
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414
https://doi.org/10.1007/s13042-021-01366-w

ORIGINAL ARTICLE

Logic could be learned from images

Qian Guo1,3 · Yuhua Qian1,2,3  · Xinyan Liang1,3 · Yanhong She4 · Deyu Li2,3 · Jiye Liang2,3

Received: 31 January 2021 / Accepted: 17 June 2021 / Published online: 28 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Logic reasoning is a significant ability of human intelligence and also an important task in artificial intelligence. The exist-
ing logic reasoning methods, quite often, need to design some reasoning patterns beforehand. This has led to an interesting
question: can logic reasoning patterns be directly learned from given data? The problem is termed as a data concept logic.
In this study, a learning logic task from images, called a LiLi task, first is proposed. This task is to learn and reason the logic
relation from images, without presetting any reasoning patterns. As a preliminary exploration, we design six LiLi data sets
(Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication), in which each image is embedded with
a n-digit number. It is worth noting that a learning model beforehand does not know the meaning of the n-digit numbers
embedded in images and the relation between the input images and the output image. In order to tackle the task, in this work
we use many typical neural network models and produce fruitful results. However, these models have the poor performances
on the difficult logic task. For furthermore addressing this task, a novel network framework called a divide and conquer
model by adding some label information is designed, achieving a high testing accuracy.

Keywords  Logic reasoning · Data concept logic · LiLi task · Reasoning patterns

1  Introduction

Human intelligence integrates cognitive functions such as
perception, learning, memory, problem solving and logic
reasoning [5]. Among them, logic reasoning is a signifi-
cant ability of human intelligence. Applying the reasoning,
humans obtain some rules hidden in complex phenomenon,
and even forecast the unknown events. One of the goals of
artificial intelligence is to mimic human cognitive functions
to the utmost. As a part of cognitive functions, logic reason-
ing is also an important task in artificial intelligence [19].

Many logic reasoning methods such as fuzzy reason-
ing [27, 31, 46, 51], FCA [7, 37, 42, 47], probabilistic
reasoning [23, 28, 29, 39], evidential reasoning [4, 30],
Bayesian reasoning [44, 49] and rough reasoning [22, 26,
34, 38], have been proposed. However, quite often, these
methods need to design some reasoning patterns before-
hand. For example, in the FCA, one first obtains a for-
mal context applying the domain expert knowledge, then
computes the concept lattice from the formal context, and
finally achieves knowledge reasoning using the disjunction
and conjunction operations. This process not only costs
a large amount of time, but also heavily depends on the
domain expert experience. But, without mastering special

 *	 Yuhua Qian
	 jinchengqyh@126.com

	 Qian Guo
	 czguoqian@163.com

	 Xinyan Liang
	 liangxinyan48@163.com

	 Yanhong She
	 yanhongshe@gmail.com; yanhongshe@xsyu.edu.cn

	 Deyu Li
	 lidy@sxu.edu.cn

	 Jiye Liang
	 ljy@sxu.edu.cn

1	 Institute of Big Data Science and Industry, Shanxi
University, Taiyuan 030006, Shanxi, China

2	 Key Laboratory of Computational Intelligence and Chinese
Information Processing of Ministry of Education, Shanxi
University, Taiyuan 030006, Shanxi, China

3	 School of Computer and Information Technology, Shanxi
University, Taiyuan 030006, Shanxi, China

4	 College of Science, Xi’an Shiyou University, Xi’an 710065,
Shanxi, China

http://orcid.org/0000-0001-6772-4247
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-021-01366-w&domain=pdf

3398	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

domain knowledge beforehand, human still can directly
reason from given data. For example, without mastering
knowledge of 3D reconstruction beforehand, people can
reconstruct 3D model of an unseen 2D image in his mind
through observing and reasoning many 2D images and
corresponding 3D scenes in real world. This has led to an
interesting research topic: can machine directly learn logic
reasoning patterns from given data? And these logical pat-
terns are termed as the data concept logic (DCL).

As a preliminary exploration, in this study, we design a
task of the DCL which is called learning logic task from
images, just a LiLi task shown in Fig. 1(7). Unlike the logi-
cal operation defined by human (LOH) using some domain
expert knowledge, a LiLi task is to learn and reason the rela-
tion between two input images and one output image without
any reasoning patterns beforehand, i.e. LiLi does not know
any reasoning patterns about R. In summary, there are some
differences below between a LiLi task and a LOH.

•	 For LiLi, one does not know any reasoning patterns about
R except for giving a data set, while for LOH whose focus
is that how to define a reasonable logical operation, one
always possesses lots of domain knowledge about R.

•	 LPN induced by a LiLi models an abstract or low level
logical relation in term of the pixel values. However, the

existing logical operation models a semantic or high level
logical relation in term of the numbers or symbols.

•	 LPN induced by a LiLi is a data-driven method to model
the logical relation, while LOH is an expert-driven
method.

Learning logic task from images (LiLi task) is also a very
important computer vision task. Unfortunately, to the best
of our knowledge, there are only a bit of work on the LiLi
task shown in Fig. 1(7). [10] mined the logical patterns from
Fashion-Logic data sets without presetting any reasoning
patterns. Zhou et al. [6] proposed a Neural Logical Machine
(NLM) which can learn new logic based on some back-
ground knowledge. In contrast, a variety of models based on
deep convolutional neural networks (CNNs) have achieved
the state-of-the-art performances, even super-human on
some tasks for the common computer vision tasks such as
object recognition [11, 17, 25], object detection [12, 36],
semantic segmentation [3, 40], image captioning [18, 45],
visual question answering (VQA) [48, 50], image generator
[8, 35] (see Fig. 1). It is well known that the logic reason-
ing is one of the abilities that the general/strong artificial
intelligence has to possess. In the existing computer vision
tasks, image captioning and visual question answering seem
to need some reasoning abilities, especially VQA (indeed

Fig. 1   The differences among these popular computer vision tasks.
(1) Object recognition (sometimes object classification) is to clas-
sify individual objects. (2) Object detection is to classify individ-
ual objects and localize each using a bounding box. (3) Semantic
segmentation is to classify each pixel into a fixed set of categories
without differentiating object instances. (4) Image captioning is to

describe the content of an image by using reasonably formed natu-
ral sentences. (5) Visual question answering (VQA) is to automati-
cally answer natural language questions according to related the
image content. (6) Image generator is to generate images according to
images or text description. (7) Data concept logic is to learn to obtain
logic concepts from a given data set

3399International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

VQA performs need more knowledge: image itself, com-
mon sense, domain knowledge, and so on). In fact, because
of some shortcomings of existing benchmark data sets
(described in Sect. 3.1), the systems can correctly answer
the questions without reasoning [16, 19, 53]. Hence, it is
desired to provide a new task, such as the LiLi task, to test
the reasoning ability of models.

Our contributions are as follows:

1.	 The data concept logic (DCL) is proposed to directly
learn the concept logical patterns from the given data.

2.	 We propose a LiLi task where the abstract or low logical
relation between two input images and one output image
needs to be learned and reasoned without any reasoning
patterns beforehand.

3.	 We provide an inference form of the LiLi task that is the
consistent with classical propositional calculus form.

4.	 Six LiLi data sets with three difficulty levels: Bitwise
And, Bitwise Or, Bitwise Xor, Addition, Subtraction and
Multiplication, are provided.

5.	 Unlike a semantic or high level logical relation defined
by human, an abstract or low level logical relation is
expressed by a novel data-driven method called as LPN.

6.	 The performances of these typical neural networks:
CNN-LSTM, MLP, CNN-MLP, autoencoder and
ResNets, are tested on six LiLi data sets.

7.	 The divide and conquer model (DCM) is proposed using
a decomposing strategy to solve the difficult task multi-
plication, achieving a better performance than the typi-
cal neural networks used in this paper.

The remainder of this paper is organized as follows: Sect. 2
proposes the DCL. Section 3 proposes six LiLi data sets,
the LiLi task and its inference form. Section 4 presents the
performance evaluation of the typical neural networks on six
LiLi data sets. In Sect. 5, the DCM is devised to solve the
difficult logic task multiplication. Finally, we draw conclu-
sions in Sect. 6.

2 � DCL

In this section, we first detail the DCL proposed in this
paper, and then provide an inference form of DCL.

