
Int. J. Bio-Inspired Computation, Vol. 17, No. 2, 2021 75

Copyright © 2021 Inderscience Enterprises Ltd.

Learning the number of filters in convolutional
neural networks

Jue Li
Institute of Big Data Science and Industry,
School of Computer and Information Technology,
Shanxi University,
Taiyuan, China
Email: 834573176@qq.com

Feng Cao
School of Computer and Information Technology,
Shanxi University,
Taiyuan, China
Email: caof@sxu.edu.cn

Honghong Cheng
Institute of Big Data Science and Industry,
Shanxi University,
Taiyuan, China
Email: chhsxdx@163.com

Yuhua Qian*
Institute of Big Data Science and Industry,
School of Computer and Information Technology,
Shanxi University,
Taiyuan, China
Email: jinchengqyh@126.com
*Corresponding author

Abstract: Convolutional networks bring the performance of many computer vision tasks to
unprecedented heights, but at the cost of enormous computation load. To reduce this cost, many
model compression tasks have been proposed by eliminating insignificant model structures. For
example, convolution filters with small absolute weights are pruned and then fine-tuned to
restore reasonable accuracy. However, most of these works rely on pre-trained models without
specific analysis of the changes in filters during the training process, resulting in sizable model
retraining costs. Different from previous works, we interpret the change of filter behaviour
during training from the associated angle, and propose a novel filter pruning method utilising the
change rule, which can remove filters with similar functions later in training. According to this
strategy, not only can we achieve model compression without fine-tuning, but we can also find a
novel perspective to interpret the changing behaviour of the filter during training. Moreover, our
approach has been proved to be effective for many advanced CNN architectures.

Keywords: model compress; filter pruning; filter correlation; filter behaviour interpretable.

Reference to this paper should be made as follows: Li, J., Cao, F., Cheng, H. and Qian, Y.
(2021) ‘Learning the number of filters in convolutional neural networks’, Int. J. Bio-Inspired
Computation, Vol. 17, No. 2, pp.75–84.

Biographical notes: Jue Li is currently pursuing her Master’s degree at the Institute of Big Data
Science and Industry, Shanxi University. Her research interests include associations mining in
big data, deep learning and machine learning.

Feng Cao received his PhD at the School University of Chinese Academy of Sciences, China. He
is a master tutor of the School of Computer and Information Technology, Shanxi University. His
research interests include deep learning and machine learning.

76 J. Li et al.

Honghong Cheng received her BS degree at the School Mathematical Sciences from Shanxi
University, China, in 2012. She is a PhD candidate at the Institute of Big Data Science and
Industry, Shanxi University. Her research interests include associations mining in big data and
machine learning.

Yuhua Qian received his MS and PhD in Computers with Applications at the Shanxi University,
in 2005 and 2011, respectively. He is a Professor at the Key Laboratory of Computational
Intelligence and Chinese Information Processing of the Ministry of Education, China. He is
actively pursuing research in artificial intelligence, granular computing, machine learning and
deep learning.

This paper is a revised and expanded version of a paper entitled ‘Learning the number of filters
in convolutional neural networks’ presented at CGCKD 2020, Taiyuan, China, 31 October 2020.

1 Introduction
In recent years, convolutional neural networks (CNNs) have
made significant progress in the most of computer vision
tasks (Singh et al., 2018a; Schroff et al., 2015; He et al.,
2016; Long et al., 2015; Zhu et al., 2019). Despite this
progress, high computing costs and storage space limit
the deployment of the model on some mobile devices.
Therefore, designing a small CNN with high performance is
a breakthrough method to solve this bottleneck. However,
currently higher performance models are often accompanied
by higher complexity. For example, VGG-16 (Simonyan
and Zisserman, 2014), has as many as 138 million
parameters and consumes up to 500 MB storage space. To
store the intermediate results of the model, it requires more
than 16 billion floating point operations (FLOPs) and
93 MB of additional runtime memory, which puts a heavy
burden on low-end mobile devices. Ioannou et al. (2015)
proved that the convolutional layer can be compressed and
accelerated. For instance, Han et al. (2015) directly deleted
weight values of filters. However, weight pruning is an
unstructured pruning method and cannot use the current
efficient BLAS library, which makes efficiency in
computational cost still low. In contrast, compared with
weight pruning, filter pruning makes the model structured
sparsity and more effective memory usage, thus making full
use of the BLAS library to achieve more realistic
acceleration. Therefore, the filter pruning is more
convenient in accelerating the networks.

