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Abstract—Classical fuzzy rough set often uses fuzzy 

rough dependency as an evaluation function of feature 
selection. However, this function only retains the maximum 
member- ship degree of a sample to one decision class, it 
can not describe the classification error. Therefore, in this 
work, a novel criterion function for feature selection is 
proposed to overcome this weakness. To characterize the 
classification error rate, we first introduce a class of 
irreflexive and symmetric fuzzy binary relations to redefine 
the concepts of fuzzy rough approximations. Then, we 
propose a novel concept of dependency: inner product 
dependency to describe the classification error, and 
construct a criterion function to evaluate the importance of 
candidate features. The proposed criterion function not 
only can maintain a maximum dependency function, but 
also guarantees the minimum classification error. The 
experimental analysis shows that the proposed criterion 
function is effective for data sets with a large overlap 
between different categories. 
 

Index Terms—Fuzzy rough set; Dependency function; 
Fuzzy inner product; Feature selection  

I. INTRODUCTION 

owadays, data is growing in a large scale. It is always the case 
that a data set has less samples and higher dimension. This 

brought a huge challenge to traditional classification learning 
algorithms. The existences of redundant features increase the 
negative effects on a machine learning task. It is a difficult 
problem for traditional learning algorithms to carry on the 
training of high dimensional data. How to eliminate redundant 
or irrelevant features from high dimensional data for avoiding 
the dimension disaster is an urgent problem to solve. Feature 
selection, or feature reduction is an effective technique to find a  
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low-dimensional data set of interest from a high- dimensional 
one according to some evaluation criteria. Its main task is to 
acquire the characteristics of high-dimensional data through the 
analysis of low-dimensional data, and to simplify data analysis. 
At present, feature selection is one of the important research 
topics in pattern recognition and machine learning, and has 
been widely used in practice. 

Selecting an appropriate evaluation criterion for feature 
selection is a critical step. It directly affects the performance of 
feature selection. There are two ways for construction of 
evaluation criterion functions: filter and wrapper. Wrapper 
approach uses a classifier to evaluate the selected feature 
subsets. However, not every classifier can be used as a criterion 
function to evaluate features. A classifier, which is suitable for 
wrapper algorithm, needs to be capable of dealing with features 
with high dimension, and can still get good classification result 
when the number of samples is limited. Filter approach selects 
features with an evaluation criterion that is independent of 
learning algorithms. To evaluate the merits of feature subsets, 
many feature evaluation criterions, such as consistency [1], 
correlation [2], mutual information [3], and Euclidean distance [4], 
have been developed for feature selection. 

Rough set theory is a useful data preprocessing method that 
has been widely applied in reasoning with uncertainty [5]-[8], 
feature selection [9]-[14] and rule extraction [15]-[19]. It employs 
the dependency function for a feature evaluation function and 
can effectively reduce irrelevant or redundant features for 
classification tasks. However, the classical rough set models 
are only suitable for discrete features; they cannot be directly 
used to process real-valued data. Before feature selection, 
real-valued data must be discretized. This is a main limitation 
for the classical rough set models. 

Fuzzy rough set model is one of the most important 
generalizations of classical model [20]-[23]. As it combines the 
advantages of rough and fuzzy sets, this model has been widely 
used to deal with the feature reduction of real-valued data 
[24]-[34]. Jensen and Shen first used fuzzy rough set theory to 
propose the concept of fuzzy rough dependency functions and 
designed a fast reduction algorithm to reduce redundant 
features [35]. Bhatt and Gopal presented a compact computing 
domain for the fast feature reduction algorithm, which effectively 
improved the computing efficiency of the algorithm [36]. Chen 
et al. defined the notion of fuzzy discernibility matrix using 
fuzzy rough lower approximations and employed it to calculate 
the feature reduction of a data set [37]. Dai et al. presented a 
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maximal discernibility pair-based approach to attribute reduction 
with fuzzy rough sets [38]. Mieszkowicz-rolka proposed a 
variable precision model of fuzzy rough sets for processing 
noise data [39]. Zhao et al. used the variable precision model to 
deal with misclassification and disturbance noise of data [40]. 
The common idea of these algorithms is to construct so-called 
fuzzy rough dependency for evaluating the classification ability 
of real valued feature subsets. A fuzzy rough dependency 
function was commonly formulated to the proportion of 
membership cardinality of fuzzy positive domain to the whole 
data set. However, the fuzzy positive domain can only retain 
the maximum membership degrees of samples to decision 
classes, but cannot keep the minimum classification error. 
Therefore, the criterion of fuzzy rough dependency determined 
by fuzzy positive domain cannot truly characterize the 
classification capability of candidate features. In this paper, we 
analyze the relationship between the classification error rate 
and membership functions of decision classes and point out that 
the overlap degree of membership functions of different classes 
is tightly linked to classification error. To characterize the 
classification error rate, we first introduce a class of irreflexive 
and symmetric fuzzy binary relations to redefine the rough 
approximations of a decision. Then, we propose a novel 
concept of dependency: inner product dependency to describe 
the classification error. Based on the concept of inner product 
dependency, we define a new feature selection criterion to 
determine the importance of feature subsets. The proposed 
feature selection criterion can keep the maximum dependency 
of each decision class and guarantees the minimum 
classification error rate. 

The structure of this paper is as follows. Section 2 reviews 
classical fuzzy rough set model and analyze the weakness of the 
model. Section 3 reconstructs the fuzzy rough approximations 
of decision classes and then introduces the concept of inner 
product dependency. Section 4 designs a heuristic algorithm for 
feature selection using the proposed criterion. Section 5 verifies 
the effectiveness and feasibility of the proposed algorithm. 
Section 6 draws the conclusions and future works. 

II. CLASSICAL FUZZY ROUGH SET MODEL AND ITS WEAKNESS  

Let U be a given set and F  be a mapping from U  to the 

interval [0,1] , i.e., [ ]( ) : 0,1F U⋅ → , then F  is referred to as a 

fuzzy set on U  . For any x U∈ , ( )F x  is referred to as the 

membership degree of x  to F . 
Given a finite set of samples 1 2{ , , , }nU x x x=   and a set of 

real-valued features 1 2{ , , , }mA a a a=   describing the samples, 

these features can generate a fuzzy binary relation AR  on 

U [19]. AR  is then said to be a fuzzy similarity relation if it 

meets 
(1) ( , ) 1A i iR x x =  for any ix U∈ ; 

(2) ( , ) ( , )A i j A j iR x x R x x=  for any ,i jx x U∈ . 

