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Abstract
Logic reasoning is a significant ability of human intelligence and also an important task in artificial intelligence. The exist-
ing logic reasoning methods, quite often, need to design some reasoning patterns beforehand. This has led to an interesting 
question: can logic reasoning patterns be directly learned from given data? The problem is termed as a data concept logic. 
In this study, a learning logic task from images, called a LiLi task, first is proposed. This task is to learn and reason the logic 
relation from images, without presetting any reasoning patterns. As a preliminary exploration, we design six LiLi data sets 
(Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication), in which each image is embedded with 
a n-digit number. It is worth noting that a learning model beforehand does not know the meaning of the n-digit numbers 
embedded in images and the relation between the input images and the output image. In order to tackle the task, in this work 
we use many typical neural network models and produce fruitful results. However, these models have the poor performances 
on the difficult logic task. For furthermore addressing this task, a novel network framework called a divide and conquer 
model by adding some label information is designed, achieving a high testing accuracy.

Keywords  Logic reasoning · Data concept logic · LiLi task · Reasoning patterns

1  Introduction

Human intelligence integrates cognitive functions such as 
perception, learning, memory, problem solving and logic 
reasoning [5]. Among them, logic reasoning is a signifi-
cant ability of human intelligence. Applying the reasoning, 
humans obtain some rules hidden in complex phenomenon, 
and even forecast the unknown events. One of the goals of 
artificial intelligence is to mimic human cognitive functions 
to the utmost. As a part of cognitive functions, logic reason-
ing is also an important task in artificial intelligence [19].

Many logic reasoning methods such as fuzzy reason-
ing [27, 31, 46, 51], FCA [7, 37, 42, 47], probabilistic 
reasoning [23, 28, 29, 39], evidential reasoning [4, 30], 
Bayesian reasoning [44, 49] and rough reasoning [22, 26, 
34, 38], have been proposed. However, quite often, these 
methods need to design some reasoning patterns before-
hand. For example, in the FCA, one first obtains a for-
mal context applying the domain expert knowledge, then 
computes the concept lattice from the formal context, and 
finally achieves knowledge reasoning using the disjunction 
and conjunction operations. This process not only costs 
a large amount of time, but also heavily depends on the 
domain expert experience. But, without mastering special 
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domain knowledge beforehand, human still can directly 
reason from given data. For example, without mastering 
knowledge of 3D reconstruction beforehand, people can 
reconstruct 3D model of an unseen 2D image in his mind 
through observing and reasoning many 2D images and 
corresponding 3D scenes in real world. This has led to an 
interesting research topic: can machine directly learn logic 
reasoning patterns from given data? And these logical pat-
terns are termed as the data concept logic (DCL).

As a preliminary exploration, in this study, we design a 
task of the DCL which is called learning logic task from 
images, just a LiLi task shown in Fig. 1(7). Unlike the logi-
cal operation defined by human (LOH) using some domain 
expert knowledge, a LiLi task is to learn and reason the rela-
tion between two input images and one output image without 
any reasoning patterns beforehand, i.e. LiLi does not know 
any reasoning patterns about R. In summary, there are some 
differences below between a LiLi task and a LOH.

•	 For LiLi, one does not know any reasoning patterns about 
R except for giving a data set, while for LOH whose focus 
is that how to define a reasonable logical operation, one 
always possesses lots of domain knowledge about R.

•	 LPN induced by a LiLi models an abstract or low level 
logical relation in term of the pixel values. However, the 

existing logical operation models a semantic or high level 
logical relation in term of the numbers or symbols.

•	 LPN induced by a LiLi is a data-driven method to model 
the logical relation, while LOH is an expert-driven 
method.

Learning logic task from images (LiLi task) is also a very 
important computer vision task. Unfortunately, to the best 
of our knowledge, there are only a bit of work on the LiLi 
task shown in Fig. 1(7). [10] mined the logical patterns from 
Fashion-Logic data sets without presetting any reasoning 
patterns. Zhou et al. [6] proposed a Neural Logical Machine 
(NLM) which can learn new logic based on some back-
ground knowledge. In contrast, a variety of models based on 
deep convolutional neural networks (CNNs) have achieved 
the state-of-the-art performances, even super-human on 
some tasks for the common computer vision tasks such as 
object recognition [11, 17, 25], object detection [12, 36], 
semantic segmentation [3, 40], image captioning [18, 45], 
visual question answering (VQA) [48, 50], image generator 
[8, 35] (see Fig. 1). It is well known that the logic reason-
ing is one of the abilities that the general/strong artificial 
intelligence has to possess. In the existing computer vision 
tasks, image captioning and visual question answering seem 
to need some reasoning abilities, especially VQA (indeed 

Fig. 1   The differences among these popular computer vision tasks. 
(1) Object recognition (sometimes object classification) is to clas-
sify individual objects. (2) Object detection is to classify individ-
ual objects and localize each using a bounding box. (3) Semantic 
segmentation is to classify each pixel into a fixed set of categories 
without differentiating object instances. (4) Image captioning is to 

describe the content of an image by using reasonably formed natu-
ral sentences. (5) Visual question answering (VQA) is to automati-
cally answer natural language questions according to related the 
image content. (6) Image generator is to generate images according to 
images or text description. (7) Data concept logic is to learn to obtain 
logic concepts from a given data set
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VQA performs need more knowledge: image itself, com-
mon sense, domain knowledge, and so on). In fact, because 
of some shortcomings of existing benchmark data sets 
(described in Sect. 3.1), the systems can correctly answer 
the questions without reasoning [16, 19, 53]. Hence, it is 
desired to provide a new task, such as the LiLi task, to test 
the reasoning ability of models.

Our contributions are as follows: 

1.	 The data concept logic (DCL) is proposed to directly 
learn the concept logical patterns from the given data.

2.	 We propose a LiLi task where the abstract or low logical 
relation between two input images and one output image 
needs to be learned and reasoned without any reasoning 
patterns beforehand.

3.	 We provide an inference form of the LiLi task that is the 
consistent with classical propositional calculus form.

4.	 Six LiLi data sets with three difficulty levels: Bitwise 
And, Bitwise Or, Bitwise Xor, Addition, Subtraction and 
Multiplication, are provided.

5.	 Unlike a semantic or high level logical relation defined 
by human, an abstract or low level logical relation is 
expressed by a novel data-driven method called as LPN.

6.	 The performances of these typical neural networks: 
CNN-LSTM, MLP, CNN-MLP, autoencoder and 
ResNets, are tested on six LiLi data sets.

7.	 The divide and conquer model (DCM) is proposed using 
a decomposing strategy to solve the difficult task multi-
plication, achieving a better performance than the typi-
cal neural networks used in this paper.

The remainder of this paper is organized as follows: Sect. 2 
proposes the DCL. Section 3 proposes six LiLi data sets, 
the LiLi task and its inference form. Section 4 presents the 
performance evaluation of the typical neural networks on six 
LiLi data sets. In Sect. 5, the DCM is devised to solve the 
difficult logic task multiplication. Finally, we draw conclu-
sions in Sect. 6.

