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Granular computing plays an important role in human reasoning and problem solving, 
a reasonable granulation method is important in practical tasks. Clustering is one of the 
most common methods of granulation, learning clear and correct grouping structure of 
a data set is a key pursuit for clustering algorithm. An excellent clustering algorithm 
needs to not only explore similar characteristics of individual group but also to pay 
attention to ensure higher discrimination among different centers. Ignoring the between-
cluster variation will lead to a phenomenon that multiple learned centers concentrate to 
one point, it happens especially when confronted with datasets exist overlapping regions 
among clusters. To overcome this issue, we model the diversity information in-between 
different clusters and measure it with a statistical dependence metric Hilbert Schmidt 
Independence Criterion (HSIC), and then develop a Diversity-induced Fuzzy C-Means 
clustering algorithm framework based on traditional Fuzzy C-Means algorithm, which 
can minimize the within-cluster dispersion and maximize between-clusters separation 
simultaneously. The formula of updating center attracts the points have the same group 
with it as well as excludes the impact from other clusters. We analyze the convergence of 
proposed method under the alternating minimizing optimization fashion, and discuss the 
sensitivity of parameters in algorithm for clustering performance. The reasonability and 
advantages of proposed method also have been explained by simulation study. Further, 
three types of DiFCM methods by using different HSIC form carry out on UCI and image 
data sets, all experimental results confirm the outstanding of the proposed method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Granular computing (GrC) plays a fundamental role in human reasoning and problem solving which originally proposed 
by Zadeh [1]. The idea has been applied in many fields such as machine learning, databases, data mining and knowledge 
discovery [2–5]. Clustering analysis is one of the popular methods of granulation, often used to discovery the inherent 
grouping structure in a set of subjects and has extensive applications in many different areas such as image processing [6], 
information retrieval [7], multi-modal data analysis [8], scientific data exploration [9]. The goal of a clustering algorithm is 
to group a set of unlabeled objects into several meaningful clusters so that the objects in the same cluster have relatively 
high similarity and in different clusters have very high dissimilarity. In this respect, clustering can give us an insight into 
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the distribution of the data and show the clear group structures. Over the past few decades, a host of clustering algorithms 
have been developed for different clustering tasks [10–13].

Many of those clustering methods, between-cluster information which contributes to obtain a distinct between-cluster 
separation is often neglected, hence leads to a phenomenon that few clustering centers are represented the same or similar 
clusters. In this article, we try to overcome the issue to some extent. We realize our idea based on fuzzy C-Means algorithm 
(FCM), which is introduced by Bezdek [14] in 1981 as a distinguished and representative soft clustering method [15–17]. 
FCM allows each point to have memberships in all clusters rather than hard C-Means just assigns a point to one distinct 
cluster. So the membership matrix provides more information in the uncertain way than it does in the certain case [18–21].

In FCM algorithm, the maximal membership of an observation determines the cluster that the point belongs to, but the 
computing formula of membership only depends on the distance between the observation and c cluster centers. If cluster 
centers are not accurate enough, they can affect the membership values, the maximal membership of single sample will 
choose an improper cluster in turn. In fact, the cluster center is not only effected by the shape, size and distribution of 
the individual group, but also the influenced by the distribution of other clusters. Ignoring the variation between different 
centers will lead to a phenomenon that multiple learned centers concentrate to one point, it happens especially when 
confronted with datasets exist overlapping regions among clusters. In order to overcome the shortage, many studies have 
been developed from different views [13,22–25]. C.J. Veenman et al. imposed a hard constraint on the cluster variance 
based on the hypothesize that clusters will cooperate with neighboring clusters to make the demarcation of clusters more 
distinct [13]; Liang Bai et al. proposed to directly penalize the pairwise similarities between categorical cluster centers in 
the task of categorical data clustering [23]; Weiling Cai et al. incorporated local spatial on the membership functions to 
reduce the noise and outliers for improving the image segmentation precision [22]; Liyong Zhang et al. reconstructed the 
supervised information from the original data and introduced dual expression between cluster prototypes to FCM clustering, 
provided a reconstructed data Fuzzy C-means clustering to improve the FCM clustering performance [25]. Most past efforts 
have been spent on only augmenting intuitive motivation of clustering task with minimized within-cluster distances and 
maximized between-clusters separations, and less considering the representativeness of cluster centers. Thereupon, we will 
fetch the diversity information among clusters through their centers.

Some researchers also have noticed this view when studying image clustering, they state that the “cluster one-sidedness” 
problem which leads some algorithm fail to identify the adjacent small clusters, and in order to overcome the issue, they 
imported the angle between centers to enhance the diversity of different image centers [26]; Heiko Timm et al. forced 
centers away from each other by introducing a mutual repulsion concept between centers to avoid the drawback [20], 
though their research based on the possibility fuzzy clustering where the membership can be 0; based on the advantage of 
possibility, adaptive PCM is proposed to adapt the cluster number by introducing uncertainty into membership function [27]. 
These all reflect the importance of diversity information during clustering from different perspectives.

Inspired by the effectiveness of these algorithms, in this paper, we fetch between-clusters diversity information via mak-
ing different cluster centers representative as much as possible, so that they can possess more own cluster information as 
well as eliminate other cluster impact. We bring in a statistical independent index Hilbert Schmidt Independence Criterion 
(HSIC) to enforce the diversity between cluster centers [28], and develop a series of diversity induced Fuzzy C-Means clus-
tering method, called Diversity-induced Fuzzy C-Means algorithm (we will rewrite it as DiFCM for the sake of convenience 
in below sections). DiFCM combines the original Fuzzy C-Means paradigm and diversity regularization term of in-between 
cluster centers. With the diversity regularization term, we explore the diversity of different clusters especially in the case 
that the distinction between one cluster center and other center is weak. Because HSIC is constructed in the Reproducing 
Kernel Hilbert Space (RKHS), we can choose a lot of kernel functions to compute the HSIC, here we select three com-
mon kernel functions to mining the diversity information. The detailed analysis of the diversity regularization term will be 
exhibited in section 3. The major contributions are as follows:

• We first introduce the statistical dependence index HSIC to measure the diversity information of different clusters 
by considering the representativeness of a individual cluster center and the distinctiveness between different cluster 
centers.

• The three updating formulas of the cluster center are obtained and unique closed solutions are offered for proposed 
DiFCM with three different forms of diversity regularization terms.

• The three types of proposed methods are compared with four baselines over six UCI data sets and six image data sets, 
the experimental results favorably outperform other methods. As for our methods, the DiFCM with diversity regulariza-
tion terms constructed by linear kernel is superior to other two kinds.

