of objects. Without loss of generality,
we only use the upward relation in the following.

Definition 6: The fuzzy x-dominated class in terms of R>a
is defined as:

(xλ)R>
a
(z) =

{
0, 1−R>a (z, x) > λ,

λ, 1−R>a (z, x) < λ.
(28)

where λ ∈ (0, 1].
In fact, (xλ)R>

a
is a λ-level cut set with respect to 1−R>a .

It satisfies the following properties:
1) (xλ1

)R>
a
⊆ (xλ2

)R>
a

if λ1 < λ2;
2) 1−R>A(z, x) > 1−R>B(z, x) and (xλ)R>

A
⊆ (xλ)R>

B
if

B ⊆ A.
Theorem 1: The lower approximation to D>

i in terms of
R>a is defined as:

R>a (D
>
i ) = ∪λ{(xλ)R>

a
: (xλ)R>

a
⊆ D>

i , λ ∈ (0, 1]}. (29)

Proof: Suppose R>a (D
>
i )(z) = λ∗, then we prove that

∪λ{(xλ)R>
a
: (xλ)R>

a
⊆ D>

i , λ ∈ (0, 1]} = λ∗. By definition,
we have that ∀z ∈ d<i , 1−R>a (z, x) > λ∗. Besides,

(xλ)R>
a
⊆ D>

i ⇔ ∀z ∈ d
<
i , (xλ)R>

a
(z) = 0 (30)

⇔ ∀z ∈ d<i , 1−R>a (z, x) > λ. (31)

Hence, (xλ)R>
a
⊆ D>

i requires that λ 6 λ∗. Thus, for
(xλ)R>

a
⊆ D>

i , ∪λ(xλ)R>
a
= (xλ∗)R>

a
.

In rough set and fuzzy rough set, the lower approximation of
a set can be represented by the union of multiple equivalence
classes or fuzzy equivalence classes contained in the set and
different equivalence classes are mutually disjoint [12]. In
dominance rough set, the lower approximation can also be ex-
pressed as an union of fuzzy classes, while (xλ)R>

a
6= (yλ)R>

a

⇒ (xλ)R>
a
∩ (yλ)R>

a
= ∅ is not established. The reason is

that the transitivity of fuzzy relation is directional.

Definition 7: For a fuzzy ordinal decision table DT =
(U,A∪ {d}), B ⊆ A is a local positive region reduct relative
to A if it satisfies:

1) LPosR>
B
D = LPosR>

A
D; (32)

2) ∀a ∈ B,LPosR>
{B−a}

D 6= LPosR>
B
D. (33)

Theorem 2: Suppose B ⊆ A is a local positive region
reduct of fuzzy ordinal decision table if and only if for each
x, B satisfies (xλ)R>

B
⊆ D>

x , λ = R>A(D
>
x )(x).

Proof: ⇐: It is clear by using (xλ)R>
A
⊆ (xλ)R>

B
.

Theorem 3: Suppose B ⊆ A is a local positive region
reduct of fuzzy ordinal decision table if and only if for
every x with λ = R>A(D

>
x )(x), when y ∈ D<

x , we have
1−R>B(y, x) > λ.

Proof: If B ⊆ A is a local positive region reduct of fuzzy
ordinal decision table, then for λ = R>A(D

>
x )(x), we have

∀x ∈ U, (xλ)R>
B
⊆ D>

x , (34)

⇔ for y ∈ D<
x , (xλ)R>

B
(y) = 0, (35)

⇔ for y ∈ D<
x , 1−R>B(y, x) > λ. (36)

According to the analysis, we can define the discernibility
matrix MA(D) = (cij)n×n as follows:

Definition 8: A discernibility matrix keeping the local pos-
itive region invariant is defined as:

cij =

{
{a ∈ A : 1−R>a (xj , xi) > λi}, if xj ∈ D<

xi
;

∅, otherwise,
(37)

where λi = R>A(D
>
xi
)(xi).

