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Abstract: Convolutional networks bring the performance of many computer vision tasks to 
unprecedented heights, but at the cost of enormous computation load. To reduce this cost, many 
model compression tasks have been proposed by eliminating insignificant model structures. For 
example, convolution filters with small absolute weights are pruned and then fine-tuned to 
restore reasonable accuracy. However, most of these works rely on pre-trained models without 
specific analysis of the changes in filters during the training process, resulting in sizable model 
retraining costs. Different from previous works, we interpret the change of filter behaviour 
during training from the associated angle, and propose a novel filter pruning method utilising the 
change rule, which can remove filters with similar functions later in training. According to this 
strategy, not only can we achieve model compression without fine-tuning, but we can also find a 
novel perspective to interpret the changing behaviour of the filter during training. Moreover, our 
approach has been proved to be effective for many advanced CNN architectures. 
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1 Introduction 
In recent years, convolutional neural networks (CNNs) have 
made significant progress in the most of computer vision 
tasks (Singh et al., 2018a; Schroff et al., 2015; He et al., 
2016; Long et al., 2015; Zhu et al., 2019). Despite this 
progress, high computing costs and storage space limit  
the deployment of the model on some mobile devices. 
Therefore, designing a small CNN with high performance is 
a breakthrough method to solve this bottleneck. However, 
currently higher performance models are often accompanied 
by higher complexity. For example, VGG-16 (Simonyan 
and Zisserman, 2014), has as many as 138 million 
parameters and consumes up to 500 MB storage space. To 
store the intermediate results of the model, it requires more 
than 16 billion floating point operations (FLOPs) and  
93 MB of additional runtime memory, which puts a heavy 
burden on low-end mobile devices. Ioannou et al. (2015) 
proved that the convolutional layer can be compressed and 
accelerated. For instance, Han et al. (2015) directly deleted 
weight values of filters. However, weight pruning is an 
unstructured pruning method and cannot use the current 
efficient BLAS library, which makes efficiency in 
computational cost still low. In contrast, compared with 
weight pruning, filter pruning makes the model structured 
sparsity and more effective memory usage, thus making full 
use of the BLAS library to achieve more realistic 
acceleration. Therefore, the filter pruning is more 
convenient in accelerating the networks. 

Filter pruning methods remove unimportant filters 
according to different criteria. But most filter pruning 
methods (Han et al., 2015; He et al., 2017; Luo et al., 2017; 
Dong et al., 2017; Yu et al., 2018; Luo and Wu, 2017; Ye  
et al., 2018) are based on the original trained model. Once 
the filters are pruned, it takes a long time to fine-tune to 
restore its reasonable performance, which however brings 
low training efficiency and often takes more training time 
than the traditional training schema. And the over 
dependence on the retraining process seriously decreases  
the rationality of the conventional filter significance 
identification. Ye et al. (2018) showed that the retraining 
process actually rebuilds the CNN models. Therefore, to 
explore the internal structure of the model, rather than 
merely restoring the accuracy of the model by increasing the 

training time, it is urgent to qualitatively interpret the filter 
behaviour and identify real model redundancies. 

The internal changes of the convolutional filters are still 
in a ‘black box’ state. Yosinski et al. (2015) utilised CNN 
visualisation techniques to interpret the convolutional filter 
functionality. In this paper, different from other methods, 
we explore the regular pattern of filters change in the 
training process from the perspective of correlation, and 
interpret the filter’s self-evolution during training. We 
discover that most filters with strong correlation are always 
in a stable state in the later period of CNN training. Thus, 
we propose a novel filter pruning approach named filter 
pruning via CKA (FPC) (Kornblith et al., 2019) during the 
training process without basis of the pre-trained model, 
which prunes highly correlated filters in the later period of 
training and has advanced performance. 

We verify the effectiveness of our approach on some 
CNNs and use several image recognition datasets. On 
CIFAR-10 dataset, FPC reduces 56.2% FLOPs on  
ResNet-56 with only 0.69% accuracy drop and also 
achieves 40.8% FLOPs reduction on ResNet-110 with even 
0.03% accuracy improvement. On the CIFAR-100 dataset, 
with 52.6% and 52.3% FLOPs reduction, our method can 
accelerate ResNet-56 and ResNet-110 with tiny accuracy 
drops. In addition to the typical large network such as 
ResNet, we have also performed experiments on small 
networks such as Alexnet. And results show that FPC has 
better performance on Alexnet compared with SFP (He  
et al., 2018b) and FPGM (He et al., 2019a), especially when 
the pruning rate is relatively high. 

The major contribution of this paper can be summarised 
as follows: 

• We closely study the change law of filters via centred 
kernel alignment (CKA) in the training process, and 
discover that most filters with strong correlation are 
always in a stable state in the late training period. 

• We use CKA to determine the strength of the 
relationship between filters. It could measure any form 
of dependency over correlation, which is different from 
other indexes. 

• We propose FPC to prune the most replaceable filters 
that contain redundant information in the later training 
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process, which can achieve better performance than 
other methods. 