2 � DCL

In this section, we first detail the DCL proposed in this 
paper, and then provide an inference form of DCL.

2.1 � DCL

Data concept logic (DCL) is a data-driven tool for learn-
ing to obtain logic concepts from a given data set directly. 
Applying the learned concepts, it can output the logical 
relations among the input data. It is noted that DCL merely 
uses pure original data cues, and can not know other 

information such as the meaning of symbols/numbers in 
data in advance. The DCL can be formalized as follows.

D e f i n i t i o n  1   A  d a t a  c o n c e p t  l o g i c  i s 
t e r m e d  a s  a  t r i p l e  R = (I,R,O)  ,  w h e r e 
I = {xi | xi = (x1

i
, x2

i
,… , x

mI

i
), i = 1, 2,… ,N} 

i s  an  input  sequence  wi th  the  length  mI  , 
O = {yi | yi = (y1

i
, y2

i
,… , y

mO

i
), i = 1, 2,… ,N} is an output 

sequence with the length mO , R ∶ I → O is a reasoning pat-
tern (relation mapping) from the input I to the output O.

The aim of DCL is to learn the R from the input I to the 
output O. In this paper, we propose a deep learning net-
work framework: Logical Pattern Network (LPN) param-
eterized by W to learn the R. This model can be learned by 
solving the following optimization problem.

where L is a loss function, and N is the number of the train-
ing samples.

The universal approximation theorem tells us that 
neural networks are able to approximate any measurable 
function with any precision [14]. Theoretically, the logical 
pattern R can be represented by one neural network. In the 
DCL, R is hidden in the LPN, and mining R from data can 
be regarded as the iterative optimization process of param-
eter W of LPN. At each iteration, the value of W changes 
in the direction that the loss L becomes smaller. When the 
loss is small enough, the iteration stops and R is obtained.

The workflow of a DCL task is illustrated in Fig. 2, 
where I is the set of input data, O is the set of ground-truth 
output data, Ô indicates the set of logical relation patterns 
reasoned by f (LPNW (x

1
i
, x2

i
,… , x

mI

i
)) , O/I is the ground-

truth logical relation set for a given input set I, Ô∕I is the 
prediction logical relation set for a given input set I using 
LPN, Loss is used to evaluate the difference between O/I 
and Ô∕I . LPN indicates the logical pattern network.

(1)

W∗ = argmin
W

L(LPNW (I),O)

= argmin
W

1

N

N∑

i=1

L(LPNW (xi), yi),

Fig. 2   The workflow of a DCL task
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2.2 � Inference form of DCL

Human, in our daily life, often makes inferences using some 
known antecedents. And this process can be formalized as 
the following form [27].

Formula (2) exactly is also the mathematical model of the 
classical propositional calculus [27] where the consequence 
of the antecedent ∗ is inferred using the known n antecedents. 
There exist many methods addressing the task. For example, 
Zadeh [52] provided an inference rule called ‘compositional 
rule of inference’ (CRI) to make such an inference whose 
antecedents and consequences contain fuzzy concepts. Spe-
cially, an implication A → B first is translated into a fuzzy 
relation Rz(A,B) from A to B. And then, B∗ can be inferred 
by the composition of Rz and A∗ by the following formula.

where Rz ∶ [0, 1]2 → [0, 1] defined beforehand by the 
human experts is a duality function. ◦ denotes a composi-
tion operator.

Inspired by fuzzy reasoning [27], a DCL task can be writ-
ten as the following inference form based on the IF THEN 
rule.

where xi is the input of the LPN, yi is the output of the LPN.
It should be noted that xi and yi can be many kinds of 

objects in LPN. For example, antecedents and consequences 
contain fuzzy concepts as shown in Formula (2).

In this paper, xi and yi are images. Specifically, xi is an 
input sequence with the length mI , yi is an output sequence 
with the length mO . Based on this, Formula (4) can be writ-
ten as the following form.

(2)

Antecedent 1 ∶ A1 ⟶ B1

Antecedent 2 ∶ A2 ⟶ B2

⋮ ⋮

Antecedent n ∶ An ⟶ Bn

Antecedent ∗∶ A∗

Consequence ∶ B∗,

(3)B∗ = Rz(A,B)◦A∗,

(4)

Antecedent 1 ∶ If the input is x1 then the output is y1
Antecedent 2 ∶ If the input is x2 then the output is y2

⋮ ⋮

Antecedent n ∶ If the input is xn then the output is yn
Antecedent n + 1 ∶ If the input is xn+1
Antecedent n + 2 ∶ If the input is xn+2

⋮ ⋮

Antecedent n + m ∶ If the input is xn+m

Consequence n + 1 ∶ The output is yn+1
Consequence n + 2 ∶ The output is yn+2

⋮ ⋮

Consequence n + m ∶ The output is yn+m,

where (x1
i
, x2

i
,… , xmI

i
) is the input data fed into the LPN, 

(y1
i
, y2

i
,… , ymO

i
) is the output data expressing the relation of 

the input data.
In Formula (5), the n antecedents from 1 to n constitut-

ing the training set are used to train the LPN inference 
model. And the m antecedents from n + 1 to n + m consti-
tuting the testing set are used to test the inference ability of 
LPN. Based on this, Formula (5) can be further simplified 
as the following form.

Formula (6) can be further simplified as the follow-
ing form by Itrain = {(x1

1
, x2

1
,… , x

mI

1
), (x1

2
, x2

2
,… , x

mI

2
), … , 

(x1
n
, x2

n
, … , x

mI

n )}, Otrain = {(y1
1
, y2

1
,… , y

mO

1
), (y1

2
, y2

2
,… , y

mO

2
), 

… ,  (y1
n
, y2

n
,… , y

mO

n )},  Itest  =  {(x1
n+1

, x2
n+1

,… , x
mI

n+1
), 

(x1
n+2

, x2
n+2

,  … , x
mI

n+2
),… , (x1

n+m
, x2

n+m
,… , x

mI

n+m)},  a n d 
Otest  = {(y1

n+1
, y2

n+1
,… , y

mO

n+1
), (y1

n+2
, y2

n+2
,… , y

mO

n+2
), … , 

(y1
n+m

, y2
n+m

,… , y
mO

n+m)}

In fact, Formula (7) contains three implications, i.e. 
(Itrain → Otrain) → (Itest → Otest) . One can obtain the conse-
quence Otest of the antecedent Itest by translating three impli-
cations to the following form.

