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Enhanced Group Sparse Regularized Nonconvex
Regression for Face Recognition

Chao Zhang, Huaxiong Li, Chunlin Chen, Yuhua Qian and Xianzhong Zhou

Abstract—Regression analysis based methods have shown
strong robustness and achieved great success in face recogni-
tion. In these methods, convex l1-norm and nuclear norm are
usually utilized to approximate the l0-norm and rank function.
However, such convex relaxations may introduce a bias and
lead to a suboptimal solution. In this paper, we propose a
novel Enhanced Group Sparse regularized Nonconvex Regres-
sion (EGSNR) method for robust face recognition. An upper
bounded nonconvex function is introduced to replace l1-norm
for sparsity, which alleviates the bias problem and adverse
effects caused by outliers. To capture the characteristics of
complex errors, we propose a mixed model by combining γ-
norm and matrix γ-norm induced from the nonconvex function.
Furthermore, an l2,γ -norm based regularizer is designed to
directly seek the interclass sparsity or group sparsity instead
of traditional l2,1-norm. The locality of data, i.e., the distance
between the query sample and multi-subspaces, is also taken
into consideration. This enhanced group sparse regularizer
enables EGSNR to learn more discriminative representation co-
efficients. Comprehensive experiments on several popular face
datasets demonstrate that the proposed EGSNR outperforms
the state-of-the-art regression based methods for robust face
recognition.

Index Terms—Low-rank structure, sparse representation, en-
hanced group sparsity, nonconvex relaxation, face recognition.

I. INTORDUCTION

AS one of the most intensively investigated topics, face
recognition (FR) has attracted much attention from the

field of pattern recognition and computer vision. Numerous
successful methods have been proposed and developed, in-
cluding traditional [1], [2], [3], [4], [5], [6] and deep learning
methods [7], [8], [9], [10]. However, sophisticated variations
in face images (e.g., occlusion, illumination and expression)
pose a big challenge for FR systems. Many researchers tried
to develop more robust FR techniques against various noises.

Recently, regression analysis based approaches captured
broad attention in the computer vision communities, which
achieved great success in FR [11], [12], image analysis [13],
[14], visual tracking [15], etc. Wright et al. presented a
Sparse Representation Classifier (SRC) which sought a s-
parse representation in linear regression [12]. The l1-norm is
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used to guarantee the sparsity which is the convex relaxation
of intractable l0-norm. SRC achieves some impressive per-
formance on face recognition against pixel corruptions and
occlusions [12]. Zhang et al. replaced the l1-norm in SRC by
l2-norm and proposed a Collaborative Representation Clas-
sifier (CRC) [16]. Both the two methods are unsupervised in
representation and ignore the label information of training
data. In [17], the authors proposed a supervised Group S-
parse Coding (GSC) method based on l2,1-norm regularizer.
GSC considers the correlations among training samples and
forces the representation coefficients to be sparse at group
level. Such group sparse regularizer is used in many other
studies [4], [1]. In addition to the label information, sample
weights learning and feature weights learning mechanisms
are incorporated into regression models to improve the
discrimination of representation. The former differs the roles
of all training samples, such as Weighted Sparse Repre-
sentation Classifier (WSRC) [18] and Locality-constrained
Linear Coding (LLC) method [19], while the latter focuses
on important features and alleviates the adverse influences of
outlier features or pixels. Li et al. defined different mapping
functions to determine the correlation between samples [20].
In [21] and [22], the authors extended LRC and CRC
to Robust Linear Regression Classification (RLRC) and
Robust Collaborative Representation Classification (RCRC),
respectively. Yang et al. presented a Regularized Robust
Coding (RRC) method by feature weights learning, which
shows robustness to various outlier features [23]. Zheng
et al. proposed an Iterative Re-constrained Group Sparse
Classifier (IRGSC) by adaptive feature and sample weights
learning [24].

It should be noted that all the methods mentioned above
belong to 1D or vector-based regression models, which use
l1- or l2-norm in loss functions. Such operations inherently
assume the errors follow a Laplace or Gaussian distribution.
However, in real-world scenarios, the errors are much more
complicated. To deal with structural noises, Yang et al.
preserved the 2D structure of error images and proposed a
Nuclear norm based Matrix Regression (NMR) method [25].
NMR uses nuclear norm to measure the low-rank or ap-
proximately low-rank characteristic of errors caused by
contiguous occlusions. NMR shows great potential in the
presence of occlusions, shadows and reflections. Based on
1D and 2D characteristics of errors, some researchers utilize
mixed norm for FR by combining vector-based norms and
matrix-based norms. Luo et al. combined nuclear norm and
l1-norm in a unified model, and proposed a Nuclear-L1
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norm joint matrix Regression (NL1R) method [26]. Qian
et al. introduced feature weights into the mixed norm model
(i.e., nuclear and l2-norm), and proposed a Robust Nuclear
norm regularized Regression (RNR) model [27]. In [28], the
authors described the error by a tailored function and low-
rank characteristics, which achieved robust performance in
the case of complex occlusions.

These approaches generally adopt convex l1-norm to
approximate the sparsity structure, and nuclear norm for low-
rank structure, which can be viewed as the extension of l1-
norm on the singular values of matrix. However, such convex
relaxation is biased and leads to a suboptimal solution, since
l1-norm treats all nonzero values differently while these val-
ues contribute same in l0-norm. Such phenomenon also ex-
ists in nuclear norm and rank function. To address this prob-
lem, nonconvex relaxations are exploited in sparse and rank
minimization problems such as lp-norm (0 < p < 1) [29],
schatten p-norm [30], weighted nuclear norm [31], truncated
nuclear norm [32], etc. Nie et al. designed a logarithmic
function which has better l0 approximation than l1-norm, and
extended it to rank minimization [33]. Xie et al. presented a
Robust nuclear norm-based Matrix Regression (RMR) model
via weighted nuclear norm [34], in which different singular
values are assigned with different weights. Zheng et al. built
a Weighted Mixed-Norm Regression (WMNR) model, which
combines weighted nuclear norm and l2-norm to cope with
image corruptions [35]. Dong et al. adopted a Laplacian-
uniform mixed function to describe the error distribution,
and proposed a mixed model combining robust sparsity and
low-rank constraints [36]. In paper [32], the authors used
truncated nuclear norm to replace nuclear norm. Numerical
studies have demonstrated that the nonconvex surrogates
usually perform better than their convex counterparts [37],
[38], [39], [40].