The rest of the paper is organised as follows. Section 2 
introduces the related work of model compression. The FPC 
algorithm is introduced in detail in Section 3, including 
interpreting the behavioural change of the filters and how to 
get a small and accelerated model. At last, FPC algorithm 
evaluation and conclusions are given in Section 4 and 
Section 5. 

2 Related work 
2.1 Filter pruning 

2.1.1 Pruning criterion 
Most recent work on pruning criterion can be roughly 
divided into two categories: 

1 Just think about the importance of a single filter. Early 
work (Ye et al., 2018; He et al., 2018b; Li et al., 2016) 
utilised in ‘smaller-norm-less-important’ criterion. This 
criterion thought that filters with small normals were 
less critical, thus, they used L1 norm or L2 norm pruning 
unimportant filters and achieved reasonable 
performance. Luo et al. (2017) thought that it was 
difficult to judge the importance of filters by the size of 
weight value, and it was possible to prune some useful 
filters through this method. Therefore, a pruning 
method based on entropy value was proposed to 
determine the importance of filters. And moreover, 
APoZ (Hu et al., 2016), Taylor (Molchanov et al., 
2016), ThiNet (Luo et al., 2017), and so on to be 
proposed to evaluate the importance of each filter. 

2 Consider the correlation between filters. What we have 
found is that in the recent years, researchers have begun 
to focus on the synergy between the filters (He et al., 
2019a, 2019b; Zhuo et al., 2018; Singh et al., 2018b; 
Wang et al., 2018, 2019; Qin et al., 2018). They think 
correlated filters will have the same effects on the 
network prediction, and the redundant filters can be 
further discarded. For instance, Singh et al. (2018b) 
used person criterion to identify the filter pair with the 
greatest correlation and removed one of the filters from 
each such pair. 

2.1.2 Pruning rules 
Most filter pruning work relies on pre-trained models. After 
pruning, they will fine-tune to restore the original accuracy, 
which takes a lot of time. In order to solve this problem, 
many automatic pruning methods are proposed. For 
instance, Liu et al. (2017), according to the specific 
performance index of the model, automatically obtained  
the reduction factor corresponding to the redundancy 
elimination strategy. He et al. (2018b, 2019a) and Zhuo  
et al. (2018) applied a soft filter pruning method, which 
could train a model from scratch and get better results. For 

the pruning ratio per layer, different works have different 
ways. Li et al. (2016) performed sensitivity analysis for 
each layer, which pruned filters layer by layer, and retrained 
the model before pruning the next layer to make the weights 
adapt to the changes in the pruning process. He et al. 
(2019a) pruned the same ratio for each layer which could 
automatically prune the filters. Liu et al. (2017) divided 
network into  
three parts: first, middle and last, and the corresponding 
pruning ratio was adjusted step by step. It is found that the 
convolutional layer of the first few layers is relatively 
redundant, while the convolutional layer of the second half 
of the model plays a more critical role in the prediction 
process. 

2.2 Other methods 
Most previous work for model compress could divide into 
four categories: 

• Knowledge distilling (Hinton et al., 2015; Kim et al., 
2018) using the output of the teacher network as a soft 
label to train a student network is a popular model 
compression method at present. 

• Low-rank decomposition (Zhang et al., 2015; Tai et al., 
2015) approximates network weights with several 
lower rank matrices. 

• Quantisation (Rastegari et al., 2016): generally 
speaking, the parameters of the neural network model 
are represented by 32-bit floating point numbers. In 
fact, it is not necessary to retain such a high accuracy. It 
can be quantified, such as 0~255 for the original 32 
bits, by sacrificing accuracy to reduce the space 
required for each weight. 

• Automatic neural structure search combined with some 
optimisation algorithms for model search has also 
attracted attention in recent years. For instance, Baker 
et al. (2016) proposed MetaQNN, which models the 
network architecture search as a Markov decision 
process and uses the RL method to generate a CNN 
architecture. In Real et al. (2017), evolutionary 
algorithms were introduced to solve NAS problems and 
had been proven to achieve high accuracy starting  
from a simple initial condition on the CIFAR-10 and 
CIFAR-100 datasets. 