(5)

Antecedent 1 ∶ If the input squence is (x1
1
, x2

1
,… , x

mI

1
)

then the output squence is (y1
1
, y2

1
,… , y

mO

1
)

Antecedent 2 ∶ If the input squence is (x1
2
, x2

2
,… , x

mI

2
)

then the output squence is (y1
2
, y2

2
,… , y

mO

2
)

⋮ ⋮

Antecedent n ∶ If the input squence is (x1
n
, x2

n
,… , x

mI

n )

then the output squence is (y1
n
, y2

n
,… , y

mO

n )

Antecedent n + 1 ∶ If the input squence is (x1
n+1

, x2
n+1

,… , x
mI

n+1
)

Antecedent n + 2 ∶ If the input squence is (x1
n+2

, x2
n+2

,… , x
mI

n+2
)

⋮ ⋮

Antecedent n + m ∶ If the input squence is (x1
n+m

, x2
n+m

,… , x
mI

n+m)

Consequence n + 1 ∶ The output squence is (y1
n+1

, y2
n+1

,… , y
mO

n+1
)

Consequence n + 2 ∶ The output squence is (y1
n+2

, y2
n+2

,… , y
mO

n+2
)

⋮ ⋮

Consequence n + m ∶ The output squence is (y1
n+m

, y2
n+m

,… , y
mO

n+m),

(6)

Training antecedent ∶ (x1
1
, x2

1
,… , x

mI

1
) ⟶ (y1

1
, y2

1
,… , y

mO

1
)

(x1
2
, x2

2
,… , x

mI

2
) ⟶ (y1

2
, y2

2
,… , y

mO

2
)

⋮ ⋮

(x1
n
, x2

n
,… , x

mI

n ) ⟶ (y1
n
, y2

n
,… , y

mO

n )

Testing antecedent ∶ (x1
n+1

, x2
n+1

,… , x
mI

n+1
)

(x1
n+2

, x2
n+2

,… , x
mI

n+2
)

⋮

(x1
n+m

, x2
n+m

,… , x
mI

n+m)

Consequence ∶ (y1
n+1

, y2
n+1

,… , y
mO

n+1
)

(y1
n+2

, y2
n+2

,… , y
mO

n+2
)

⋮

(y1
n+m

, y2
n+m

,… , y
mO

n+m),

(7)
Training antecedent set ∶ Itrain ⟶ Otrain

Testing antecedent set ∶ Itest
Consequence set ∶ Otest,



3401International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

where R(Itrain,Otrain) learned using a data-driven method is 
a high-dimension function.

From the above analysis, one can find that the DCL has 
the consistent inference form with the classical propositional 
calculus. The comparison of the DCL and the LOH is illus-
trated in Fig. 3. From Fig. 3, one can see that one fundamen-
tal task of DCL or LOH is to obtain the relation R. For this 
task, they have a very obvious difference: for LOH, R needs 
to be defined beforehand by the experts, while for DCL, R 
is learned from a given data set.

Based on the above analysis, it is desired to design a 
human-free and data-driven method directly learn the rea-
soning pattern from given data. In this study, we explore this 
problem by proposing the LiLi task. What follows, the LiLi 
task will be detailed and formalized.

3 � A LiLi task

In this section, we first construct six LiLi data sets, then 
detail the LiLi task proposed in this paper, and finally pro-
vide its inference form consistent with the classical propo-
sitional calculus form.

3.1 � LiLi data sets

The existing logic reasoning data sets such as CLEVR [19] 
and VQA [1] have made outstanding contributions to testing 
the logic reasoning ability of machines, but they have also 
some shortcomings. (1) Because of biases of the data sets, 
some questions can be answered through directly perceiving 
images rather than reasoning [16, 19, 53]. For example, the 

(8)Otest = R(Itrain,Otrain)◦Itest,
question is what color is the object in the given image, and 
the answer can be obtained directly from the image through 
perception. (2) The existing logic reasoning data sets may 
seem complex, but the typical neural networks and their 
results suggest that the logics that are embedded in these 
data sets are relatively simple for machines. More difficult 
logic data sets should be designed. (3) Some questions from 
the existing logic reasoning data sets have multiple answers, 
so it is not easy to judge whether the answers of these ques-
tions are correct or not. These shortcomings make it difficult 
to assess the reasoning abilities of machines using these data 
sets.

Therefore, we construct the LiLi data sets to overcome 
these shortcomings. In this paper, these logical relations: 
Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtrac-
tion and Multiplication are selected to construct the LiLi 
data sets. (1) Questions are able to be answered only if a 
model has both perception and reasoning abilities. (2) The 
typical neural networks are almost powerless for the logic of 
multiplication (detailed in Sect. 4). It indicates that the LiLi 
task is really worth studying. (3) The construction process 
of the LiLi data set is controlled by us and only one correct 
answer can be obtained from each sample. Hence, it is easy 
to evaluate the correctness of the answer.

We construct the LiLi data sets to verity the perfor-
mance of the proposed LPN model. It is worth noting that 
the LPN model does not know the logical relations hidden 
in images beforehand. The bitwise operations are binary 
numbers and arithmetic operations are decimals. For Bit-
wise And, Bitwise Or and Bitwise Xor data sets, the size 
of the images is set to 15 × 120, so the number embedded 
in one image is at most a 14-digit number. For Addition, 
Subtraction and Multiplication data sets, the size of the 
images is set to 15 × 60, hence the number embedded in 

Fig. 3   The comparative analysis 
between the DCL and the LOH



3402	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

one image is at most a 7-digit number. This step ensures 
that the proportion of numbers used for training is a very 
small fraction of all possible combinations. Each of these 
samples consists of two input images each containing an 
integer number. The pair of two input images marked x1

i
 

and x2
i
 are then generated from a pre-specified range as 

detailed below. The output image marked yi is generated 
according to the result of the operation on the two input 
images. The numbers embedded in images x1

i
 , x2

i
 and yi 

are A, B and E.
The details about these data sets are here:

•	 Bitwise And: For per sample, both A and B have 14 binary 
digits. E is the bitwise and of A and B. For example, A 
and B are “00111101110111” and “10010101110000”, 
respectively. So, E is “00010101110000”. The sample is 
shown in Fig. 4a.

•	 Bitwise Or: For per sample, both A and B have 14 binary 
digits. E is the bitwise or of A and B. For example, A 
and B are “10001111100010” and “10110100101110”, 
respectively. So, E is “10111111101110”. The sample is 
shown in Fig. 4b.

•	 Bitwise Xor: For per sample, both A and B have 14 binary 
digits. E is the bitwise xor of A and B. For example, A 
and B are “00110101010110” and “00111101110000”, 
respectively. So, E is “00001000100110”. The sample is 
shown in Fig. 4c.

•	 Addition: For per sample, the range of A and B are 
0–4,999,999. E is the sum of A and B. For example, A 
and B are “646,724” and “4,087,801”, respectively. So, 
E is “4,734,525”. The sample is shown in Fig. 4d.

•	 Subtraction: For per sample, the range of A and B are 
0–9,999,999. E is the difference between A and B. In 
order to ensure a positive result, A is chosen to be larger 
or equal to B. For example, A and B are “6,740,693” 
and “3,502,317”, respectively. So, E is “3,238,376”. The 
sample is shown in Fig. 4e.