For any ix UÎ , the fuzzy similarity class associated with x  

and AR  is denoted by [ ]i Ax  and defined as [ ] ( ) ( , )i A j A i jx x R x x= , 

jx U∈ . Obviously, it is a fuzzy set on U . The similarity class 

[ ]i Ax  is often called the fuzzy neighborhood of ix . If a fuzzy 

similarity relation degenerates to a crisp one, the generated 
fuzzy neighborhoods degrade to crisp ones. 

Suppose that D  is a label feature that group the samples in 
U into r  classes, that is, 1 2{ , , }rU D D D D=  . Then we call the 

triplet ( ), ,U A D  a decision table. 

Let B A⊆ and BR  be the fuzzy similarity relation on U  

related to B . For any kD U D∈ , the fuzzy rough approximations 

of kX  are formulated as follows. 

( )( ) ( ){ }inf 1 ,
j k

B k i B i jx D
R D x R x x

∉
= −                      (1) 

( )( ) ( )sup ,
j

B k i B i j
x U

R D x R x x
∈

=                            (2) 

for ix U∈ . 

The fuzzy positive region of D  upon B  is given by 

( )
1

( )( ) ( )
r

BB i k i
k

POS D x R D x
=

= , ix U∈                   (3) 

It indicates that the sample ix  is assigned to a certain 

decision class by the degree of ( )( )B iPOS D x . Based on the 

concept of the fuzzy positive region, the fuzzy dependency 
function is expressed as 

( )
( )( )

| |
ix U B i

B

POS D x
D

U
γ ∈=                            (4) 

Obviously, the dependency function can be explained as the 
proportion of the cardinal number of fuzzy positive region to 
the number of all the samples. It is commonly used for 
evaluating the importance of a feature subset in fuzzy rough set 
theory. 

 

Fig. 1  The membership curves of two classes in a feature subspace E   

However, the formulas (1) and (2) has the following 
weakness. 

For any sample jx U∈ , if its class label is assigned to the 

class kD , then ( )( ) 0l jR D x =  for any other class lD  ( l k≠ ) 

no matter whether the label is right or not. For example, Fig.1 
indicates a binary classification problem in a feature subspace 

E , where { }1 2,U D D D= and 1 and 2 are two decision 

regions. From the classical model of fuzzy rough set theory, 

0

1.0
1( )ER X

2( )ER X  

 2 U
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( )( )1 0E jR D x =  when jx ∈2 and ( )( )2 0E jR D x =  when 

jx ∈1. Hence, the overlap degree of the membership function 

curves of different decisions is zeros as shown in Fig.1. As we 
know, an overlap degree of the membership curves reflects the 
extent in which the samples are misclassified. Therefore, the 
classical model of fuzzy rough sets has no ability to reflect the 
classification error rate in its current formalism. The criterion 
of fuzzy positive region just considers the fuzzy dependency 
between decisions and features and omits a minimum 
classification error rate. Therefore, the fuzzy dependency 
function does not accurately characterize the classification 
information of feature subsets and it is easy to cause the error of 
sample classification in the overlapping region of samples with 
different labels. 

III. INNER PRODUCT DEPENDENCY 

As we know, the membership degree of a sample to one class 
is mainly determined by the similarity between itself and its 
neighbors, and has nothing to do with reflexivity. Hence, an 
irreflexive and symmetric relation is first reviewed to describe 
fuzzy information of data. Then the fuzzy rough approximations 
of a decision are reconstructed. To overcome the weakness that 
the fuzzy positive region can’t guarantee the minimal 
classification error, we finally introduce a new feature 
evaluation function in this section. 

Let { }1 2, , , nU x x x=   be a set of samples and A  be a set of 

real-valued features. Again let B be a subset of A and BR  be a 

fuzzy relation on U related to B , then BR  is an irreflexive and 

symmetric relation if it satisfies 
(1) ( , ) 0BR x x =  for any x U∈ ; 

(2) ( , ) ( , )B i j B j iR x x R x x=  for any ,i jx x U∈ . 

For the sake of simplicity, we still call BR  a fuzzy similarity 

relation. This means that the fuzzy similarity relations in the 
next discussion are referred as to irreflexive and symmetric 
fuzzy relations. 

Let B be a subset of A , a B∈ , and aR be an irreflexive and 

symmetric fuzzy relation (i.e., fuzzy similarity relation) related 
to a . We stipulate that B aa B

R R
∈

= . In order to obtain the 

classification information of feature subsets under different 
granularity, a parameterized fuzzy similarity relation is 
constructed as follows. 

Definition 1. Let { }1 2, , , nU x x x=   be a sample set, A  be 

a set of features and B A⊆ , a parameterized fuzzy similarity 

relation on U is defined as 

( ) 0, ( , )
,

( , ), ( , )
B i j

B i j
B i j B i j

R x x
R x x

R x x R x x
ε ε

ε
≤=  >

               (5) 

where ε  is a parameter that controls the similarity of samples. 

Obviously, BRε  is also an irreflexive and symmetric fuzzy 

relation. For any ix U∈ , the corresponding fuzzy similarity 

class is denoted as [ ] ( ) ( , )i B j B i jx x R x xε ε= , jx U∈ . 

Obviously, the fuzzy similarity relation BRε  is affected by ε  

and B . The membership degrees of BRε decrease with the 

increase of features in B and grow with the decrease of the 
value of ε . 

Proposition 1. Let B be a subset of A , then A BR Rε ε⊆ . 

Proposition 2. Let 1 2ε ε≤ , then 2 1
B BR Rε ε⊆ . 

Let 1 2{ , , }rU D D D D=  , B be a subset of A , and BRε  be a 

fuzzy similarity relation related to B . Then the fuzzy rough 
approximations of kD  related to B are redefined as  

( )( ) ( ){ }min 1 ,
j k

B k i B i jx D
R D x R x xε ε

∉
= −                       (6) 

( )( ) ( )max ,
j k

B k i B i j
x D

R D x R x x
ε β

∈
=                          (7) 

for any ix U∈ . Because the similarity relation used here is 

irreflexive, the lower approximation of any decision class 
cannot be equal to zeros in a general case; it reflects the 
membership degree to a decision class. It is easily seen that the 
fuzzy rough approximations of a sample are just related to its 
class label and the similarity between itself and its neighbors 
and have nothing to do with reflexivity. 

   Example 1. Table 1 represents a decision table, where 

{ }1 2 6, , ,U x x x=  , { }1 2 3, ,A a a a= , and D is a label feature. 