3 Method 
3.1 Motivation for ‘black box’ 
As is known to all, neural networks are still a ‘black box’ 
now. In order to design a network efficiently, many 
researchers actively explore the internal structure of neural 
networks. Recently, some researchers have used association 
indicators to explore the internal structure of neural 
networks. Li et al. (2015) proposed a specific method of 
probing representations via mutual information: training 
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multiple networks and then applying correlation analysis to 
comparing and contrasting their individual, learned 
representations at the level of neurons or groups of neurons. 
Raghu et al. (2017) combined CCA with SVD to measure 
the intrinsic dimensionality of layers, they showed that the 
increase in the depth of the model did not lead to a 
corresponding increase in the learned features, due to 
several layers learning representations in correlated 
directions. Morcos et al. (2018) used CCA to find that the 
representation in the hidden layer of the neural network 
contained two signal components, one was stable during 
training, corresponding to the performance curve, and the 
other was an unstable noise component. Kornblith et al. 
(2019) applied CKA, which could measure meaningful 
correlations between representations whose dimension is 
greater than the number of data points, to establishing 
correspondences between layers of different network 
architectures, and verified that wider networks learn more 
similar representations. All these explorations measure the 
activation value of the neural network. This aspect shows 
that the correlation index can relatively accurately explore 
the internal representation of the neural network, and at the 
same time, it can also peep out the strong redundancy 
between the features generated by the neural network. We 
think that the weights corresponding to the correlated 
activation values are also correlated. So based on these 
findings, we ask some questions-how correlated are the 
filters within a single layer? How does the correlation 
change between filters as the training time increases and can 
we open the ‘black box’ state of the filters in training from 
the correlated angle? 

3.2 Correlations between filters 
We assume Ni and Ni+1 denote the number of input channels 
and output channels for the ith layer, respectively. Ni+1 also 
represents the number of filters for the ith convolution layer. 
L is the depth of the convolutional network. ,i j  represents 
the jth filter of the ith layer. iN K K× ×  is the dimension of 
filter ,i j  and K represents the kernel size of the network. 
The ith layer of the network Wi could be marked as 

, 1{ , 1 }.i j ij N +≤ ≤  The connection tensor of the deep CNN 
network can be parameterised by 1{ }.i ii N N K KW + × × ×∈  

We apply CKA to measuring the correlations between 
filters. For each filter, we can constitute a two-dimensional 
matrix (Ni+1, K × K). Correlation of any two filters ,i j  and 

,i h  on the same layer could be calculated as follows: 
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Equations (1) and (2) are extended by the Hilbert-Schmidt 
independence criterion (Gretton et al., 2005) to reproduce 
the inner product of the kernel Hilbert space. Let 
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two kernels. There, we use RBF kernel ( , )ji
j jk w w =  
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j jw w σ− −  To ensure that the correlation 
index is constant for the isotropic calibration, we choose the 
bandwidth σ as part of the median distance. The empirical 
estimator of HSIC is: 
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test statistic, HSIC tests whether two sets of variables are 
independent. It can detect any existing dependence with 
high probability, as the sample size increases. Normalise 
HSIC to keep the isotropic scaling unchanged, then the 
structure of CKA is constructed as follows: 

( , )( , ) .
( , ) ( , )
HSIC K LCKA K L

HSIC K K HSIC L L
=  (4) 

3.3 Behavioural change of the filters 
In order to explore the behavioural change of the filters 
during the training process, we design a small vanilla 
ConvNet which has three convolutional layers and one fully 
connected layer as a toy example. It is implemented on the 
CIFAR-10 dataset. Every convolutional layer has 32 filters. 
We use CKA to find the correlation between the filters of 
the same layer. Then, we visualise the changes of the filters 
during the training process under different layers and 
different epochs, which we can see in Figure 1. It shows  
a self-evolution process of the filters from random 
initialisation learning to finally obtaining recognition 
ability. In the early training, the differences between the 
filters are small, and the learning features are relatively 
single. As the number of training iterations increases, the 
correlation between the filters gradually decreases, and the 
differences gradually increase, indicating that as the number 
of training iterations increases, the filters capture features in 
all directions and the learning ability becomes stronger. This 
explains why researchers are starting to focus on orthogonal 
initialisation of weights. For example, Xiao et al. (2018) 
proposed a filter orthogonal initialisation algorithm, which 
gave the filters the ability to capture features in all  
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dimensions from the beginning, greatly improved the 
learning speed. Take a closer look at Figure 1, it can be 
found that when the network is trained to 10%, the 
correlation trend of the filters for the first convolutional 
layer is about the same as when it is trained to 100%, but 
the trend in the second and third layers are not obvious.  
It indicates that early layers converge faster. Further 
exploration, we use CKA to measure the correlation of 
weights at each layer between the different stages in the 
training process and when it reaches the final convergence 
state, which shows in Figure 2. It shows that the deeper the 
number of layers, the slower the convergence speed.  
Raghu et al. (2017) used SVCCA to measure the similarity 
between the features of each layer in the training process 
and the features they finally trained, and also found that the 
layers close to the input converge faster, which shows  
that the neural network converges from the bottom up. 
Moreover, we also find that after we train to 30%, the 
correlation trend between the filters is relatively stable, and 
the most highly correlated filters are always in the stable 
state. It indicates that increasing the training time of the 
model does not always lead to a corresponding increase in 
differences between filters in the late training time. Some 
filters have been learning features of the same dimension. 
Under these circumstances, we can prune the highly 
correlated filters in the late training process. 