The rest of this paper is organized as follows. The Fuzzy C-Means algorithm is briefly analyzed in section 2. In section 3, 
we introduce the HSIC to enforce the between clusters separation by control diversity information between cluster centers. 
In section 4, the DiFCM with diversity regularization term formed by linear kernel function as a special case is analyzed and 
solved by alternating minimizing optimization fashion and updating formulas of two methods with polynomial and sigmoid 
kernel functions are also displayed. In section 5, several experiments are illustrated to perform the proposed algorithm. 
Finally, a conclusion is reached in section 6.
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2. Fuzzy C-Means clustering algorithm

Assuming that X = {x1, x2, · · · , xn} ∈ R p×n is the matrix of data set, where each column is a sample and p is the dimen-
sionality of the feature space, that is xi = (xi1, · · · , xip)′, i = 1, · · · , n. The fuzzy C-Means algorithm partitions a data set X
into c clusters which can be characterized by centers matrix C = {c1, c2, · · · , cc} ∈ R p×c and ci = (ci1, · · · , cip)′, i = 1, · · · , c
is the cluster center of i-th corresponding cluster. With the help of membership uij , each observation xi obtains the proba-
bility belonging to all clusters c j , the cluster centers are updated by the sum of normalized weighed samples. Through the 
process, the homogeneous elements are divided into distinct subsets [29].

In the FCM algorithm, the objective is to search the U and C that minimize the summation of weighted distances:

f F C M(X; U , C) =
n∑

i=1

c∑
j=1

μm
ij ‖xi − c j‖2 (1)

with the constrains:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uij ∈ (0,1], 1 ≤ i ≤ n,1 ≤ j ≤ c,
c∑

j=1
μi j = 1, i = 1, · · · ,n,

0 <
n∑

i=1
μi j < n, j = 1, · · · , c,

(2)

where c meets 2 ≤ c ≤ n, the parameter m ∈ (1, ∞) is the fuzzy index which influences the fuzziness of the partition. 
U = [uij] is a n × c real matrix, uij is the membership of xi belongs to the c j . ‖ · ‖2 is the squared Euclidean distance, we 

will denote that d2(xi, c j) = ‖xi − c j‖2 =
p∑

k=1
(xik − c jk)

2 in the following sections.

The objective function with the constraints (2) is a constrained nonlinear optimization problem, which usually can be 
solved by alternating optimization strategy [30]. In this optimization framework, one usually fixes one parameter to find the 
optimal solution of the other parameters satisfying the constraints [30,31]. Specially, the processing can be considered as 
solving two subproblems:

Subproblem 1. Fix C to be constant, the membership matrix update equation f (U , Ĉ) can be solved by

∂ f L(U , Ĉ)

∂U
= 0 (3)

Subproblem 2. Fix U to be constant, the cluster center update equation f (Û , C) can be solved by

∂ f L(Û , C)

∂C
= 0 (4)

where f L represents the objective function (1) processed by Lagrange multipliers.

According to the above analysis, the membership can be obtained as follows:

uij = 1
c∑

k=1
(

d2(xi ,c j)

d2(xi ,ck)
)

1
m−1

(5)

the cluster center is updated with:

c j =

n∑
i=1

um
ij xi

n∑
i=1

um
ij

(6)

The Fuzzy C-Means clustering algorithm move the cluster centers to the right location within a given data set in an iter-
ative fashion. The real cluster that an observation belongs to completely depends on the maximal value of its membership. 
But they only consider the within-cluster information and ignore the information in-between clusters, this will lead to a 
poor separation especially in the case that the distinction between one cluster and other clusters is weak induced by big 
overlapping region among clusters, however, one still hopes to obtain a clear partition for those points lie in overlap region. 
In the centroid-based clustering algorithms, the cluster information can be well represented by its cluster center, so we 
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can control the between-clusters information by controlling the relationship between clusters. On the other hand, maximal 
membership uij, j = 1, · · · , c decides a variate xi to a most likely cluster c j and the computing of membership depends on 
all the cluster centers, however, the updating form of centers in formula (6) only considers the information within clusters. 
Modifying the updating form of centers may improve the judgment of membership indirectly.

3. Diversity-induced Fuzzy C-Means algorithm

According to the above analysis, it’s meaningful to focus on updating of cluster centers. In the paper, we seek to minimize 
dependence between different clusters, small dependence of two cluster centers means high diversity between them, we 
deem the diversity information of a cluster is a cluster own some special information different from other clusters. We 
employ an independence criterion Hilbert–Schmidt Independence Criterion (HSIC) to measure the independence between 
cluster centers, which has been applied to clustering problems many times [32–34], for some advantages. First, it guarantees 
good uniform convergence theoretically and has little bias even in high dimensions. Second, it can capture much complex 
nonlinear dependence and needn’t to explicitly consider the joint distribution of random variables. Third, its empirical 
estimation is the trace of product of cluster centers, which makes objective function easy to solve. In this article, to ensure 
that the cluster centers in different clusters provide enough diversity information respectively, we introduce it to penalize 
the dependence between two cluster centers.

In order to build the diversity regularization term among cluster centers, we first review the definition of HSIC [28].

3.1. Measure of diversity

Assume that F is the Reproducing Kernel Hilbert Space (RKHS) on X with associated kernel k : X ×X → R , and feature 
map φ :X →F . That is, for each point x ∈X , there is a corresponding element φ(x) ∈ F such that 〈φ(x), φ(x′)〉F = k(x, x′), 
where k : X × X → R is a unique positive definite kernel. Let G be the RKHS on Y with kernel l and feature map ψ , and 
〈ψ(y), ψ(y′)〉G = l(y, y′) also holds. Then, we will have the definition of cross-covariance operator Cxy : G →F .

Cxy = Exy[(φ(x) − ux) ⊗ (ψ(y) − u y)] (7)

where ux = E[φ(x)], u y = E[ψ(y)], and ⊗ is the tensor product. The definition of HSIC is as follows:

Definition 1. Given two separable (RKHSs) F , G and a joint distribution measure pxy over (X , Y), we define the Hilbert–
Schmidt Independence Criterion (HSIC) as the squared Hilbert–Schmidt norm of the associated cross-covariance opera-
tor Cxy :

H S IC(pxy,F,G) = ‖Cxy‖2
H S (8)

where ‖ · ‖H S denotes the Hilbert–Schmidt norm of a matrix.

Proposition 1. Given two random variables X ∼ p and Y ∼ q, with joint distributions p XY , and two RKHS’s F and G with character-
istic kernels k and l, then H S IC(p XY , F , G) = 0 if and only if p XY = pq, i.e. if X and Y are independent [35].

The Definition 1 and Proposition 1 indicate that HSIC is non-negative index, and the smaller the value is, the more 
independent between two variables is.