•	 Multiplication: For per sample, the range of A and B 
are 0–3160. E is the product of A and B. For example, 
A and B are “1257” and “1377”, respectively. So, E is 
“1,730,889”. The sample is shown in Fig. 4f.

According to the difficulty of the logical relations embedded 
in data sets, these data sets are divided into 3 levels: one-
star ( ⋆ , easy), two-star ( ⋆⋆ , intermediate), and three-star 
( ⋆ ⋆ ⋆ , difficult).

Bitwise And, Bitwise Or and Bitwise Xor data sets ( ⋆ ): 
(1) the value of each digit of E is only determined by the 
values at the same position in A and B, e.g., in Fig. 4a, the 
value at 2nd (the rightmost position is 1st) position in E is 
only determined by the values at 2nd position in A and B , 
so the value at 2nd position in E is “ 0” (1 & 0 = 0); (2) the 
possible value of each digit of E is 0 or 1.

Addition and Subtraction data sets ( ⋆⋆ ): (1) the value 
of each digit of E is determined by the carry or borrow and 
the values at the same position in A and B, e.g., in Fig. 4d, 
the value at 2nd position in E is determined by the carry of 
the sum of values at 1st position in A and B and the values 
at 2nd position in A and B; (2) the possible value of carry 
or borrow part is 0 or 1, so the possible value of each digit 
(except the rightmost position) of E has two possibilities in 
0–9, we choose one of the two possibilities as the final result 
based on the carry or borrow case. E.g., in Fig. 4d, the carry 
of the sum of values at 1st position in A and B is “0”, the sum 
of values at 2nd position in A and B is “2” (2 + 0=2), so the 
value at 2nd position in E is “2” (0 + 2=2).

Multiplication data set ( ⋆ ⋆ ⋆ ): (1) the value at a given 
position in E is determined by the values at the given posi-
tions in A and B and all positions in A and B before that 
given position. E.g., in Fig. 4f, the value at 2nd position in 
E is determined by the values at 1st and 2nd positions in A 
and the values at 1st and 2nd positions in B. (2) The number 
of the possible value of each digit (except the rightmost posi-
tion) of the E on Multiplication data set is more than that on 
other LiLi data sets.

3.2 � LiLi task

In this paper, we focus on the scene where a model directly 
learns and reasons the relation between two input images and 
one output image, without any reasoning patterns before-
hand. In this task, we first generate three images, two for the 
input and one for the output. The output image expresses the 

Fig. 4   The samples of six LiLi 
data sets
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relation between two input images. In addition, the n-digit 
number embedded in the images are not explicitly intro-
duced, which means that the meaning of contents embedded 
in images and the relation between two input images and one 
output image are not known at all. One example is used to 
illustrate the LiLi task. If the n-digit numbers embedded in 
two input images are “234” and “432”, the output image are 
“666”, the logical relation between two input images and 
the output image is addition. It can be formalized as follows.

Given a data concept logic system as a set of triple 
R = (I,R,O) , where I = {xi | xi = (x1

i
, x2

i
), i = 1, 2,… ,N} is 

an input sequence, O = {yi}
N
i=1

 is the output sequence, where 
x1
i
, x2

i
 and yi are three images with K pixels shown in Fig. 4. 

R denotes the logical relation between the pair of images 
xi ∈ I and yi ∈ O.

At the semantic or high level, R is called as Bitwise And, 
Bitwise Or, Bitwise Xor, Addition, Subtraction and Mul-
tiplication denoted as &, |,∧,+,− or × , and they are eas-
ily understood by human beings. However, at the abstract 
or low level, R may be a high-dimensional mapping that 
is extremely difficult to define the mapping by human, in 
this paper, R ∶ [−1, 1]2K → {0, 1}K . Hence, it is desired to 
design a novel method to express an abstract or low level 
logical relation.

In this task, given a data set D = {(xi, yi)}
N
i=1

 , where yi 
denotes the logical relation between the pair of images x1

i
 and 

x2
i
 . When drawing these images, we use the pixel value 0 for 

black, the pixel value 1 for white. For the input images, we 
scale every pixel value into − 1 to 1 by subtracting the mean, 
so x1

i
, x2

i
∈ [−1, 1]K . For the output image yi ∈ {0, 1}K . 

This task can be viewed as finding a mapping from the 
input space I = {xi}

N
i=1

 to the output space O = {yi}
N
i=1

 by a 
supervised learning strategy. In this study, this task can be 
transformed into a regression problem with the Mean Square 
Error (MSE) loss function, i.e. L is MSE. It can be by solv-
ing the following optimization problem.

(9)

W∗ = argmin
W

MSE(f (LPNW (I)),O)

= argmin
W

1

N

N∑

i=1

MSE(f (LPNW (x
1
i
, x2

i
)), yi)

= argmin
W

1

N

N∑

i=1

√√√√
K∑

k=1

(f (LPNW (x
1
i
, x2

i
))k − yik)

2,

where f is a sigmoid function to transform LPNW (x
1
i
, x2

i
) to 

[0,1], i.e.
f (LPNW (x

1
i
, x2

i
)) ∈ [0, 1]K , and LPN is parameterized by 

W. Formula (9) is differentiable with respect to the param-
eter W, and can be efficiently solved by using the gradient 
descent method.

Based on above analysis and discussion, we illustrate the 
workflow of the LiLi task shown in Fig. 5, where I is the 
set of input image data, O is the set of ground-truth output 
image data, Ô indicates the set of logical relation patterns 
reasoned by f (LPNW (x

1
i
, x2

i
)) , O/I is the ground-truth logical 

relation set for a given input image set I, Ô∕I is the predic-
tion logical relation set for a given input image set I using 
LPN, Loss is used to evaluate the difference between O/I 
and Ô∕I . LPN indicates the logical pattern network, which 
is implemented in this paper using CNN-LSTM, MLP, 
Autoencoder, ResNet18, ResNet50, ResNet152 and DCM, 
respectively. More implementation details about LPN see 
Sects. 4.1 and 5.

From Formula (9) and Fig. 5, one observes that the LPN 
merely needs to be provided some training data to automati-
cally learn the logical patterns between a pair of the given 
images without providing any reasoning patterns before-
hand. This is an absolutely data-driven strategy to mine the 
logical patterns hidden in data.

3.3 � Inference form of a LiLi task

Based on the inference form of the DCL 2.2, a LiLi task can 
be written as the following inference form based on the IF 
THEN rule.

Fig. 5   The workflow of a LiLi task
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where x1
i
 and x2

i
 are the input images, yi is the output image 

expressing the relation between two input images.
In Formula (10), the n antecedents from 1 to n consti-

tuting the training set are used to train the LPN inference 
model. And the m antecedents from n + 1 to n + m consti-
tuting the testing set are used to test the inference ability of 
LPN. Based on this, Formula (10) can be further simplified 
as the following form.