Filter pruning methods remove unimportant filters
according to different criteria. But most filter pruning
methods (Han et al., 2015; He et al., 2017; Luo et al., 2017;
Dong et al., 2017; Yu et al., 2018; Luo and Wu, 2017; Ye
et al., 2018) are based on the original trained model. Once
the filters are pruned, it takes a long time to fine-tune to
restore its reasonable performance, which however brings
low training efficiency and often takes more training time
than the traditional training schema. And the over
dependence on the retraining process seriously decreases
the rationality of the conventional filter significance
identification. Ye et al. (2018) showed that the retraining
process actually rebuilds the CNN models. Therefore, to
explore the internal structure of the model, rather than
merely restoring the accuracy of the model by increasing the

training time, it is urgent to qualitatively interpret the filter
behaviour and identify real model redundancies.

The internal changes of the convolutional filters are still
in a ‘black box’ state. Yosinski et al. (2015) utilised CNN
visualisation techniques to interpret the convolutional filter
functionality. In this paper, different from other methods,
we explore the regular pattern of filters change in the
training process from the perspective of correlation, and
interpret the filter’s self-evolution during training. We
discover that most filters with strong correlation are always
in a stable state in the later period of CNN training. Thus,
we propose a novel filter pruning approach named filter
pruning via CKA (FPC) (Kornblith et al., 2019) during the
training process without basis of the pre-trained model,
which prunes highly correlated filters in the later period of
training and has advanced performance.

We verify the effectiveness of our approach on some
CNNs and use several image recognition datasets. On
CIFAR-10 dataset, FPC reduces 56.2% FLOPs on
ResNet-56 with only 0.69% accuracy drop and also
achieves 40.8% FLOPs reduction on ResNet-110 with even
0.03% accuracy improvement. On the CIFAR-100 dataset,
with 52.6% and 52.3% FLOPs reduction, our method can
accelerate ResNet-56 and ResNet-110 with tiny accuracy
drops. In addition to the typical large network such as
ResNet, we have also performed experiments on small
networks such as Alexnet. And results show that FPC has
better performance on Alexnet compared with SFP (He
et al., 2018b) and FPGM (He et al., 2019a), especially when
the pruning rate is relatively high.

The major contribution of this paper can be summarised
as follows:

• We closely study the change law of filters via centred
kernel alignment (CKA) in the training process, and
discover that most filters with strong correlation are
always in a stable state in the late training period.

• We use CKA to determine the strength of the
relationship between filters. It could measure any form
of dependency over correlation, which is different from
other indexes.

• We propose FPC to prune the most replaceable filters
that contain redundant information in the later training

 Learning the number of filters in convolutional neural networks 77

process, which can achieve better performance than
other methods.

The rest of the paper is organised as follows. Section 2
introduces the related work of model compression. The FPC
algorithm is introduced in detail in Section 3, including
interpreting the behavioural change of the filters and how to
get a small and accelerated model. At last, FPC algorithm
evaluation and conclusions are given in Section 4 and
Section 5.

2 Related work
2.1 Filter pruning

2.1.1 Pruning criterion
Most recent work on pruning criterion can be roughly
divided into two categories:

1 Just think about the importance of a single filter. Early
work (Ye et al., 2018; He et al., 2018b; Li et al., 2016)
utilised in ‘smaller-norm-less-important’ criterion. This
criterion thought that filters with small normals were
less critical, thus, they used L1 norm or L2 norm pruning
unimportant filters and achieved reasonable
performance. Luo et al. (2017) thought that it was
difficult to judge the importance of filters by the size of
weight value, and it was possible to prune some useful
filters through this method. Therefore, a pruning
method based on entropy value was proposed to
determine the importance of filters. And moreover,
APoZ (Hu et al., 2016), Taylor (Molchanov et al.,
2016), ThiNet (Luo et al., 2017), and so on to be
proposed to evaluate the importance of each filter.

2 Consider the correlation between filters. What we have
found is that in the recent years, researchers have begun
to focus on the synergy between the filters (He et al.,
2019a, 2019b; Zhuo et al., 2018; Singh et al., 2018b;
Wang et al., 2018, 2019; Qin et al., 2018). They think
correlated filters will have the same effects on the
network prediction, and the redundant filters can be
further discarded. For instance, Singh et al. (2018b)
used person criterion to identify the filter pair with the
greatest correlation and removed one of the filters from
each such pair.