   TABLE 1  DECISION TABLE 

 a1 a2 a3 D 

x1 1.0 5.0 1.3 1 

x2 1.4 4.5 1.5 1 

x3 0.8 4.4 1.9 2 

x4 0.5 4.0 2.1 2 

x5 2.1 3.6 1.7 3 

x6 2.8 4.1 2.0 3 

 

First, the three features are standardized to the interval [0, 1].  
Then the similarity degree ijr ( i j≠ ) among samples are 

calculated according to the following formula. 

1

1
1 ( ) ^ 2

m

ij ik jk
k

r x x
m =

= − −
 

Thus, we obtain 

( )

   0      0.84    0.71    0.58    0.59   0.55

0.84       0      0.81    0.69    0.75   0.69

0.71    0.81       0      0.87    0.72   0.70

0.58    0.69    0.87       0      0.70   0.66

0.59    0

A ijR r= =

.75    0.72    0.70       0      0.80

0.55    0.69    0.70    0.66    0.80      0

 
 
 
 
 
 
 
  
 
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The label feature D  partitions the sample set U  into three 
decision classes 1 2 3{ , , }D D D , where 1 1 2{ , }D x x= , 2 3 4{ , }D x x= , 

3 5 6{ , }D x x= . According to Formula (6), the lower approximations 

of these classes are calculated as shown in Table 2.  

TABLE2  ROUGH APPROXIMATIONS OF DECISION CLASSES 

U R(D1) R(D2) R(D3) 

x1 0.29 0.16 0.16 

x2 0.19 0.16 0.16 

x3 0.13 0.19 0.13 

x4 0.13 0.30 0.13 

x5 0.20 0.20 0.25 

x6 0.20 0.20 0.30 

Because there is no the phenomenon that the approximation 
of a decision class equals to zeros, one can employ these 
membership functions to analyze misclassification case and 
improve the performance of feature selection. Next we give 
another pair of commonly used rough approximation decision 
operators. 

Let 1 2{ , , , }rU D D D D=  . According to the literatures [41], 

[42], the corresponding fuzzy decisions of samples can be 
obtained. Assume that 1 2{ , , }rD D D   is the fuzzy decisions 

corresponding to 1 2{ , , , }rD D D . For any kD U D∈ , the fuzzy 

rough approximations of iD  upon feature subset B  can be then 

reformulated as follows (see Ref. [41] and [42]).  

( )( ) { }inf max 1 ( , ), ( )
j

B k i B i j k j
x U

R D x R x x D xε ε

∈
= −               (8) 

( )( ) { }max inf ( , ), ( )
j

B k i B i j k j
x U

R D x R x x D x
ε ε

∈
=                   (9) 

for any ix U∈ .  

According to Propositions 1 and 2, and the definitions of 
fuzzy rough approximations, the following properties can be 
easily derived.  

Proposition 3. If 1 2B B⊆ , then ( ) ( )
1 2B Bk kR D R Dε ε⊆  and 

( ) ( )2 1B Bk kR D R D
ε ε

⊆  

Proposition 4. If 1 20 ε ε< ≤ , then ( ) ( )1 2

B Bk kR D R Dε ε⊆  and 

( ) ( )2 1

B Bk kR D R D
ε ε

⊆ . 

Let 1 2{ , , , }rU D D D D=   and B A⊆ . From the classical 

fuzzy rough sets, the fuzzy positive region and dependency 
function of D  upon B  can be respectively redefined as 

( ) ( )
1

r

BB k
k

POS D R Dεε

=

=                           (10) 

( ) ( )( )

| |
x U B

B

POS D x
D

U

ε
εγ ∈=                         (11) 

Proposition 5.  If 1 2B B⊆ , then ( ) ( )
1 2B BPOS D POS Dε ε⊆ . 

Proposition 6. If 1 20 ε ε< ≤ , then ( ) ( )1 2
B BPOS D POS Dε ε⊆ . 

Proposition 5 shows that the positive region becomes greater 
with the increase in the size of a feature subset. Proposition 6 
shows that the positive region is also affected by the similarity 
threshold. 

The dependency function can be used as a criterion of feature 
selection, but it only considers the membership information of  
samples to the fuzzy positive region, and omits the information 
of minimum classification error rate. For example, Fig.2 and 3 
show a binary classification problem in feature subspaces B and 

C , respectively. 1( )BR Dε  ( 1( )CR Dε ) and 2( )BR Dε  ( 2( )CR Dε ) 

indicate the membership function curves of the first and second 
classes in the subspace B ( C ), respectively. It is  easy see that 
the fuzzy positive region in Fig.1 is greater than that in Fig.2. 
According to the classical fuzzy rough set theory, we consider 
that the feature subset B is more optimal than C  when the 
fuzzy dependency function is used for the criteria of feature 
selection. 

 
Fig. 2 The membership curves of two classes 

        in feature subspace B  

 

Fig. 3 The membership curves of two classes  
        in feature subspace C  

However, the difference between the two curves is smaller in 
the subspace B than that in C . According to the Bayes decision 
theory, the classification error rate gets smaller as the 
difference of the two membership function curves becomes 
larger. Therefore, the classification error rate in the feature 
subspace C  is significantly less than that of B . This leads to a 
problem: how to employ the concept of fuzzy rough 
approximations to construct an effective evaluation function for 
feature selection? Intuitively, a subset of good features for 

0   

1.0

1( )CR Dε
2( )CR Dε  

 2 U

1.0
 1( )BR Dε

2( )BR Dε

 2 U
0   
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classification learning should be having both the maximum 
fuzzy positive region and the minimum classification error rate. 
Based on the above analysis, it can be concluded that the fuzzy 
rough dependency functions are not good criterions for feature 
selection; they can just retain the maximal dependency between 
decision and features and cannot keep the minimum 
classification error. In the following, we introduce a new 
dependency function: inner product dependency, to describe 
the classification error of a classification problem. 

Definition 2. Let { }1 2, , , rU D D D D=   and B A⊆ . 

Define 

( ) ( )( ) ( )( )
*

2*

1

( 1)
B B

i

B k i l i
k l x U

D R D x R D x
U r r

ε εεω
≠ ∈

=
−

     (12)  

where ( )( )*

1

| 0
B

r

i k i
k

U x U R D xε

=

 = ∈ ≠ 
 

 , ( )B Dεω  is called 

the inner product dependency of D  related to B . Obviously, 

( )0 1B Dεω≤ < . 

The value of inner product dependency reflects the overlap 
degree of different classes. The smaller the degree of overlap, 
the smaller the inner product dependency. Because the overlap 
degree of decision classes is linked closely with the 
classification error, the concept of inner product dependency 
can describe the classification error. 

The following properties can be derived directly from 
Proposition 3 and Definition 2. 