The above discernibility matrix makes sure of keeping the
local positive region of each object invariant, because for
∀a ∈ cij satisfies 1 − R>a (xj , xi) > λi, the final reduction
B by discernibility function also satisfies 1 − R>B(xj , xi) =
maxa∈B 1 − R>a (xj , xi) > λi, which meets the requirement
of Theorem 3.

Next, an example is employed for showing the efficiency of
the proposed reduction method. Table I is an ordinal decision
table selected from the Bankruptcy risk dataset. Bankruptcy
risk records the experience of a Greek industrial development
bank financing industrial and commercial firms. Suppose U =
{x1, x2, x3, x4, x4, x5, x6} is a set of objects, each object is
characterize by 12 ordinal feature attributes. The decision class
is shown in the last row.

TABLE I: Ordinal decision table from Bankruptcy risk

U/A 1 2 3 4 5 6 7 8 9 10 11 12 D
x1 3 2 1 1 1 4 4 4 4 4 2 4 3
x2 2 1 3 1 1 3 5 2 4 2 1 3 3
x3 2 1 1 1 1 3 2 2 4 4 2 3 2
x4 2 1 2 1 1 2 4 3 3 2 1 2 2
x5 3 2 1 1 1 1 3 3 3 4 3 4 1
x6 3 1 1 1 1 1 2 2 3 4 3 4 1

Based on Definition 1, the obtained discernibility
matrix is shown in Table II. According to the
discernibility function Eq. (4), the reduction result is
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TABLE II: Discernibility matrix based on Definition 1

U2 x1 x2 x3 x4 x5 x6

x1 ∅ ∅ {1, 2, 6, 7, 8, 12} {1, 2, 6, 8, 9, 10, 11, 12} {6, 7, 8, 9} {2, 6, 7, 8, 9}
x2 ∅ ∅ {3, 7} {3, 6, 7, 9, 12} {3, 6, 7, 9} {3, 6, 7, 9}
x3 ∅ ∅ ∅ ∅ {6, 9} {6, 9}
x4 ∅ ∅ ∅ ∅ {3, 6, 7} {3, 6, 7, 8}
x5 ∅ ∅ ∅ ∅ ∅ ∅
x6 ∅ ∅ ∅ ∅ ∅ ∅

TABLE III: Discernibility matrix based on Definition 8

U2 x1 x2 x3 x4 x5 x6

x1 ∅ ∅ {7, 8} {6, 10, 12} {6} {6, 7, 8}
x2 ∅ ∅ {3, 7} {3, 6, 7, 9, 12} {3, 6, 7, 9} {3, 6, 7, 9}
x3 ∅ ∅ ∅ ∅ {6} {6}
x4 ∅ ∅ ∅ ∅ {3, 6, 7} {3, 6, 7, 8}
x5 ∅ ∅ ∅ ∅ ∅ ∅
x6 ∅ ∅ ∅ ∅ ∅ ∅

{{7, 9}, {6, 7}, {3, 9, 12}, {3, 8, 9}, {3, 6}, {2, 3, 9}, {1, 3, 9}}.
The less monotone consistency attributes {1} and {12} are
included in the result by sample pair (x1, x3), (x1, x4)
and (x2, x4). While in the proposed discernibility matrix
(Definition 8), each attribute is judged by λi, which is the
value with respect to the most monotone consistent attribute:

λi = R>A(D
>
xi
)(xi) = inf

z∈d<xi

max
a∈A

1−R>a (z, xi). (38)

Thus, the attributes will make a comparison with each other
before selection. Our discernibility matrix is shown in Table
III and the reduction result is {{6, 7}, {3, 7, 8}}, shown as
Eq. (39). This signifies that the proposed discernibility matrix
makes full use of the global information of attributes.