2.1 � DCL

Data concept logic (DCL) is a data-driven tool for learn-
ing to obtain logic concepts from a given data set directly.
Applying the learned concepts, it can output the logical
relations among the input data. It is noted that DCL merely
uses pure original data cues, and can not know other

information such as the meaning of symbols/numbers in
data in advance. The DCL can be formalized as follows.

D e f i n i t i o n 1   A d a t a c o n c e p t l o g i c i s
t e r m e d a s a t r i p l e R = (I,R,O)  , w h e r e
I = {xi | xi = (x1

i
, x2

i
,… , x

mI

i
), i = 1, 2,… ,N}

i s an input sequence wi th the length mI  ,
O = {yi | yi = (y1

i
, y2

i
,… , y

mO

i
), i = 1, 2,… ,N} is an output

sequence with the length mO , R ∶ I → O is a reasoning pat-
tern (relation mapping) from the input I to the output O.

The aim of DCL is to learn the R from the input I to the
output O. In this paper, we propose a deep learning net-
work framework: Logical Pattern Network (LPN) param-
eterized by W to learn the R. This model can be learned by
solving the following optimization problem.

where L is a loss function, and N is the number of the train-
ing samples.

The universal approximation theorem tells us that
neural networks are able to approximate any measurable
function with any precision [14]. Theoretically, the logical
pattern R can be represented by one neural network. In the
DCL, R is hidden in the LPN, and mining R from data can
be regarded as the iterative optimization process of param-
eter W of LPN. At each iteration, the value of W changes
in the direction that the loss L becomes smaller. When the
loss is small enough, the iteration stops and R is obtained.

The workflow of a DCL task is illustrated in Fig. 2,
where I is the set of input data, O is the set of ground-truth
output data, Ô indicates the set of logical relation patterns
reasoned by f (LPNW (x

1
i
, x2

i
,… , x

mI

i
)) , O/I is the ground-

truth logical relation set for a given input set I, Ô∕I is the
prediction logical relation set for a given input set I using
LPN, Loss is used to evaluate the difference between O/I
and Ô∕I . LPN indicates the logical pattern network.

(1)

W∗ = argmin
W

L(LPNW (I),O)

= argmin
W

1

N

N∑

i=1

L(LPNW (xi), yi),

Fig. 2   The workflow of a DCL task

3400	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

2.2 � Inference form of DCL

Human, in our daily life, often makes inferences using some
known antecedents. And this process can be formalized as
the following form [27].

Formula (2) exactly is also the mathematical model of the
classical propositional calculus [27] where the consequence
of the antecedent ∗ is inferred using the known n antecedents.
There exist many methods addressing the task. For example,
Zadeh [52] provided an inference rule called ‘compositional
rule of inference’ (CRI) to make such an inference whose
antecedents and consequences contain fuzzy concepts. Spe-
cially, an implication A → B first is translated into a fuzzy
relation Rz(A,B) from A to B. And then, B∗ can be inferred
by the composition of Rz and A∗ by the following formula.

where Rz ∶ [0, 1]2 → [0, 1] defined beforehand by the
human experts is a duality function. ◦ denotes a composi-
tion operator.

Inspired by fuzzy reasoning [27], a DCL task can be writ-
ten as the following inference form based on the IF THEN
rule.

where xi is the input of the LPN, yi is the output of the LPN.
It should be noted that xi and yi can be many kinds of

objects in LPN. For example, antecedents and consequences
contain fuzzy concepts as shown in Formula (2).

In this paper, xi and yi are images. Specifically, xi is an
input sequence with the length mI , yi is an output sequence
with the length mO . Based on this, Formula (4) can be writ-
ten as the following form.

(2)

Antecedent 1 ∶ A1 ⟶ B1

Antecedent 2 ∶ A2 ⟶ B2

⋮ ⋮

Antecedent n ∶ An ⟶ Bn

Antecedent ∗∶ A∗

Consequence ∶ B∗,

(3)B∗ = Rz(A,B)◦A∗,

(4)

Antecedent 1 ∶ If the input is x1 then the output is y1
Antecedent 2 ∶ If the input is x2 then the output is y2

⋮ ⋮

Antecedent n ∶ If the input is xn then the output is yn
Antecedent n + 1 ∶ If the input is xn+1
Antecedent n + 2 ∶ If the input is xn+2

⋮ ⋮

Antecedent n + m ∶ If the input is xn+m

Consequence n + 1 ∶ The output is yn+1
Consequence n + 2 ∶ The output is yn+2

⋮ ⋮

Consequence n + m ∶ The output is yn+m,

where (x1
i
, x2

i
,… , xmI

i
) is the input data fed into the LPN,

(y1
i
, y2

i
,… , ymO

i
) is the output data expressing the relation of

the input data.
In Formula (5), the n antecedents from 1 to n constitut-

ing the training set are used to train the LPN inference
model. And the m antecedents from n + 1 to n + m consti-
tuting the testing set are used to test the inference ability of
LPN. Based on this, Formula (5) can be further simplified
as the following form.

Formula (6) can be further simplified as the follow-
ing form by Itrain = {(x1

1
, x2

1
,… , x

mI

1
), (x1

2
, x2

2
,… , x

mI

2
), … ,

(x1
n
, x2

n
, … , x

mI

n)}, Otrain = {(y1
1
, y2

1
,… , y

mO

1
), (y1

2
, y2

2
,… , y

mO

2
),

… , (y1
n
, y2

n
,… , y

mO

n)}, Itest = {(x1
n+1

, x2
n+1

,… , x
mI

n+1
),

(x1
n+2

, x2
n+2

, … , x
mI

n+2
),… , (x1

n+m
, x2

n+m
,… , x

mI

n+m)}, a n d
Otest = {(y1

n+1
, y2

n+1
,… , y

mO

n+1
), (y1

n+2
, y2

n+2
,… , y

mO

n+2
), … ,

(y1
n+m

, y2
n+m

,… , y
mO

n+m)}

In fact, Formula (7) contains three implications, i.e.
(Itrain → Otrain) → (Itest → Otest) . One can obtain the conse-
quence Otest of the antecedent Itest by translating three impli-
cations to the following form.

(5)

Antecedent 1 ∶ If the input squence is (x1
1
, x2

1
,… , x

mI

1
)

then the output squence is (y1
1
, y2

1
,… , y

mO

1
)

Antecedent 2 ∶ If the input squence is (x1
2
, x2

2
,… , x

mI

2
)

then the output squence is (y1
2
, y2

2
,… , y

mO

2
)

⋮ ⋮

Antecedent n ∶ If the input squence is (x1
n
, x2

n
,… , x

mI

n)

then the output squence is (y1
n
, y2

n
,… , y

mO

n)

Antecedent n + 1 ∶ If the input squence is (x1
n+1

, x2
n+1

,… , x
mI

n+1
)

Antecedent n + 2 ∶ If the input squence is (x1
n+2

, x2
n+2

,… , x
mI

n+2
)

⋮ ⋮

Antecedent n + m ∶ If the input squence is (x1
n+m

, x2
n+m

,… , x
mI

n+m)

Consequence n + 1 ∶ The output squence is (y1
n+1

, y2
n+1

,… , y
mO

n+1
)

Consequence n + 2 ∶ The output squence is (y1
n+2

, y2
n+2

,… , y
mO

n+2
)

⋮ ⋮

Consequence n + m ∶ The output squence is (y1
n+m

, y2
n+m

,… , y
mO

n+m),

(6)

Training antecedent ∶ (x1
1
, x2

1
,… , x

mI

1
) ⟶ (y1

1
, y2

1
,… , y

mO

1
)

(x1
2
, x2

2
,… , x

mI

2
) ⟶ (y1

2
, y2

2
,… , y

mO

2
)

⋮ ⋮

(x1
n
, x2

n
,… , x

mI

n) ⟶ (y1
n
, y2

n
,… , y

mO

n)

Testing antecedent ∶ (x1
n+1

, x2
n+1

,… , x
mI

n+1
)

(x1
n+2

, x2
n+2

,… , x
mI

n+2
)

⋮

(x1
n+m

, x2
n+m

,… , x
mI

n+m)

Consequence ∶ (y1
n+1

, y2
n+1

,… , y
mO

n+1
)

(y1
n+2

, y2
n+2

,… , y
mO

n+2
)

⋮

(y1
n+m

, y2
n+m

,… , y
mO

n+m),

(7)
Training antecedent set ∶ Itrain ⟶ Otrain

Testing antecedent set ∶ Itest
Consequence set ∶ Otest,

3401International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

where R(Itrain,Otrain) learned using a data-driven method is
a high-dimension function.