To further prove our idea that the highly correlated 
filters are always in the stable state in the later stages of 
CNN training. We can prune one of the correlative filters 
with strong correlation between two and replace one with 
the other, which is shown in Figure 3. For example, suppose 
we have three filters, each of which is a three-dimension 
vector: A = (2, 2, 2), B = (2, 2.1, 2), C = (0.6, 0.4, 0.2). We 
will find that A and B are statistically correlated; they have 
the same contribution to the network, so pruning anyone of 
A or B is reasonable. But C is different from them so it 
cannot be replaced. We experiment on the Alexnet model 
with CIFAR-10 dataset as a toy example. Under normal 
training, the classification accuracy of the Alexnet model 
converges to 87.36%. Then at the same initialisation, the 
neural network is retrained with the same learning rate and 
epochs. But when accuracy reaches 10%, 30%, 50% and 
80%, we respectively prune filters with different pruning 
ratios and then observe the final accuracy, which we can see 
in Figure 4(a). The pruning rate is set the same for each 
layer. We find that pruning the filters at high precision has 
less effect on Alexnet performance than at low. It implies 
that pruning the filters at an early training stage undermines 
the self-evolution of the model. We further observe the final 
accuracy of pruning different rates of filters on Alexnet  
after its performance reaches 50%, which is shown in 
Figure 4(b). 

Interestingly, we find that the final accuracy of pruning 
the filter when Alexnet performance reached 70%, 80% is 
almost identical. So it verifies that in the later stage of CNN 
training, the most highly correlated filters are in a stable 
state, while also indicates that improvement of the network 
performance in the later stage is enhanced by the most 

highly differentiated filters with greater differences. 
Comparing the changes in the filter correlation when 
training reaches 30% and 100% in Figure 1, it can be found 
that the correlation of most filters with small correlation 
becomes smaller. 

3.4 FPC algorithm 
Through the above analysis, we find that the highly 
correlated filters in the post-training period do not greatly 
improve the performance of the model. Therefore, we can 
remove some similarly-functioning filters in the later stage 
of the training to reduce the complexity of the model. Not 
only can this approach ultimately result in a smaller, faster 
model, but it can also reduce the amount of computation 
during training. In summary, The FPC is summarised in 
Algorithm 1. 

Algorithm 1 Algorithm description of FPC 

Input: training data: X 
1 Given: pruning rate Pi 
2 Initialise: model parameter W = Wi, 0 ≤ i ≤ L 
3 for epoch = 1; epoch ≤ epochmax; epoch + + do 
4 Update the model parameter W based on X 
5 if accuracy close to convergent accuracy then 
6 for i = 1; i ≤ L; i + + do 
7 Calculate , ,s CKA( , )i j i h=    
8 Sort s 
9 Find Ni+1Pi filters 
10 Zeroise selected filters 
11 Selected parameters are not updated 
12 end for 
13 end if 
14 end for 
15 Obtain the compact model W* from W 
Output: the compact model and its parameters W* 

3.5 Computation complexity analysis 
We analyse the acceleration process of the model from 
theory. For the ith layer, suppose Ni and Ni+1 denote the  
input channels and output channels, respectively. Hi × Wi 
represents a feature map. The pruning rate of the ith layer is 
set to Pi. When the ith layer is pruned, Ni+1Pi filters are 
reduced, and Ni+1Pi feature maps are correspondingly 
reduced. For the (i + 1)th layer, the output dimension of 
Ni+1Pi × Hi+1 × Wi+1 feature maps become the input of the  
(i + 1)th layer. Setting the pruning rate to Pi+1, the remaining 
amount of calculation is [Ni+1(1 – Pi) × Ni+2(1 – Pi+1)  
× Hi+2 × Wi+2]. Therefore, the reduced calculation ratio is  
[1 – (1 – Pi)(1 – Pi+1)], which greatly accelerates the 
inference speed of the model. 
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Figure 1 Changes in the filters between different layers and different epochs (see online version for colours) 

 
Notes: We use CKA to measure the correlation between any two filters in each layer to form a symmetrical correlation matrix. 

The darker the colour, the less the correlation. We find that with the increase of training time, the differences between the 
filters increase. 

 
Figure 2 CKA correlation between the weights of different 

epochs and the final convergence weights per layer 
(see online version for colours) 

 
Note: For example, the correlation between the weight of 

the first convolution layer after 2 epochs and the 
weight after 100 epochs is 0.62. 

Figure 3 Measure the correlation between any two filters via 
CKA (see online version for colours) 

 
Note: We measure the correlation between any  

two filters through CKA, and then rank their 
values from large to small, if the value is greater 
than a certain threshold r (r is determined by the 
pruning ratio Pi) of each layer, prune one of them. 

Figure 4 Changes in performance of Alexnet with pruning filters 
respectively in different pruning ratio when the 
performance reached different accuracy (see online 
version for colours) 

 
(a) 

 
(b) 
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4 Experiment 
4.1 Benchmark datasets and experimental setting 
We evaluate FPC for Alexnet and ResNet on  
two benchmarks: CIFAR-10 and CIFAR-100. Both CIFAR 
datasets (Krizhevsky et al., 2009) contain 60,000 32  
× 32 colour images, in which 50,000 training images and 
10,000 testing images are included. The CIFAR-10 dataset 
is categorised into ten classes, and the CIFAR-100 is 
categorised into 100 classes. 