Besides, the reduction result of Algorithm 1 with Eq. (19) as
the significance measure is {6, 1, 7}. Obviously, the attribute
{1} should not be included in. However, after {6} is selected
into the reduction set, {1} increases the membership degree
of x5 and x6 to d>3 , which leads to the increase of the total
degree. This signifies that the summation operator is not robust
to the noise objects, which may produce an inappropriate
reduct.

B. A More General Discernibility Matrix for Ordinal Classi-
fication

Because the preference relationship induced by an attribute
set is determined by the intersection of the relationships
induced by its elements, as shown as Eq. (15) and Eq. (16), the
local lower approximation for each object λi is the distance in
terms of the most discriminative attribute with the best objects
from its inferior class. Thus in Definition 8, the attributes
which are not inferior to the best attribute can be selected
into the discernibility matrix. This requirement may be strict
for real-world classification problems. For classification, even
if an attribute produces a small gap for objects, it may
provide some discrimination information. To contain the weak
monotonicity of attributes and the inconsistency of decision
table, we use the quantile operator 1 − p instead of the

intersection operator to integrate the multiple attributes. Thus,
the maximization operator in λi is generalized to the p-th
maximization.

Definition 9: A generalized discernibility matrix for ordinal
classification is defined as:

cij =

{
{a ∈ A : 1−R>a (xj , xi) > λi}, if xj ∈ D<

xi
;

∅, otherwise,
(40)

where λi = infz∈d<xi
[1− R>a (z, xi), a ∈ A]p and [·]p denotes

the p-th maximal value in set.
In practice, we use Definition 9 to build the discernibility

matrix. The parameter p controls the number of attributes
selected into cij , and thus influences the number of attributes
in the reducts. When p value is 1, Definition 9 is degraded to
Definition 8. This is the most rigorous way to filter attributes.
In this case, the number of attributes in cij is less, and the
probability that the intersection of cij is empty is larger, thus
the probability that the reducts have more attributes is larger.
When the p value approaches the number of original features,
all the attributes will be selected for each pair of objects, and
the reducts are singleton sets.

C. Algorithms for Fusing Complete Fuzzy Monotonic Deci-
sion Trees

After building the discernibility matrix, we will find reducts
based on it. Skowron and Rauszer proposed a reduction
method with a discernibility function [34], which can find
all the reducts simultaneously. The essential of this method
is the laws of absorption and distribution. Here, we present
efficient algorithms to implement the laws of absorption and
distribution. Next, following a discernibility matrix simplifica-
tion methodology for constructing attribute reducts proposed in
[39], we offer an efficient procedure to find a reduct based on
the discernibility matrix. Finally, we give our fusion algorithm.

Based on the absorption law in discernibility function, only
the minimum elements M∗A(D) that cannot be contained by
other elements in the discernibility matrix are sufficient and
necessary to find the final reduction [40]. For example, in Table
II, only {7∨ 8}, {6} and {3∨ 7} are required. Putting all the
elements into the discernibility function definitely increases
the time complexity and the computational load.

To compress discernibility matrix, Chen et.al. proposed
the SPS method [41], which selects the sample pairs that
determine the minimum elements. The SPS is a point-based
algorithm and its time complexity is |U |4|A|. Here, we present
a vector-based algorithm to implement the absorption law.
Firstly, we represent the inverse of the discernibility matrix
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f(MA(D)) ={7 ∨ 8} ∧ {6 ∨ 10 ∨ 12} ∧ {6} ∧ {6 ∨ 7 ∨ 8} ∧ {3 ∨ 7} ∧ {3 ∨ 6 ∨ 7 ∨ 9 ∨ 12} (39)
∧ {3 ∨ 6 ∨ 7 ∨ 9} ∧ {3 ∨ 6 ∨ 7} ∧ {3 ∨ 6 ∨ 7 ∨ 8}

={7 ∨ 8} ∧ {6} ∧ {3 ∨ 7} = {6 ∧ 7} ∨ {3 ∧ 6 ∧ 8}.

as a binary matrix. Here, the inverse refers to the De Morgan
law. For example, the inverse of {6 ∨ 7} ∧ {3 ∨ 6 ∨ 8} is
{6 ∧ 7} ∨ {3 ∧ 6 ∧ 8}. Let the rows and the columns in the
binary matrix correspond to the disjunction operator ∨ and
the conjunction operator ∧, respectively. Thus the inverse of
MA(D) is represented as:

MA(D)ij =

{
1, the ith term contains the jth attribute;
0, otherwise.