From the above analysis, one can find that the DCL has
the consistent inference form with the classical propositional
calculus. The comparison of the DCL and the LOH is illus-
trated in Fig. 3. From Fig. 3, one can see that one fundamen-
tal task of DCL or LOH is to obtain the relation R. For this
task, they have a very obvious difference: for LOH, R needs
to be defined beforehand by the experts, while for DCL, R
is learned from a given data set.

Based on the above analysis, it is desired to design a
human-free and data-driven method directly learn the rea-
soning pattern from given data. In this study, we explore this
problem by proposing the LiLi task. What follows, the LiLi
task will be detailed and formalized.

3 � A LiLi task

In this section, we first construct six LiLi data sets, then
detail the LiLi task proposed in this paper, and finally pro-
vide its inference form consistent with the classical propo-
sitional calculus form.

3.1 � LiLi data sets

The existing logic reasoning data sets such as CLEVR [19]
and VQA [1] have made outstanding contributions to testing
the logic reasoning ability of machines, but they have also
some shortcomings. (1) Because of biases of the data sets,
some questions can be answered through directly perceiving
images rather than reasoning [16, 19, 53]. For example, the

(8)Otest = R(Itrain,Otrain)◦Itest,
question is what color is the object in the given image, and
the answer can be obtained directly from the image through
perception. (2) The existing logic reasoning data sets may
seem complex, but the typical neural networks and their
results suggest that the logics that are embedded in these
data sets are relatively simple for machines. More difficult
logic data sets should be designed. (3) Some questions from
the existing logic reasoning data sets have multiple answers,
so it is not easy to judge whether the answers of these ques-
tions are correct or not. These shortcomings make it difficult
to assess the reasoning abilities of machines using these data
sets.

Therefore, we construct the LiLi data sets to overcome
these shortcomings. In this paper, these logical relations:
Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtrac-
tion and Multiplication are selected to construct the LiLi
data sets. (1) Questions are able to be answered only if a
model has both perception and reasoning abilities. (2) The
typical neural networks are almost powerless for the logic of
multiplication (detailed in Sect. 4). It indicates that the LiLi
task is really worth studying. (3) The construction process
of the LiLi data set is controlled by us and only one correct
answer can be obtained from each sample. Hence, it is easy
to evaluate the correctness of the answer.

We construct the LiLi data sets to verity the perfor-
mance of the proposed LPN model. It is worth noting that
the LPN model does not know the logical relations hidden
in images beforehand. The bitwise operations are binary
numbers and arithmetic operations are decimals. For Bit-
wise And, Bitwise Or and Bitwise Xor data sets, the size
of the images is set to 15 × 120, so the number embedded
in one image is at most a 14-digit number. For Addition,
Subtraction and Multiplication data sets, the size of the
images is set to 15 × 60, hence the number embedded in

Fig. 3   The comparative analysis
between the DCL and the LOH

3402	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

one image is at most a 7-digit number. This step ensures
that the proportion of numbers used for training is a very
small fraction of all possible combinations. Each of these
samples consists of two input images each containing an
integer number. The pair of two input images marked x1

i

and x2
i
 are then generated from a pre-specified range as

detailed below. The output image marked yi is generated
according to the result of the operation on the two input
images. The numbers embedded in images x1

i
 , x2

i
 and yi

are A, B and E.
The details about these data sets are here:

•	 Bitwise And: For per sample, both A and B have 14 binary
digits. E is the bitwise and of A and B. For example, A
and B are “00111101110111” and “10010101110000”,
respectively. So, E is “00010101110000”. The sample is
shown in Fig. 4a.

•	 Bitwise Or: For per sample, both A and B have 14 binary
digits. E is the bitwise or of A and B. For example, A
and B are “10001111100010” and “10110100101110”,
respectively. So, E is “10111111101110”. The sample is
shown in Fig. 4b.

•	 Bitwise Xor: For per sample, both A and B have 14 binary
digits. E is the bitwise xor of A and B. For example, A
and B are “00110101010110” and “00111101110000”,
respectively. So, E is “00001000100110”. The sample is
shown in Fig. 4c.

•	 Addition: For per sample, the range of A and B are
0–4,999,999. E is the sum of A and B. For example, A
and B are “646,724” and “4,087,801”, respectively. So,
E is “4,734,525”. The sample is shown in Fig. 4d.

•	 Subtraction: For per sample, the range of A and B are
0–9,999,999. E is the difference between A and B. In
order to ensure a positive result, A is chosen to be larger
or equal to B. For example, A and B are “6,740,693”
and “3,502,317”, respectively. So, E is “3,238,376”. The
sample is shown in Fig. 4e.

•	 Multiplication: For per sample, the range of A and B
are 0–3160. E is the product of A and B. For example,
A and B are “1257” and “1377”, respectively. So, E is
“1,730,889”. The sample is shown in Fig. 4f.

According to the difficulty of the logical relations embedded
in data sets, these data sets are divided into 3 levels: one-
star ( ⋆ , easy), two-star ( ⋆⋆ , intermediate), and three-star
( ⋆ ⋆ ⋆ , difficult).

Bitwise And, Bitwise Or and Bitwise Xor data sets ( ⋆ ):
(1) the value of each digit of E is only determined by the
values at the same position in A and B, e.g., in Fig. 4a, the
value at 2nd (the rightmost position is 1st) position in E is
only determined by the values at 2nd position in A and B ,
so the value at 2nd position in E is “ 0” (1 & 0 = 0); (2) the
possible value of each digit of E is 0 or 1.

Addition and Subtraction data sets ( ⋆⋆ ): (1) the value
of each digit of E is determined by the carry or borrow and
the values at the same position in A and B, e.g., in Fig. 4d,
the value at 2nd position in E is determined by the carry of
the sum of values at 1st position in A and B and the values
at 2nd position in A and B; (2) the possible value of carry
or borrow part is 0 or 1, so the possible value of each digit
(except the rightmost position) of E has two possibilities in
0–9, we choose one of the two possibilities as the final result
based on the carry or borrow case. E.g., in Fig. 4d, the carry
of the sum of values at 1st position in A and B is “0”, the sum
of values at 2nd position in A and B is “2” (2 + 0=2), so the
value at 2nd position in E is “2” (0 + 2=2).

Multiplication data set ( ⋆ ⋆ ⋆ ): (1) the value at a given
position in E is determined by the values at the given posi-
tions in A and B and all positions in A and B before that
given position. E.g., in Fig. 4f, the value at 2nd position in
E is determined by the values at 1st and 2nd positions in A
and the values at 1st and 2nd positions in B. (2) The number
of the possible value of each digit (except the rightmost posi-
tion) of the E on Multiplication data set is more than that on
other LiLi data sets.

3.2 � LiLi task

In this paper, we focus on the scene where a model directly
learns and reasons the relation between two input images and
one output image, without any reasoning patterns before-
hand. In this task, we first generate three images, two for the
input and one for the output. The output image expresses the

Fig. 4   The samples of six LiLi
data sets

3403International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

relation between two input images. In addition, the n-digit
number embedded in the images are not explicitly intro-
duced, which means that the meaning of contents embedded
in images and the relation between two input images and one
output image are not known at all. One example is used to
illustrate the LiLi task. If the n-digit numbers embedded in
two input images are “234” and “432”, the output image are
“666”, the logical relation between two input images and
the output image is addition. It can be formalized as follows.

Given a data concept logic system as a set of triple
R = (I,R,O) , where I = {xi | xi = (x1

i
, x2

i
), i = 1, 2,… ,N} is

an input sequence, O = {yi}
N
i=1

 is the output sequence, where
x1
i
, x2

i
 and yi are three images with K pixels shown in Fig. 4.

R denotes the logical relation between the pair of images
xi ∈ I and yi ∈ O.