Although those various nonconvex relaxations (e.g., lp-
norm, schatten p-norm, weighted and truncated nuclear
norm, logarithmic function induced norm) alleviate the bias
problem in l0 and rank approximation to some extent, these
functions have no definite upper bound and still produce
large losses caused by outliers, which may lead to the
poor performance. In this paper, we propose a new non-
convex FR model called Enhanced Group Sparse Regular-
ized Nonconvex Regression (EGSNR). We first introduce
a nonconvex Minimax Concave Penalty (MCP) function
with definite upper bound to approximate l0-norm, and
apply it on matrix rank problem. The boundness of MCP
function alleviates the influence of outliers and improves
the model robustness. Different with some other methods
which only impose nonconvex relaxations on regression
errors, the nonconvex function is used in all terms of our
proposed model, including regularizer. The label information
and class weights mechanism are also incorporated into
EGSNR model to improve the representation discrimination.
The main contributions are summarized as follows:

1) EGSNR utilizes mixed norm to deal with complex
noises in face images. Instead of nuclear norm or l1-norm,

TABLE I
NOTATIONS AND DESCRIPTIONS

Notations Descriptions
c Number of classes
ni Number of training samples of the i-th class
D ∈ Rm×n Training matrix
Di ∈ Rm×ni Training matrix of the i-th class
dij ∈ Rm The j-th training sample of the i-th class
y ∈ Rm A query sample
x ∈ Rn Target coefficients
xi ∈ Rni Target coefficients of the i-th class
1 A vector with all entries being 1
σi(A) The i-th singular value of matrix A
∥ · ∥γ,∗ Matrix γ-norm
∥ · ∥γ γ-norm
zi,j The j-th element of vector zi
zi,k The elements of the k-th class of vector zi
Tm(·) The operator that converts a vector to matrix
Tv(·) The inverse operator of Tm(·)
⊙ Elementwise product

the nonconvex MCP function induced norm is applied to
describe the low-rank and sparsity structure of representation
errors. The boundness of MCP function makes EGSNR more
robust to outliers. Both loss function and regularizer of
EGSNR model are constrained by nonconvex functions.

2) Base on MCP function, an l2,γ-norm regularizer is
designed to directly seek the interclass sparsity of repre-
sentation coefficients, instead of using traditional l2,1-norm.
In addition, locality constraint, i.e., class weights learning
mechanism, is also introduced to improve the discrimination
of representation.

3) An iterative optimization algorithm based on alternating
direction method of multipliers (ADMM) framework is
presented to solve EGSNR model efficiently. Comprehen-
sive experiments on several face databases are performed
to demonstrate the robustness of the proposed method to
various noises, compared with the state-of-the-art regression
based approaches.

The remainder of this paper is organized as follows.
In Section II we review the related regression models for
FR. Then, we illustrate the formulation, optimization and
analysis of proposed EGNSR in Section III. Section IV
reports the experiment results and analysis. Finally, Section
V concludes this paper.

Notations: In this paper, matrices and vectors are written
in boldface uppercase and boldface lowercase, respectively.
Denote its i-th row and j-th column of matrix A = (aij) as
ai and aj , respectively.

The l2,1-norm of matrix A ∈ Rp×q is defined as [17]:

∥A∥2,1 =

p∑
i=1

√√√√ q∑
j=1

a2ij =

p∑
i=1

∥ai∥2. (1)

The nuclear norm of matrix A ∈ Rp×q is defined as [25]:

∥A∥∗ =
∑
i

σi(A), (2)

where σi(A) is the i-th singular value of A.
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The ∞-norm of vector x ∈ Rm is defined as [25]:

∥x∥∞ = max
i

|xi|, i = 1, ...,m, (3)

where x = [x1, x2, ..., xm]T . TABLE I lists the main
notations in this paper.

II. RELATED WORKS

As analyzed in Section I, many studies attempt to find
a suitable loss function to describe the error e, e.g., vector
based, matrix based or mixed losses. Their common goal is
to obtain appropriate regression coefficients for classifica-
tion. Specifically, for a query y ∈ Rm, the basic idea is

y = Dx+ e, (4)

where the error e may be complicated in real world. In
most existing works, e is normally characterized by a certain
distribution like Gaussian and Laplace distribution, or the
error image E = Tm(e) is considered to be low-rank due
to the contiguous occlusions. These methods can be unified
into the following model:

min
x
ϕ(e) + λψ(x), (5)

where ϕ(e) is the loss function, and ψ(x) is regularization
term. In the following, we give an overview on ϕ and ψ of
some existing methods.

A. Loss Function

According to the characteristics of errors, the loss function
ϕ can be generally described by three types of norms: vector
based, matrix based and mixed norms.

(1) Vector Based Norm: The most widely adopted vector
based norm is l2-norm, i.e., ϕ(e) = ∥e∥22, which usually
performs well in most conventional tasks. However, l2-norm
is proved sensitive to outliers [35]. Therefore, l1-norm is
used in loss function which shows more robustness to sparse
outliers [4]. RRC incorporates the feature weights learning
into regression model to alleviate the influence of noisy fea-
tures or pixels (i.e., ϕ(e) = ∥w⊙ e∥22). The feature weights
vector w is adaptively learned in the optimization iterations.
Liu et al. directly use a non-squared loss rather than squared
loss, i.e., ϕ(e) = ∥e∥2, to improve the robustness [41].
In [42], the authors introduce a nonconvex Welsch function
to estimate the errors which is more robust than traditional
l2- and l1-norm based methods.

(2) Matrix Based Norm: Matrix based norms are usually
used to describe the low-rank structure in images, and
nuclear norm seems to be the most popular one which is
the tightest convex envelope of rank function. For example,
NMR uses nuclear norm to characterize the contiguous
noises and achieves impressive performance on FR with oc-
clusions [25]. Such strategy is also used in some other meth-
ods [26], [43]. However, as mentioned before, nuclear norm
introduces a bias in which large singular values are more
penalized. Thus, nonconvex matrix based norms are adopted
for rank minimization. In [31], [30], [35], [36], weighted

TABLE II
THE FORMULATION OF DIFFERENT COMBINATIONS OF LOSS FUNCTION

ϕ AND REGULARIZER ψ

ϕ(e) ψ(x) Formulation

∥e∥22 ∥x∥1 SRC[12]
∥e∥22 ∥x∥22 CRC[16]
∥e∥22 ∥x∥2,1 GSC[17]
∥e∥1 ||x||22 RCRC[22]
∥w ⊙ e∥22 ∥x∥1 / ∥x∥22 RRC L1 / RRC L2 [23]∑
δi(E) ∥x∥22 / ∥x∥1 NMR / NMR L1[43]∑
wiδi(E) ∥x∥1 / ∥x∥22 RMR L1 / RMR L2[34]∑
δi(W⊙E)+∥w⊙e∥22 ∥x∥22 RNR[27]∑
δi(E) + ∥e∥1 ∥x∥1 SNL1R[26]∑
wiδi(E) + ∥s⊙ e∥22 ∥x∥22 WMNR[35]∑
wiδi(E) + ∥s⊙ e∥22 ∥x∥1 LR-LUM[36]

nuclear norm (i.e., ϕ(E) =
∑

i wiδi(E)) is used for better
rank approximation, in which the larger singular values are
adaptively assigned with smaller weights. In [32] and [44],
the authors respectively adopt a truncated nuclear norm (i.e.,
ϕ(E) = ∥E∥t =

∑r
i=t+1 δi(E) with r = rank(E)) and

schatten p-norm (i.e., ϕ(E) = ∥E∥Sp = (
∑

i δ
p
i (E))1/p)

to replace the nuclear norm. Actually, the schatten p-norm
is equivalent to the lp-norm of matrix singular values, and
it is extended to weighted schatten p-norm [30]. In [33],
Nie et al. design a logarithmic function and apply it on rank
minimization (i.e., ϕ(E) = (

∑
i log(δi(E)+1)) with conver-

gence guarantee. Though these various models have different
forms, their core idea is to more precisely approximate the
rank function.

(3) Mixed Norm: Due to the complicated noises in real-
world, the loss function with single norm is insufficient
to describe the errors. Thus, some researches adopt mixed
norms by combining vector based norms and matrix based
norms in loss function. Compared with single norm based
approaches, mixed norm based methods have ability to han-
dle more complex variations in face images like illumination,
noises and occlusions [36]. TABLE II summarizes some
robust regression FR models with single or mixed norms
in loss function. As can be observed, the weighted nuclear
norm is popular since it is more generalized than others like
schatten p-norm and truncated nuclear norm. However, they
have no upper bound and still produce large losses caused
by outliers, which are the same with l1- and l2-norm.