Our models are implemented on the Pytorch framework. 
In particular, For CIFAR-10 dataset, following the Alexnet  
as the base network structure, we train the network for  
100 epochs with the constant learning rate of 0.01 as  
the pre-trained model. For fair comparison, Alexnet are 
retrained with the same epochs and learning rate, in the later 
stages of training (accuracy is about 70%), filters are pruned 
with 10%, 20%, 30%, …, 90% rate respectively, then we 
compare our final results with the accuracy of pre-trained 
model and recent advanced filter pruning accelerated 
method. In order to prove the generality of the FPC 
algorithm, it is also evaluated on the larger network such as 
ResNet-56 and ResNet-110. For ResNet-56, 110, firstly, the 
network is trained for 60 epochs with the constant learning 
rate of 0.1, and then trained 60 epochs with the learning rate 
of 0.01. Finally, it continues to be trained 80 epochs with 
the learning rate of 0.001 to achieve convergence accuracy. 
Similarly, we prune the filters with different pruning rates in 
the later stage of training and observe the performance 
changes. For CIFAR-100 dataset, testing FPC on the 
ResNet-56, 110 network set as above also brings good 
results. For the pruning step, we just need to prune all 
convolution layers with the same pruning rate at same time, 
which is the same as He et al. (2018b, 2019a). FPC is 
compared with previous acceleration algorithms, e.g., PFEC 
(Li et al., 2016), CP (He et al., 2017), AMC (He et al., 
2018a), SFP (He et al., 2018b), MFP (He et al., 2019b), 
MIL (Dong et al., 2017) and FPGM (He et al., 2019a). Not 
surprisingly, our FPC method achieves the better result. 
(The method with * in Table 2 is implemented with the code 
in its original article, without * is a comparison with the 
results in the original paper). 

4.2 Evaluation protocol 
FLOPs are the number of floating point operations per 
second, which is a widely-used measure to test the model 
computational complexity. We follow the criterion in 
Molchanov et al. (2016), the formulation is described as 
below. 

For convolutional layers: 

( )22 1in outFLOPs HW C K C= +  (5) 

where H, W are the size of the input feature map, K is the 
size of the kernel, and Cin and Cout are the input and output 
channels, respectively. For fully connected layers: 

( )2 1in outFLOPs C C= −  (6) 

where Cin and Cout are the input and output channels. 

4.3 Results on CIFAR-10 

4.3.1 Alexnet base network 
For the CIFAR-10 dataset, we test our FPC on Alexnet,  
and set the pruning rate to 0.1, 0.2, …, 0.9, respectively. 
Figure 5 explains the comparison between our method and 
SFP (He et al., 2018b) and FPGM (He et al., 2019a). As we 
can see, our approach achieves better performance than 
others. When pruning 10% and 20% filters respectively, the 
performance of our method is not obviously different from 
SFP, FPGM. But after 20%, the SFP and FPGM algorithms 
cause the model’s performance to decrease significantly, 
and the FPC has only a small change, especially after  
80%. In addition, we prune 60% of the filters, and the 
performance decreases by less than 1%, which greatly 
reduces the complexity of the model. These results 
demonstrate that small networks also have great redundancy 
and our method is suitable for pruning small networks. 

Figure 5 Compare our method with SFP and FPGM (see online 
version for colours) 

 

4.3.2 ResNet-56, 110 base network 
We also evaluate our method on two deeper networks to 
show its strength. As a deep and powerful network, ResNet 
is our primary choice. We utilise ResNet-56, 110 as our 
base networks. The results are illustrated in Table 1. For 
ResNet-56, we set two different pruning rates: 40%, 50%. 
Compared with recent filter pruning methods, our FPC 
achieves advanced performance. For example, CP (He et al., 
2017) with fine-tuning accelerates ResNet-56 by 50% 
speedup ratio with 1% accuracy drop, whereas FPC without 
fine-tuning attains 52.6% speedup ratio with only 0.69% 
accuracy loss. Compared with SFP (He et al., 2018b), when 
pruning 52.6% FLOPs of ResNet-56, our FPC has only 
0.69% accuracy drop, which is much less than SFP (He  
et al., 2018b) (1.33%). For ResNet-110, we set 30% and 
40% pruning rates. FPC achieves the same speedup with 
SFP (He et al., 2018b), but its accuracy exceeds by 0.65%. 
That is all thanks to the effectiveness of our methods. 
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Table 1 Comparison of pruning ResNet-56, 110 on CIFAR-10 

Depth Method Fine-tune? Baseline acc. (%) Accelerated acc. (%) Acc.↓ (%) FLOPs FLOPs↓ (%) 