At the semantic or high level, R is called as Bitwise And,
Bitwise Or, Bitwise Xor, Addition, Subtraction and Mul-
tiplication denoted as &, |,∧,+,− or × , and they are eas-
ily understood by human beings. However, at the abstract
or low level, R may be a high-dimensional mapping that
is extremely difficult to define the mapping by human, in
this paper, R ∶ [−1, 1]2K → {0, 1}K . Hence, it is desired to
design a novel method to express an abstract or low level
logical relation.

In this task, given a data set D = {(xi, yi)}
N
i=1

 , where yi
denotes the logical relation between the pair of images x1

i
 and

x2
i
 . When drawing these images, we use the pixel value 0 for

black, the pixel value 1 for white. For the input images, we
scale every pixel value into − 1 to 1 by subtracting the mean,
so x1

i
, x2

i
∈ [−1, 1]K . For the output image yi ∈ {0, 1}K .

This task can be viewed as finding a mapping from the
input space I = {xi}

N
i=1

 to the output space O = {yi}
N
i=1

 by a
supervised learning strategy. In this study, this task can be
transformed into a regression problem with the Mean Square
Error (MSE) loss function, i.e. L is MSE. It can be by solv-
ing the following optimization problem.

(9)

W∗ = argmin
W

MSE(f (LPNW (I)),O)

= argmin
W

1

N

N∑

i=1

MSE(f (LPNW (x
1
i
, x2

i
)), yi)

= argmin
W

1

N

N∑

i=1

√√√√
K∑

k=1

(f (LPNW (x
1
i
, x2

i
))k − yik)

2,

where f is a sigmoid function to transform LPNW (x
1
i
, x2

i
) to

[0,1], i.e.
f (LPNW (x

1
i
, x2

i
)) ∈ [0, 1]K , and LPN is parameterized by

W. Formula (9) is differentiable with respect to the param-
eter W, and can be efficiently solved by using the gradient
descent method.

Based on above analysis and discussion, we illustrate the
workflow of the LiLi task shown in Fig. 5, where I is the
set of input image data, O is the set of ground-truth output
image data, Ô indicates the set of logical relation patterns
reasoned by f (LPNW (x

1
i
, x2

i
)) , O/I is the ground-truth logical

relation set for a given input image set I, Ô∕I is the predic-
tion logical relation set for a given input image set I using
LPN, Loss is used to evaluate the difference between O/I
and Ô∕I . LPN indicates the logical pattern network, which
is implemented in this paper using CNN-LSTM, MLP,
Autoencoder, ResNet18, ResNet50, ResNet152 and DCM,
respectively. More implementation details about LPN see
Sects. 4.1 and 5.

From Formula (9) and Fig. 5, one observes that the LPN
merely needs to be provided some training data to automati-
cally learn the logical patterns between a pair of the given
images without providing any reasoning patterns before-
hand. This is an absolutely data-driven strategy to mine the
logical patterns hidden in data.

3.3 � Inference form of a LiLi task

Based on the inference form of the DCL 2.2, a LiLi task can
be written as the following inference form based on the IF
THEN rule.

Fig. 5   The workflow of a LiLi task

3404	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

where x1
i
 and x2

i
 are the input images, yi is the output image

expressing the relation between two input images.
In Formula (10), the n antecedents from 1 to n consti-

tuting the training set are used to train the LPN inference
model. And the m antecedents from n + 1 to n + m consti-
tuting the testing set are used to test the inference ability of
LPN. Based on this, Formula (10) can be further simplified
as the following form.

Formula (11) can be further simplified as the following
form by Itrain = {(x1

1
, x2

1
), (x1

2
, x2

2
),… , (x1

n
, x2

n
)} , Otrain = {y1,

(10)

Antecedent 1 ∶ If two input images are x1
1
and x2

1
then the output image is y1

Antecedent 2 ∶ If two input images are x1
2
and x2

2
then the output image is y2

⋮ ⋮

Antecedent n ∶ If two input images are x1
n
and x2

n
then the output image is yn

Antecedent n + 1 ∶ If two input images are x1
n+1

and x2
n+1

Antecedent n + 2 ∶ If two input images are x1
n+2

and x2
n+2

⋮ ⋮

Antecedent n + m ∶ If two input images are x1
n+m

andx2
n+m

Consequence n + 1 ∶ The output image is yn+1
Consequence n + 2 ∶ The output image is yn+2

⋮ ⋮

Consequence n + m ∶ The output image is yn+m,

(11)

Training antecedent ∶ (x1
1
, x2

1
) ⟶ y1

(x1
2
, x2

2
) ⟶ y2

⋮

(x1
n
, x2

n
) ⟶ yn

Testing antecedent ∶ (x1
n+1

, x2
n+1

)

(x1
n+2

, x2
n+2

)

⋮

(x1
n+m

, x2
n+m

)

Consequence ∶ yn+1
yn+2

⋮

yn+m,

y2,… , yn} , Itest = {(x1
n+1

, x2
n+1

), (x1
n+2

, x2
n+2

),… , (x1
n+m

, x2
n+m

)} ,
and Otest = {yn+1, yn+2,… , yn+m}.

One can obtain the consequence Otest of the antecedent Itest by
translating three implications (Itrain → Otrain) → (Itest → Otest)
included by Formula (12) to the following form.

where R(Itrain,Otrain) ∶ [−1, 1]2K → {0, 1}K learned using a
data-driven method is a high-dimension mapping function.

According to the above analysis, one can find that on
the one hand, the LiLi task has the consistent inference
form with the classical propositional calculus, on the other
hand they have some different aspects as follows.

•	 Rz ∶ [0, 1]2 → [0, 1] is a duality function. However,
R(Itrain,Otrain) ∶ [−1, 1]2K → {0, 1}K is a complex func-
tion with high dimensions (K takes 1800 or 900 in this
paper).

•	 Rz needs to be defined beforehand by the experts, while
R is learned from a given data set because it is almost

(12)
Training antecedent set ∶ Itrain ⟶ Otrain

Testing antecedent set ∶ Itest
Consequence set ∶ Otest,

(13)Otest = R(Itrain,Otrain)◦Itest,

Table 1   The hyper-parameter
settings on all models

Model Hyper-parameter

CNN-LSTM Conv(32,(5,5),l2(1.e-4))->BatchNormalization()->MaxPooling((2,2))->
Conv(64,(3,3),l2(1.e-4))->BatchNormalization()->MaxPooling((2,2))->
LSTM(1024, dropout=0.5)

MLP Dense(256)->Dense(256)->Dense(256)
CNN-MLP Conv(32,(5,5))->BatchNormalization()->MaxPooling((2,2))->

Conv(64,(3,3))->BatchNormalization()->MaxPooling((2,2))->
Dense(4096)

Autoencoder Conv(32,(5,5))->MaxPooling((2,2))->Conv(64,(5,5))->MaxPooling((2,2))
Conv(64,(5,5))->UpSampling((2,2))->Conv(32,(5,5))->UpSampling((2,2))
Cropping2D(((0,1),(0,0)))->Conv(1,(5,5))

3405International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

impossible to be defined the function beforehand by
human.

In real world, there exist many complex relations that can
not be provided beforehand by human beings. When facing
this situation, the classical propositional calculus can not
work well, even cannot work. Hence, it is desired to design
a human-free and data-driven method to learn an unknown
relation function. This is the our most main motivation.

4 � Experiments

In this section, we compare the performances of several typi-
cal deep neural networks on the six LiLi data sets. Next, we
detail used models and experimental setup.

4.1 � Models and experimental setup

For all models, two images as input are fed into the models,
and one image as output is used to compare with the ground
truth image. These models are trained to produce one output
image in which the correct number is embedded by optimis-
ing a mean square error (MSE) loss and using the ADAM
or SGD optimiser. The early-stopping is used to choose the
optimiser and hyper-parameters of smallest loss estimated on
the validation set. In addition, the batch size is set to 32. The
hyper-parameter settings and further details on all models
see in Table 1. Finally, the performance values are reported
on the testing set.

•	 CNN-LSTM: We develop the model using a standard
LSTM module [9]. Since LSTMs are designed to process
inputs sequentially, we first pass images sequentially and
independently through a 2-layer CNN, and the resulting
sequence is handed over to the LSTM. The final hidden
state of the LSTM is passed through a fully-connected
layer with sigmoid activation function. The model is
trained using batch normalization after each convolu-
tional layer and dropout is applied to the LSTM hidden
state.