MA(D) is a matrix with |A| columns and at most |U |2
rows because there are empty sets in the discernibility matrix.
Algorithm 3 is designed to execute the absorption law by
deleting the other rows that contain the current one. The time
complexity of Algorithm 3 is O(L∗L|A|), where L∗ and L are
the numbers of rows in M

∗
A(D) and MA(D), respectively and

L∗ ≤ L ≤ |U |2. The worst case time complexity of Algorithm
3 is the same as the SPS method, while Algorithm 3 runs faster
than SPS in the real application because there are not too many
counting, intersection and union operations in Algorithm 3.

Algorithm 3 Matrix absorption law

Require: The inverse of the original discernibility matrix
MA(D)

Ensure: The inverse of the absorbed discernibility matrix
M
∗
A(D)

1: Find the unique rows of MA(D);
2: Sort the rows of MA(D) in ascending order in terms of

the number of 1′s in each row and represent the sorted
matrix as M

∗
A(D);

3: Let L∗ be the number of rows in M
∗
A(D) and i = 1;

4: while i ≤ L∗ do
5: Delete the other rows that contain the ith row

in M∗A(D), that is, the other rows that satisfy
M
∗
A(D)CTi = li, where Ci is the ith row in M

∗
A(D)

and li is the number of 1′s in Ci;
6: Update L∗

7: i = i+ 1
8: end while

Next, we implement the distribution law in the discernibil-
ity function based on Shannon’s expansion [42]. Shannon’s
expansion shows that any matrix or disjunction normal form
M can be represented by a combination of two sub-functions
of the original:

M = mjMmj +Mmj ,

where mj is the variable in j-th column, Mmj
is obtained by

setting the j-th column as 0 in M , Mmj
is obtained by deleting

the rows that the j-th column is 1 in M , and Mmj is the
inverse of Mmj

. By recursively using Shannon’s expansion,

Algorithm 4 Matrix distribution law: Shannon’s expansion for
M∗A(D)

Require: The inverse of the absorbed discernibility matrix
M
∗
A(D)

Ensure: A set of reducts RED
1: Choose the rows in M

∗
A(D) which have the fewest

number of 1’s and put the features that appear in these
rows into feature subset A0;

2: Choose the attribute from A0 that appears most often in
the other rows in M

∗
A(D) (suppose it is the jth attribute);

3: Build the matrix of the right branch Rightj with the rows
in M

∗
A(D) whose jth column are 0;

4: Build the matrix of the left branch Leftj by setting the
jth column of M

∗
A(D) as 0 and finding the unique of the

rows;
5: if There is a row of all 0′s in Leftj then
6: Left′j = ∅;
7: else
8: Left′j ← Algorithm 4 (Leftj);
9: end if

10: if Rightj = ∅ then
11: Right′j is equal to the zero vector with |A| columns;
12: else if Rightj has only one row then
13: Let l be the number of 1′s in Rightj ;
14: Initialize Right′j as the zero matrix with l rows and |A|

columns;
15: for i = 1 to l do
16: Denote h as the column index corresponding to the

ith 1 of Rightj ;
17: Set the ith row and hth column in Right′j as 1;
18: end for
19: else
20: Right′j ← Algorithm 4 (Rightj);
21: end if
22: Set the jth column in Right′j as 1;
23: RED = [Left′j ;Right

′
j ].

the conjunction normal MA(D) can be transformed to the
disjunction normal form, and the reducts can be found. The
detailed implementation processes are shown in Algorithm 4.
Actually, the right branch of and the left branch of Algorithm
4 implement the mjMmj

and Mmj
, respectively. One can

refer to Ref. [42] for a vivid example. The time complexity
of Algorithm 4 is O(L∗V1), where V1 is the number of nodes
and L∗ is the time complexity of each node (the number of
rows in M

∗
A(D)).