56 PFEC × 93.04 91.31 1.75 9.09E7 27.6 
CP × 92.80 90.90 1.90 - 50.0 
CP √ 92.80 91.80 1 - 50.0 

AMC √ 92.80 91.90 0.90 - 50.0 
SFP × 93.59 92.26 1.33 5.94E7 52.6 
MFP × 93.59 92.76 0.83 5.94E7 52.6 

Ours (40%) × 93.64 92.95 0.69 5.94E7 52.6 
Ours (50%) × 93.64 92.39 1.25 4.62E7 63.2 

110 MIL × 93.63 93.44 0.19 - 34.2 
PFEC × 93.53 92.94 0.61 1.55E8 38.6 
PFEC √ 93.53 93.30 0.2 1.55E8 38.6 
SFP × 93.68 93.38 0.30 1.50E8 40.8 

Ours (30%) × 94.0 94.03 –0.03 1.50E8 40.8 
Ours (40%) × 94.0 93.70 0.3 1.21E8 52.3 

Notes: In ‘fine-tune?’ column, ‘√’ and ‘×’ represent whether to use the pre-trained model as initialisation or not, respectively. The 
‘Accu.Drop’ indicates how much the accuracy of the pruned model decreases compared to the baseline model, so a 
negative number means that the pruned model is more accurate than the baseline model. 

Table 2 Comparison of pruning ResNet on CIFAR100 

Depth Method Fine-tune? Baseline top-1 
acc. (%) 

Accelerated 
top-1 acc. (%) 

Baseline top-5 
acc. (%) 

Accelerated 
top-5 acc. (%) 

Top-1 
acc.↓ (%) 

Top-5 
acc.↓ (%) 

FLOPs↓ 
(%) 

56 SFP* × 72.56 70.18 92.5 91.8 2.38 0.7 52.6 
FPGM* × 72.56 70.53 92.5 92.13 2.03 0.37 52.6 

Ours (10%) × 72.56 72.71 92.5 92.72 –0.15 –0.22 14.7 
Ours (40%) × 72.56 70.86 92.5 92.46 1.7 0.04 52.6 

110 FPGM* × 74.03 72.24 92.71 92.57 1.79 0.14 52.3 
SFP* × 74.03 72.71 92.71 92.61 1.32 0.1 52.3 

Ours (10%) × 74.03 74.21 92.71 93.01 –0.18 –0.3 14.6 
Ours (40%) × 74.03 73.16 92.71 92.74 0.87 –0.04 52.3 

Note: Fine-tune? and Accu.Drop have the same meaning with Table 1. 
 
4.4 Results on CIFAR-100 
ResNet-56, 110 base network, for CIFAR-100 dataset, we 
evaluate our approach on ResNet-56, 110. As we can see in 
Table 2, compared with recent two method SFP (He et al., 
2018b) and FPGM (He et al., 2019a), our FPC achieves 
better performance. For example, FPC without fine-tuning 
attains the same acceleration with He et al. (2019a) on 
ResNet-110, but its top-1 accuracy exceeds by 0.92% and 
top-5 accuracy exceeds by 0.17%. SFP (He et al., 2018b) 
and FPGM (He et al., 2019a) both pruning filters from 
beginning, but they will restore the model’s capacity in the 
next training, which will not reduce the amount of 
calculation during the training process. But once our FPC 
prunes filters during the training, model capacity will no 
longer restore, which greatly improves computing 
efficiency. Moreover, pruning a small number of filters will 
also improve the generalisation ability of the model. For 
instance, FPC prunes 10% filters on ResNet-56, where top-1 

accuracy improves 0.15 and top-5 accuracy improves 0.22. 
It can be seen that our FPC brings great convenience. 

Table 3 CKA compare with other filter pruning criterion 

Criterion Acc(Pi = 0.5) Acc(Pi = 0.6) 

Stand (baseline) 87.3 87.3 
Ortho 85.4 84.4 
Person 86.0 84.6 
Random 86.1 85.1 
CKA 86.9 86.4 

4.5 Compare with other criterion 
This work prunes redundant filters through CKA (Kornblith 
et al., 2019) which can detect any existing dependencies. 
Prakash et al. (2019) and Singh et al. (2018b) use ortho and 
person criteria to evaluate the strength of filter correlation, 
respectively. But they can only find linear correlations, this 
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is a limitation for them. We combine ortho, person and 
random criterion with our pruning method and experiment 
on Alexnet with CIFAR-10. Setting the pruning ratio to 0.5 
and 0.6, respectively. From Table 3, it shows that CKA 
works better than other indicators. 

5 Conclusions and future work 
Most filter pruning methods need fine-tuning to reduce 
performance degradation. These pruning methods because 
the black box of neural networks brings some repeated 
efforts. In order to solve this problem, in this work, we 
analyse the evolution of the filter during the training process 
though CKA. The following points were found: 

1 The learning ability of the filter is proportional to the 
training time. 

2 In the early training, the features learned by the filters 
are relatively single. 

3 Convolution layer converges from bottom to top. 

4 In the later stage of training, most of the filters with 
strong correlation are in a stable state, and the 
performance of the model in the later period is mostly 
improved by the difference of the filters with strong 
differences. 