•	 MLP: The MLP is implemented followed by [15]. The
model has three hidden layers each with 256 nodes with
ReLU activation functions and one output layer with sig-
moid activation. All nodes between adjacent layers are
fully-connected.

•	 CNN-MLP: Inspired by [21], we implement a 2-layer
CNN with ReLU activation functions and batch normali-
zations. The input images are treated as a set of separate
greyscale input feature maps for the CNN. The convolu-
tional output is passed through two-layer fully-connected
layers, in which the first layer using a ReLU activation

function and the second layer using a sigmoid activation
function.

•	 Autoencoder: A simple autoencoder network is imple-
mented using the idea of [13]. In this model, a 2-layer
CNN is used as the encoder network and a 2-layer
upsampling network as the decoder network. At last, a
convolutional layer is used as the output layer with a sig-
moid activation.

•	 ResNet: We use ResNet architecture as described in [11]
and modify the softmax activation function to sigmoid
activation function on the last layer of the network. In this
paper, we train ResNet-18, ResNet-50 and ResNet-152
on all LiLi data sets and get nearly performances.

4.2 � Experiments and analysis on LiLi data sets

In this subsection, we test several typical deep neural net-
works on these LiLi data sets. Each data set consists of
10,000 training samples, 10,000 validation samples and
20,000 testing samples. The testing samples are not included
in the training or validation samples. All models are trained
on each training set and stopped when the losses on valida-
tion sets no longer decrease. We use an OCR software [41]
to recognize the numbers embedded in the predicted images,
and then compare them with the ground truth numbers. For
one predicted image, it is right when all digits are equal
to the ground truth digits. The accuracies of Bitwise And,
Bitwise Or, Bitwise Xor, Addition, Subtraction and Multi-
plication data sets are shown in Table 2.

From Table 2, one observes that all models get the good
performances on Bitwise And, Bitwise Or and Bitwise Xor
data sets. Only CNN-MLP, Autoencoder and ResNets get the
good performances on Addition and Subtraction data sets.
Unfortunately, all models fail on Multiplication data set.

The validation loss curves on Bitwise And, Bitwise Or
and Bitwise Xor data sets are shown in Fig. 6a–c. Because
of the early-stopping, the epochs of these models are differ-
ent. From these figures, one finds that all models converge to
small losses. In addition, the MLP, CNN-MLP and Autoen-
coder converge faster than the CNN-LSTM and ResNets.
The validation loss curves on Addition and Subtraction data
sets are shown in Fig. 6d and e. From these figures, one
observes that the losses of the CNN-MLP, Autoencoder
and ResNets are smaller than other models. Moreover, both
of CNN-MLP and Autoencoder converge faster than the
ResNets. The validation loss curve on Multiplication data
set is shown in Fig. 6f. One can see, from it, that all models
have very large losses when they converge.

Next, we try to see if increasing data set size could
improve model performances. In this scene, all models are
trained on 150,000 training data sets and stopped when

3406	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

the losses on validation data sets no longer decrease. The
accuracies of all models on six LiLi data sets are shown in
Table 3.

From Table 3, one observes that most models get the
good performances on Bitwise And, Bitwise Or, Bitwise
Xor, Addition and Subtraction data sets. It means the per-
formances of models can be improved by increasing the size
of data sets. This provides a strategy to solve difficult logic
learning problems.

The validation loss curves are shown in Fig. 7. From
Fig. 7, one observes that the most of the models converge to
smaller losses than before. The validation loss curves on Bit-
wise And, Bitwise Or and Bitwise Xor data sets are shown in

Fig. 7a–c. From these figures, one finds that the CNN-LSTM
and ResNets converge faster than before. The validation loss
curves on Addition, Subtraction and Multiplication data sets
are shown in Fig. 7d–f, respectively. From Fig. 7d and e,
one observes that the losses of all models are smaller than
before. But, from Fig. 7f, we observe that all models still
have very large losses when they converge on Multiplication
data set. A good phenomenon is that the losses of all models
are smaller than before.

One guess: the space position plays a significant role in
the process of learning logical patterns. It is worth noting
that the CNN-LSTM only gets about 80% accuracies on
Addition and Subtraction data sets even increasing the size

(a) Bitwise And (b) Bitwise Or (c) Bitwise Xor

(d) Addition (e) Subtraction (f) Multiplication

Fig. 6   The validation losses of Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication on 10,000 training data sets

Table 2   The test accuracies of Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication on 10,000 training data sets

Model Operations

⋆ ⋆⋆ ⋆ ⋆ ⋆

Bitwise And (%) Bitwise Or (%) Bitwise Xor (%) Addition (%) Subtraction (%) Multiplication (%)

CNN-LSTM 100 100 100 0.07 0.38 0.10
MLP 100 100 100 0.21 0.21 0.08
CNN-MLP 100 100 100 96.33 98.69 0.07
Autoencoder 100 100 100 96.78 97.34 0.08
ResNet18 99.96 98.52 99.80 99.86 99.49 0.10
ResNet50 99.92 99.86 99.69 99.14 99.64 0.10
ResNet152 100 100 100 98.74 98.93 0.14

3407International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

of data sets. However, it get 100% accuracy on Bitwise And,
Bitwise Or and Bitwise Xor data sets. The reason is that the
CNN-LSTM is fed the input images one by one, learn the
features of the images separately so that they almost do not
consider the carry or borrow case on addition or subtrac-
tion. Each digit of the result of addition and subtraction is
affected by the adjacent positions (the influences from carry
or borrow), while each digit of the result of bitwise and,
bitwise or and bitwise xor is not. If the models want to get
high accuracies, they should dispose 2 input images a and
b simultaneously on Addition and Subtraction data sets. In

order to verify this idea, we develop a model called CNN2-
MLP that is similar to CNN-MLP. These two models have
same structure and hyper-parameter settings except CNN2-
MLP learns features of each of two input images separately.
And their structures are shown in Fig. 8.

The validation loss curves of CNN-MLP and CNN2-
MLP on the six LiLi data sets are shown in Fig. 9. For
Bitwise And, Bitwise Or and Bitwise Xor data sets, both
of them converge to the small losses. For Addition and
Subtraction data sets, the validation loss of CNN2-MLP
is large on 10,000 training data sets. When the size of

Fig. 7   The validation losses of Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication on 150,000 training data sets

Table 3   The test accuracies
of Bitwise And, Bitwise
Or, Bitwise Xor, Addition,
Subtraction and Multiplication
on 150,000 training data sets

Model Operations

⋆ ⋆⋆ ⋆ ⋆ ⋆

Bitwise
And (%)

Bitwise Or (%) Bitwise
Xor (%)

Addition (%) Subtraction (%) Multiplication (%)

CNN-LSTM 100 100 100 84.21 79.22 0.20
MLP 100 100 100 98.79 97.39 0.16
CNN-MLP 100 100 100 99.96 99.96 0.35
Autoencoder 100 100 100 98.17 98.66 0.16
ResNet18 100 100 100 99.50 99.50 0.24
ResNet50 100 100 100 99.56 99.79 0.26
ResNet152 100 100 100 99.98 99.87 0.24

3408	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

training data set increasing, the validation loss of CNN2-
MLP is smaller than before but still larger than the valida-
tion loss of CNN-NLP. For Multiplication data set, both
of them converge to the large losses. The test accuracies
of CNN2-MLP on Bitwise And, Bitwise Or, Bitwise
Xor, Addition, Subtraction and Multiplication data sets
are shown in Table 4. CNN2-MLP can not get the good

performances on Addition and Subtraction data sets, but
still work well on Bitwise And, Bitwise Or and Bitwise
Xor data sets. These experiment results verify that the
space position plays a significant role in the process of
learning logical patterns.

As the size of the given data increases, the MLP tends
to have good performances on Addition and Subtraction

Fig. 8   The architectures of
CNN-MLP and CNN2-MLP

(a) Bitwise And (b) Bitwise Or (c) Bitwise Xor

(d) Addition (e) Subtraction (f) Multiplication

Fig. 9   The validation losses of CNN-MLP and CNN2-MLP on Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication
data sets

3409International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

data sets. This is because each digit of the result of the
addition and subtraction is affected by the adjacent posi-
tions in both input images. In particular, for the MLP, the
relation between two images at their arbitrary positions,
when data set size is small, it can not focus on the exact
relation on their adjacent positions. As soon as the data set
gets larger, the defect can be made up.