Formula (11) can be further simplified as the following 
form by Itrain = {(x1

1
, x2

1
), (x1

2
, x2

2
),… , (x1

n
, x2

n
)} , Otrain = {y1, 

(10)

Antecedent 1 ∶ If two input images are x1
1
and x2

1
then the output image is y1

Antecedent 2 ∶ If two input images are x1
2
and x2

2
then the output image is y2

⋮ ⋮

Antecedent n ∶ If two input images are x1
n
and x2

n
then the output image is yn

Antecedent n + 1 ∶ If two input images are x1
n+1

and x2
n+1

Antecedent n + 2 ∶ If two input images are x1
n+2

and x2
n+2

⋮ ⋮

Antecedent n + m ∶ If two input images are x1
n+m

andx2
n+m

Consequence n + 1 ∶ The output image is yn+1
Consequence n + 2 ∶ The output image is yn+2

⋮ ⋮

Consequence n + m ∶ The output image is yn+m,

(11)

Training antecedent ∶ (x1
1
, x2

1
) ⟶ y1

(x1
2
, x2

2
) ⟶ y2

⋮

(x1
n
, x2

n
) ⟶ yn

Testing antecedent ∶ (x1
n+1

, x2
n+1

)

(x1
n+2

, x2
n+2

)

⋮

(x1
n+m

, x2
n+m

)

Consequence ∶ yn+1
yn+2

⋮

yn+m,

y2,… , yn} , Itest = {(x1
n+1

, x2
n+1

), (x1
n+2

, x2
n+2

),… , (x1
n+m

, x2
n+m

)} , 
and Otest = {yn+1, yn+2,… , yn+m}.

One can obtain the consequence Otest of the antecedent Itest by 
translating three implications (Itrain → Otrain) → (Itest → Otest) 
included by Formula (12) to the following form.

where R(Itrain,Otrain) ∶ [−1, 1]2K → {0, 1}K learned using a 
data-driven method is a high-dimension mapping function.

According to the above analysis, one can find that on 
the one hand, the LiLi task has the consistent inference 
form with the classical propositional calculus, on the other 
hand they have some different aspects as follows.

•	 Rz ∶ [0, 1]2 → [0, 1] is a duality function. However, 
R(Itrain,Otrain) ∶ [−1, 1]2K → {0, 1}K is a complex func-
tion with high dimensions (K takes 1800 or 900 in this 
paper).

•	 Rz needs to be defined beforehand by the experts, while 
R is learned from a given data set because it is almost 

(12)
Training antecedent set ∶ Itrain ⟶ Otrain

Testing antecedent set ∶ Itest
Consequence set ∶ Otest,

(13)Otest = R(Itrain,Otrain)◦Itest,

Table 1   The hyper-parameter 
settings on all models

Model Hyper-parameter

CNN-LSTM Conv(32,(5,5),l2(1.e-4))->BatchNormalization()->MaxPooling((2,2))->
Conv(64,(3,3),l2(1.e-4))->BatchNormalization()->MaxPooling((2,2))->
LSTM(1024, dropout=0.5)

MLP Dense(256)->Dense(256)->Dense(256)
CNN-MLP Conv(32,(5,5))->BatchNormalization()->MaxPooling((2,2))->

Conv(64,(3,3))->BatchNormalization()->MaxPooling((2,2))->
Dense(4096)

Autoencoder Conv(32,(5,5))->MaxPooling((2,2))->Conv(64,(5,5))->MaxPooling((2,2))
Conv(64,(5,5))->UpSampling((2,2))->Conv(32,(5,5))->UpSampling((2,2))
Cropping2D(((0,1),(0,0)))->Conv(1,(5,5))
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impossible to be defined the function beforehand by 
human.

In real world, there exist many complex relations that can 
not be provided beforehand by human beings. When facing 
this situation, the classical propositional calculus can not 
work well, even cannot work. Hence, it is desired to design 
a human-free and data-driven method to learn an unknown 
relation function. This is the our most main motivation.

4 � Experiments

In this section, we compare the performances of several typi-
cal deep neural networks on the six LiLi data sets. Next, we 
detail used models and experimental setup.

4.1 � Models and experimental setup

For all models, two images as input are fed into the models, 
and one image as output is used to compare with the ground 
truth image. These models are trained to produce one output 
image in which the correct number is embedded by optimis-
ing a mean square error (MSE) loss and using the ADAM 
or SGD optimiser. The early-stopping is used to choose the 
optimiser and hyper-parameters of smallest loss estimated on 
the validation set. In addition, the batch size is set to 32. The 
hyper-parameter settings and further details on all models 
see in Table 1. Finally, the performance values are reported 
on the testing set.

•	 CNN-LSTM: We develop the model using a standard 
LSTM module [9]. Since LSTMs are designed to process 
inputs sequentially, we first pass images sequentially and 
independently through a 2-layer CNN, and the resulting 
sequence is handed over to the LSTM. The final hidden 
state of the LSTM is passed through a fully-connected 
layer with sigmoid activation function. The model is 
trained using batch normalization after each convolu-
tional layer and dropout is applied to the LSTM hidden 
state.

•	 MLP: The MLP is implemented followed by [15]. The 
model has three hidden layers each with 256 nodes with 
ReLU activation functions and one output layer with sig-
moid activation. All nodes between adjacent layers are 
fully-connected.

•	 CNN-MLP: Inspired by [21], we implement a 2-layer 
CNN with ReLU activation functions and batch normali-
zations. The input images are treated as a set of separate 
greyscale input feature maps for the CNN. The convolu-
tional output is passed through two-layer fully-connected 
layers, in which the first layer using a ReLU activation 

function and the second layer using a sigmoid activation 
function.

•	 Autoencoder: A simple autoencoder network is imple-
mented using the idea of [13]. In this model, a 2-layer 
CNN is used as the encoder network and a 2-layer 
upsampling network as the decoder network. At last, a 
convolutional layer is used as the output layer with a sig-
moid activation.

•	 ResNet: We use ResNet architecture as described in [11] 
and modify the softmax activation function to sigmoid 
activation function on the last layer of the network. In this 
paper, we train ResNet-18, ResNet-50 and ResNet-152 
on all LiLi data sets and get nearly performances.

4.2 � Experiments and analysis on LiLi data sets

In this subsection, we test several typical deep neural net-
works on these LiLi data sets. Each data set consists of 
10,000 training samples, 10,000 validation samples and 
20,000 testing samples. The testing samples are not included 
in the training or validation samples. All models are trained 
on each training set and stopped when the losses on valida-
tion sets no longer decrease. We use an OCR software [41] 
to recognize the numbers embedded in the predicted images, 
and then compare them with the ground truth numbers. For 
one predicted image, it is right when all digits are equal 
to the ground truth digits. The accuracies of Bitwise And, 
Bitwise Or, Bitwise Xor, Addition, Subtraction and Multi-
plication data sets are shown in Table 2.

From Table 2, one observes that all models get the good 
performances on Bitwise And, Bitwise Or and Bitwise Xor 
data sets. Only CNN-MLP, Autoencoder and ResNets get the 
good performances on Addition and Subtraction data sets. 
Unfortunately, all models fail on Multiplication data set.