Now we adopt an easy estimated formulation of HSIC. Given a series of n independence observations drawn from pxy , 
S := {(x1, y1), · · · , (xn, yn)} ⊆X ×Y , we obtain an empirical version of HSIC, rewritten as H S IC(S, F , G), is given by

H S IC(S,F,G) = (n − 1)−2tr(H K H L) (9)

where K , L ∈ Rn×n are the Gram matrices, with Kij = k(xi, x j) and Li j = l(yi, y j). H is a centralizing matrix which centralizes 
the Gram matrix to have zero column mean in the Hilbert feature space, where Hij = δi j − 1

n and δi j = 1 if only i = j, 
otherwise δi j = 0, tr(X) is trace operation in linear algebra which sums the diagonal elements of matrix X . For more details 
of HSIC, one can refer to the paper [28,35]. The larger the HSIC value is, the closer the dependence relationship between 
two variables is. Leveraging this property, in our paper, we treat different cluster centers as different variables, minimize 
HSIC value between two centers as much as possible to separate two cluster centers, namely, the diversity between two 
clusters is maximized.

3.2. The proposed methods

To enhance the diversity information in different clusters, we encourage the centers of different clusters to be of sufficient 
diversity with each other. This amounts to enforcing the data distributes of different clusters to be novel with each other. 
HSIC is used to measure the diversity of two cluster centers, so the diversity regularization term contains c(c − 1) diversity 
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Table 1
Kernel functions.

Kernel function Form H S IC(ci , c j) in this paper

Linear k(x, y) = xT y + c tr(Hci cT
i Hc jcT

j )

Polynomial k(x, y) = (ρ(xT y) + c)d tr(H(ci cT
i + 1)d H(c jcT

j + 1)d)

Sigmoid k(x, y) = tanh( ρ(xT y) + c) tr(Htanh(ρ(ci cT
i ) + 1)Htanh(ρ(c jcT

j ) + 1))

Table 2
Updating formulas in DiFCM algorithm.

λ DiFCM M j = Kl =, l = 1, · · · , c

Methods c j =

λ = 0 FCM

n∑
i=1

um
ij xi

n∑
i=1

um
ij

λ �= 0 DiFCM-lin (
n∑

i=1
μm

ij I + λ 1
(p−1)2 M j)

−1(
n∑

i=1
μm

ij xi)
c∑

i �= j
H Ki H clc

T
l

DiFCM-pol (
n∑

i=1
μm

ij I + dλ 1
(p−1)2 M j K

d−1
d

j )−1(
n∑

i=1
μm

ij xi) (clcT
l + 1)d

DiFCM-sig (
n∑

i=1
μm

ij I + ρλ 1
(p−1)2 M j(1 − K 2

j ))
−1(

n∑
i=1

μm
ij xi) tanh(ρ(clc

T
l ) + 1)

pairs for all c cluster centers. Importing the diversity regularization term to the original Fuzzy C-Means clustering objective 
function, we will minimize the following objective function:

f Di F C M(X; U , C) =
n∑

i=1

c∑
j=1

μm
ij ‖xi − c j‖2

+ λ

c∑
i=1

c∑
j �=i

H S IC(ci, c j)

(10)

s.t.
c∑

j=1

μi j = 1,μi j > 0, i = 1, · · · ,n, (11)

where λ ≥ 0 is a tradeoff parameter which balances the within-cluster similarity and between-cluster diversity. When λ = 0, 
the diversity term plays no role in the clustering process.

In the objective function (10), the first item ensures the minimal distance loss of the same cluster, the second item 
guarantees cluster centers meet maximal diversity with others. According to the formula (10), we can choose a kernel freely 
which allows us to incorporate prior knowledge into the dependence estimation process. In this paper, three typical kernel 
functions are adopted to study the diversity information, the details are listed in the Table 1. For convenience, if we use 
linear kernel function to measure the HSIC, the corresponding objective function is denoted by DiFCM-lin, the other two are 
similar to linear, denoted by DiFCM-pol and DiFCM-sig respectively and we provide the updating formula of U and V for 
three objective functions in the Table 2.

From the Table 1, we can find that three kernel functions have a common inner element xT y, the difference among them 
is their outer nonlinear functions after the inner product of two variables, which is a critical step for those kernel functions. 
Hence, we analyze the DiFCM-lin as a special case:

f Di F C M−lin(X; U , C) =
n∑

i=1

c∑
j=1

μm
ij ‖xi − c j‖2

+ λ
1

(p − 1)2

c∑
i=1

c∑
j �=i

tr(Hcic
T
i Hc jc

T
j )

(12)

s.t.
c∑

j=1

μi j = 1,μi j > 0, i = 1, · · · ,n. (13)

Analyzing the second term of formula (12), according to the exchangeability quality of trace operation [36] and the 
property of idempotent matrix [37], we have tr(HcicT

i Hc jcT
j ) = tr(cT

i Hc jcT
j Hci) = (cT

i Hc j)
2 = (cT

i H T Hc j)
2 = ((Hci)

T Hc j)
2, 

where H is an idempotent matrix with the property H ∗ H = H . It seems that diversity term is the sum square of cosine 
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similarity measure between two cluster centers, but we have two advantages over the cosine similarity. First, every cluster 
center has been scaled by centralized matrix H so that compared cluster centers have 0 mean, this means that we obtain 
the variation of similarity just induced by fluctuations of every cluster center, it will be more precise than untreated cluster 
centers. Second, cosine similarity will have positive and negative value, but we need to penalize on both high positive and 
negative dependence, using the absolute value of cosine similarity is one of choice, however, it will bring some troubles 
during optimizing the proposed objective, so we control the diversity information between cluster centers have the same 
form with squared cosine similarity. The effectiveness of positive constrain has been verified in [26] where the acute angle 
between each pair of centers bas been considered. The smaller value means two cluster centers prefer to be more indepen-
dent, in other words, each of two cluster centers try to own its unique information, this will guide the boundary points to 
determine a more differentiated cluster.

From the above analysis, we learn the proposed fuzzy clustering methods is reasonable, next, we will offer the optimal 
solution for DiFCM-lin method.

4. Solving and analyzing the proposed objective function

In this section, we will make efforts to solve the objective function in equation (12) which is not convex in both U
and C [30]. Therefore, it’s unrealistic to expect an algorithm to guarantee the global minimum solution [30,38]. The function 
carries four variables: fuzzy index m, tradeoff parameter λ, membership matrix U and cluster centers matrix C . We will 
regard m and λ, which depend on the data set, as constants in the process of solving problem. Then we only deal with two 
variables U and C , it’s natural to apply an alternating minimizing strategy with that optimizing the function with respect to 
one variable while fixing the other one [23,31]. So the complex function will be reduced to two manageable subproblems.

Subproblem 3. As one will see, the second part in equation (12) has nothing to do with the U . So fix C to be a constant, 
the updating equation of membership is the same as the formula (5) in Subproblem 1. Specifically, the objective function 
is a constrained linear optimization problem with respect to each uij , which can be solved by Lagrange Multipliers Method 
easily.