From what has been discussed above, we can divide
these models into three categories:

1.	 CNN-LSTM: This model is appropriate for this type of
task where each digit of the result is only affected by the
same position of the input numbers (e.g. Bitwise And,
Bitwise Or and Bitwise Xor data sets).

2.	 MLP: The model is appropriate for this type of task
where each digit of the result is affected by all the posi-
tions of the input numbers (MLP is more appropriate
than other models on Multiplication data sets). If the
size of data set is large enough, MLP can focus on the
same or adjacent positions of the input numbers (e.g.

Table 4   The test accuracies of CNN2-MLP on Bitwise And, Bitwise Or, Bitwise Xor, Addition, Subtraction and Multiplication data sets

training samples Operations

⋆ ⋆⋆ ⋆ ⋆ ⋆

Bitwise And
(%)

Bitwise Or (%) Bitwise Xor
(%)

Addition (%) Subtraction (%) Multiplication (%)

150,000 100 100 100 67.47 62.92 0.28
10,000 100 100 100 0.24 0.20 0.05

Fig. 10   The test visual effects
of Addition on 10,000 training
data set and 150,000 training
data set

Fig. 11   The test visual effects of
Subtraction on 10,000 training
data set and 150,000 training
data set

Fig. 12   The test visual effects
of Multiplication on 10,000
training data set and 150,000
training data set

3410	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

Bitwise And, Bitwise Or, Bitwise Xor, Addition and
Subtraction data sets).

3.	 CNN-MLP, Autoencoder and ResNets: These models
are appropriate for this type of task where each digit of
the result is affected by the same or adjacent positions
of the input numbers (e.g. Bitwise And, Bitwise Or, Bit-
wise Xor, Addition and Subtraction data sets).

Next, from the standpoint of the visual effects, these models
are compared. These predicted results output by the models
with the poor performances are shown. For Addition and
Subtraction data sets, only the CNN-LSTM and MLP get the
poor performances; for Multiplication data sets, all models
get the poor performances.

For Addition and Subtraction data sets, the visual
effects are shown in Figs. 10 and 11. From Figs. 10a and
11a, one observes that most models can clearly learn the
first and last digits, and other digits obscurely in output
images. As the size of the training data set increases, from
Figs. 10b and 11b, one observes that most models can
clearly learn most digits in output images. For Multiplica-
tion data set, the visual effects are shown in Fig. 12. From
Fig. 12a, we observe that most models can only clearly
learn the first and last digits and other digits obscurely
in output images. As the size of the training data set
increases, from Fig. 12b, one sees that most models can
clearly learn more digits than before, but still obscurely
for most digits in output images. There are many reasons
why the performances of the predicted result on the digits
is poor. Some predicted digits are very obscure, e.g. the
p1 is shown in Fig. 11b). Some are similar to other digits,
e.g. the p2 is shown in Fig. 10b). Some are right but OCR
can not recognize them, e.g. the p3 is shown in Fig. 11b.
Hence the accuracies can be higher in fact.

From above experimental results, one observes that these
models can not solve the difficult LiLi task: multiplication.
In the next section, an effective solution is provided by
dividing this task into a few easier subtasks.

5 � Divide and conquer model
for Multiplication data set

Although increasing the size of data set has effects on solv-
ing the difficult logic learning problems, all models still
get the poor performances on Multiplication data set. To
our knowledge, many problems are complex and difficult
to solve directly, but it becomes easier when decomposed
[20, 24, 32, 33, 43]. Artificial algorithm decomposition can
effectively reduce the difficulty of learning [2]. Inspired by

this, we propose the DCM to address complex task adopting
the decomposition strategy.

We decompose a complex task into k subtasks through the
DCM, and the decomposition criterion is that the combina-
tion difficulty of subtasks is lower than the complex task.

where H is the difficulty of this complex task, hi is the dif-
ficulty of the i th subtask, f is the combination difficulty of
subtasks and it is determined by all subtasks.

As one sees from Figs. 6f and 7f, the MLP is more robust
and can converge to a smaller loss than other models. For
multiplication, the value at a given position of E is deter-
mined by the values at the given position in A and B and
all positions in A and B before that given position. MLP
is exactly more appropriate this scene than other models.
So we select the MLP as the decomposition module of the
DCM.

In this experiment, Multiplication data set is regenerated
by adding some information. For training set, each of these
samples consists of 4 input images each containing a single
integer number. The input images are marked a, b, c and d.
The output image marked e is generated by the result of the
multiplication operation. The numbers embedded in images
a, b, c, d and e are A, B, C, D and E. For testing set, only
generate image a, b and e. For per sample, the ranges of A
and B are 0–3160. E is the product of A and B. The carry
operation occurs when the product of two numbers on one
digit is more than ten, and C is used to record the value of
carry part, while D is used to record the value of non-carry
part. So, the multiplication is divided into the carry part and
non-carry part, in other words, the sum of C and D is equal
to E. For example, let A and B be “2261” and “584”, respec-
tively, and then, C, D and E equal to “1,256,300”, “64,124”
and “1,320,424”, respectively. The calculation procedure is
shown in Fig. 13.

The DCM is divided into three subtasks: carry subtask,
non-carry subtask and synthetic subtask. First, the carry
subtask and non-carry subtask are used to learn the carries
of multiplication and multiplication without carry, respec-
tively. And then, the synthetic subtask is used to learn the
synthetic pattern of the carry subtask and non-carry subtask.

(14)H > f (h1, h2,… , hk),

Fig. 13   The procedure of multiplication

3411International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

The network structures of these three subtasks are similar,
but the network parameters are different.

1.	 Carry subtask During training, the images a and b are
used as the input, image c as the ground-truth result. The
network of the carry subtask is fully-connected layers
and uses the ReLU as the activation functions in the
hidden layers and the sigmoid in the output layer. The
carry subtask has 5 hidden layers, and each layer has 256
units.

2.	 Non-carry subtask During training, the images a and b
are used as the input, the image d as the ground-truth
result. The network of the non-carry subtask is fully-
connected layers and uses the ReLU as the activation
functions in the hidden layers and the sigmoid in the
output layer. The non-carry subtask has 5 hidden layers,
and each layer has 256 units.

3.	 Synthetic subtask During training, the images c and d are
used as the input, the image e as the ground-truth result.
The network of the synthetic subtask is fully-connected
layers and uses the ReLU as the activation functions in
the hidden layers and the sigmoid in the output layer.
The synthetic subtask has 3 hidden layers, and each layer
has 256 units.

The ground-truth image is named as x (x can be c, d and e),
and the predicted image is named as x′. We hope the num-
ber embedded in predicted image e′ is equal to the number
embedded in ground truth image e, i.e., E′ = E.

a)	 Training During training procedure, the images a and
b are used as the input, e as the ground truth result and
e′ as the output. It is interesting that the images c and
d are both the input and ground truth results. For the
carry subtask and non-carry subtask, the images c and
d are the ground truth images, however, for the synthetic
subtask, the image c and d are the input images. Taking
the multiplication formula “ 2490 × 2644 = 6, 583, 560 ”

for example explains the training procedure which is
shown in Fig. 14a. A, B, C, D and E are “2490”, “2644”,
“2,575,300”, “4,008,260” and “6,583,560”, respectively.
The carry subtask, non-carry subtask and synthetic sub-
task are trained separately. For the carry subtask and
non-carry subtask, the images a and b are used as the
inputs, the images c and d as the ground truth images
and the image c′ and d′ as the outputs, respectively. For
the synthetic subtask, the images c and d are used as
input, the image e as the ground truth image and image
e′ as output. The smaller the differences between pre-
dicted image c′, d′ and e′ as well as ground-truth image
c, d and e are, the better the performance of DCM is.

b)	 Testing In the testing procedure, DCM is an end-
to-end model. We take the multiplication formula
“ 123 × 124 = 15, 252 ” for example to explain the test-
ing procedure which is shown in Fig. 14b. A and B are
“123” and “124”, respectively. In the testing procedure,
the DCM only takes images a and b as the inputs, and
then directly gets a predicted image e′ at the output of
the synthetic subtask. Specifically, the inputs are firstly
passed through the carry subtask and non-carry subtask
to get a carry prediction layer and a non-carry prediction
layer, respectively. Then, the two prediction layers are
concatenated and passed through the synthetic subtask
to get the final prediction result E′. E′ is “15,252” and
equals to E which shows that the DCM correctly found

Fig. 14   Training and testing procedure

Table 5   The test accuracy of each subtask of DCM using 150,000
training examples

Operation Network branches

Carry subtask
(%)

Operation
without carry
subtask (%)

Synthetic subtask
(%)

Multiplication 86.25 98.38 84.46

3412	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

the relation between the images a and b only using the
pure visual information.