According to the discovery 4, we propose a model 
acceleration algorithm FPC, which can prune highly 
correlated filters in the later stage of training. 

FPC achieves the advanced performance in several 
benchmarks. However, this work only explores the 
correlation changes of filters at same layer, it does not pay 
attention to the interaction between filters at different layers, 
therefore, this is a direction for future efforts, and we also 
try to combine FPC with other acceleration algorithms,  
e.g., quantisation and knowledge distilling, to improve the 
acceleration performance to a higher stage. 

Acknowledgements 
We would like to thank the anonymous reviewers for their 
helpful comments and suggestions. This work is supported 
by the National Key Research and Development Program 
(No. 2018YFB1004300), National Natural Science Fund of 
China (Nos. 61672332, 61872226), Shanxi Key Research 
and Development Program (International Scientific  
and Technological Cooperation) (201903D421003), and 
Research Project for Overseas Returnees in Shanxi Province 
(No. 2017023). 

 

 

References 
Baker, B., Gupta, O., Naik, N. and Raskar, R. (2016) Designing 

Neural Network Architectures Using Reinforcement Learning, 
arXiv preprint arXiv: 1611.02167. 

Dong, X., Huang, J., Yang, Y. and Yan, S. (2017) ‘More is less:  
a more complicated network with less inference complexity’, 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp.5840–5848. 

Gretton, A., Bousquet, O., Smola, A. and Schölkopf, B. (2005) 
‘Measuring statistical dependence with Hilbert-Schmidt 
norms’, International Conference on Algorithmic Learning 
Theory, pp.63–77. 

Han, S., Pool, J., Tran, J. and Dally, W. (2015) ‘Learning both 
weights and connections for efficient neural network’, 
Advances in Neural Information Processing Systems, 
pp.1135–1143. 

He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep residual 
learning for image recognition’, Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 
pp.770–778. 

He, Y., Lin, J., Liu, Z., Wang, H., Li, L-J. and Han, S. (2018a) 
‘AMC: AutoML for model compression and acceleration  
on mobile devices’, International Conference on Machine 
Learning, pp.815–832. 

He, Y., Kang, G., Dong, X., Fu, Y. and Yang, Y. (2018b) Soft 
Filter Pruning for Accelerating Deep Convolutional Neural 
Networks, arXiv preprint arXiv: 1808.06866. 

He, Y., Liu, P., Wang, Z., Hu, Z. and Yang, Y. (2019a) ‘Filter 
pruning via geometric median for deep convolutional neural 
networks acceleration’, Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, pp.4340–4349. 

He, Y., Liu, P., Zhu, L. and Yang, Y. (2019b) Meta Filter Pruning 
to Accelerate Deep Convolutional Neural Networks, arXiv 
preprint arXiv: 1904.03961. 

He, Y., Zhang, X. and Sun, J. (2017) ‘Channel pruning for 
accelerating very deep neural networks’, Proceedings of  
the IEEE International Conference on Computer Vision, 
pp.1389–1397. 

Hinton, G., Vinyals, O. and Dean, J. (2015) Distilling the 
Knowledge in a Neural Network, arXiv preprint arXiv: 1503. 
02531. 

Hu, H., Peng, R., Tai, Y-W. and Tang, C-K. (2016) Network 
Trimming: A Data-driven Neuron Pruning Approach 
Towards Efficient Deep Architectures, arXiv preprint arXiv: 
1607.03250. 

Ioannou, Y., Robertson, D., Shotton, J., Cipolla, R. and  
Criminisi, A. (2015) Training CNNs with Low-rank Filters 
for Efficient Image Classification, arXiv preprint arXiv: 1511. 
06744. 

Kim, J., Park, S. and Kwak, N. (2018) ‘Paraphrasing complex 
network: network compression via factor transfer’, Advances 
in Neural Information Processing Systems, pp.2760–2769. 

Kornblith, S., Norouzi, M., Lee, H. and Hinton, G. (2019) 
Similarity of Neural Network Representations Revisited, 
arXiv preprint arXiv: 1905.00414. 

Krizhevsky, A., Hinton, G. et al. (2009) Learning Multiple Layers 
of Features from Tiny Images, Computer Science 
Department, University of Toronto, Tech. Rep. 

 
 
 



84 J. Li et al.  

Li, H., Kadav, A., Durdanovic, I., Samet, H. and Graf, H.P. (2016) 
Pruning Filters for Efficient ConvNets, arXiv preprint arXiv: 
1608.08710. 

Li, Y., Yosinski, J., Clune, J., Lipson, H. and Hopcroft, J.E. (2015) 
‘Convergent learning: do different neural networks learn the 
same representations?’, FE@ NIPS, pp.196–212. 

Liu, C., Wu, Y., Lin, Y. and Chien, S. (2017) A Kernel 
Redundancy Removing Policy for Convolutional Neural 
Network, arXiv preprint arXiv. 