Proposition 7. If 1 2B B⊆ , then ( ) ( )
1 2B BD Dε εω ω⊆ . 

Proposition 8. If 1 20 ε ε< ≤ , then ( ) ( )2 1
B BD Dε εω ω⊆ . 

Propositions 7 shows that the inner product dependency 
function gets greater as the number of features increases. 
Propositions 8 shows the proposed dependency gets smaller 
with the increase of the value of the similarity threshold. 

Theorem 1. If ( ) ( )B AD Dε εω ω= , then ( ) ( )B APOS D POS Dε ε= . 

Proof. Since B A⊆ , from Proposition 3 we have that 

( ) ( )B Ai iR D R Dε ε⊆  for any iD U D∈ . This means that 

( )( ) ( )( )B Ai j i jR D x R D xε ε≤ for any iD U D∈  and jx U∈ . 

Without loss of generality, we suppose that there exists a 
decision class kD U D∈  and a sample lx U∈ such that 

( )( )B k lR D xε <  ( )( )A k lR D xε . By Definition 2, we have that 

( ) ( )B AD Dε εω ω≤ , which is a contradict. Hence, ( )( )B i jR D xε  

( )( )A i jR D xε= holds for any iD U D∈  and jx U∈ , which 

implies that ( ) ( )B Ai iR D R Dε ε=  for any iD U D∈ . It follows 

from Formula (10) that ( ) ( )B APOS D POS Dε ε= . 

It should be pointed out that the converse of the theorem is 
incorrect. The theorem shows that a feature subset can maintain 

the fuzzy dependency if it keeps the inner product dependency 
invariant. This means that the inner product dependency 
contain not only the classification information of the fuzzy 
positive region, but also additional information which the fuzzy 
positive region does not have. Let us analyze what is the 
additional information in the following. 

 

Fig. 4 The membership curves of two classes 
in the feature subspace E  

 

Fig. 5 The membership curves of two classes 
in the feature subspace F  

As shown in Fig.4 and Fig.5, we temporarily assume that 

( ) ( ) ( ) ( )1 2 1 2E E F FR D R D R D R Dε ε ε ε=  , this means the fuzzy 

positive regions in the two subspaces are equal. According to 
the classical fuzzy rough set theory, the feature subsets E and 
F have the same classification abilities. The major disadvan- 
tage of the theory lies in that the fuzzy positive region omits the 
classification information of the lower parts of the membership 

function curves 1( )ER Dε  and 2( )ER Dε  or 1( )FR Dε  and 2( )FR Dε . 

In fact, the classification ability of a feature subset not only 
depends on the fuzzy positive region, is also related to the lower 
parts of the curves. The overlap degree of different membership 
function curves determines the classification error. The overlap 
degree in E  is greater than that in F . Hence, The feature 
subset F should have the greater classification ability than E  
although they have the same fuzzy positive regions. We can 
easily see that the inner product dependency in the subspace 
F is less than that in E and that the concept of the inner product 
dependency can better reflect the classification error. 

Based on the above observation, the inner product 
dependency not only contains the classification information of 
the fuzzy positive region, but also considers the error 

1.0

1( )FR Dε
2( )FR Dε  

 2 U
0

1.0

1( )ER Dε
2( )ER Dε  

 2 U

0
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information of classification. 

Definition 3. Let ( ), ,U A D  be a decision table and B A⊆ . 

Then we call B  a reduct of ( ), ,U A D  if it has the minimum 

classification error and satisfies the following conditions: 

(1) ( ) ( )B AD Dε εγ γ= ;  

(2) ( ) ( ){ }B a BD Dε εγ γ− <  for a B∀ ∈ . 

It is easy to see that a reduct is a minimal feature subset that 
has the minimum classification error and has the same 
classification ability as the whole set of features. 

IV. FUZZY ROUGH MINIMUM MISCLASSIFICATION CRITERION  

In practice, the incremental strategy is usually used to search 
for the optimal subset of features. The search begins with a 
nonempty set, finds one feature with great significances 
according to the feature evaluation criterion, and puts it into the 
selected feature subset each time. In views of the results in the 
previous section, we know that an optimal feature subset should 
be with the greatest fuzzy positive region and with the 
minimum classification error. Because the inner product 
dependency considers both of the classification error and the 
classification information in the fuzzy positive region, we 
introduce a novel criterion for feature selection as follows. 

Definition 4. Let B A⊆  and a A B∈ − . Then the importance  

of  a  related to  B is defined by 

( ) ( )
( )

{ }

{ }

( ; , ) B a B

B a

D D
a B D

D

ε ε

ε

γ γ
φ

ω
∪

∪

−
=                      (13) 

The numerator ( ) ( ){ }B a BD Dε εγ γ∪ − denotes the increment of 

the fuzzy dependency caused by the feature a , and the 

denominator is defined as the square root of ( ){ }B a Dεω ∪ by 

considering dimensional scaling. We can easily see that the 
more significant the feature a  is, the greater the value of 

( ; , )a B Dφ is. The proposed significance measure considers 

both the increment of the fuzzy dependency and the minimum 
misclassification rate. Therefore, it can better reflect the 
classification capability of a candidate feature.  

On the basis of the above observations, we can design a 
heuristic algorithm for feature selection as follows. 

Algorithm: Fuzzy rough algorithm with minimum misclas- 
sification rate (FRMR): 

Input: A decision table ( , , )DS U A D=  and parameters ε  

and δ   
Output: one reduct red   

1: Compute the fuzzy similarity relation aR for any a A∈ . 

2: Let start=1, red = ∅ , B A red= − . 
3: while start 

4: for each ia B∈  

5: Compute fuzzy relation { }red aRε
∪  

6: for each jx U∈  

7: for each mD U D∈  

8: Compute the lower membership function { } ( )( )red a m jR D x∪  

9:   end for 
10: end for 

11: Compute { }red a
εγ ∪ , ( ){ }red a Dεω ∪  and ( ; , )a red Dφ  

12: end for 
13: Find the feature ka  with maximum value ( ; , )ka red Dφ  

14: if ( ) ( )
kred a redD Dε εγ γ δ− >  

15: { }kred red a= ∪  

16: B B red= −  
17: else   
18: start=0 
19: end if 
20: end while 
21: return red  

In the proposed algorithm, the parameter ε  is used for 
controlling the similarity of samples and δ  is used to terminate 
the main loop. In fact, the optimal values of parameters ε  and 
δ are different for different data sets. In Section 5, we will 
discuss the search method for the optimal values of the two 
parameters by using the ten-fold cross validation technique.  