∂ f L
Di F C M−lin(U , Ĉ)

∂uij
= ∂ f L(U , Ĉ)

∂uij
= 0. (14)

Subproblem 4. Fix U to be a constant, we need to solve c cluster centers in problem (12), they all have the same sta-
tus. Without losing generality, the computing details of j-th cluster center will be chosen to show as an example. The 
sub-objective function about c j is as follows:

f L
Di F C M−lin(X; Û , c j) =

n∑
i=1

μm
ij ‖xi − c j‖2

+ λ
1

(p − 1)2

c∑
i �= j

tr(Hc jc
T
j Hcic

T
i )

(15)

According to the property of trace operator, the second term can be represented as 
c∑

i �= j
tr(Hc jcT

j HcicT
i ) =

tr(cT
j (

c∑
i �= j

HcicT
i H)c j). Let 

c∑
i �= j

HcicT
i H = M j , the equation (15) becomes

f L
Di F C M−lin(X; Û , c j) =

n∑
i=1

μm
ij ‖xi − c j‖2

+ λ
1

(p − 1)2
tr(cT

j M jc j)

(16)

where f L
DiF C M−lin represents the unconstrained problem corresponding to the transformed f DiF C M−lin by Lagrange Multi-

pliers Method. Problem (16) is a smooth convex program. Differentiating the f DiF C M−lin(X; U , c j) with respect to c j and 
setting it to zero, we will get the following optimal solution c j that satisfies

(

n∑
μm

ij I + λ
1

(p − 1)2
M j)c j =

n∑
μm

ij xi (17)

i=1 i=1
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where I is an identity matrix and its size is p × p. The equation (17) is a standard linear equation who has a unique solution 

if the (
n∑

i=1
μm

ij I + λ 1
(p−1)2 M j) matrix is full rank. The requirement of full rank will hold in generally hereof, if the reverse 

case happens, we get the inverse of the matrix via a transformation method in footnote.1 Therefor the cluster center c j is 
updated by

c j = (

n∑
i=1

μm
ij I + λ

1

(p − 1)2
M j)

−1(

n∑
i=1

μm
ij xi) (18)

Compared the computing form of cluster center in formula (18) and formula (6), we can observe that the former not 
only contains the same information with the latter, but also removes the effect of other cluster centers, it means the current 
center just keeps the information of corresponding cluster. The implication of the formula (18) is similar to the formula (10)
in [20], where a clustering center attracted by the data assigned to it and repelled by the other clusters. The difference 
between them is measurement approaches of diversity information, our methods encourage large independence between 
two clustering centers, the method in [20] hopes large distance between two centers.

Moreover, in order to update the cluster centers at each iteration, we choose to initialize membership matrix firstly 
and use the cluster centers solved by original FCM as initialization centers. The whole detailed procedure of DiFCM-lin is 
represented in Algorithm 1.

Algorithm 1 Diversity-induced Fuzzy C-Means Algorithm (DiFCM-lin)
Input: A data set X , the number of data clusters c, difference error δ, maximal number of iteration T , fuzzy index m, tradeoff parameter λ.
Output: Converged U and C
Step1: Randomly initialize membership matrix U where uij meets the formula (2), then obtain the initialization cluster centers C1 = {c1

1, · · · , c1
c } by 

Algorithm 1.
Step2: Computing U 1 = [u1

i j ] with formula (16) such that f Di F C M−lin(X; U , ̂c j) is minimized, let t = 1.

Step3: Update the cluster centers ct+1
j with formula (5) such that f Di F C M−lin(X; Û , c j) is minimized one by one, then reach the f Di F C M−lin(X; Û , C)

minimum.
If ‖ f Di F C M−lin(U t , Ct+1) − f Di F C M−lin(U t , Ct )‖ ≤ δ or t > T , then stop; otherwise go to Step4.
Step4: Update membership matrix U t+1 with formula (18) such that f Di F C M−lin(U t+1, Ct+1) is minimized.
If ‖ f Di F C M−lin(U t+1, Ct+1) − f Di F C M−lin(U t , Ct+1)‖ ≤ δ or t > T , then stop; otherwise, t = t + 1, go to Step3.

The Algorithm 1 is carried out until convergence with a finite number of iterations. For the DiFCM-pol and DiFCM-sig 
methods, we only just set the corresponding clustering center updating formulas from Table 2 into the Algorithm 1.

Next, we will discuss the time complexity and convergence of proposed methods theoretically.

4.1. Time complexity analysis

The proposed fuzzy clustering algorithm is scalable to the number of objects, dimensions and clusters. We only consider 
the two major computation processes. The computation cost for U is the same as the original FCM which is O (npc) [23]. As 
for the computational complexity for updating cluster centers matrix C , it should include two parts, one is the computing 
cost of M which is O (p2c), the other part is inverse operation in formula (18), here the inverse of matrix is obtained by 
definition, to which, the computing cost is O (p3c), so the time complexity is O (p3c). If the iterative times is t when the 
algorithm stops, the total computational cost of proposed method is O (npct + p3ct). It shows that computational complexity 
is linear for the number of objects and clusters, and nonlinear for the number of dimensions. It is acceptable on many data 
sets because of its better clustering performance and n > p in many cases.

4.2. Algorithm convergence analysis

Algorithm 1 has the same optimization framework as original FCM, so it is easy to prove the convergence.

Theorem. The objective function (12) is guaranteed to convergence with Algorithm 1.

Proof. The objective function has been divided into two subproblems.
1) The optimization procedure of Subproblem 3 is just the same as the Subproblem 1. With the Lagrange multipliers 

technique, U obtained by the formula (14) is the optimal minimum solution for Subproblem 1, which has been demon-
strated in many literatures [14,39–42], we will not go into in this paper.

1 The matrix can be simplified as A + C BC ′ , where A =
n∑

i=1
μm

ij I , B = λ 1
(p−1)2 I , C =

c∑
i �= j

Hci , then (A + C BC ′)−1 = A−1 − A−1C(B−1 + C ′ A−1C)−1C ′ A−1, if 

p �= 1, both A and B exist the inverse matrix, so we can obtain the inverse matrix of it.
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Fig. 1. The legend of distance between xi and c1.

2) For the Subproblem 4, it can be considered as c sub-objective functions (15). From the analysis for the formula (15), 
we can obtain the unique closed solution as equation (17). The cluster centers matrix C is composed of c j, j = 1, · · · , c by 
column gradually, so the Subproblem 4 also has a unique closed solution.

Combining two parts 1) and 2), it forms an iterative optimization method to minimize the objective function (12) at each 
iteration. Then, according to the alternating minimizing strategy, the following inequality sequence will be set up:

f Di F C M−lin(U t−1, Ct−1) ≥ f Di F C M−lin(U t, Ct−1)

≥ f Di F C M−lin(U t, Ct) ≥ f Di F C M−lin(U t, Ct+1)
(19)

Therefore, for each iteration, the objective function is non-increasing. Hence, the convergence of DiFCM is proved.