B. Regularization Term

Different regularizers ψ(x) enforce the representation
coefficients to have different properties. l2-norm is usually
used to constrain the magnitude of coefficients to avoid
overfitting. CRC [16], RCRC [22], NMR [25], RRC L2 [23]
all adopt it for regularization. In SRC [12] and RRC L1 [23],
l1-norm is utilized to force most of the coefficients to be
zero. Considering the label information of training samples,
GSC adopts l2,1-norm to enforce the coefficients to be sparse
in group level (i.e., l2-norm on intraclass level and l1-norm

Authorized licensed use limited to: Shanxi University. Downloaded on October 29,2020 at 03:44:51 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3033994, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

L0-norm
L1-norm

-norm ( =1)
-norm ( =2)
-norm ( =5)
-norm ( =10)

Fig. 1. The comparison of l0, l1 and γ-norm.

on interclass level) [17]. By incorporating the locality struc-
ture of samples, weighted l1-, weighted l2- and weighted
l2,1-norm are developed [18], [19]. Furthermore, some other
constraints are also exploited to improve the discrimination
of representation coefficients such as nonnegative constraint
and k-sparse constraint [45], [46].

III. THE PROPOSED METHOD

In this section, we first introduce the upper bounded MCP
function induced γ-norm and the formulation of proposed
model (EGSNR). Then an iterative optimization algorithm
based on ADMM framework is presented to solve EGSNR
model. Finally, we will make further analysis on EGSNR
method.

A. MCP Function Induced Norm

Nonconvex MCP function is used in this work to ap-
proximate the l0-norm, which is nearly unbiased and has
definite upper bound. Many researchers use it for robust
matrix recovery [39], matrix completion [47] and variable
selection [48]. The MCP function ρ(x;λ, γ) is defined
as [48]:

ρ(x;λ, γ) = λ

∫ x

0

(1− x

λγ
)+dx

= (λ|x| − x2

2γ
)I(|x| < γλ)

+
γλ2

2
I(|x| ≥ γλ),

(6)

where (x)+ = max(0, x) and I(·) is the indicator function.
According to the direction of [39], let λ = 1 and we define
the γ-norm as:

∥x∥γ =
m∑
i=1

ρ(xi; γ), (7)

where x ∈ Rm is a vector. Furthermore, γ-norm can be
extended to the matrix γ-norm as follows:

∥M∥γ,∗ =
∑
i=1

ρ(σi(M); γ), (8)

where M ∈ Rp×q is a matrix. It should be noted that
the MCP induced γ-norm is not a valid norm due to its
violation of triangle inequality of a norm. Fig. 1 shows

Fig. 2. The effectiveness of EGSNR on removing noises and recovering
face image.

the relationships among l0-, l1- and γ-norm. MCP function
induced norms are characterized by the properties in Prop.1.

Proposition 1. Let ρ(x;λ, γ), ∥x∥γ and ∥M∥γ,∗ be defined
in (6), (7) and (8) respectively, the following properties are
satisfied:

(1) 0 ≤ ρ(x;λ, γ) ≤ γλ2/2 with left equality iff x = 0
and right equality iff |x| ≥ γλ;

(2) ∥x∥γ and ∥M∥γ,∗ are increasing in γ;
(3) limγ→∞ ∥x∥γ = ∥x∥1, limγ→∞ ∥M∥γ,∗ = ∥M∥∗;

From Prop. 1, the upper bound of MCP loss is γλ2/2,
which means it has resistance to the disturbances of outliers.
On the other hand, γ-norm and matrix γ-norm have better
approximation than convex l1-norm and nuclear norm.

B. Robust Nonconvex Regression

For robust FR, we aim to develop a regression based
model which is capable to accurately recognize a face
image contaminated by various noises. Although the true
noises in real scenarios may be complex and dense, they
can be generally decomposed to two parts, i.e., low-rank
structure such as contiguous occlusion and sparse structure
such as pixel corruption. We use the γ-norm and matrix γ-
norm defined above to build the following robust nonconvex
regression model:

min
x,e1,e2

∥Tm(e1)∥γ1,∗ + α∥e2∥γ2 + βψ(x)

s.t. e1 + e2 = y −Dx,
(9)

where γ1 and γ2 are tunable parameters, α and β are balance
parameters. e1 and e2 denote the low-rank part and sparse
part of error, respectively.

The label information of training samples is important
for robust FR. In GSC, the label information is utilized
to improve the sparsity of coefficients at group level with
l2,1-norm. The l2,1-norm can improve the group sparsity
but depress the values of coefficients within each class. To
address this problem, we directly seek the sparsity of the
l2-norm of coefficients for each class. Based on the γ-norm
clarified in Section III-A, we define the following l2,γ-norm
for group sparsity:

∥x∥2,γ = ∥u∥γ ,u = [u1, ...,uc]
T , (10)

where ui = ∥xi∥2. It can be seen that l2,γ-norm directly
forces the coefficients of some classes to be zeros via γ-
norm. In addition, locality structure helps to learn more
discriminative representation since different classes have
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Fig. 3. The coefficients of (a) SRC, (b) GSC, and (c) EGSNR of a face image from ExYaleB dataset. The coefficients in red correspond to the correct
class.

different contributions in representation. Thus, the enhanced
group sparse regularizer ψ(x) in (9) is defined as follows:

ψ(x) = ∥w ⊙ u∥γ3 , (11)

where w = [w1, w2, ..., wc]
T ∈ Rc is the weight vector.

w imposes penalty on all classes with different weights.
Obviously, wi should be large if the query sample y is far
from the i-th class. In other words, wi is positively correlated
with the distance between y and the subspace spanned by
the training samples of the i-th class. Inspired by LRC [11],
we first solve the following least squares problem:

xi = argmin
x

∥y −Dix∥2 = (DT
i Di)

−1DT
i y. (12)

Problem (12) can be solved by (DT
i Di + λI)−1DT

i y if
DT

i Di is singular. We use the class-specific residual to
characterize the distance between y and each subspace.
The residual of the i-th class can be computed by ri =
∥y −Dixi∥2. Then the weight wi of the i-th class can be
defined as

wi =
ri − rmin

rmax − rmin
, (13)

where rmin and rmax are the minimum and maximum of
residuals {ri}ci=1, respectively. Obviously, the value of wi

locates in the range of [0,1]. The enhanced group sparsity
regularizer ψ(x) combines the nonconvex relaxation, group
sparsity and locality structure of data, which helps learn
more discriminative coefficients for classification.

Substituting (11) into (9), we obtain the final Enhanced
Group Sparse regularized Nonconvex Regression (EGSNR)
model as follows:

min
x,u,e1,e2

∥Tm(e1)∥γ1,∗ + α∥e2∥γ2 + β∥w ⊙ u∥γ3

s.t. e1 + e2 = y −Dx, ui = ∥xi∥2,
u = [u1, ..., uc]

T .