Suppose that the numbers of training samples and features 
are n  and m , respectively. It is easy to know that the 
computational complexity for the fuzzy similarity relations is 

2n m . The procedure from step 4 to 12 is used for computing 
the importance of each candidate feature. Step 13 is used to find 
the feature with maximum significance. The part of procedure 
from step 14 to 19 is used for terminating the main loop. The 
maximum search time for one optimal feature subset will lead 

to 2( ) 2m m+  evaluations of the criterion function. Therefore, 

the total time complexity of the proposed algorithm is in 
2 2( ( ) 2)O n m m m+ + . 

V. EXPERIMENTAL ANALYSIS 

In this section, we compare some existing algorithms with the 
proposed algorithm. Three representative feature selection 
algorithms in fuzzy rough set theory are selected. These are 
fuzzy information entropy algorithm (FRSE) [25], fitting fuzzy 
rough algorithm (FITF) [42], and fuzzy variable precision 
rough set algorithm (FPRS) [40]. Two classical classifiers 
including SVM classifier and KNN classifier (K=3) are used to 
evaluate the performance of these feature selection algorithms. 
The parameters in SVM are set to the default values. All the 
algorithms are run in Matlab 2013b. Fourteen data sets were 
downloaded in the UCI and KRB database for experimentation. 
The basic description related to these data sets is shown in 
Table 3. 
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TABLE 3  DESCRIPTION OF EXPERIMENTAL DATA 
No Data sets Sample Features Classes
1 gamma 19020 10 2 
2 glass 214 10 7 

3 horse 368 22 2 

4 iris 150 4 3 

5 mushroom 8124 22 2 

6 segmentation 2310 18 7 

7 sonar 208 60 2 

8 wdbc 569 30 2 

9 wine 178 13 3 

10 hill 1212 101 2 

11 colon 62 2000 2 

12 Breast 84 9216 5 

13 prostate 102 10509 2 

14 MLL 72 12582 3 

 
A. Training Parameters 

As shown in Section 4, FRMR algorithm has two parameters   
ε and δ which are used for the thresholds of fuzzy similarity 
and algorithm termination, respectively. The effective selection 
of the two parameters is the necessary guarantee for the 
algorithm to output the optimal feature subset. Theoretically, 
the optimal solution of the parameters should be searched from 
the entire range space for each data set. Fortunately, as 
discussed in the literature [9]-[14], [24]-[29], [41],[42] for such 
an algorithm with two parameters in rough set models, if one 
parameter is controlled at a certain value and the optimal value 
of another parameter is searched in its entire range space, then 
the optimal performance of the algorithm can be approximately 
obtained. According to this idea, the value of parameter ε  will 
be set to a constant 0 in the following experiments and then the 
optimal value of algorithm termination δ  is set to be searched 
in the interval [0,0.05] with step 0.001. 

TABLE 4 TRAINING RESULTS FOR OPTIMAL SHUTDOWN THRESHOLDS 
Dataset FRMR FRSE FITF FPRS
gamma 0.006 0.000 0.0001 0.0001

glass 0.026 0.011 0.026 0.021

horse 0.025 0.013 0.026 0.025

iris 0.031 0.014 0.017 0.019

mushroom 0.005 0.006 0.022 0.021

segmentation 0.008 0.009 0.004 0.005

sonar 0.010 0.001 0.002 0.002

wdbc 0.028 0.001 0.001 0.003

wine 0.023 0.008 0.011 0.003

hill 0.001 0.000 0.0001 0.0002

colon 0.032 0.013 0.012 0.010

Breast 0.017 0.018 0.015 0.017

prostate 0.016 0.011 0.020 0.022

MLL 0.023 0.015 0.022 0.023

We use 10-fold cross validation to perform feature selection 
on these data sets. That is to say, for a value of termination 
parameter δ  and a data set, we divide the data set into ten parts, 
of which nine parts are used as the training set and one part is 
for the testing set. In the training stage, feature selection is 
conducted on the training set and an optimal feature subset is 
selected. In the testing stage, a subdata is extracted from the 
testing data by using the optimal feature subset. The extracted 

subdata is then sent to SVM and 3NN classifiers for computing 
the classification accuracy of the subdata. After ten cycles, the 
average value of the results of ten cycles is taken as the final 
result of feature selection. In experiments, we try δ from 0 to 
0.05 with step 0.001 and find the optimal value of δ for each 
data set. Similarly, we have done the experiments with the same 
parameter search way for the other three algorithms that need to 
be compared. The optimal values of the parameter δ  in the 
experimental results are listed in Table 4. Thereafter, these 
values of the parameter δ  in these algorithms are then all used 
in the next series of experiments.  

B. Correlation Analysis of Different Classification Indexes 
In order to analyze the relationship among the inner product 

dependency (abbreviated as IPD), the classical fuzzy rough set 
dependency (abbreviated as FRD) and classification accuracy. 
We select the wine dataset; randomly generate 10 subsets with 
5 features. Then, we calculate the fuzzy rough set dependencies, 
the inner product dependencies and the 3NN classifier 
accuracies and SVM classifier accuracies for each subset. The 
results are listed in Table 5. 

Some conclusions can be drawn clearly from Table 5. It is 
easy to see that IPD is relevant to the classification capability of 
feature subsets. The experimental results show that the IPD for 
the fifth feature subset is the smallest, and the corresponding 
classification accuracy of 3NN and SVM classifiers with 
ten-fold cross-validation is the highest. For the third feature 
subset, the IPD is relatively large, and the classification 
accuracy of the two classifiers is also relatively low. In addition, 
the correlation analysis was used to calculate the correlation 
coefficient between IPD and 3NN classifier accuracy as 
-0.7908, and the correlation between IPD and SVM classifier 
accuracy is -0.8221. Obviously this correlation is strongly 
related.  