The validation loss curves on Bitwise And, Bitwise Or 
and Bitwise Xor data sets are shown in Fig. 6a–c. Because 
of the early-stopping, the epochs of these models are differ-
ent. From these figures, one finds that all models converge to 
small losses. In addition, the MLP, CNN-MLP and Autoen-
coder converge faster than the CNN-LSTM and ResNets. 
The validation loss curves on Addition and Subtraction data 
sets are shown in Fig. 6d and e. From these figures, one 
observes that the losses of the CNN-MLP, Autoencoder 
and ResNets are smaller than other models. Moreover, both 
of CNN-MLP and Autoencoder converge faster than the 
ResNets. The validation loss curve on Multiplication data 
set is shown in Fig. 6f. One can see, from it, that all models 
have very large losses when they converge.

Next, we try to see if increasing data set size could 
improve model performances. In this scene, all models are 
trained on 150,000 training data sets and stopped when 
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the losses on validation data sets no longer decrease. The 
accuracies of all models on six LiLi data sets are shown in 
Table 3.

From Table 3, one observes that most models get the 
good performances on Bitwise And, Bitwise Or, Bitwise 
Xor, Addition and Subtraction data sets. It means the per-
formances of models can be improved by increasing the size 
of data sets. This provides a strategy to solve difficult logic 
learning problems.

The validation loss curves are shown in Fig. 7. From 
Fig. 7, one observes that the most of the models converge to 
smaller losses than before. The validation loss curves on Bit-
wise And, Bitwise Or and Bitwise Xor data sets are shown in 

Fig. 7a–c. From these figures, one finds that the CNN-LSTM 
and ResNets converge faster than before. The validation loss 
curves on Addition, Subtraction and Multiplication data sets 
are shown in Fig. 7d–f, respectively. From Fig. 7d and e, 
one observes that the losses of all models are smaller than 
before. But, from Fig. 7f, we observe that all models still 
have very large losses when they converge on Multiplication 
data set. A good phenomenon is that the losses of all models 
are smaller than before. 

One guess: the space position plays a significant role in 
the process of learning logical patterns. It is worth noting 
that the CNN-LSTM only gets about 80% accuracies on 
Addition and Subtraction data sets even increasing the size 

(a) Bitwise And (b) Bitwise Or (c) Bitwise Xor

(d) Addition (e) Subtraction (f) Multiplication

Fig. 6   The validation losses of Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication on 10,000 training data sets

Table 2   The test accuracies of Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication on 10,000 training data sets

Model Operations

⋆ ⋆⋆ ⋆ ⋆ ⋆

Bitwise And (%) Bitwise Or (%) Bitwise Xor (%) Addition (%) Subtraction (%) Multiplication (%)

CNN-LSTM 100 100 100 0.07 0.38 0.10
MLP 100 100 100 0.21 0.21 0.08
CNN-MLP 100 100 100 96.33 98.69 0.07
Autoencoder 100 100 100 96.78 97.34 0.08
ResNet18 99.96 98.52 99.80 99.86 99.49 0.10
ResNet50 99.92 99.86 99.69 99.14 99.64 0.10
ResNet152 100 100 100 98.74 98.93 0.14
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of data sets. However, it get 100% accuracy on Bitwise And, 
Bitwise Or and Bitwise Xor data sets. The reason is that the 
CNN-LSTM is fed the input images one by one, learn the 
features of the images separately so that they almost do not 
consider the carry or borrow case on addition or subtrac-
tion. Each digit of the result of addition and subtraction is 
affected by the adjacent positions (the influences from carry 
or borrow), while each digit of the result of bitwise and, 
bitwise or and bitwise xor is not. If the models want to get 
high accuracies, they should dispose 2 input images a and 
b simultaneously on Addition and Subtraction data sets. In 

order to verify this idea, we develop a model called CNN2-
MLP that is similar to CNN-MLP. These two models have 
same structure and hyper-parameter settings except CNN2-
MLP learns features of each of two input images separately. 
And their structures are shown in Fig. 8.

The validation loss curves of CNN-MLP and CNN2-
MLP on the six LiLi data sets are shown in Fig. 9. For 
Bitwise And, Bitwise Or and Bitwise Xor data sets, both 
of them converge to the small losses. For Addition and 
Subtraction data sets, the validation loss of CNN2-MLP 
is large on 10,000 training data sets. When the size of 

Fig. 7   The validation losses of Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication on 150,000 training data sets

Table 3   The test accuracies 
of Bitwise And, Bitwise 
Or, Bitwise Xor, Addition, 
Subtraction and Multiplication 
on 150,000 training data sets

Model Operations

⋆ ⋆⋆ ⋆ ⋆ ⋆

Bitwise 
And (%)

Bitwise Or (%) Bitwise 
Xor (%)

Addition (%) Subtraction (%) Multiplication (%)

CNN-LSTM 100 100 100 84.21 79.22 0.20
MLP 100 100 100 98.79 97.39 0.16
CNN-MLP 100 100 100 99.96 99.96 0.35
Autoencoder 100 100 100 98.17 98.66 0.16
ResNet18 100 100 100 99.50 99.50 0.24
ResNet50 100 100 100 99.56 99.79 0.26
ResNet152 100 100 100 99.98 99.87 0.24
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training data set increasing, the validation loss of CNN2-
MLP is smaller than before but still larger than the valida-
tion loss of CNN-NLP. For Multiplication data set, both 
of them converge to the large losses. The test accuracies 
of CNN2-MLP on Bitwise And, Bitwise Or, Bitwise 
Xor, Addition, Subtraction and Multiplication data sets 
are shown in Table 4. CNN2-MLP can not get the good 

performances on Addition and Subtraction data sets, but 
still work well on Bitwise And, Bitwise Or and Bitwise 
Xor data sets. These experiment results verify that the 
space position plays a significant role in the process of 
learning logical patterns.

As the size of the given data increases, the MLP tends 
to have good performances on Addition and Subtraction 

Fig. 8   The architectures of 
CNN-MLP and CNN2-MLP

(a) Bitwise And (b) Bitwise Or (c) Bitwise Xor

(d) Addition (e) Subtraction (f) Multiplication

Fig. 9   The validation losses of CNN-MLP and CNN2-MLP on Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication 
data sets
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data sets. This is because each digit of the result of the 
addition and subtraction is affected by the adjacent posi-
tions in both input images. In particular, for the MLP, the 
relation between two images at their arbitrary positions, 
when data set size is small, it can not focus on the exact 
relation on their adjacent positions. As soon as the data set 
gets larger, the defect can be made up.

From what has been discussed above, we can divide 
these models into three categories: 

1.	 CNN-LSTM: This model is appropriate for this type of 
task where each digit of the result is only affected by the 
same position of the input numbers (e.g. Bitwise And, 
Bitwise Or and Bitwise Xor data sets).