(14)

From (14), we can observe the relationships between
EGSNR and other robust regression models. Mixed losses,
low-rank and sparse, are utilized to describe the error matrix.
Nonconvex relaxation with upper bound is adopted to seek
a better and more robust sparsity or low-rank approxima-
tion. EGSNR imposes nonconvex constraints on loss and
regularization term simultaneously. In addition, the group
sparse constraint is enhanced by class-wise sparsity and

locality structure of data. Fig. 2 shows the effectiveness of
EGSNR on removing noises, in which a face image with
mixed noises is decomposed to a clean image (i.e., Dx in
EGSNR), low-rank noises and sparse noises (i.e., e1 and e2
respectively). Besides the reconstructed image, Fig. 3 shows
the representation coefficients of EGSNR as well as SRC
and GSC, which adopt traditional l1-, l2,1-norm for sparsity
respectively. It can be clearly seen that EGSNR obtains more
sparse and discriminative coefficients than SRC and GSC,
which is beneficial for classification.

C. Optimization

In this section, we solve the EGSNR model (14) via
ADMM algorithm, which has been widely applied in convex
and nonconvex minimization problems [49], [50], [35], [51].

To solve problem (14), we first introduce two auxiliary
variables g ∈ Rn and v ∈ Rc, and the original problem is
converted to the following equivalent problem:

min
x,u,e1,e2,v,g

∥Tm(e1)∥γ1,∗ + α∥e2∥γ2
+ β∥v∥γ3

s.t. e1 + e2 = y −Dx, x = g,

g̃ = u, v = w ⊙ u,

(15)

where g̃ = [∥g1∥2, ..., ∥gc∥2]T ∈ Rc.
To solve (15) is equivalent to minimize the augmented

Lagrange function Lµ defined as:

Lµ = ∥Tm(e1)∥γ1,∗ + α∥e2∥γ2 + β∥v∥γ3

+ zT1 (y −Dx− e1 − e2) + zT2 (x− g)

+ zT3 (g̃ − u) + zT4 (v −w ⊙ u)

+
µ

2
(∥y −Dx− e1 − e2∥22 + ∥x− g∥22

+ ∥g̃ − u∥22 + ∥v −w ⊙ u∥22),

(16)

where z1, z2, z3, z4 are the Lagrange multiplier vectors, and
µ > 0 is a penalty factor. ADMM is an iterative algorithm
and the augmented Lagrange function is minimized by solv-
ing the subproblems w.r.t. each unknown variable iteratively,
in which each subproblem can be solved efficiently. In the
k-th iteration, it contains following seven steps to update all
variables.
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Step 1. Update e1: fix other variables, and update e1 by
solving the following optimization problem:

min
e1

∥Tm(e1)∥γ1,∗ + zT1 (y −Dx− e1 − e2)

+
µ

2
∥y −Dx− e1 − e2∥22.

(17)

By simple manipulation, problem (17) is equivalent to the
following problem:

min
e1

1

µ
∥Tm(e1)∥γ1,∗ +

1

2
∥e1 − h1∥22, (18)

where h1 = y−Dx− e2 +
1
µz1. The problem (18) can be

solved by following theorem:

Theorem 1. [47] Given the SVD Y = UΣVT of matrix
Y, the optimal solution of

min
Y

λ∥Y∥γ,∗ +
1

2
∥Y −E∥2F ,

with γ > λ can be obtained by

Sλ,γ(Y) = UΣλ,γV
T ,

where Σλ,γ=diag(Sλ,γ(σ1), ..., Sλ,γ(σr)) is a matrix with
the diagonal element

Sλ,γ(σi) =


σi, σi ≥ γ,

σi − λ

1− λ
γ

, λ ≤ σi < γ,

0, σi < λ.

According to Theorem 1, problem (18) has a closed-form
solution which can be written as:

Tm(ê1) = S 1
µ ,γ1

(Tm(h1)),⇔

ê1 = Tv

(
S 1

µ ,γ1
(Tm(h1))

)
, (19)

where Tv(·) is the inverse operator of Tm(·) that reshapes
a vector to matrix.

Step 2. Update e2: fix other variables, and update e2 by
solving the following problem:

min
e2

α

µ
∥e2∥γ2 +

1

2
∥e2 − h2∥22, (20)

where h2 = y −Dx− e1 +
1
µz1. Problem (20) can be de-

composed to a series of independent minimization problems
w.r.t. {e2,i}mi=1:

min
e2,i

α

µ
ρ(e2,i; γ2) +

1

2
(e2,i − h2,i)

2, (21)

where e2,i and h2,i are the i-th component of e2 and h2,
respectively. Although ρ(·) is a nonconvex function, problem
(21) has a closed-form solution according to [29]:

ê2,i =

{
t1, if ρ(t1; γ2) ≤ ρ(t2; γ2),

t2, otherwise,
(22)

where t1 and t2 are obtained by solving:

t1 = argmin
t

1

2
(t−h2,i)2+

α

µ
(|t|− t2

2γ2
), s.t.|t| ≤ γ2, (23)

Algorithm 1 ADMM Algorithm for EGSNR
Input: The training matrix D ∈ Rm×n, query sample
y ∈ Rm, the model parameters γ1, γ2, γ3, α, β, µ, δ, µmax,
the convergence criteria parameter ϵ.
Output: Optimal coefficients vector xk.

1: Initialization: x0 = 0, e01 = y, e02 = 0, z1 = 0, z2 =
0, z3 = z4 = 0.

2: Compute class weights w by Eqs. (12), (13).
3: Compute M = (DTD+ I)−1, H = (WTW + I)−1.
4: while not converged do
5: Update e1: Let hk+1

1 = y −Dxk − ek2 + 1
µk z

k
1 ,

ek+1
1 = Tv

(
S 1

µk ,γ1
(Tm(h

k
1))

)
;

6: Update e2: Compute {ek+1
2,i }mi=1 by Eqs. (22), (23),

(24). ek+1
2 = [ek+1

2,1 , ..., e
k+1
2,m ]T ;

7: Update x: Let hk+1
3 = y − ek+1

1 − ek+1
2 + 1

µk z
k
1 ,

xk+1 = M(DTh
k+1
3 + gk − 1

µk z
k
2);

8: Update g: Compute {gk+1
i }ni=1 by Eq. (30). gk+1 =

[gk+1
1 , ...,gk+1

n ]T ;
9: Update u: Let g̃k+1 = [||gk+1

1 ||2, ..., ||gk+1
c ||2],

uk+1 = H(gk+1 +WTvk + (zk3 +WT zk4)/µ
k);

10: Update v: Compute {vk+1
i }ci=1 by Eq. (35). vk+1 =

[vk+1
1 , ..., vk+1

c ]T ;
11: Update the Lagrange multiplier vectors z1, z2, z3, z4

and penalty factor µ by Eqs. (36);
12: k := k + 1;
13: Check the convergence criteria (37).
14: end while
15: return xk.

t2 = argmin
t

1

2
(t− h2,i)

2 +
αγ2
2µ

, s.t.|t| ≥ γ2. (24)

Problems (23) and (24) are quadratic functions and can be
easily solved.

Step 3. Update x: fix other variables, we can obtain x by
solving the following problem:

min
x

zT1 (y −Dx− e1 − e2) + zT2 (x− g)

+
µ

2
(∥y −Dx− e1 − e2∥22 + ∥x− g∥22).

(25)

To minimize problem (25) is equivalent to solve the
following problem:

min
x

∥y −Dx− e1−e2+
1

µ
z1∥22+∥x− g+

1

µ
z2∥22. (26)

This is a typical least squares problem which leads to a
closed-form solution. By setting the derivative of (26) w.r.t.
x to zero, we can obtain its optimal solution:

x̂ = (DTD+ I)−1(DTh3 + g − 1

µ
z2), (27)

where h3 = y − e1−e2+
1
µz1 and I is the identity matrix.