TABLE 5  FUZZY ROUGH SET DEPENDENCY, INNER PRODUCT  
DEPENDENCY AND CLASSIFICATION ACCURACY 

ID Features FRD IPD 3NN SVM 
1 2,3,1,10,4 0.2039 0.1382 89.38 92.71 

2 13,4,10,2,11 0.2199 0.1286 93.89 92.78 

3 6,7,2,4,12 0.1686 0.1476 84.24 86.04 

4 9,11,3,6,4 0.1701 0.1404 83.26 89.93 

5 13,6,10,5,7 0.2247 0.1237 96.04 97.15 

6 4,2,7,11,5 0.1873 0.1361 91.60 93.89 

7 5,1,9,11,7 0.2124 0.1379 93.13 94.38 

8 3,7,5,13,8 0.2079 0.1351 92.78 95.00 

9 7,2,10,4,3 0.1976 0.1345 93.82 93.26 

10 1,12,3,13,6 0.2343 0.1368 94.38 90.97 

At the same time, it can be clearly seen from Table 5 that the 
IPD is also related to the FRD. That is, the smaller the IPD, the 
larger the FRD of the feature subset. Of course, this conclusion 
is not always established. For example, in the calculation of No. 
2, the value of IPD is relatively small, and the accuracy 
performance of the two classifiers is not very satisfactory. This 
is because the IPD just has the mathematical meaning of the 
misclassification rate. It can only reflect the misclassified 
information of the feature subset. This information reflects one 
side of the classification ability, and does not fully embody the 
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classification ability of feature subset. Furthermore, we did the 
same experiment in other datasets. The experimental results 
show that the correlation between IPD and classification 
accuracies is similar to the wine data set. 

For the four data sets of glass, iris, soybean, and mushroom, 
we employ the FRMR algorithm to output a sequence of 

selected feature subsets，At this point, we set the shutdown 

condition as δ =0. Along with the original data set, we 
separately plot the variation of the IPD, 3NN accuracy and 
SVM accuracy as the number of features increases in Fig. 6 to 
Fig. 8. 
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Fig. 6  The inner product dependence curve with the features increases 
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Fig. 7  3NN classifier accuracy curve with the features increases 
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Fig. 8  SVM classifier accuracy curve with the features increases 

We first analyzed the graph of the IPD curves as Fig 6. 
Through observation, we can find that the same situation is 
reflected in the four sets of data: in the initial stage of feature 
sequence, the IPD computed by the proposed algorithm is less 
than that computed by the original feature sequence. As the 
number of features increases, the IPD of the FRMR algorithm 
will eventually intersect with the IPD of the original data, even 
exceeding it. This shows that the feature subset output by the 
FRMR algorithm in the initial stage can effectively reduce the 
possibility of misclassification. 

We again compared the 3NN, SVM classifier accuracy curve. 
It is easy to see that the FRMR algorithm improves the 
classification accuracies over the original data sets to a large 
extent. Moreover, when the classification accuracy calculated 
by FRMR algorithm reaches the highest, the corresponding the 
IPD is smaller than the IPD of the original feature sequence. 
For example, for glass data, for the SVM classifier and 3NN 
classifier, the FRMR algorithm selects the first feature with the 
highest precision output, while the IPD is the lowest at this time. 
Therefore, it can be concluded that the optimal feature subset 
appears when the IPD of the FRMR algorithm is less than the 
IPD of the original data. 

C. Performance Comparison of Different Algorithms 
To demonstrate the anti-noise effect of our proposed 

algorithm, 5% label noises were generated in data sets: gamma, 
mushroom, segmentation, sonar and wine, that is, the label 
orders of 5% samples in these datasets were randomly shuffled. 
Then, feature reductions are performed on these data sets. The 
experimental results are shown in Table 6. It is easy to see that 
the proposed method has better anti-noise ability than other 
methods, which is due to the introduction of the 
misclassification rate index in our algorithm. 

Based on the results of the parameter training in Tables 4, we 
used the 3NN classifier and the SVM classifier to perform data 
experiments in 14 selected data sets. The numbers of selected 
optimal features and the running time are listed in Table 7. 
Obviously, all four algorithms achieve the goal of feature 
selection. Especially for the FRMR algorithm, the number of 
selected features is relatively small in most of data sets. 
However, for the sonar data set, FRMR algorithm selects more 
features than the other three algorithms. If we compare the 
results in Tables 8 and 9, it is not difficult to find out that for the 
sonar data set, the 3NN and SVM accuracy of the FRMR 
algorithm are obviously superior to the accuracy of other 
algorithms. Moreover, for the original 60 features, the FRMR 
algorithm selected 12 features, that is a large degree of 
reduction. For data sets with fewer categories, the running time 
of the FRMR algorithm is about the same as that of the other 
algorithms. In data sets with a large number of categories, the 
FRMR algorithm takes more time than other algorithms. This is 
because the FRMR algorithm not only needs to compute the 
lower approximations of categories like other algorithms, but 
also needs to compute the inner product of the lower 
approximations, while other algorithms only need to compute 
the lower approximation of categories. 

The test accuracy of the two classifiers for these data sets is 
shown in Tables 8 and 9, respectively, where the underlined 
portion is the maximum test accuracy of the current data set. 
For most data sets, the classification accuracy guided by our 
proposed algorithm is higher than the accuracy of the original 
data set. Moreover, compared with the other three algorithms, 
the highest precision of most data sets is also the most frequent 
occurrence of the FRMR algorithm. This shows that the 
selected feature subset with FRMR has stronger classification 
ability. For the glass and colon datasets, the FRMR algorithm 
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selected the least subset of features; however, it did show better 
classification accuracy. For breast, gamma datasets, the 
classification accuracies of feature subsets obtained by FRMR 
algorithm are much higher than those obtained by other 
algorithms. The emergence of the manifestations indicates that 

the inner product dependency can reach a higher level in 
eliminating redundant features. 

 
 

TABLE 6  CLASSIFICATION ACCURACIES OF NOISED DATA AT 5% NOISE LEVEL 

Data sets Classifier Raw data Noised data FRMR FRSE FITF FPRS 

gamma 
SVM 68.78 65.67 70.44 66.53 64.33 65.84 
3NN 80.71 77.56 78.35 76.20 76.47 76.28 

mushroom 
 

SVM 99.94 96.00 96.31 92.58 95.76 93.86 
3NN 99.57 97.29 97.43 91.29 96.35 91.45 

segmentation 
SVM 97.14 91.52 91.83 88.81 91.53 90.14 
3NN 96.12 90.57 90.35 89.44 90.41 89.89 

sonar 
SVM 88.11 86.04 84.42 72.45 72.82 72.14 
3NN 84.34 84.14 78.35 72.85 77.73 71.89 

wine 
SVM 96.67 90.35 92.24 89.95 91.34 89.98 
3NN 96.04 93.26 92.76 89.72 90.45 90.61 

average — 90.74 87.24 87.25 82.98 84.72 83.21 
 

TABLE 7  THE SELECTED FEATURE NUMBERS AND THE RUNNING TIME OF THE FOUR ALGORITHMS (NUMBER/TIME)  