Remark. One will notice that the solution yielded via alternating optimization is not a globe optimization, however, the 
solutions of Subproblem 3 and Subproblem 4 are closed uniquely, therefore the solution to Equation (12) is local but unique.

As for the DiFCM-pol and DiFCM-sig methods, we can get the same property of convergence under the same iterative 
optimization strategy.

5. Experimental results

In this section, we highlight the properties of the DiFCM-lin method on a 3D synthetic data and a modified Iris data. 
And then several baseline clustering algorithms are compared with three types of proposed methods to demonstrate the 
validity and feasibility of the diversity information on twelve real datasets. Furthermore, we demonstrate the convergence 
performance and sensitivity of parameters in DiFCM-lin method.

5.1. Baseline algorithm and parameters setting

We compare following four clustering algorithms to illustrate the superiority of DiFCM.

� FCM [14]: Fuzzy C-Means is a popular fuzzy clustering algorithm, which is the main algorithm that needs improvement 
and comparison in the article.

� KFCM [43]: Kernel fuzzy C-Means transfers the original data space into kernel space and analyzes clustering perfor-
mance on the kerneled features. In this paper, Gaussian kernel function is used to compare with our method.

� PoFCM [20]: Modified possibilistic fuzzy c-means clustering is based on the framework of possibilistic clustering, which 
is different from the traditional probabilistic fuzzy C-Means, where the constrain that the sum of membership degrees 
for each data equals one is dropped.

� DrFCM [26]: Diverse fuzzy C-Means introduces a diversity regularization into the traditional fuzzy C-Means in order to 
encourage the cluster centers to cover more information in data space.

All of the above methods are based on the traditional fuzzy C-Means, the selection of fuzzy index m is their common 
problem. Rigorous mathematical arguments for learning and determining a suitable one with respect to a specific data set 
is very difficult, and it still remains unknown in literatures so far. Herein, we discuss the choice of m in the light of some 
heuristic guidelines in some articles [44–47], and give a reasonable interpretation for the setting of m in this paper by 
demonstrating in Example.

Example. Assuming that there are only two clusters, c1 and c2 denote cluster centers respectively, the distance between 
them is 1. Let the distance between sample xi and cluster center c1 is x, which is displayed in Fig. 1, the membership is 
ui1 = 1

| x
1−x | 2

m−1 +| x
x | 2

m−1
= 1

| x
1−x | 2

m−1 +1
, we plot a bunch of curves versus the fuzzy index m ranging from 1.1 to 4.1 and the 

step length is 0.2 in Fig. 2.
Fig. 2 depicts that the bigger the m is, the smaller the ui1 is for a fixed x ∈ [−1, 0.5]. Conversely, the smaller the m is, 

the smaller the ui1 is for a fixed x ∈ [0.5, 2]. The curve drew by m = 2.9 is a watershed for all curves with respect to curve 
rate: bold red (m = 2.9), bold green (m = 3.1) and bold blue (m = 2.7) curves have shown the variation. The slope of curves 
by m > 2.9 is steeper than the slope of curves by m < 2.9 when x → 0.5− and x → 0.5+ , it means that the ui1 obtained by 
m > 2.9 approaches 0.5 more quickly than the ui1 obtained by m < 2.9 when x is close to 0.5. However, it is ambiguous to 
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Fig. 2. The membership uij with varying m values. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Demonstration of baselines and DiFCM-lin on 3D synthetic data.

make a clear data partition when ui1 = 0.5, we should try to prevent it happening. Moreover, the data point xi completely 
belongs to c1 (c2) when x ∈ [−1, 0] (x ∈ [1, 2]), the ui1 value should be larger than 0.5. Based on above analysis, we traverse 
m ∈ [1.1, 2.9] with step-size 0.2 in our experiments to find optimal solution.

Except for common fuzzy index parameter, each of compared method has their own parameters, those parameters se-
riously depend on special data sets, grid searching within an appropriate range of related parameters is a common and 
effective method [26,27,43]. So for KFCM, the standard deviation in Gaussian kernel function is assigned in [0.1, 1] and 
[10, 100] two intervals. For PoFCM, which includes two parameters: weighting factor γ and tolerable minimum distance be-
tween two neighboring clusters η, we set the γ vary from {10−2, · · · , 102}, the η vary from {10−3, · · · , 101} following the 
original settings. In DrFCM, regularization parameter λ and step size ρ , are tuned in {10−5, · · · , 10−1, 100} referring to the 
original literature. As for our method, the regularization term λ is searched in sequence {10−5, · · · , 10−1, 100, 101, · · ·105}. 
The properties of kernel functions and related parameter settings for machine learning and pattern analysis have been dis-
cussed in some literatures [48,49], in this paper, for DiFCM-pol the exponent d in polynomial kernel function is assigned in 
{2, 3} and for DiFCM-sig, the scale factor ρ is set vary from 1 to 10 with step-size 1 heuristically.

5.2. Highlight the properties

5.2.1. Demonstration on synthetic data
We compare the traditional FCM and two modified FCM baselines with our proposed method DiFCM-lin to illustrate its 

effectiveness on a tested 3D synthetic data [26]. It contains three clusters, the size of them is very different, the biggest 
group contains 3000 samples, the other groups contain 200 and 100 separately. The clustering performances on unbalanced 
datasets like this are usually influenced if the clustering methods ignore the scale difference among clusters.

Not surprisingly, the traditional FCM trends to divide the large cluster into two groups, and combines two originally 
small clusters into one group in Fig. 3(a). The blue, red and green stars respectively represent the three learned clusters in 
Fig. 3(b), (c), (d), we find that all modified FCM algorithms including ours can perfectly identify the true group, which owns 
the consideration of the diversity between different cluster centers.
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Fig. 4. Demonstration of baselines and DiFCM-lin on Iris-3-4 data.

5.2.2. Demonstration on modified Iris data
In this section, we exhibit clustering performances on data set where exists some overlap among clusters. We use the 

well-known Iris data only with the petal length and the petal width as in [20], for convenience, we note it as Iris-3-4. 
Fig. 4(a) shows the distribution information of Iris-3-4, the red triangles, the green hexagons and the blue diamonds rep-
resent three true clusters, the five blue points circled by purple circle and the five green points circled by pink circle are 
located in the overlap region of the two clusters. We conduct three methods including our method on Iris-3-4 and show 
clustering performance in Fig. 4(b), (c) and (d), where the red, green and blue geometries are the learned clusters. The sub-
figure (b) displays the results of DrFCM method, it seems only two clusters are learned, because the green cluster merges 
the two adjacent groups. The possible reason for this result is DrFCM pays too much emphasis on the similarity of cluster 
shapes during the clustering process. In contrast, the results of PoFCM and DiFCM-lin perform better, they can more cor-
rectly separate the points in overlap region to right groups. The points circled in subfigure (c) and (d) don’t get their correct 
groups, these points are not more than half of the original points in confusion area.