Step 4. Update g: with other variables fixed, g can be
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calculated by solving the following minimization problem:

min
g

zT2 (x− g) + zT3 (g̃ − u)

+
µ

2
(∥x− g∥22 + ∥g̃ − u∥22).

(28)

It should be noted that g ∈ Rn and g̃ ∈ Rc are in different
dimensions. We rewrite (28) as the following formulation:

min
g

c∑
i=1

[
(z3,i − µui)∥gi∥2 + µ∥gi −

µxi + z2,i
2µ

∥22
]
,⇔

c∑
i=1

min
gi

[z3,i − µui
2µ

∥gi∥2 +
1

2
∥gi −

µxi + z2,i
2µ

∥22
]
, (29)

where z3,i is the i-th element of vector z3, and z2,i ∈ Rni

is the components associated with the i-th class of vector
z2. From (29), it can be easily obtained that solving g is
equivalent to solve each gi independently. Problem (29) can
be solved by the following theorem:

Theorem 2. [52] Given t ∈ Rm and λ > 0, the optimal
solution s̃ of

min
s∈Rm

λ∥s∥2 +
1

2
∥s− t∥22,

is given by

s̃ = max(1− λ

∥t∥2
)t.

According to Theorem 2, problem (29) has a closed-form
solution for each gi, i.e.,

ĝi = max
(
1− (z3,i − µui)

2µ∥ri∥2
, 0
)µxi + z2,i

2µ
, (30)

The optimal ĝ is the concatenation of {ĝi}ci=1:

ĝ = [ĝ1, ..., ĝc]
T . (31)

Step 5. Update u: with other variables fixed, u can be
calculated by solving the following problem:

min
u

zT3 (g̃ − u) + zT4 (v −w ⊙ u)

+
µ

2
(∥g̃ − u∥22 + ∥v −w ⊙ u∥22).

(32)

Similar to the optimization strategy of x, we can get the
closed-form solution of (32), which can be written as:

û = (WTW + I)−1(g̃ +WTv +
z3 +WT z4

µ
), (33)

where W is a diagonal matrix with Wii = wi.
Step 6. Update v: fix other variables, we can calculate v

by solving the following problem:

min
v

β

µ
∥v∥γ3 +

1

2
∥v −w ⊙ u+

1

µ
z4∥22. (34)

Same as the optimization of e2, we can solve a sequence
subproblems w.r.t. {vi}ci=1 and the final solution of (34) is:

v̂ = [v̂1, ..., v̂c]
T , (35)

where {v̂i}ci=1 is the optimum of each subproblem w.r.t.
{vi}ci=1, respectively.

Algorithm 2 EGSNR based Classification
Input: Training matrix D ∈ Rm×n, a query y ∈ Rm.
Output: The predicted label of y.

1: Compute the optimal coefficients x̃ of y by performing
Algorithm 1.

2: Compute the residuals:

si(y) = ∥Tm(Dx̃−Dix̃i)∥γ1,∗, i = 1, 2, ..., c.

3: Predict the label of y: Label(y) = argmini si(y).

Step 7. Update the Lagrange multiplier vectors and the
penalty factor by the following equations with other vari-
ables fixed:

z1 = z1 + µ(y −Dx− e1 − e2),

z2 = z2 + µ(x− g),

z3 = z3 + µ(g̃ − u),

z4 = z4 + µ(v −w ⊙ u),

µ = min(µmax, δµ),

(36)

where the parameters µmax and δ > 1 are manually set.
Convergence criteria. ADMM algorithm solves the orig-

inal objective function via a sequence of subproblems w.r.t.
each unknown variable iteratively. To achieve an optimal
solution, it is important to adopt suitable stopping criteria.
Following the suggestions in [49], the stopping criteria for
EGSNR are defined as:

∥y −Dx− e1 − e2∥∞ < ϵ,

∥x− g∥∞ < ϵ,

∥g̃ − u∥∞ < ϵ,

∥v −w ⊙ u∥∞ < ϵ,

(37)

where ϵ > 0 is a small tolerance error.
Now, we can efficiently solve the EGSNR by Eqs. (19),

(22), (27), (30), (33), (35) and (36) iteratively. Algorithm 1
summarizes the entire ADMM for EGSNR in detail. After
obtaining the optimal representation coefficients for a given
query sample, we use the Algorithm 2 to classify it. The
convergence analysis for ADMM algorithm has been widely
studied in [49]. Fig. 4 plots the convergence curves of
Algorithm 1 on five face datasets used in our experiments. To
show the convergence curves clearly, the objective function
values are normalized by dividing the maximum value. It
is clear that objective function loss drops to a stable value
eventually, which indicates that the proposed optimization
algorithm for solving EGSNR has good convergence prop-
erties.

D. Computational Analysis

Computational complexity is an important issue when es-
timating the performance of an algorithm [52], [49], [53]. In
this section, we make a discussion on the computational cost
of Algorithm 1. In EGSNR, the class weights w is computed
once in advance, thus the major computational cost is spent
on the iterations. Given the image size m = p × q and the
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Fig. 4. The normalized convergence curves of Algorithm 1 on five datasets.

TABLE III
RECOGNITION RATES (%) COMPARISON ON EXYALEB WITH DIFFERENT

TRAINING SETS (S1 DENOTES SUBSET 1 FOR TRAINING).

Method s1 s2 s3 s4 s5
SRC 69.08 69.41 83.54 91.88 75.82
CRC 68.92 69.51 83.27 92.85 75.94
CSC 73.41 71.04 87.32 96.17 78.36

SLRC 70.31 70.82 85.62 93.42 75.33
RRC L1 72.36 73.47 87.32 94.21 84.62
RRC L2 71.45 72.84 86.24 93.66 85.41

NMR 78.20 78.50 88.41 95.30 87.76
F-IRNNLS 73.71 78.65 87.61 96.68 83.30

F-LR-IRNNLS 80.29 82.07 88.83 96.78 89.24
WMNR 83.68 84.27 93.01 98.37 89.47

GF 88.80 87.84 93.86 96.73 70.59
EGSNR 90.42 92.70 95.35 98.97 91.33

number of training samples n, the complexity of SVD op-
eration for updating e1 is O(pq2) assuming p > q. The cost
of computing e2 is O(m). The optimization of x involves
matrix inverse and multiplication computation. Noting that
(DTD+I)−1 is fixed in iterations, we can compute and store
it by pseudo-inverse in advance. Thus, the cost of x is O(n2).
For updating g, the computational complexity is O(ct2),
assuming each class has t training samples. Similar to x,
the computational consumption of w is O(c2). The time
cost of computing v is O(c). Thus, the total computational
cost of Algorithm 1 is O(k(pq2 + m + n2 + ct2 + c2)) if
there are k iterations.

IV. EXPERIMENTS

In this section, we conduct experiments on several public
available face datasets, including Extended Yale B (ExYale-
B) [54], CMU PIE [55], AR [56], LFW [57] and Pub-
Fig [58], to validate the robustness and effectiveness of
EGSNR. Several most-related regression based FR methods
are tested for comparison, such as SRC [12], CRC [16], C-
SC [4], SLRC [5], RRC L1 [23], RRC L2 [23], NMR [25],
F-IRNNLS [28], F-LR-IRNNLS [28] and WMNR [35]. The
l1-norm minimization problem in SRC is solved by Ho-
motopy algorithm [59], and the balance parameter of CRC
is fine-tuned to report their best results. The parameters of
other approaches are set following the authors’ suggestions.
In EGSNR, γ1 = γ2 = γ3 = 3, µ = 1, δ = 1.01 and
ϵ = 0.001 are adopted in our experiments.
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Fig. 5. Some typical images of CMU PIE dataset and recognition rates
(%) comparison of different methods under single and multiple training
samples protocols.