The DCM is trained using the stochastic gradient descent
with momentum 0.9, optimising a mean square error (mse)
loss and batch size is fixed 256. The learning rate starts with
0.8, and reduces slowly when the loss plateaus. The training
on the carry subtask, non-carry subtask and synthetic sub-
task terminates when the loss no longer reduces.

The accuracy of each subtask of DCM is shown in
Table 5. In contrast, the DCM achieves the surprising accu-
racy 84.5% which is higher than the MLP on Multiplication
data set. Some visual effects from the testing are shown in
Fig. 15. In Fig. 15a, both DCM and MLP get correct pre-
dicted images. In Fig. 15b, the DCM gets the correct pre-
dicted image, but the MLP does not. In Fig. 15c, both DCM
and MLP predict wrong images. It can be seen that the last
two digits and first two digits in the image of the MLP are
predicted correctly, but the rest central 3 digits are uncertain.
However, for the DCM, only one digit of the number embed-
ded in the predicted image is uncertain. That is to say, the
DCM can confirm more digits than the MLP.

This owns to the special structure of the DCM. DCM
divides a complex task into three simple subtasks, carry
subtask, non-carry subtask and synthetic subtask, each
subtask only learns one aspect of the task. This helps to
reduce uncertainty of each predicted digit embedded in the
image e′. In order to explain the reason for the effective-
ness of the DCM conveniently, we employ some symbols in
advance. The goal of the visual logic learning of the arith-
metic operations is to compute the value of number 3 in
a formula like “number 1 operation number 2 = number
3”. We call the digit of number n at the mth position (the
rightmost position is 1st) “ dm

n
 ”. The complexity of the task

is determined by the degree of uncertainty (the amount of
possibilities of each digit) in the process of learning logical
relation between the input images and output image. For
addition, “ dm

3
 ” only has two possibilities, “ (dm

1
+ dm

2
)mod10 ”

or “ (dm
1
+ dm

2
+ 1)mod10 ”. The case of “ dm

3
 ” on subtraction

is similar to addition. However, the degree of uncertainty of

multiplication is stronger than that of addition and subtrac-
tion, where “ dm

3
 ” has ten possibilities.

We assume a formula such as “ d2
1
d1
1
× d2

2
d1
2
= d4

3
d3
3
d2
3
d1
3
 ”

or “ d2
1
d1
1
× d2

2
d1
2
= d3

3
d2
3
d1
3
 ” (if d4

3
 = 0). The scope of each

digit “ dm
3

 ” (except the digit at rightmost position) is very big,
the digit at rightmost position is always an unique and deter-
mined value “ (d1

1
× d1

2
)mod10 ”. The DCM can reduce the

degree of uncertainty of predicted number 3. For example,
“ d2

3
 ” is determined by the carry and non-carry part during

multiplication. In the MLP, the scope of “ d2
3
 ” is 0–9, and the

scope of the carry at the 2nd position is 0–8. So the carry
at the 2nd position is to choose one value in 0–8 out of the
range 0–9. The non-carry at the 2nd position is to choose
one value in 0–9. So, there are 900 possibilities ( C9

10
C1
9
C1
10

 )
for “ d2

3
 ” in fact. In the MLP, “ d2

3
 ” is directly computed. In

contrast, our method is first to compute carry and non-carry
respectively, and then synthetic these two subtasks. The
scope of the carry at the 2nd position is 0–8, so the carry at
the 2nd position only needs to determine which one is right
in 0–8. The non-carry at the 2nd position is to choose one
of 0–9. Hence, there are 90 possibilities ( C1

9
C1
10

 ) for “ d2
3
 ”.

The DCM largely reduces the number of possible values
from 900 to 90. Therefore, the DCM confirms more digits
than that of the MLP, when the predictions of two models
are all wrong.

6 � Conclusion

In this study, we have explored an interesting and impor-
tant research topic: can logic reasoning patterns be directly
learned from given data? As a preliminary exploration,
the topic has been investigated through a called LiLi task:
directly learning logic from a training image set. In this
work, many typical neural network models have been used
to solve the LiLi task with the good performances on easy
and intermediate logic data sets. In order to further solve
the difficult task, a new network framework called DCM
has been developed using a decompose strategy and add-
ing some label information. This idea also can be applied
to other complex logic learning tasks. For example, it is

Fig. 15   The visual effects of
Multiplication on 150,000 train-
ing set

3413International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414	

1 3

difficult to compute decimal bit operation directly, we can
convert the decimal to binary first, and then compute binary
bit operations. The DCM provides a strategy to solve some
difficult logic reasoning tasks through combing the domain
expert knowledge with data-driven model.

This work is only a preliminary exploration towards
learning logic from data. Several issues are worthwhile
investigating along this direction, such as mining visual
functional relations among multiple variables and directly
learning rules from data. These issues are very challenging
and meaningful. To this end, more logic reasoning data sets
containing complex formulas embedded in the images and
more effective models for solving logical reasoning tasks
should be specially designed.

Acknowledgements  This work was supported by National Key R&D
Program of China (no. 2018YFB1004300), National Natural Science
Fund of China (nos. 61672332, 61432011, 61502289), Key R&D pro-
gram (International Science and Technology Cooperation Project) of
Shanxi Province, China (no. 201903D421003), Program for the Young
San Jin Scholars of Shanxi (no. 2016769), Young Scientists Fund of
the National Natural Science Foundation of China (nos. 61802238,
61906115, 61603228, 62006146, 61906114), Shanxi Province Sci-
ence Foundation for Youths (no. 201901D211169, 201901D211170,
201901D211171), Research Project Supported by Shanxi Scholarship
Council of China (no. HGKY2019001), and Scientific and Technologi-
cal Innovation Programs of Higher Education Institutions in Shanxi
(no. 2020L0036).

Declaration 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Antol S, Agrawal A, Lu J, Mitchell M, Parikh D (2015) VQA:
visual question answering. Int J Comput Vis 123(1):4–31

	 2.	 Chen L, Huang P, Li Y, Meng Z (2020) Edge-dependent efficient
grasp rectangle search in robotic grasp detection. IEEE/ASME
Trans Mechatron. https://​doi.​org/​10.​1109/​TMECH.​2020.​30484​41

	 3.	 Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL
(2018) Deeplab: semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs. IEEE
Trans Pattern Anal Mach Intell 40(4):834–848

	 4.	 Chen SM, Cheng SH, Chiou CH (2016) Fuzzy multiattribute
group decision making based on intuitionistic fuzzy sets and evi-
dential reasoning methodology. Inf Fusion 27:215–227

	 5.	 Colom R, Karama S, Jung RE, Haier RJ (2010) Human intel-
ligence and brain networks. Dialogues Clin Neurosci 12(4):489

	 6.	 Dai WZ, Xu Q, Yu Y, Zhou ZH (2019) Bridging machine learn-
ing and logical reasoning by abductive learning. In: Advances in
neural information processing systems. Vancouver, Canada

	 7.	 Golinskapilarek J, Orlowska E (2007) Relational reasoning in
formal concept analysis. In: IEEE international fuzzy systems
conference. London, UK

	 8.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial

nets. In: Advances in neural information processing systems.
Montréal, Canada, pp 2672–2680

	 9.	 Graves A (1997) Long short-term memory. Neural Comput
9(8):1735–1780

	10.	 Guo Q, Qian Y, Liang X (2019) Mining logic patterns from visual
data. In: International conference on data mining workshops. Bei-
jing, China

	11.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: IEEE conference on computer vision and
pattern recognition. Las Vegas, USA, pp 770–778

	12.	 He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In:
IEEE international conference on computer vision. Venice, Italy,
pp 2961–2969