5.3. Demonstration on real data

5.3.1. Data sets description
The above subsection quantifies the originality of our methods by simulation study. Next, we carry out experiments 

on real data sets to show advantages and practicability of suggested method. Six data sets downloaded from UCI Machine 
Learning Repository [50] and six benchmark image data sets are conducted in our experiment phase [26,51]. The UCI data 
sets are outlined in Table 3, and image datasets are detailed as follows:

� JAFFE: The Japanese Female Facial Expression database contains seven facial expressions: happy, angry, disgust, fear, sad, 
surprise and neutral, those are posed by 10 Japanese females. Each face image is represented by 676-dimensional gray 
pixel values. The scale of it is 213 Objects, 676 Dimensions and 10 Classes.

� HandWritten: HandWritten dataset contains 0 to 9 ten handwritten digits, each image is represented by 240-dimensional 
gray pixel values. The scale of it is 2000 Objects, 240 Dimensions and 10 Classes.
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Table 3
Six data sets in the experimental analysis.

Data sets (Abbreviations) Objects Features Classes
Wine recognition (WR) 178 13 3
Iris (Iris) 150 4 3
Spectf (SP) 267 44 2
Ecoli (Ec) 336 7 8
Gesture Phase A1 (GPA1) 1747 18 5
Pendigits (Pen) 10992 16 10

� USPS: The US Postal handwritten digits database contain 0 to 9 ten categories digits, each image is represented by 
256-dimensional gray pixel values. The scale of it is 9298 Objects, 256 Dimensions and 10 Classes.

� YALE: The YALE data set contains 11 different facial expression or configuration: center-light, w/glasses, happy, left-light, 
w/no glasses, normal, right-light, sad, sleepy, surprised, and wink, those are provided by 15 individuals. Each image is 
represented by 1024-dimensional gray pixel values. The scale of it is 165 Objects, 1024 Dimensions and 15 Classes.

� Caltech101-2 and Caltech101-7: Caltech101-2 and Caltech101-7 are the subsets of image dataset Caltech101 which 
contains 101 categories. Caltech101-2 contains two types of objects and each of them contains similar number of 
samples. Caltech101-7 contains 7 widely categories whose sample size varies greatly. Each image is represented by 
1984-dimensional Histogram Oriented Gradient feature [52]. The scale of Caltech101-2 is 102 Objects, 1984 Dimensions 
and 2 Classes. The scale of Caltech101-7 is 1563 Objects, 1984 Dimensions and 7 Classes.

The Classes of every data set represent ground truth distribution of each data set which is used to verify whether the 
proposed method can reveal the inherent structure of data sets.

5.3.2. Clustering performance analysis
To evaluate the preponderance of proposed clustering algorithms, we first consider a widely used clustering performance 

index: accuracy (ACC), which can be regarded as a set matching method [31,53].

Accuracy: Clustering Accuracy criteria makes use of the true class labels to evaluate the clustering result distribution on 
each given data. It can be defined as follows:

ACC =

n∑
i=1

Imap(ci)=li

n

where ci is the cluster label of xi and li is the true class label, n is the total number of objects, Ix=y denotes the indicator 
function that equals 1 if x = y and equals 0 otherwise, map(ci) represents the permutation mapping function which best 
match the cluster label set and true label set.

The second widely used index is normalized mutual information (NMI), which evaluates the performance of clustering 
algorithms from a viewpoint of information gain.

NMI: Normalized Mutual Information is used to estimate the probability distribution of the clustering results [46]. Given 
the clustering result, the NMI can be computed by

N M I =

c∑
i=1

c∑
j=1

ni, jlog
ni, j
nin j√

(
c∑

i=1
nilog ni

n )(
c∑

j=1
n jlog

n j
n )

where ni is the number of data contained in the cluster ci(1 ≤ i ≤ c), n j is the number of data belonging to the truth 
class t j(1 ≤ j ≤ c), and ni, j is the number of data in the intersection of ci and t j . The N M I = 1 when the clustering 
result distribution and real class are equivalent, otherwise, N M I = 0 when the compared clustering result distribution are 
absolutely different.

The Purity is another external criterion which attempts to measure the similarity between two clustering partitions of 
objects in the same data set.

Purity: Purity only considers the true positive data points that have been divided [54]. The special details as follows:

P urity =
c∑ max j(n

j
i )

n

i=1
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Table 4
M ± STD of ACC, NMI and Purity on UCI datasets.

Data sets Methods AC NMI Purity
WR FCM 0.9551 ± 0.0000 0.8433 ± 0.0000 0.9551 ± 0.0000

KFCM 0.9553 ± 0.0000 0.8511 ± 0.0000 0.9553 ± 0.0000
PoFCM 0.9438 ± 0.0000 0.7969 ± 0.0000 0.9438 ± 0.0000
DrFCM 0.9598 ± 0.0885 0.8577 ± 0.1319 0.9598 ± 0.0885
DiFCM-lin 0.9607 ± 0.0000 0.8613 ± 0.0000 0.9607 ± 0.0000
DiFCM-pol 0.9607 ± 0.0000 0.8681 ± 0.0000 0.9607 ± 0.0000
DiFCM-sig 0.9507 ± 0.0000 0.8781 ± 0.0000 0.9507 ± 0.0000

Iris FCM 0.9000 ± 0.0000 0.7540 ± 0.0000 0.9113 ± 0.0000
KFCM 0.9160 ± 0.0084 0.7739 ± 0.0142 0.9160 ± 0.0084
PoFCM 0.9438 ± 0.0000 0.7969 ± 0.0000 0.9438 ± 0.0000
DrFCM 0.9270 ± 0.1335 0.7531 ± 0.2258 0.9127 ± 0.1335
DiFCM-lin 0.9313 ± 0.0077 0.7940 ± 0.0000 0.9313 ± 0.0000
DiFCM-pol 0.9000 ± 0.0000 0.7446 ± 0.0000 0.9000 ± 0.0000
DiFCM-sig 0.8933 ± 0.0000 0.7371 ± 0.0000 0.8933 ± 0.0000

SP FCM 0.7250 ± 0.0000 0.1900 ± 0.0001 0.7250 ± 0.0000
KFCM 0.6875 ± 0.0000 0.2020 ± 0.0000 0.6875 ± 0.0000
PoFCM 0.6963 ± 0.0664 0.3093 ± 0.0421 0.6963 ± 0.0664
DrFCM 0.7510 ± 0.0444 0.3350 ± 0.0656 0.7475 ± 0.0444
DiFCM-lin 0.7587 ± 0.0318 0.2384 ± 0.0581 0.7587 ± 0.0318
DiFCM-pol 0.7525 ± 0.0348 0.2294 ± 0.0629 0.7525 ± 0.0348
DiFCM-sig 0.7000 ± 0.0000 0.2365 ± 0.0000 0.7000 ± 0.0000