A. FR With Illumination Changes

We first investigate the robustness of EGSNR to various
illumination changes on ExYaleB dataset, which consists of
2414 frontal face images over 38 individuals. The whole
dataset is divided into five subsets in accordance with
the illumination conditions in images [54]. From subset 1
to 5, the face images characterize slight-moderate-severe
illumination changes. All images are resized to 48 × 42
pixels. For the five subsets, we adopt the cross-validation
strategy, in which each subset is used for training and the
rest for testing respectively. Specially, GradientFace (GF)
is used for comparison, which is a typical method for
face recognition under varying illumination [60]. TABLE
III lists the experimental results of different methods on
ExYaleB with different training sets. It can be observed that
EGSNR achieves the best performance in all cases. F-LR-
IRNNLS, WMNR and GF also obtain competitive results,
and GF outperforms other methods like WMNR, F-LR-
IRNNLS when s1-s3 are used for training. However, the
performance of GF is relatively poor when s5 is used as
training set, which indicates that it may not well deal with
extreme illumination changes in s5. Differently, EGSNR still
achieves over 90% recognition accuracy when the images
contain extreme illumination changes.

In the second experiment, we conduct tests on CMU PIE
dataset, which contains 68 individuals with total 41,368 face
images. 1629 face images of the 68 individuals are chosen
for tests. All images are resized to 32×32 pixels. M(= 1, 5)
images per subject are randomly selected for training and the
rest for testing, corresponding to single and multiple training
samples protocols respectively. Fig. 5 shows some face
images of CMU PIE dataset and the performance of different
methods under two protocols. Since the illumination changes
in PIE is smaller than those in ExYaleB, GF achieves
best performance under single sample protocol and EGSNR
ranks the second. However, under multiple samples protocol,
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(a) (b)

(c)

Fig. 6. Some test images used in our experiments. (a) face images from ExYaleB with six levels (i.e., 10% ∼ 60%) and three types (i.e., baboon, human
face and black block) of occlusions. (b) The top row shows some face images with mask occlusions from the Internet and the second row shows some
face images from ExYaleB with manually set mask occlusions. (c) Some face images with sunglasses and scarves occlusions from AR dataset.

EGSNR outperforms all other methods including GF. In
addition, it should be noted that GF is specially designed
for varying illumination conditions, while EGSNR can deal
with not only illumination but also facial occlusions which
will be proved later. The experimental results on ExYaleB
and CMU PIE demonstrate the effectiveness and robustness
of EGSNR to illumination changes.

B. FR With Contiguous Occlusion

In this section, we design experiments on ExYaleB and
AR datasets to validate the robustness of EGSNR to con-
tiguous occlusions. We utilize subset 1 of ExYaleB as
training set, and the images of subset 3 are imposed various
facial occlusions as test set [25]. AR contains over 4000
face images of 126 individuals with different illumination,
expression and occlusion conditions. Total 2600 face images
(1400 non-occluded images, 600 images with sunglasses and
600 images with scarves) of 100 individuals are used in our
experiment. The images from AR are resized to 50× 40.

1) FR With Square Block Occlusion: In this experiment,
we design three random square block occlusions on ExYale-
B. We set increasing levels of square block on test images,
from 10% to 60%, with an unrelated image as occlusion
(e.g., baboon, human face or black block), which is used
in many studies [25], [23], [35]. Fig. 6(a) shows some test
images with different levels and types of occlusions. The
experimental results are illustrated in Fig. 7. The first row in
Fig. 7 shows the experimental results under multiple training
samples protocol, while the second row shows those under
single training sample protocol. In the mode of multiple
training samples, we can observe that EGSNR is more
robust other methods with the increase of occlusion area.
From Fig. 7(a) and Fig. 7(b), when the occlusion level is
less than 40%, RRC L1, RRC L2, NMR, F-IR-IRNNLS
and WMNR can obtain competitive performance. However,
the recognition rates drop fast of these method with 60%
occlusion, while EGSNR still achieves impressive 94.86%
and 92.95% accuracy. This difference becomes evident in
the case of black block occlusion, which is more extreme
than baboon and human face occlusion. From Fig. 7(c),
the performance of F-IRNNLS, F-LR-IRNNLS and WMNR
degrades quickly when the occlusion ratio increases over

TABLE IV
RECOGNITION RATES (%) COMPARISON OF DIFFERENT METHODS ON

EXYALEB AND AR FACE DATASETS UNDER MASKS, SUNGLASSES AND
SCARVES OCCLUSION SCENARIOS.

Method ExYaleB AR
masks sunglasses scarves

SRC 28.57 43.17 50.50
CRC 27.62 43.17 55.17
CSC 32.19 55.83 55.83

SLRC 30.68 46.67 53.17
RRC L1 75.62 80.83 59.17
RRC L2 73.43 77.33 57.83

NMR 76.38 85.91 61.67
F-IRNNLS 67.24 84.50 65.33

F-LR-IRNNLS 75.81 73.33 69.50
WMNR 95.47 89.00 83.67
EGSNR 97.44 91.00 88.67

40%. EGSNR remains relatively stable and achieves the
best performance. In particular, under single sample training
protocol, the advantage of EGSNR over other methods is
more significant, which is clearly presented in Fig. 7(d), (e)
and (f). This encouraging performance indicates that EGSNR
can be applied in difficult scenarios with only few training
samples, although it is not specifically designed for few
training samples condition. These results demonstrate that
EGSNR is more robust and powerful to complex occlusion
compared with other methods.

2) FR With Real-world Disguise: In this experiment, we
evaluate the performance of EGSNR against three common
real-world disguises: masks, sunglasses and scarves. For
ExYaleB, the testing images are occluded by different kinds
of masks. For AR, 800 non-occluded images are used for
training and 1200 images with sunglasses and scarves for
testing. Fig. 6(b) and (c) show some test images with
various disguises. TABLE IV reports the recognition rates
of different methods under the three occlusion scenarios.
We can observe that EGSNR outperforms other methods
with three types of disguises. When the occluded area gets
larger (e.g., wearing scarves), the performance of NMR,
F-IRNNLS and WMNR drops significantly, while EGSNR
keeps relatively stable and achieves average 5.00%, 19.17%,
27.00% higher accuracy than WMNR, F-LR-IRNNLS and
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Fig. 7. Recognition rates (%) of different methods on ExYaleB under different experiment settings. (a), (b) and (c): with multiple training samples under
10%∼60% baboon, human face and black block occlusion, respectively. (d), (e) and (f): with single training sample under 10%∼60% baboon, human
face and black block occlusion, respectively.

Fig. 8. The test images from AR with different facial regions occluded.

NMR, respectively. These experimental results demonstrate
that EGSNR is more robust to recognize faces with real-
world disguises like masks, sunglasses and scarves.