2.	 MLP: The model is appropriate for this type of task 
where each digit of the result is affected by all the posi-
tions of the input numbers (MLP is more appropriate 
than other models on Multiplication data sets). If the 
size of data set is large enough, MLP can focus on the 
same or adjacent positions of the input numbers (e.g. 

Table 4   The test accuracies of CNN2-MLP on Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication data sets

# training samples Operations

⋆ ⋆⋆ ⋆ ⋆ ⋆

Bitwise And 
(%)

Bitwise Or (%) Bitwise Xor 
(%)

Addition (%) Subtraction (%) Multiplication (%)

150,000 100 100 100 67.47 62.92 0.28
10,000 100 100 100 0.24 0.20 0.05

Fig. 10   The test visual effects 
of Addition on 10,000 training 
data set and 150,000 training 
data set

Fig. 11   The test visual effects of 
Subtraction on 10,000 training 
data set and 150,000 training 
data set

Fig. 12   The test visual effects 
of Multiplication on 10,000 
training data set and 150,000 
training data set
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Bitwise And, Bitwise Or, Bitwise Xor, Addition and 
Subtraction data sets).

3.	 CNN-MLP, Autoencoder and ResNets: These models 
are appropriate for this type of task where each digit of 
the result is affected by the same or adjacent positions 
of the input numbers (e.g. Bitwise And, Bitwise Or, Bit-
wise Xor, Addition and Subtraction data sets).

Next, from the standpoint of the visual effects, these models 
are compared. These predicted results output by the models 
with the poor performances are shown. For Addition and 
Subtraction data sets, only the CNN-LSTM and MLP get the 
poor performances; for Multiplication data sets, all models 
get the poor performances.

For Addition and Subtraction data sets, the visual 
effects are shown in Figs. 10 and 11. From Figs. 10a and 
11a, one observes that most models can clearly learn the 
first and last digits, and other digits obscurely in output 
images. As the size of the training data set increases, from 
Figs. 10b and 11b, one observes that most models can 
clearly learn most digits in output images. For Multiplica-
tion data set, the visual effects are shown in Fig. 12. From 
Fig. 12a, we observe that most models can only clearly 
learn the first and last digits and other digits obscurely 
in output images. As the size of the training data set 
increases, from Fig. 12b, one sees that most models can 
clearly learn more digits than before, but still obscurely 
for most digits in output images. There are many reasons 
why the performances of the predicted result on the digits 
is poor. Some predicted digits are very obscure, e.g. the 
p1 is shown in Fig. 11b). Some are similar to other digits, 
e.g. the p2 is shown in Fig. 10b). Some are right but OCR 
can not recognize them, e.g. the p3 is shown in Fig. 11b. 
Hence the accuracies can be higher in fact.

From above experimental results, one observes that these 
models can not solve the difficult LiLi task: multiplication. 
In the next section, an effective solution is provided by 
dividing this task into a few easier subtasks.

5 � Divide and conquer model 
for Multiplication data set

Although increasing the size of data set has effects on solv-
ing the difficult logic learning problems, all models still 
get the poor performances on Multiplication data set. To 
our knowledge, many problems are complex and difficult 
to solve directly, but it becomes easier when decomposed 
[20, 24, 32, 33, 43]. Artificial algorithm decomposition can 
effectively reduce the difficulty of learning [2]. Inspired by 

this, we propose the DCM to address complex task adopting 
the decomposition strategy.

We decompose a complex task into k subtasks through the 
DCM, and the decomposition criterion is that the combina-
tion difficulty of subtasks is lower than the complex task.

where H is the difficulty of this complex task, hi is the dif-
ficulty of the i th subtask, f is the combination difficulty of 
subtasks and it is determined by all subtasks.

As one sees from Figs. 6f and 7f, the MLP is more robust 
and can converge to a smaller loss than other models. For 
multiplication, the value at a given position of E is deter-
mined by the values at the given position in A and B and 
all positions in A and B before that given position. MLP 
is exactly more appropriate this scene than other models. 
So we select the MLP as the decomposition module of the 
DCM.

In this experiment, Multiplication data set is regenerated 
by adding some information. For training set, each of these 
samples consists of 4 input images each containing a single 
integer number. The input images are marked a, b, c and d. 
The output image marked e is generated by the result of the 
multiplication operation. The numbers embedded in images 
a, b, c, d and e are A, B, C, D and E. For testing set, only 
generate image a, b and e. For per sample, the ranges of A 
and B are 0–3160. E is the product of A and B. The carry 
operation occurs when the product of two numbers on one 
digit is more than ten, and C is used to record the value of 
carry part, while D is used to record the value of non-carry 
part. So, the multiplication is divided into the carry part and 
non-carry part, in other words, the sum of C and D is equal 
to E. For example, let A and B be “2261” and “584”, respec-
tively, and then, C, D and E equal to “1,256,300”, “64,124” 
and “1,320,424”, respectively. The calculation procedure is 
shown in Fig. 13.

The DCM is divided into three subtasks: carry subtask, 
non-carry subtask and synthetic subtask. First, the carry 
subtask and non-carry subtask are used to learn the carries 
of multiplication and multiplication without carry, respec-
tively. And then, the synthetic subtask is used to learn the 
synthetic pattern of the carry subtask and non-carry subtask. 

(14)H > f (h1, h2,… , hk),

Fig. 13   The procedure of multiplication
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The network structures of these three subtasks are similar, 
but the network parameters are different. 

1.	 Carry subtask During training, the images a and b are 
used as the input, image c as the ground-truth result. The 
network of the carry subtask is fully-connected layers 
and uses the ReLU as the activation functions in the 
hidden layers and the sigmoid in the output layer. The 
carry subtask has 5 hidden layers, and each layer has 256 
units.

2.	 Non-carry subtask During training, the images a and b 
are used as the input, the image d as the ground-truth 
result. The network of the non-carry subtask is fully-
connected layers and uses the ReLU as the activation 
functions in the hidden layers and the sigmoid in the 
output layer. The non-carry subtask has 5 hidden layers, 
and each layer has 256 units.

3.	 Synthetic subtask During training, the images c and d are 
used as the input, the image e as the ground-truth result. 
The network of the synthetic subtask is fully-connected 
layers and uses the ReLU as the activation functions in 
the hidden layers and the sigmoid in the output layer. 
The synthetic subtask has 3 hidden layers, and each layer 
has 256 units.