Ec FCM 0.5161 ± 0.0068 0.4869 ± 0.0070 0.7970 ± 0.0238
KFCM 0.6637 ± 0.0615 0.5021 ± 0.0523 0.7312 ± 0.0325
PoFCM 0.6256 ± 0.0000 0.5253 ± 0.0010 0.7956 ± 0.0000
DrFCM 0.6265 ± 0.1168 0.4339 ± 0.1667 0.6884 ± 0.1123
DiFCM-lin 0.7649 ± 0.0000 0.6091 ± 0.0007 0.8217 ± 0.0151
DiFCM-pol 0.6917 ± 0.0523 0.5354 ± 0.0197 0.8289 ± 0.0040
DiFCM-sig 0.6454 ± 0.0077 0.4932 ± 0.0048 0.7818 ± 0.0028

GPA1 FCM 0.5026 ± 0.0000 0.2645 ± 0.0000 0.7207 ± 0.0000
KFCM 0.6089 ± 0.0543 0.2693 ± 0.0208 0.7013 ± 0.0117
PoFCM 0.7202 ± 0.0000 0.2954 ± 0.0000 0.7202 ± 0.0000
DrFCM 0.7188 ± 0.0784 0.3045 ± 0.0640 0.7682 ± 0.0895
DiFCM-lin 0.7145 ± 0.0000 0.3103 ± 0.0000 0.7298 ± 0.0000
DiFCM-pol 0.7141 ± 0.0008 0.3125 ± 0.0054 0.7234 ± 0.0077
DiFCM-sig 0.7327 ± 0.0000 0.3016 ± 0.0000 0.7327 ± 0.0000

Pen FCM 0.7369 ± 0.0029 0.6645 ± 0.0007 0.7387 ± 0.0008
KFCM 0.7203 ± 0.0479 0.6684 ± 0.0156 0.7417 ± 0.0279
PoFCM 0.7480 ± 0.0447 0.6630 ± 0.0114 0.7463 ± 0.0291
DrFCM 0.7402 ± 0.0343 0.6959 ± 0.0374 0.7376 ± 0.0372
DiFCM-lin 0.7521 ± 0.0056 0.6765 ± 0.0030 0.7521 ± 0.0050
DiFCM-pol 0.7425 ± 0.0332 0.6724 ± 0.0119 0.7517 ± 0.0217
DiFCM-sig 0.7469 ± 0.0024 0.6660 ± 0.0005 0.7386 ± 0.0007

where c is the number of the clusters, and n is the total number of the data points, n j
i is the number of the i-th input class 

that is assigned to the j-th cluster.
All of the above measures are in [0, 1], the maximum value 1 represents the clustering result equals to its real partition. 

A higher value indicates a closer match between clustering partition and true class.
To ensure the impartial comparison based on three evaluation indices, it’s necessary to provide a uniform environment 

condition. First, we set the number of clusters to be the same as the number of true classes of each given data set [47]. 
A clustering algorithm is well-behaved if it’s clustering result closely matches the truth class distribution for a given data 
set. Second, we initialize the membership matrix by randomly generating under constraint (2) and carry out algorithms for 
100 times on each data set to observe their performance from the statistical viewpoint. Third, we go through all parameters 
under each fuzzy index offered in Example for every data set and illustrate best average and standard deviation on three 
indices obtained by 20 repeated experiments.

The clustering results on three indexes over UCI data sets and image data sets have been reported in Table 4 and Table 5. 
For each data set, our algorithms with three different regularization items and the corresponding clustering results are be-
low the dotted line. Best performances on three evaluation indexes of all compared algorithm have been enhanced with 
black. Compared with the traditional FCM, all other modified FCM methods perform better over most data sets except on 
Spectf and YALE data sets, but the DiFCM-lin performs better on these two special data sets, it indicates that the diversity 
information between different centers is benefit to improve the clustering performance, though the diversity information is 
introduced to the objective function of FCM by different means. Compared with PoFCM and DrFCM, the performances on all 
three evaluation indexes of our proposed methods is only inferior on Iris data set and the gap is also very narrow, it indi-
cates the effectiveness of encouraging divers among clustering centers, meanwhile attests the validity of using independent 
statistics to measure the diversity information between clustering centers. As for our own algorithms with three types of 
regularization items, their performances vary from data to data. This is in line with objective laws, because the nonlinear 
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Table 5
M ± STD of ACC, NMI and Purity on image datasets.

Data sets Methods AC NMI Purity
JAFFE FCM 0.9329 ± 0.0686 0.9587 ± 0.0254 0.9484 ± 0.0486

KFCM 0.9681 ± 0.0529 0.9654 ± 0.0671 0.9690 ± 0.0528
PoFCM 0.9480 ± 0.0556 0.9602 ± 0.0510 0.9575 ± 0.0507
DrFCM 0.9670 ± 0.0320 0.9530 ± 0.0025 0.9400 ± 0.0210
DiFCM-lin 0.9765 ± 0.0000 0.9699 ± 0.0000 0.9765 ± 0.0000
DiFCM-pol 0.9615 ± 0.0519 0.9699 ± 0.0173 0.9685 ± 0.0366
DiFCM-sig 0.9765 ± 0.0000 0.9614 ± 0.0000 0.9765 ± 0.0000

Handwritten FCM 0.7611 ± 0.0686 0.7411 ± 0.0365 0.7821 ± 0.0536
KFCM 0.7748 ± 0.0543 0.7190 ± 0.0404 0.7806 ± 0.0495
PoFCM 0.7881 ± 0.0232 0.7497 ± 0.1158 0.7985 ± 0.1133
DrFCM 0.8394 ± 0.0359 0.7445 ± 0.0349 0.7575 ± 0.0379
DiFCM-lin 0.7955 ± 0.0447 0.7670 ± 0.0238 0.8217 ± 0.0320
DiFCM-pol 0.7855 ± 0.0240 0.7470 ± 0.0208 0.8117 ± 0.0304
DiFCM-sig 0.7760 ± 0.0270 0.7370 ± 0.0238 0.8017 ± 0.0320

USPS FCM 0.6044 ± 0.0406 0.5627 ± 0.02083 0.6750 ± 0.0374
KFCM 0.6688 ± 0.0000 0.6067 ± 0.0000 0.7324 ± 0.0000
PoFCM 0.6802 ± 0.0295 0.6800 ± 0.0501 0.7140 ± 0.0461
DrFCM 0.7341 ± 0.0120 0.6720 ± 0.0030 0.7012 ± 0.0220
DiFCM-lin 0.6637 ± 0.0162 0.6075 ± 0.0076 0.7304 ± 0.0130
DiFCM-pol 0.6657 ± 0.0034 0.6067 ± 0.0021 0.7316 ± 0.0033
DiFCM-sig 0.6405 ± 0.0024 0.6324 ± 0.0032 0.7437 ± 0.0015