3) FR with Different Facial Regions Occluded: In this
experiment, we investigate the performance of EGSNR to
contiguous occlusions in different facial regions on AR
dataset. 600 non-occluded face images with lighting changes
per person are selected as test images. For each one, we
impose a square block whose elements are random numbers
between 0 and 255 as occlusion. The length of this block
is denoted as l and step size is dx and dy in horizontal and
vertical direction respectively. We set l = 20, dx = 10,
dy = 15 in our experiments. Thus, there are total nine
experiment settings, denoted as 1, 2, ... , 9, as shown in
Fig. 8. The nine regions of occlusion cover the whole face.
The recognition rates of all the competing methods in the

nine cases are exhibited in TABLE V. As can be clearly
seen, EGSNR outperforms other methods in all cases. F-
LR-IRNNLS and WMNR also show robustness and achieve
comparable results. However, the recognition rates of other
methods vary significantly with different regions occluded,
although the occlusion area is the same. For example,
the ranges of F-LR-IRNNLS and WMNR are 11.00% and
16.00% respectively, while that of EGSNR is only 6.16%.
It implies that EGSNR is less sensitive to the occluded
facial regions than other compared methods. Besides, the
average accuracy improvements of EGSNR over NMR, F-
LR-IRNNLS and WMNR are 18.54%, 11.12% and 7.43%
respectively, verifying the superiority of EGSNR.

C. FR With Mixed Noises

In this experiment, we evaluate the robustness of EGSNR
to mixed noises. Both pixel corruptions and contiguous
occlusions are imposed on test images. Specially, except ba-
boon occlusion, different levels (i.e., 10%–50%) of random
pixel noises are used to contaminate test images. The basic
settings on training samples are the same as those in Section
IV-B. Fig. 9 shows some face images with different levels
of mixed noises. The 30% mixed noises mean 30% baboon
occlusion plus 30% pixel corruptions, as marked in Fig. 9.
TABLE VI lists the recognition rates of different methods.

We can see that EGSNR achieves the best recognition
rates in all cases. The performance of NMR is not desirable,
since it only considers the low-rank representation error. F-
LR-IRNNLS and WMNR achieve competitive recognition
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TABLE V
RECOGNITION RATES (%) COMPARISON OF DIFFERENT METHODS ON AR DATASET WITH OCCLUSION ON DIFFERENT FACIAL REGIONS.

Method 1 2 3 4 5 6 7 8 9
SRC 57.17 49.67 43.00 70.83 48.33 50.67 70.00 68.66 70.50
CRC 55.67 49.17 44.50 67.33 48.00 52.50 68.83 70.33 69.83
CSC 75.00 65.83 68.17 86.50 77.00 75.50 86.17 88.50 83.67

SLRC 57.67 50.00 43.67 71.17 48.17 51.33 70.50 69.17 70.83
RRC L1 78.16 68.00 71.33 93.00 81.83 78.00 90.50 90.17 86.83
RRC L2 77.50 75.83 74.67 90.67 83.33 81.83 88.17 86.00 85.33

NMR 72.50 71.50 61.67 84.17 76.33 76.83 88.16 90.50 86.83
F-IRNNLS 74.00 73.17 72.33 81.67 80.17 78.50 88.50 87.67 78.50

F-LR-IRNNLS 85.17 82.50 80.33 90.83 84.17 83.33 91.33 91.17 84.67
WMNR 89.33 80.17 81.50 95.50 90.33 90.33 96.17 94.83 90.33
EGSNR 96.33 96.50 92.67 98.33 97.33 97.67 98.83 98.83 98.83

Fig. 9. The face images with mixed noises (from 0% to 50%).

TABLE VI
RECOGNITION RATES (%) COMPARISON OF DIFFERENT METHODS ON

EXYALEB WITH INCREASING LEVEL OF MIXED NOISES.

Method 10% 20% 30% 40% 50%
SRC 88.00 68.76 47.24 28.57 16.38
CRC 88.38 69.52 47.05 28.38 16.00
CSC 96.57 93.52 77.33 49.90 14.29

SLRC 88.95 70.10 48.57 28.57 16.76
RRC L1 98.29 95.24 84.19 52.95 25.71
RRC L2 94.67 91.62 78.10 43.05 16.00

NMR 96.57 82.47 59.05 30.10 14.29
F-IRNNLS 96.68 90.29 83.43 54.67 20.19

F-LR-IRNNLS 98.10 94.29 87.24 60.38 24.38
WMNR 97.90 96.95 87.62 63.24 26.10
EGSNR 99.05 96.57 92.76 81.71 57.33

accuracies when the noises are mild. However, when the lev-
el of mixed noises reaches 50%, their performance is poor.
SRC, CRC, CSC and SLRC are not robust to mixed noises.
Fig. 10 illustrates the recognition processes of EGSNR and
several robust methods on a test sample. Fig. 10(a) and
(b) show the original face image and contaminated image,
(c)-(g) show the reconstructed images of EGSNR, WMNR,
NMR, RRC L1, and F-LR-IRNNLS, (h) and (i) show the
representation coefficients and residuals of each class with
correct class marked in red. We can observe that EGSNR
obtains a clear face image which is similar to original
image, while the reconstructed images of other methods have
different degrees of distortion. Besides, EGSNR achieves the
sparsest representation coefficients, in which only the correct
class has large values and the coefficients of other irrelevant
classes are almost depressed to zero. The differences of
representation residuals between correct class and all other
classes are also significant in EGSNR. This implies that
compared with other robust methods, EGSNR has more
resistance against mixed noises.

 

Fig. 10. Recognition with mixed noises. (a) Original image from
ExYaleB. (b) Test image with mixed noises. The reconstructed image of
(c) EGSNR, (d) WMNR, (e) NMR, (f) RRC L1 and (g) F-LR-IRNNLS.
(h) Representation coefficients. (i) Residuals of each class (F-LR denotes
the F-LR-IRNNLS method, and the correct class is marked in red).

D. FR With Uncontrolled Setting

The face images tested in previous experiments are all
captured in strictly controlled environment. In this section,
we extend our experiments on two uncontrolled face dataset-
s: LFW and PubFig. For LFW, we use a subset of LFW (i.e.,
LFW-a) and total 1580 images of 158 subjects are selected
for experiments. For PubFig, 2000 images of 200 subjects
are used. All the images are cropped and resized to 32× 32
pixels. We randomly select half images of each person for
training and the other half for testing. PCA with 98% energy
preserved is used in SRC, CRC, CSC, RRC L1 and RRC L2
for computational efficiency. Some example images of LFW
and PubFig are shown in Fig. 11.

The recognition rates of SRC, CRC, CSC, SLRC, R-
RC L1, RRC L2, NMR, F-IRNNLS, F-LR-IRNNLS, WM-
NR and EGSNR on LFW-a and PubFig are shown in
TABLE VII. We can see that EGSNR is superior to other
methods. F-IRNNLS, F-LR-IRNNNLS and WMNR also
achieve competitive results. These experiment results further
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TABLE VII
RECOGNITION RATES (%) OF DIFFERENT METHODS ON LFW AND PUBFIG DATASETS (IRNNLS1 AND IRNNLS2 REPRESENT F-IRNNLS AND

F-LR-IRNNLS METHOD RESPECTIVELY).

Dataset SRC CRC CSC SRLC RRC L1 RRC L2 NMR IRNNLS1 IRNNLS2 WMNR EGSNR
LFW 39.37 40.13 42.03 39.49 41.39 42.66 40.37 46.84 43.05 46.62 49.49

PubFig 38.10 37.20 39.40 38.40 42.80 41.30 40.10 39.40 43.90 44.70 45.60

Fig. 11. Some face images of (a) LFW and (b) PubFig dataset.
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Fig. 12. Recognition rates (%) comparison of VGG-Face, FaceNet,
CosFace, ArcFace and EGSNR. ExYaleB (MN) means the test images are
contaminated by 10% mixed noises.

confirm that EGSNR is more robust than other regression
based methods in FR.