Data sets Raw data FRMR FRSE FITF FPRS 
gamma 10 5.8/989.29 2.0/788.56 6.1/941.39 6.2/950.48 

glass 10 1.0/0.19 2.1/0.11 2.3/0.09 2.1/0.16 

horse 22 8.8/1.31 6.7/0.85 7.2/0.98 9.2/1.01 

iris 4 1.2/0.05 1.6/0.05 3.1/0.02 1.7/0.02 

mushroom 22 5.6/ 292.88 7.2/ 286.20 6.4/ 256.12 6.8/ 269.70 

segmentation 18 5.6/74.14 5.8/34.53 8.2/35.13 7.3/29.53 

sonar 60 12.5/2.18 8.6/1.36 8.6/1.90 8.7/1.87 

wdbc 30 3.1/2.54 7.2/3.31 6.7/3.25 6.5/3.07 

wine 13 4.9/0.23 5.2/0.09 4.6/0.20 7.9/0.58 

hill 100 6.0/66.66 6.4/48.17 4.4/42.53 5.5/45.88 

colon 2000 4.9/8.58 6.8/5.78 8.7/6.91 5.2/5.38 

breast 9216 8.8/181.19 7.3/35.55 8.9/51.84 8.6/73.22 

prostate 10509 9.7/143.26 7.5/96.61 6.6/70.36 6.4/77.41 

MLL 12582 6.7/114.71 11.5/43.12 9.4/48.02 8.1/45.45 

average 2471.14 6.06/134.08 6.12/96.02 6.51/104.20 6.44 /107.41 

TABLE 8  CLASSIFICATION ACCURACIES OF REDUCED DATA WITH 3NN 

Data sets Raw data FRMR FRSE FITF FPRS 
gamma 80.68 ± 1.83 83.12 ± 1.16 78.21 ± 1.81 79.88 ± 2.16 79.32 ± 2.54 

glass 91.29 ± 5.04 99.07 ± 1.28 96.82 ± 2.55 96.48 ± 2.54 97.07 ± 2.48 

horse 90.76 ± 3.79 92.61 ± 3.63 90.53 ± 3.27 91.19 ± 3.99 90.38 ± 4.11 

Iris 95.33 ± 1.83 96.67 ± 2.98 96.00 ± 2.79 96.67 ± 2.98 95.33 ± 1.83 

mushroom 99.57 ± 0.41 99.75 ± 0.26 99.51 ± 0.31 99.88 ± 0.28 99.57 ± 0.32 

segmentation 96.16 ± 0.73 96.36 ± 0.83 95.37 ± 0.75 95.28 ± 0.78 95.19 ± 1.02 

sonar 84.19 ± 8.95 85.12 ± 5.73 80.03 ± 6.12 81.64 ± 6.13 80.98 ± 6.35 

wdbc 96.68 ± 2.25 96.54 ± 1.78 96.29 ± 1.46 96.48 ± 2.42 97.20 ± 1.77 

wine 95.95 ± 3.25 97.75 ± 3.34 96.63 ± 3.62 96.63 ± 3.56 97.21 ± 3.44 

hill 50.89 ± 3.73 52.80 ± 4.24 52.39 ± 3.31 48.51 ± 3.53 47.87 ± 4.15 

colon 71.19 ± 10.69 93.57 ± 10.89 88.81 ± 11.06 86.28 ± 12.33 85.66 ± 10.26 

breast 69.19 ± 15.74   100.00 ± 0.00   94.04 ± 5.26  90.29 ± 6.17 90.62 ± 4.88 

prostate 83.50 ± 8.26 96.00 ± 6.80  93.17 ± 8.45  96.00 ± 10.07 95.83 ± 9.89  

MLL 83.78 ± 10.27      97.32 ± 3.68 95.89 ± 8.19  97.14 ± 3.91  96.77 ± 4.87 

average 84.94  ± 5.48 91.91  ± 3.47 89.55 ± 4.21 89.45  ± 4.35 89.21 ± 4.14 
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TABLE 9  CLASSIFICATION ACCURACIES OF REDUCED DATA WITH SVM  

Data sets Raw data FRMR FRSE FITF FPRS 
gamma 68.89 ± 2.56 73.11 ± 1.66 68.02 ± 2.13 70.58 ± 1.35 70.88 ± 2.23 

glass 93.21 ± 4.52 99.06 ± 1.28 97.67 ± 1.28 98.14 ± 1.04 97.12 ± 1.23 

horse 90.75 ± 3.64 91.31 ± 3.36 91.04 ± 3.84 91.04 ± 3.86 89.87 ± 4.44 

iris 94.67 ± 2.14 96.00 ± 2.79 95.33 ± 1.83 95.33 ± 1.83 95.33 ± 1.83 

mushroom 99.94 ± 0.14 100.00 ± 0.00 99.88 ± 0.28 99.75 ± 0.28 100.00 ± 0.00 

segmentation 97.27 ± 0.64 96.82 ± 0.43 95.58 ± 0.58 95.19 ± 0.70 96.72 ± 1.13 

sonar 88.02 ± 9.15 88.96 ± 6.12 81.88 ± 5.80 85.50 ± 5.65 85.08 ± 6.21 

wdbc 97.19 ± 2.08 97.49 ± 1.33 97.88 ± 1.89 97.11 ± 1.99 96.31 ± 2.04 

wine 96.62 ± 3.17 98.86 ± 3.33 97.22 ± 3.79 97.19 ± 3.40 97.13 ± 3.75 

hill 55.26 ± 5.33 56.36 ± 5.12 55.74 ± 4.78 51.22 ± 3.50 51.48 ± 3.96 

colon 64.76 ± 11.06 90.48 ± 9.87 86.37 ± 11.28 85.48 ± 11.57 85.71 ± 12.84 

breast 38.16 ± 13.48 98.82 ± 2.63 93.90 ± 6.43 94.12 ± 4.56 95.05 ± 4.94 

prostate 56.59 ± 11.35 100 ± 0.00 96.17 ± 7.87 96.02 ± 9.91 96.55 ± 6.13 

MLL 38.93 ± 12.56 98.57 ± 3.19 96.50 ± 5.36 98.57 ± 3.19 97.29 ± 5.66 

average 77.16 ± 5.84 91.84 ± 2.94 89.51± 4.08 89.76 ± 3.78 89.55 ± 4.03 

 
 

Next, we analyzed the significant differences in the 
experimental results of these algorithms. We selected statistics 
Friedman test [43] and Bonferroni–Dunn test [44] to evaluate 
these experimental results. 

The Friedman statistic is formulated as: 
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where k is the number of algorithms, ir is the average rank of 

algorithm i and n is the number of data sets, F follows the 
Fisher distribution with 1k − and ( 1)( 1)k n− − degrees of 

freedom. As shown in Ref. [43], the critical value 
(3,39) 2.555F =  when the significance level 0.1α = . 