Algorithm 4 finds all reducts simultaneously. Generally, for
data sets with a high dimension, the number of reducts found
by Algorithm 4 is quite large. However, in ensemble learning,
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fewer base classifiers can achieve satisfactory performance.
Thus, sometimes we need to manually specify the number of
base classifiers for fusion. Based on these two considerations,
it is very meaningful to find a reduct by discernibility ma-
trix. In [39], Yao and Zhao proposed a discernibility matrix
simplification methodology for constructing attribute reducts.
Following their work, we give a procedure to find a reduct
based on discernibility matrix, which is shown as Algorithm 5.
This algorithm executes the absorption and deletion operations
row by row to simplify the elements in discernibility matrix
to singleton sets, and the union of all the singleton sets is
a reduct. The deletion operation complies with the fact that
the attributes set A can be deleted if none of the subsets of
A corresponds to a row in M

∗
A(D). The time complexity of

Algorithm 5 is O(tL∗|A|), where t is the number of iterations
and t� L∗. Running Algorithm 5 multiple times can generate
a set of reducts for learning multiple monotonic decision trees.

Algorithm 5 Finding a reduct based on discernibility matrix

Require: The inverse of the absorbed discernibility matrix
M
∗
A(D)

Ensure: A reduct B
1: Sort the rows of M

∗
A(D) randomly;

2: Let L∗ be the number of rows in M
∗
A(D);

3: while i ≤ L∗ do
4: Select the ith row form M

∗
A(D) and note as mi;

5: Put the features that appear in mi into features set A;
6: Randomly select a feature from A, note as a;
7: Set the ath column of mi to be 1 and other columns to

be 0;
8: Set A0 = A− a
9: for j = i+ 1 to L∗ do

10: Let mj be the jth row in M
∗
A(D);

11: if The ath column of mj is 1 then
12: Delete mj ;
13: else if The features that appear in mj are not a subset

of A0 then
14: Set the A0 column of mj as 0;
15: end if
16: end for
17: Update L∗ and set i = i+ 1;
18: end while
19: Output B as the union of attribute that appears in M

∗
A(D).

Based on the above two methods to find reducts, we develop
two fusion methods. One is for using all reducts (Algorithm
4), and the other is for fusion with a specified number of
base classifiers (Algorithm 5). Using each reduct, we grow a
FREMT and fuse all FREMT trees by majority voting. That
is, an object is classified into the class that is assigned by
the majority of the FREMT trees. For the fusion strategy, we
can also use the median of the label as the prediction label,
while the vote strategy is a more robust and lower-complexity
approach [28]. The detailed algorithm is shown in Algorithm
6, named as FFREMT: Fusing Fuzzy Rank Entropy Based
Monotonic Tree. The FFREMT mainly contains two aspects:
generating attribute reduction subsets and fusing multiple

REMT trees. As for the first aspect, the time complexity has
been given above. The time complexity of building L′ FREMT
trees is O(L′bV2|U ||A|2), where b is the number of nodes in
the tree and V2 is the number of different values in the features.

Algorithm 6 FFREMT

Require: Ordinal decision table OD = (U,A ∪ d); stoping
criterion of FREMT: ε; Parameter of discernibility matrix
p; Sample to be predicted: x

Ensure: The decision of x
1: Generate discernibility matrix MA(D) by Definition 9

with parameter p and express it in binary matrix form;
2: Simplify MA(D) as M

∗
A(D) by Algorithm 3;

3: Find multiple reducts RED with M
∗
A(D) by Algorithm

4 or by running Algorithm 5 L′ times; \\ Algorithm 4
is designed for finding all reducts and Algorithm 5 for a
reduct.