YALE FCM 0.4885 ± 0.0208 0.5247 ± 0.0155 0.4952 ± 0.0167
KFCM 0.4194 ± 0.0339 0.4895 ± 0.0269 0.4339 ± 0.0332
PoFCM 0.3600 ± 0.0396 0.3690 ± 0.0501 0.3752 ± 0.0369
DrFCM 0.3036 ± 0.0343 0.3618 ± 0.0294 0.3255 ± 0.0304
DiFCM-lin 0.5055 ± 0.0259 0.5363 ± 0.0135 0.5103 ± 0.0255
DiFCM-pol 0.4939 ± 0.0209 0.5322 ± 0.0124 0.5012 ± 0.0232
DiFCM-sig 0.3885 ± 0.0028 0.3573 ± 0.0003 0.3939 ± 0.0284

Caltech101-2 FCM 0.6313 ± 0.0671 0.3804 ± 0.0730 0.6600 ± 0.0959
KFCM 0.7226 ± 0.0678 0.4069 ± 0.0981 0.7226 ± 0.0678
PoFCM 0.7652 ± 0.0000 0.3389 ± 0.0000 0.7652 ± 0.0000
DrFCM 0.6870 ± 0.0980 0.4466 ± 0.0123 0.6878 ± 0.0963
DiFCM-lin 0.7391 ± 0.0012 0.4683 ± 0.0058 0.7391 ± 0.0012
DiFCM-pol 0.7217 ± 0.0000 0.3846 ± 0.0880 0.7217 ± 0.0000
DiFCM-sig 0.7826 ± 0.0000 0.4604 ± 0.0000 0.7826 ± 0.0000

Caltech101-7 FCM 0.5859 ± 0.0249 0.3239 ± 0.0014 0.7075 ± 0.0090
KFCM 0.5982 ± 0.0886 0.3250 ± 0.0681 0.6196 ± 0.0751
PoFCM 0.6161 ± 0.0854 0.3139 ± 0.0550 0.6836 ± 0.0384
DrFCM 0.6378 ± 0.0654 0.3332 ± 0.0721 0.6550 ± 0.0589
DiFCM-lin 0.6624 ± 0.0003 0.2792 ± 0.0008 0.7103 ± 0.0003
DiFCM-pol 0.6404 ± 0.0000 0.3372 ± 0.0000 0.7089 ± 0.0000
DiFCM-sig 0.6340 ± 0.0000 0.3175 ± 0.0131 0.7407 ± 0.0000

modes of each data adaptation is really different. However, the performance of DiFCM-lin still precedes other two kernel 
cases on most data sets, we suggest that mining the diversity information between centers using independent statistics HSIC 
with linear kernel can be the first to use.

5.4. Convergence analysis

The convergence of proposed method has been proofed mathematically, in this section, we analyze convergence of 
DiFCM-lin in real datasets, the other two kernel cases have similar convergence. We carry out experiments on twelve 
data sets, the convergence curves on twelve data sets have been plotted in Fig. 5 and Fig. 6 by DiFCM-lin method with 
fuzzy index m = 1.5 and trade off parameter λ = 1. We can see the objective value converges for all data sets less than 100 
iterations, it implies that the alternating optimization strategy to solve the proposed method is effective.

5.5. Sensitivity analysis

In our series of proposed algorithms, the number of parameters varies with the selected kernel function, which deter-
mines the computing form of diversity regularization. In this section, we still just display the impact of parameters on the 
performance of the DiFCM-lin algorithm. Two parameters are included in DiFCM-lin, the fuzzy index m and the trade off 
parameter λ, we fix one of them to analyze the other’s influence to the clustering performance.

With fixed value m = 1.1, we plot sensitivity curves for trade off parameter λ in Fig. 7, where λ is assigned in 
{10−5, · · · , 10−1, 100, 101, · · ·105}. We can find that the clustering performances on ACC, NMI and Purity over all datasets 
have similar varying tendency with the increase of λ. Specifically, the ACC, NMI and Purity values slightly increase first 
and then decrease along with the increasing value of λ, however, the inflection point is different on different data sets, it 
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Fig. 5. Convergence performance of DiFCM-lin method on UCI datasets.

Fig. 6. Convergence performance of DiFCM-lin method on image datasets.
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Fig. 7. Sensitivity analysis of λ in DiFCM-lin method.

indicates that λ will effect the clustering performance, a proper value seriously depends on a special data set especially the 
performance on the Wine recognition data.

On the other hand, we evaluate the influence of fuzzy index m on the clustering results in Fig. 8, where m is tuned 
in [1.1, 2.9] with step-size 0.2. We traverse all λ ∈ {10−5, · · · ,10−1,100,101, · · ·105} and display the best performance on 
ACC, NMI and Purity over all data sets for per m. The present results show that fuzzy index has distinguishable effect on 
different data sets, but for the same data, the variation tendency on three index is nearing a consensus.

According to the above analysis, the clustering results of diversity-induced FCM are affected by the varying values of m
and λ. But in general, the trade off parameter λ and fuzzy index m are respectively tuned in [10−2, 102] and [1.1, 2], the 
clustering results remain relatively robust and approving.

6. Conclusions

This work induces a DiFCM framework based on fuzzy C-Means clustering, which takes the diversity information among 
clusters into consideration during the clustering process. Concretely, we combine the within-cluster similarity information 
and between-cluster diversity information simultaneously and address the objective function using alternating minimizing 
optimization strategy by decomposing it into two subproblems. With different kernel functions to measure the diversity 
information, the diversity regularized terms to the object function are different, so we have three specific forms of DiFCM 
and we provide the centers updating formulas respectively. The learned center attracts the points have the same group 
with it as well as excludes the impact from other clusters. It contributes to detect distinct clusters especially in the case 
due to existing overlap regions among clusters, it also helps to distinguish groups from unbalance datasets where the group 
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Fig. 8. Sensitivity analysis of m in DiFCM-lin method.

size of different clusters differs greatly. The convergence of our algorithm is proved theoretically and experimentally and the 
sensitivity of parameters in algorithm for clustering performance is also discussed. Finally, we carry out our three algorithms 
over six UCI data sets and six image datasets and compare against four baselines on three clustering evaluation indexes, 
experimental results have manifested the proposed algorithm is effective.

The HSIC measure has been proved to be effective to measure the diversity information, it will be interesting to apply 
other dependence measures to reveal more interesting nonlinear information. A good clustering algorithm is not only influ-
enced by the size and shape of individual clusters, but also influenced by the relative position among different clusters. In 
this paper, we just attempt to model those factors based on the fuzzy C-Means clustering algorithm framework. In the fu-
ture, we can restructure other famous clustering method or propose new generalization methods to improve the clustering 
performance.
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