The ground-truth image is named as x (x can be c, d and e), 
and the predicted image is named as x′. We hope the num-
ber embedded in predicted image e′ is equal to the number 
embedded in ground truth image e, i.e., E′ = E. 

a)	 Training During training procedure, the images a and 
b are used as the input, e as the ground truth result and 
e′ as the output. It is interesting that the images c and 
d are both the input and ground truth results. For the 
carry subtask and non-carry subtask, the images c and 
d are the ground truth images, however, for the synthetic 
subtask, the image c and d are the input images. Taking 
the multiplication formula “ 2490 × 2644 = 6, 583, 560 ” 

for example explains the training procedure which is 
shown in Fig. 14a. A, B, C, D and E are “2490”, “2644”, 
“2,575,300”, “4,008,260” and “6,583,560”, respectively. 
The carry subtask, non-carry subtask and synthetic sub-
task are trained separately. For the carry subtask and 
non-carry subtask, the images a and b are used as the 
inputs, the images c and d as the ground truth images 
and the image c′ and d′ as the outputs, respectively. For 
the synthetic subtask, the images c and d are used as 
input, the image e as the ground truth image and image 
e′ as output. The smaller the differences between pre-
dicted image c′, d′ and e′ as well as ground-truth image 
c, d and e are, the better the performance of DCM is.

b)	 Testing In the testing procedure, DCM is an end-
to-end model. We take the multiplication formula 
“ 123 × 124 = 15, 252 ” for example to explain the test-
ing procedure which is shown in Fig. 14b. A and B are 
“123” and “124”, respectively. In the testing procedure, 
the DCM only takes images a and b as the inputs, and 
then directly gets a predicted image e′ at the output of 
the synthetic subtask. Specifically, the inputs are firstly 
passed through the carry subtask and non-carry subtask 
to get a carry prediction layer and a non-carry prediction 
layer, respectively. Then, the two prediction layers are 
concatenated and passed through the synthetic subtask 
to get the final prediction result E′. E′ is “15,252” and 
equals to E which shows that the DCM correctly found 

Fig. 14   Training and testing procedure

Table 5   The test accuracy of each subtask of DCM using 150,000 
training examples

Operation Network branches

Carry subtask 
(%)

Operation 
without carry 
subtask (%)

Synthetic subtask 
(%)

Multiplication 86.25 98.38 84.46
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the relation between the images a and b only using the 
pure visual information.

The DCM is trained using the stochastic gradient descent 
with momentum 0.9, optimising a mean square error (mse) 
loss and batch size is fixed 256. The learning rate starts with 
0.8, and reduces slowly when the loss plateaus. The training 
on the carry subtask, non-carry subtask and synthetic sub-
task terminates when the loss no longer reduces.

The accuracy of each subtask of DCM is shown in 
Table 5. In contrast, the DCM achieves the surprising accu-
racy 84.5% which is higher than the MLP on Multiplication 
data set. Some visual effects from the testing are shown in 
Fig. 15. In Fig. 15a, both DCM and MLP get correct pre-
dicted images. In Fig. 15b, the DCM gets the correct pre-
dicted image, but the MLP does not. In Fig. 15c, both DCM 
and MLP predict wrong images. It can be seen that the last 
two digits and first two digits in the image of the MLP are 
predicted correctly, but the rest central 3 digits are uncertain. 
However, for the DCM, only one digit of the number embed-
ded in the predicted image is uncertain. That is to say, the 
DCM can confirm more digits than the MLP.

This owns to the special structure of the DCM. DCM 
divides a complex task into three simple subtasks, carry 
subtask, non-carry subtask and synthetic subtask, each 
subtask only learns one aspect of the task. This helps to 
reduce uncertainty of each predicted digit embedded in the 
image e′. In order to explain the reason for the effective-
ness of the DCM conveniently, we employ some symbols in 
advance. The goal of the visual logic learning of the arith-
metic operations is to compute the value of number 3 in 
a formula like “number 1 operation number 2 = number 
3”. We call the digit of number n at the mth position (the 
rightmost position is 1st) “ dm

n
 ”. The complexity of the task 

is determined by the degree of uncertainty (the amount of 
possibilities of each digit) in the process of learning logical 
relation between the input images and output image. For 
addition, “ dm

3
 ” only has two possibilities, “ (dm

1
+ dm

2
)mod10 ” 

or “ (dm
1
+ dm

2
+ 1)mod10 ”. The case of “ dm

3
 ” on subtraction 

is similar to addition. However, the degree of uncertainty of 

multiplication is stronger than that of addition and subtrac-
tion, where “ dm

3
 ” has ten possibilities.

We assume a formula such as “ d2
1
d1
1
× d2

2
d1
2
= d4

3
d3
3
d2
3
d1
3
 ” 

or “ d2
1
d1
1
× d2

2
d1
2
= d3

3
d2
3
d1
3
 ” (if d4

3
 = 0). The scope of each 

digit “ dm
3

 ” (except the digit at rightmost position) is very big, 
the digit at rightmost position is always an unique and deter-
mined value “ (d1

1
× d1

2
)mod10 ”. The DCM can reduce the 

degree of uncertainty of predicted number 3. For example, 
“ d2

3
 ” is determined by the carry and non-carry part during 

multiplication. In the MLP, the scope of “ d2
3
 ” is 0–9, and the 

scope of the carry at the 2nd position is 0–8. So the carry 
at the 2nd position is to choose one value in 0–8 out of the 
range 0–9. The non-carry at the 2nd position is to choose 
one value in 0–9. So, there are 900 possibilities ( C9

10
C1
9
C1
10

 ) 
for “ d2

3
 ” in fact. In the MLP, “ d2

3
 ” is directly computed. In 

contrast, our method is first to compute carry and non-carry 
respectively, and then synthetic these two subtasks. The 
scope of the carry at the 2nd position is 0–8, so the carry at 
the 2nd position only needs to determine which one is right 
in 0–8. The non-carry at the 2nd position is to choose one 
of 0–9. Hence, there are 90 possibilities ( C1

9
C1
10

 ) for “ d2
3
 ”. 

The DCM largely reduces the number of possible values 
from 900 to 90. Therefore, the DCM confirms more digits 
than that of the MLP, when the predictions of two models 
are all wrong.

6 � Conclusion

In this study, we have explored an interesting and impor-
tant research topic: can logic reasoning patterns be directly 
learned from given data? As a preliminary exploration, 
the topic has been investigated through a called LiLi task: 
directly learning logic from a training image set. In this 
work, many typical neural network models have been used 
to solve the LiLi task with the good performances on easy 
and intermediate logic data sets. In order to further solve 
the difficult task, a new network framework called DCM 
has been developed using a decompose strategy and add-
ing some label information. This idea also can be applied 
to other complex logic learning tasks. For example, it is 

Fig. 15   The visual effects of 
Multiplication on 150,000 train-
ing set



3413International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

difficult to compute decimal bit operation directly, we can 
convert the decimal to binary first, and then compute binary 
bit operations. The DCM provides a strategy to solve some 
difficult logic reasoning tasks through combing the domain 
expert knowledge with data-driven model.

This work is only a preliminary exploration towards 
learning logic from data. Several issues are worthwhile 
investigating along this direction, such as mining visual 
functional relations among multiple variables and directly 
learning rules from data. These issues are very challenging 
and meaningful. To this end, more logic reasoning data sets 
containing complex formulas embedded in the images and 
more effective models for solving logical reasoning tasks 
should be specially designed.
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