4: Transform each row of RED into the collection form and
denote as {B1, ..., BL′}, where L′ is the rows number of
RED;

5: for B1 to BL′ do
6: learn a monotonic decision tree Tl with Algorithm 2.
7: make a prediction on x using Tl: dl(x) = Tl(x).
8: end for
9: Return the predict class by voting rule: d̂(x) =

argmax
k

( L′∑
j=1

I{dl = k}
)

(I{·} is the counting function).

IV. EXPERIMENTAL ANALYSIS

In this section, the effectiveness of FFREMT is shown by
comparing with several other ensemble methods for ordinal
classification.

A. Benchmark Methods and Data Sets

FREMT [7] is used as the base classifier for all ensemble
methods. Four significance measures for ordinal attributes have
been defined in [8] and [32], as introduced in Eq. (8)-(9),
(19), (20) and (21) in Section II. The algorithm for searching
multiple reduction subsets with significance measures have
been applied in [8], that is, Algorithm 3 in [8]. We embed the
four significance measures into the Algorithm 3 in [8] to obtain
multiple reductions and use them construct multiple FREMT,
and the ensemble methods based on the four significance
measures are represented as β-red [8], up-sig [32], down-sig
[32], and global-sig [32], respectively. In addition, there are
two discernibility matrixes defined for ordinal classification.
One is the monotonic consistency matrix MCM in Definition
1. The other is FCMT based on the monotonic consistency set
[22]. We embed MCM and FCMT into the Step 1 of Algorithm
6 to fuse FREMT. We also use bagging to promote FREMT. In
bagging, we form 21 new training sets, construct FREMT on
them and ensemble the trees by voting rules. We will compare
FFREMT with these methods.
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TABLE IV: Data sets in the experimental analysis

ID Data sets objects features classes source
1 Breast cancer 699 9 2 UCI
2 Wine-red 1599 12 6 KEEL
3 Wine 178 13 3 KEEL
4 Boston housing 506 13 4 WEKA
5 Australian 690 14 2 UCI
6 German 1000 19 2 KEEL
7 Student score 512 25 3 [8]
8 Statlog Landsat Satellite 6435 36 7 UCI
9 Waveform Database Generator40 5000 40 3 UCI
10 Molecular Biology 106 57 2 UCI
11 Residential-Building 372 103 5 UCI
12 Urban Land Cover 168 147 9 UCI
13 Parkinson’s Disease 756 752 2 UCI
14 DrivFace 606 6400 3 UCI
15 Arcene 100 10000 2 UCI

Fifteen real-world classification tasks are used as benchmark
data sets. The detail information of them is described in
Table IV. The missing values in data sets are imputed by
the nearest-neighbor method, while the rows or columns with
too many missing values will be deleted. The predict variable
of Residential-Building is continuous. We discretize it by the
bin method with a ratio of 144:105:90:19:14. For the first
seven data sets, we find all the reducts by Algorithm 4, and
compare FFREMT with all of the above mentioned benchmark
methods. For the last eight data sets, we find 21 reducts
by Algorithm 5, and because the significance measure based
methods are computationally infeasible, we only compare
FFREMT with Bagging and the other two discernibility matrix
based methods.