The null hypothesis tested by the Friedman was that all 
algorithms were the same in classification performance. If the 
null hypothesis is rejected, the Bonferroni–Dunn test is 
performed to further examine which algorithms are different. 
According this test, the performance of two algorithms is 
thought to be significantly different when their average rank 
distance exceeds the critical distance 

( 1)
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α α
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=                               (15) 

where 0.10 2.291q =  as shown in [45]. 

Tables 10 and 11 show the rankings of these algorithms 
under the two classifiers. It follows from Formula (14) that 

6.748F = for 3NN classifier and 9.332F = for SVM classifier. 
Both were greater than the threshold of significance (3,39)F at 

the level α ( = 0.1). Thus, we can consider these algorithms to 
be significantly different. According to Formula (15), it follows 
that

0.10 ( 4, 14)1.118CD k N= = = . 

One can observe from Table 10 that the average rank of 
FRMR is greater than 1.118 plus that of any of other algorithms 
for 3NN. Thus, the tests demonstrate that FRMR is statistically 
better than other three algorithms for 3NN classifier. From 
Table 11, the tests demonstrate that FRMR is also statistically 
better than other algorithms for SVM classifier. 

TABLE 10 RANK OF THE FOUR ALGORITHMS WITH 3NN 
Data sets FRMR FRSE FITF FPRS 

gamma 1 4 2 3 

glass 1 2 3 4 

horse 1 3 2 4 

iris 1.5 3 1.5 4 

mushroom 2 4 1 3 

segmentation 1 2 3 4 

sonar 1 4 2 3 

wdbc 2 4 3 1 

wine 1 3.5 3.5 2 

hill 1 2 3 4 

colon 1 2 3 4 

breast 1 2 4 3 

prostate 1.5 4 1.5 3 

MLL 1 4 2 3 

average 1.25 3.17 2.54 3.08 

TABLE 11 RANK OF THE FOUR ALGORITHMS WITH SVM 

Data sets FRMR FRSE FITF FPRS 

gamma 1 4 3 2 

glass 1 3 2 4 

horse 1 2.5 2.5 4 

Iris 1 3 3 3 

mushroom 1.5 3 4 1.5 

segmentation 1 3 4 2 

sonar 1 4 2 3 

wdbc 2 1 3 4 

wine 1 2 3 4 

hill 1 2 4 3 

colon 1 2 4 3 

breast 1 4 3 2 

prostate 1 3 4 2 

MLL 1.5 4 1.5 3 

average 1.21 2.89 3.07 2.82 

 
D. Fixed Number of Selected Features 

In general, for a given data set and a classifier, an optimal 
subset of features exists and is not unique. Most feature 
selection algorithms have a termination condition that 
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determines the number of selected features. Different values of 
the termination condition will cause an algorithm to select 
different number of features. However, in some practical 
problems, due to the restriction of objective conditions, the 
optimal feature subset is not needed. Instead, the required 
number of features is given based on a particular problem, and 
then feature selection is carried out according to the fixed 
number. For example, the approximately optimal numbers of 
features were given for datasets: breast, colon and prostate in 
literature [46], [47]. Next, we set the number of selected 
features as D = 6 for high-dimensional datasets like the way in 
[47], and compare the performance of the four algorithms. The 
classification results for the reduced data sets are shown in 
Tables 12 and 13, respectively.  

TABLE 12  CLASSIFICATION ACCURACIES OF REDUCED DATA  
WITH 3NN (D = 6) 

Data sets Raw data FRMR FRSE FITF FPRS 

horse 90.76 91.61 90.51 90.51 90.05 

mushroom 99.57 99.62 99.36 99.71 99.26 

segmentation 96.16 96.08 95.21 94.94 94.56 

sonar 84.19 83.18 75.36 77.94 76.86 

wdbc 96.68 96.31 93.83 95.95 95.55 

hill 50.89 51.14 52.11 48.19 47.59 

colon 71.19 92.15 86.25 85.42 85.42 

breast 69.19 95.00 92.75 89.83 90.27 

prostate 83.50 95.00 92.00 94.17 92.10 

MLL 83.78 95.71 91.43 95.71 95.71 

average 82.59 89.58 86.88 87.24 86.74 

TABLE 13  CLASSIFICATION ACCURACIES OF REDUCED DATA 
WITH SVM (D = 6) 

Data sets Raw data FRMR FRSE FITF FPRS 

horse 90.75 91.01 89.39 89.39 89.56 

mushroom 99.94 99.88 99.76 99.76 99.82 

segmentation 97.27 96.03 95.21 94.97 94.31 

sonar 88.02 78.38 75.94 73.98 75.89 

wdbc 97.19 96.67 94.03 97.01 95.01 

hill 55.26 51.74 51.24 50.91 50.71 

colon 64.76 85.00 82.08 82.50 83.15 

breast 38.16 96.25 90.00 90.42 92.12 

prostate 56.59 95.00 91.00 92.17 91.00 

MLL 38.93 95.71 90.32 94.29 93.41 

average 72.69 88.57 85.90 86.54 86.50 

 
It is easy to see that our method has a great advantage over 

other methods when the number of selected features is fixed at 
D = 6. The statistical significance test was also carried out for 
this experiment, and it can be also verified that FRMR is 
significantly better than the other three methods according to 
the Friedman and Bonferroni–Dunn statistics.  

This experiment indicates that we do not need to calculate 
the parameters in these algorithms for some hybrid systems 
where the required number of selected features is given, so can 
avoid a lot of repetitive computations.  

VI. CONCLUSION 

Fuzzy dependency function is often used as a feature selection 
criterion in fuzzy rough set theory. This function only considers 
the classification information in the upper branches of the 
membership function curves of decision classes, and ignores 

the information in the lower branches of these curves. In this 
paper, we introduced concept of inner product dependency to 
characterize the classification error and propose a novel 
criterion for feature selection. This criterion makes full use of 
the classification information provided by the membership 
function curves of decision classes and overcomes the 
shortcoming of fuzzy rough dependency function. Using ten 
UCI and KRB datasets, we conducted a series of numerical 
experiments to evaluate the proposed approach. The 
experimental results indicate that the proposed approach can 
select fewer features and maintain higher classification 
accuracy in most of data sets. It is also found in experiments 
that the thresholds in the compared algorithms have impacts on 
the performance of feature selection. The optimal values of 
thresholds should be trained before feature selection for each 
data set. 

In future work, we will introduce Bayesian minimum error 
rate into other rough set models and apply these models to 
pattern recognition problems such as classification and rule 
extraction. 
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