Long, J., Shelhamer, E. and Darrell, T. (2015) ‘Fully convolutional 
networks for semantic segmentation’, Proceedings of  
the IEEE Conference on Computer Vision and Pattern 
Recognition, pp.3431–3440. 

Luo, J-H. and Wu, J. (2017) An Entropy-based Pruning Method 
for CNN Compression, arXiv preprint arXiv: 1706.05791. 

Luo, J-H., Wu, J. and Lin, W. (2017) ‘Thinet: a filter level pruning 
method for deep neural network compression’, Proceedings 
of the IEEE International Conference on Computer Vision, 
pp.5058–5066. 

Molchanov, P., Tyree, S., Karras, T., Aila, T. and Kautz, J. (2016) 
Pruning Convolutional Neural Networks for Resource 
Efficient Inference, arXiv preprint arXiv: 1611.06440. 

Morcos, A., Raghu, M. and Bengio, S. (2018) ‘Insights on 
representational similarity in neural networks with canonical 
correlation’, Advances in Neural Information Processing 
Systems, pp.5727–5736. 

Prakash, A., Storer, J., Florencio, D. and Zhang, C. (2019) 
‘Measuring statistical dependence with Hilbert-Schmidt 
norms’, Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp.10666–10675. 

Qin, Z., Yu, F., Liu, C. and Chen, X. (2018) Functionality-oriented 
Convolutional Filter Pruning, arXiv preprint arXiv: 1810. 
07322. 

Raghu, M., Gilmer, J., Yosinski, J. and Sohl-Dickstein, J. (2017) 
‘SVCCA: singular vector canonical correlation analysis for 
deep learning dynamics and interpretability’, Advances in 
Neural Information Processing Systems, pp.6076–6085. 

Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A.  
(2016) ‘XNOR-Net: ImageNet classification using binary 
convolutional neural networks’, European Conference on 
Computer Vision, pp.525–542. 

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., 
Le, Q.V. and Kurakin, A. (2017) ‘Large-scale evolution of 
image classifiers’, Proceedings of the 34th International 
Conference on Machine Learning, Vol. 70, pp.2902–2911. 

Schroff, F., Kalenichenko, D. and Philbin, J. (2015) ‘Facenet:  
a unified embedding for face recognition and clustering’, 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp.815–823. 

Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional 
Networks for Large-scale Image Recognition, arXiv preprint 
arXiv: 1409.1556. 

Singh, B., Najibi, M. and Davis, L.S. (2018a) ‘SNIPER: efficient 
multi-scale training’, Advances in Neural Information 
Processing Systems, pp.9310–9320. 

Singh, P., Verma, V.K., Rai, P. and Namboodiri, V.P. (2018b) 
Leveraging Filter Correlations for Deep Model Compression, 
arXiv preprint arXiv: 1811.10559. 

Tai, C., Xiao, T., Zhang, Yi., Wang, X. et al. (2015) Convolutional 
Neural Networks with Low-rank Regularization, arXiv 
preprint arXiv: 1511.06067. 

Wang, D., Zhou, L., Zhang, X., Bai, X. and Zhou, J. (2018) 
Exploring Linear Relationship in Feature Map Subspace for 
ConvNets Compression, arXiv preprint arXiv: 1803.05729. 

Wang, W., Fu, C., Guo, J., Cai, D. and He, X. (2019) COP: 
Customized Deep Model Compression Via Regularized 
Correlation-based Filter-level Pruning, arXiv preprint arXiv: 
1906.10337. 

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.S. and 
Pennington, J. (2018) ‘Dynamical isometry and a mean  
field theory of CNNs: how to train 10,000-layer vanilla 
convolutional neural networks’, International Conference on 
Machine Learning, pp.5389–5398. 

Ye, J., Lu, X., Lin, Z. and Wang, J.Z. (2018) Rethinking  
the Smaller-norm-less-informative Assumption in Channel 
Pruning of Convolution Layers, arXiv preprint arXiv: 1802. 
00124. 

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. and Lipson, H. 
(2015) ‘Understanding neural networks through deep 
visualization’, International Conference on Machine 
Learning – Deep Learning Workshop 2015, p.12, p.7, p.8. 

Yu, R., Li, A., Chen, C-F., Lai, J-H., Morariu, V.I., Han, X.,  
Gao, M., Lin, C-Y. and Davis, L.S. (2018) ‘NISP: pruning 
networks using neuron importance score propagation’, 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp.9194–9203. 

Zhang, X., Zou, J., He, K. and Sun, J. (2015) ‘Accelerating very 
deep convolutional networks for classification and detection’, 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, pp.1943–1955. 

Zhu, F., Zhu, L. and Yang, Y. (2019) ‘Sim-Real joint 
reinforcement transfer for 3d indoor navigation’, Proceedings 
of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp.11388–11397. 

Zhuo, H., Qian, X., Fu, Y., Yang, H. and Xue, X. (2018) SCSP: 
Spectral Clustering Filter Pruning with Soft Self-adaption 
Manners, arXiv preprint arXiv: 1806.05320. 