B. Data Pre-processing
To ensure that the preference degree generated by each

attribute is in the same dimension, a data set is normalized
through training set by the range method. That is, each
attribute is normalized by the following transformation:

v(x, a) =
v(x, a)−miny∈U1

v(y, a)

maxy∈U1 v(y, a)−miny∈U1 v(y, a)
, (41)

where U1 is the training set.
In practice, the data set may present decreasing monotonic-

ity: the worse feature value gets the better decision class.
In this case, we need to preprocess each attribute in data
sets to satisfy the assumption of increasing monotonicity.
There are several solutions to this problem. Here, we choose
the Spearman rank correlation coefficient to measure the
monotonicity consistency between attribute and decision. In
particular, let ai and di (i = 1, 2, · · · , n) be the ranking results
on n objects according to attribute and decision, respectively.
The rank correlation coefficient is calculated as:

Spearman(a, d) = 1− 6

n(n2 − 1)

n∑
i=1

(ai − di)2. (42)

If the Spearman rank correlation coefficient between it with
the decision is negative, we use one minus the attribute to
replace the original one.

Besides, label noise is also widespread and makes impacts
on the decision-making. In ordinal decision table with increas-
ing monotonic constraint, the objects with a better attribute but
a worse decision class will be considered as a noisy object.
Although we have preprocessed the data to satisfy increasing
monotonic, this process is totally based on a global Spearman
rank correlation coefficient value. Here, we reset the label of
training objects which belong to a monotone inconsistent set.
In particular, let

UβM =
{x| |[x]

≤
A∩[x]

≤
d |

|[x]≤A |
≥ 1− β}, if |[x]≥A| < n0;

{x| |[x]
≥
A∩[x]

≥
d |

|[x]≥A |
≥ 1− β}, if |[x]≤A| < n0;

{x| |[x]
≥
A∩[x]

≥
d |

|[x]≥A |
≥ 1− β, |[x]

≤
A∩[x]

≤
d |

|[x]≤A |
≥ 1− β}, otherwise

(43)

be the monotone consistent set, where β ∈ [0, 0.5] and n0 is a
constant that is much smaller than the number of the training
objects. The probability that an object belongs to dk can be
estimated by:

P (d(x) = dk) = P (d(x) ≥ dk)− P (d(x) ≥ dk+1), (44)

where

P
(
d(x) > dk

)
=

∣∣[x]>A ∩ d>k ∣∣∣∣[x]>A∣∣ , (45)

and P
(
d(x) > dK+1

)
= 0. For x ∈ U1 − UβM , the label of it

should be reset as:

d(x)∗ = argmax
k

P (d(x) = dk), k = 1, ...,K. (46)

C. Evaluation Measures and Parameter Selection

Here, the classification accuracy CA and the mean absolute
error MAE are employed to evaluate the performance of the
methods. CA is computed as:

CA =
1

n

n∑
i=1

I{d̂(xi) = d(xi)}, (47)

where I{·} is the counting function: if d̂(xi) = d(xi), then
I{d̂(xi) = d(xi)} = 1, otherwise I{d̂(xi) = d(xi)} = 0.
MAE is computed as:

MAE =
1

n

n∑
i=1

|d̂(xi)− d(xi)|, (48)

where n is the number of objects, d̂(xi) is the predict decision
and d(xi) is the true decision.

For the first seven data sets, we randomly divide it into U1

and a test set U2 at a ratio of 7:3, and for the last eight bigger
ones, we divide at a ratio of 1:9. We conduct the division
24 times to obtain the average performance. All methods are
run under the same U1-U2 division. For the methods without
parameters to tune, we use U1 as the training set. For the
methods with parameters to tune, we further divide U1 into
a training set U11 and a validation set U12 at a ratio of
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Fig. 1: Significance Test Results in terms of MAE and CA

7:3. We conduct the U11-U12 division 10 times to obtain
the mean validation MAE for each pair of parameters. And
the parameters with the minimum mean validation MAE are
chosen as the optimal parameter for training. The parameter
p is chosen from 1 to min{b|A|/2c, 10} with a step 1 and β
is chosen from 0.1 to 0.5 with a step 0.1.