	13.	 Hinton GE, Salakhutdinov RR (2006) Reducing the dimensional-
ity of data with neural networks. Science 313(5786):504–507

	14.	 Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neural Netw
2(5):359–366

	15.	 Hoshen Y, Peleg S (2016) Visual learning of arithmetic opera-
tion. In: Association for the advancement of artificial intelligence.
Phoenix, USA, pp 3733–3739

	16.	 Hu R, Andreas J, Rohrbach M, Darrell T, Saenko K (2017) Learn-
ing to reason: end-to-end module networks for visual question
answering. In: IEEE international conference on computer vision.
Venice, Italy, pp 804–813

	17.	 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017)
Densely connected convolutional networks. In: IEEE conference
on computer vision and pattern recognition. Honolulu, USA, pp
4700–4708

	18.	 Johnson J, Karpathy A, Fei-Fei L (2016) Densecap: fully convolu-
tional localization networks for dense captioning. In: IEEE confer-
ence on computer vision and pattern recognition. Las Vegas, USA,
pp 4565–4574

	19.	 Johnson J, Hariharan B, Maaten LVD, Li FF, Zitnick CL, Gir-
shick R (2017) CLEVR: a diagnostic dataset for compositional
language and elementary visual reasoning. In: IEEE conference
on computer vision and pattern recognition. Honolulu, USA, pp
1988–1997

	20.	 Ke L, Zhang Q, Battiti R (2014) Hybridization of decomposi-
tion and local search for multiobjective optimization. IEEE Trans
Cybern 44(10):1808–1820

	21.	 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436

	22.	 Li M, Chen M, Xu W (2019) Double-quantitative multigranula-
tion decision-theoretic rough fuzzy set model. Int J Mach Learn
Cybern 10(5):3225–3244

	23.	 Li SY, Tam LM, Chen HK, Chen CS (2020) A novel-designed
fuzzy logic control structure for control of distinct chaotic sys-
tems. Int J Mach Learn Cybern 11:2391–2406

	24.	 Liang J, Fadili J, Peyré G (2016) A multi-step inertial forward-
backward splitting method for non-convex optimization. In:
Advances in neural information processing systems. Barcelona,
Spain, pp 4035–4043

	25.	 Liang X, Guo Q, Qian Y, Ding W, Zhang Q (2021) Evolution-
ary deep fusion method and its application in chemical structure
recognition. IEEE Trans Evol Comput. https://​doi.​org/​10.​1109/​
TEVC.​2021.​30649​43

	26.	 Lin Y, Li J, Tan A, Zhang J (2020) Granular matrix-based knowl-
edge reductions of formal fuzzy contexts. Int J Mach Learn
Cybern 11:643–656

	27.	 Mizumoto M (1982) Comparison of fuzzy reasoning methods.
Fuzzy Sets Syst 8(3):253–283

	28.	 Nilsson NJ (1986) Probabilistic logic. Artif Intell 28(1):71–87
	29.	 Nilsson NJ (1993) Probabilistic logic revisited. Artif Intell

59(1–2):39–42

https://doi.org/10.1109/TMECH.2020.3048441
https://doi.org/10.1109/TEVC.2021.3064943
https://doi.org/10.1109/TEVC.2021.3064943

3414	 International Journal of Machine Learning and Cybernetics (2021) 12:3397–3414

1 3

	30.	 Pearl J (1987) Evidential reasoning using stochastic simulation of
causal models. Artif Intell 32(2):245–257

	31.	 Pei DW (2004) On the strict logic foundation of fuzzy reasoning.
Soft Comput 8(8):539–545

	32.	 Qian Y, Liang J, Pedrycz W, Dang C (2010a) Positive approxi-
mation: an accelerator for attribute reduction in rough set theory.
Artif Intell 174:597–618

	33.	 Qian Y, Liang J, Yao Y, Dang C (2010b) Mgrs: a multi-granula-
tion rough set. Inf Sci 180(6):949–970

	34.	 Qian Y, Liang X, Qi W, Liang J, Bing L, Skowron A, Yao Y, Ma J,
Dang C (2018) Local rough set: a solution to rough data analysis
in big data. Int J Approx Reason 97:38–63

	35.	 Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016)
Generative adversarial text to image synthesis. In: International
conference on machine learning. New York, USA, pp 1060–1069

	36.	 Ren S, He K, Girshick R, Sun J (2017) Faster r-cnn: towards real-
time object detection with region proposal networks. IEEE Trans
Pattern Anal Mach Intell 39(6):1137–1149

	37.	 Shao MW, Lv MM, Li KW, Wang CZ (2020) The construction of
attribute (object)-oriented multi-granularity concept lattices. Int
J Mach Learn Cybern 11(4):1017–1032

	38.	 She Y, He X, Shi H, Qian Y (2017) A multiple-valued logic
approach for multigranulation rough set model. Int J Approx
Reason 82:270–284

	39.	 She Y, He X, Qian Y, Xu W, Li J (2018) A quantitative approach to
reasoning about incomplete knowledge. Inf Sci 451–452:100–111

	40.	 Shelhamer E, Long J, Darrell T (2017) Fully convolutional net-
works for semantic segmentation. IEEE Trans Pattern Anal Mach
Intell 39(4):640–651

	41.	 Smith R (2007) An overview of the tesseract ocr engine. In: Ninth
international conference on document analysis and recognition,
vol 2. Curitiba, Brazil, pp 629–633

	42.	 Tadrat J, Boonjing V, Pattaraintakorn P (2012) A new similar-
ity measure in formal concept analysis for case-based reasoning.
Expert Syst Appl 39(1):967–972

	43.	 Tan A, Wu WZ, Shia S, Zhao S (2019) Granulation selection
and decision making with multigranulation rough set over two
universes. Int J Mach Learn Cybern 10(9):2501–2513

	44.	 Tenenbaum JB, Griffiths TL, Kemp C (2006) Theory-based
Bayesian models of inductive learning and reasoning. Trends
Cogn Sci 10(7):309–318

	45.	 Vinyals O, Toshev A, Bengio S, Erhan D (2016) Show and tell:
lessons learned from the 2015 mscoco image captioning chal-
lenge. IEEE Trans Pattern Anal Mach Intell 39(4):652–663

	46.	 Wang G (1996) Fuzzy reasoning and fuzzy logic. In: Soft comput-
ing in intelligent systems and information processing. Proceedings
of the 1996 asian fuzzy systems symposium. Kenting, China, pp
478–483

	47.	 Wille R (1982) Restructuring lattice theory: an approach based on
hierarchies of concepts. In: Rival I (ed) Ordered sets. Springer, pp
445–470

	48.	 Wu Q, Shen C, Wang P, Dick A, van den Hengel A (2018) Image
captioning and visual question answering based on attributes
and external knowledge. IEEE Trans Pattern Anal Mach Intell
40(6):1367–1381

	49.	 Yang Z, Bonsall S, Wang J (2008) Fuzzy rule-based Bayesian
reasoning approach for prioritization of failures in FMEA. IEEE
Trans Reliab 57(3):517–528

	50.	 Yang Z, He X, Gao J, Deng L, Smola A (2016) Stacked atten-
tion networks for image question answering. In: IEEE conference
on computer vision and pattern recognition. Las Vegas, USA, pp
21–29

	51.	 Yen J (1999) Fuzzy logic-a modern perspective. IEEE Trans
Knowl Data Eng 11(1):153–165

	52.	 Zadeh AL (1973) Outline of a new approach to the analysis of
complex systems and decision processes. IEEE Trans Syst Man
Cybern SMC 3(1):28–44

	53.	 Zhang P, Goyal Y, Summers-Stay D, Batra D, Parikh D (2016)
Yin and yang: balancing and answering binary visual questions.
In: IEEE conference on computer vision and pattern recognition.
Las Vegas, USA, pp 5014–5022

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Logic could be learned from images
	Abstract
	1 Introduction
	2 DCL
	2.1 DCL
	2.2 Inference form of DCL

	3 A LiLi task
	3.1 LiLi data sets
	3.2 LiLi task
	3.3 Inference form of a LiLi task

	4 Experiments
	4.1 Models and experimental setup
	4.2 Experiments and analysis on LiLi data sets

	5 Divide and conquer model for Multiplication data set
	6 Conclusion
	Acknowledgements
	References