E. Compared With CNN Based Methods

CNN based methods have achieved great success in many
computer vision and image analysis tasks in recent years [9].
In this experiment, we compare our EGSNR with some
typical deep learning models to investigate their robustness
to various noises (e.g., extreme illumination changes, large
occlusions and complex noises). Following [61], [62], we
use the pre-trained CNN models to extract features and
nearest neighbor with cosine distance metric for classifi-
cation. Four popular and publicly available deep learning
models on VGG-Face [7], FaceNet [8], CosFace [10] and
ArcFace [9], are used in our experiment, which are well-
trained and evaluated on very large wild face datasets. CNN
based methods and EGSNR are tested on ExYaleB, CMU
PIE and AR datasets to evaluate the performance against
extreme illumination changes, contiguous occlusions and
mixed noises. The LFW and PubFig are not included due
to the excellent performance of the deep models on these
large wild datasets. For ExYaleB and PIE, the experimental
settings are same as Section IV-A (multiple training samples
protocol for PIE). For AR datasets, the face images with
sunglasses and scarves are used for testing. ExYaleB with
10% mixed noises, i.e., ExYaleB (MN), are also used for
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Fig. 13. Recognition rates (%) of EGSNR versus α and β on ExYaleB
dataset with (a) masks occlusion and (b) 10% mixed noises.

TABLE VIII
RECOGNITION RATES (%) OF EGSNR AND ITS THREE VARIATIONS ON

EXYALEB WITH MIXED NOISES AT DIFFERENT LEVELS.

Method 10% 20% 30% 40% 50%
EGSNR-s 98.43 93.67 84.76 67.43 31.05
EGSNR-v 98.29 91.62 74.29 36.00 13.52
EGSNR-t 99.05 95.24 90.10 78.38 53.14
EGSNR 99.05 96.57 92.76 81.71 57.33

comparison, and the experimental settings are same as IV-C.
Fig. 12 shows the performance of four CNN based methods
and EGSNR.

It can be seen that CNN based methods obtain slightly
higher recognition rates than EGSNR on CMU PIE, since the
illumination changes in CMU PIE dataset are small. How-
ever, EGSNR significant outperforms CNN based methods
on ExYaleB and AR face datasets. Specifically, on ExYaleB
(MN), the performance of CNN based methods is poor. The
main reason is that there are complex noises (e.g., severe
shadows, large occlusions and mixed noises) in test sets,
while the training sets consist of clean face images and
CNN models cannot acquire any prior knowledge about
the noises. EGSNR adopts low-rank and sparse structures
to characterize the representation error, and is capable to
handle various noises. Finetuning the deep neural networks
by adding some specific noises in training set may promote
their robustness to the specific noises, however, they may not
generalize well for other new noises and this topic is beyond
the scope of this paper. In addition, it should be mentioned
that EGSNR consumes much less training and computing
resources than deep learning methods.

F. Ablation Study and Parameter Analysis

In proposed EGSNR model (14), matrix γ-norm and
vector γ-norm are used to characterize different potential
noises, i.e., low-rank and sparse noises. Besides, an l2,γ-
norm is used to replace traditional l2,1-norm to promote

Authorized licensed use limited to: Shanxi University. Downloaded on October 29,2020 at 03:44:51 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3033994, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

the group sparsity. In this section, we conduct ablation
experiments to verify the effect of them separately. Three
variations of EGSNR are derived, i.e., EGSNR-s, EGSNR-
v and EGSNR-t. EGSNR-s and EGSNR-v discard the first
term and second term in EGSNR model (14) respectively,
and EGSNR-t uses l2,1-norm in EGSNR instead of l2,γ-
norm. We compare EGSNR and its three variations on
ExYaleB dataset with mixed noises at different levels, and
the experimental results are reported in TABLE VIII. We
can observe that: 1) EGSNR outperforms EGSNR-s and
EGSNR-v in all cases, which demonstrates that single low-
rank or sparse constraint cannot well deal with the complex
noises in face images, and it is beneficial to combine
two constraints. 2) EGSNR outperforms EGSNR-t which
demonstrates the effectiveness and superiority of proposed
l2,γ-norm compared with traditional l2,1-norm. 3) EGSNR-
s outperforms EGSNR-v which implies that single matrix
based norm may be more suitable than single vector based
norm for handling mixed noises.

From the objective function (14), there are two important
tunable parameters α and β in EGSNR model. α makes
a balance between low-rank error and sparse error, and
β is the regularizer parameter which controls the strength
of enhanced group sparsity. To achieve the satisfactory
performance of EGSNR, it is necessary to analyze its
parameter sensitivity. We first define two candidate sets
{0.01, 0.1, 0.5, 1, 10} and {0.01, 0.1, 0.5, 1, 10} for α and
β, respectively. Then, with different combinations of the
two parameters, EGSNR is performed on ExYaleB under
contiguous masks occlusion and 10% mixed noises, respec-
tively. Fig. 13 shows the recognition performance of EGSNR
versus α and β. We can observe that both parameters impact
the performance of proposed method. When the face images
are occluded by masks (i.e., Fig. 13(a)), the performance
is not very sensitive to α and β when the two parameters
locate in [0.1, 0.5]. When the test images are contaminated
by complex noises (i.e., Fig. 13(b)), the performance is
sensitive to α since it affects the loss of sparse noises. In
general, EGSNR can obtain satisfactory performance when
α and β locate in [0.1, 1]. However, it is still difficult to
find the optimal parameter α and β for different datasets. A
simple way for parameter setting is to determine each one
with the other fixed. In this paper, we first fix β as 0.5 and
search the optimal α in the interval [0.1, 1]. Then α is fixed
as the found value and search in [0.1, 1] for optimal β.

V. CONCLUSION AND FUTURE WORK

In this paper, an Enhanced Group Sparse regularized
Nonconvex Regression (EGSNR) model is proposed for
robust face recognition. EGSNR utilizes mixed norms to
model the representation residuals and shows robustness to
gross errors. The nonconvex MCP function is introduced
to estimate the l0-norm and extended on matrix for rank
approximation. To improve the discrimination of represen-
tation, locality and group sparse structures are considered
simultaneously in EGSNR. An l2,γ-norm is proposed to

enhance the group sparsity instead of using traditional l2,1-
norm. Based on ADMM framework, an iterative algorithm is
presented to solve EGSNR model. Experimental results on
several popular face datasets demonstrate the effectiveness
and robustness of the proposed method in dealing with
complex occlusions and noises.

There are still some issues on proposed method which
deserve our further investigation. In EGSNR, the poten-
tial noises are jointly modeled by low-rank and sparse
structures. However, the noises in face images may be
much complicated in real-world which may be not simply
described by these structures. How to extend the proposed
model for general noises deserves further study. Besides,
the performance of EGSNR on wild datasets (e.g., LFW)
is not desirable compared with deep learning methods.
Incorporating robust face alignment methods into EGSNR
may boost the performance on these wild face datasets.
Finally, EGSNR assumes that the training set contains all
person identities of test set (i.e., closed-set face recognition),
while open-set face recognition is a more challenging and
important topic in practice. Extending EGSNR for open-set
face recognition task is an interesting and practical subject
for future work.
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