D. Experimental Results and Analysis

Table V and VI records the mean and standard deviation
of test MAE and test CA. In each row, the method with the
maximum value is in bold font; black dots mark behind the
values of a method which FFREMT is significantly better than
under the pairwise right-tailed Student’s test with 95 percent
significance level. The last row records the times of win-lose-
tie by comparing FFREMT with the others, and the numbers
in brackets record the times of significant win. It can be
observed that FFREMT performs better on most data sets, and
makes significant improvements in Wine-red, Boston housing,
German, Student Score, Stalog, Waveform and Arcene.

To further analyze the results, we compare these methods
by their confidence intervals [23]. Let [L(a,d,m), U(a,d,m)] be
the 95 percent confidence interval of method a on data set d
in the sense of performance measure m:

L(a,d,m) = µ(a,d,m) − 1.96
σ(a,d,m)√

n
,

U(a,d,m) = µ(a,d,m) + 1.96
σ(a,d,m)√

n
,

(49)

where µ(a,d,m) is the mean value and σ(a,d,m) is the standard
deviation across n times runs. For two methods a and a′,
if La,d,m > Ua′,d,m, then we say that a significantly wins
a′, otherwise a significantly loses to a′. Each bar in Fig. 1
represents the number gap between the significant win and
lose times of a given method compared with the others on
the first seven data sets. From Fig. 1, we can see that the
performance of FFREMT is significantly better than the other
six reduction-based ensemble methods and Bagging.

We show the influence of parameters on each data set in
Fig. 2. The x-axis and the y-axis represent the value of β and
p, respectively. The z-axis represents mean validation MAE.
We can observe that the parameter p plays an important role
in tuning the performances of the FFREMT algorithm. For
Breast cancer, Wine, Student score and Stalog, a larger p value
performs better. This signifies that for data sets with more
monotonic consistency attributes, the parameter p should be
larger. For Boston housing, Australian, German and Arcene,
the influence of parameter β is more than that of parameter p.

We also show the comparison of mean reduction time and
mean tree-building time on each data set in Fig. 3. It is easy

to observe that the reduction methods based on significance
measures are more time consuming than the discernibility
matrix based methods. And in discernibility matrix based
methods, the time is dominated by tree-building, which is
meet the basic requirements of ensemble learning. These
demonstrate that the proposed reduction method and ensemble
method is effective and serviceable.

V. CONCLUSION AND FUTURE WORK

In this paper, we mainly focus on developing a fusion
method based on attribute reduction to solve ordinal classifica-
tion problem. To achieve this, we firstly define a discernibility
matrix with fuzzy dominance rough set and introduce the
algorithms for finding reducts based on it. Each reduct forms
a feature subspace with original information, and ordinal
decision trees are built in these feature subspaces. Finally,
we fuse these trees by voting. Numerical experimental results
demonstrate that the proposed fusion method is effective
and feasible. The major contribution of this paper is that
we have theoretically defined a discernibility matrix using
fuzzy dominance rough set and have proposed an effective
fusion method for ordinal classification problem. We have
verified that the reducts based on discernibility matrix are well
suited to ensemble learning, and the combination of them is
competent to further improve the generalization performance
of the fuzzy monotonic decision tree. In addition, we have
offered efficient procedures for implementing the laws of
absorption and distribution, and for finding a reduct based
on the discernibility matrix. In the future, we will work
on eliminating the random consistency from the attribute
dependence measure to describe the attribute more objectively
and correctly. We will also consider attribute reduction and
ensemble methods for mixture decision tables which contain
both ordinal and nominal attributes.
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Fig. 2: The Influence of Parameters on Validation MAE
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TABLE VI: Comparison on MAE and CA

DATA ID
MAE ± std

FREMT MCM FCMT Bagging FFREMT

8 0.5933 ±0.0396 • 0.3718 ±0.0218 0.3703 ±0.0188 0.3712 ±0.0132 0.3644 ±0.0180

9 0.4341 ±0.0165 • 0.4632 ±0.0293 • 0.4585 ±0.0258 • 0.3901 ±0.0195 • 0.3377 ±0.0360
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