2.1.2 Pruning rules
Most filter pruning work relies on pre-trained models. After
pruning, they will fine-tune to restore the original accuracy,
which takes a lot of time. In order to solve this problem,
many automatic pruning methods are proposed. For
instance, Liu et al. (2017), according to the specific
performance index of the model, automatically obtained
the reduction factor corresponding to the redundancy
elimination strategy. He et al. (2018b, 2019a) and Zhuo
et al. (2018) applied a soft filter pruning method, which
could train a model from scratch and get better results. For

the pruning ratio per layer, different works have different
ways. Li et al. (2016) performed sensitivity analysis for
each layer, which pruned filters layer by layer, and retrained
the model before pruning the next layer to make the weights
adapt to the changes in the pruning process. He et al.
(2019a) pruned the same ratio for each layer which could
automatically prune the filters. Liu et al. (2017) divided
network into
three parts: first, middle and last, and the corresponding
pruning ratio was adjusted step by step. It is found that the
convolutional layer of the first few layers is relatively
redundant, while the convolutional layer of the second half
of the model plays a more critical role in the prediction
process.

2.2 Other methods
Most previous work for model compress could divide into
four categories:

• Knowledge distilling (Hinton et al., 2015; Kim et al.,
2018) using the output of the teacher network as a soft
label to train a student network is a popular model
compression method at present.

• Low-rank decomposition (Zhang et al., 2015; Tai et al.,
2015) approximates network weights with several
lower rank matrices.

• Quantisation (Rastegari et al., 2016): generally
speaking, the parameters of the neural network model
are represented by 32-bit floating point numbers. In
fact, it is not necessary to retain such a high accuracy. It
can be quantified, such as 0~255 for the original 32
bits, by sacrificing accuracy to reduce the space
required for each weight.

• Automatic neural structure search combined with some
optimisation algorithms for model search has also
attracted attention in recent years. For instance, Baker
et al. (2016) proposed MetaQNN, which models the
network architecture search as a Markov decision
process and uses the RL method to generate a CNN
architecture. In Real et al. (2017), evolutionary
algorithms were introduced to solve NAS problems and
had been proven to achieve high accuracy starting
from a simple initial condition on the CIFAR-10 and
CIFAR-100 datasets.

3 Method
3.1 Motivation for ‘black box’
As is known to all, neural networks are still a ‘black box’
now. In order to design a network efficiently, many
researchers actively explore the internal structure of neural
networks. Recently, some researchers have used association
indicators to explore the internal structure of neural
networks. Li et al. (2015) proposed a specific method of
probing representations via mutual information: training

78 J. Li et al.

multiple networks and then applying correlation analysis to
comparing and contrasting their individual, learned
representations at the level of neurons or groups of neurons.
Raghu et al. (2017) combined CCA with SVD to measure
the intrinsic dimensionality of layers, they showed that the
increase in the depth of the model did not lead to a
corresponding increase in the learned features, due to
several layers learning representations in correlated
directions. Morcos et al. (2018) used CCA to find that the
representation in the hidden layer of the neural network
contained two signal components, one was stable during
training, corresponding to the performance curve, and the
other was an unstable noise component. Kornblith et al.
(2019) applied CKA, which could measure meaningful
correlations between representations whose dimension is
greater than the number of data points, to establishing
correspondences between layers of different network
architectures, and verified that wider networks learn more
similar representations. All these explorations measure the
activation value of the neural network. This aspect shows
that the correlation index can relatively accurately explore
the internal representation of the neural network, and at the
same time, it can also peep out the strong redundancy
between the features generated by the neural network. We
think that the weights corresponding to the correlated
activation values are also correlated. So based on these
findings, we ask some questions-how correlated are the
filters within a single layer? How does the correlation
change between filters as the training time increases and can
we open the ‘black box’ state of the filters in training from
the correlated angle?

3.2 Correlations between filters
We assume Ni and Ni+1 denote the number of input channels
and output channels for the ith layer, respectively. Ni+1 also
represents the number of filters for the ith convolution layer.
L is the depth of the convolutional network. ,i j represents
the jth filter of the ith layer. iN K K× × is the dimension of
filter ,i j and K represents the kernel size of the network.
The ith layer of the network Wi could be marked as

, 1{ , 1 }.i j ij N +≤ ≤ The connection tensor of the deep CNN
network can be parameterised by 1{ }.i ii N N K KW + × × ×∈

We apply CKA to measuring the correlations between
filters. For each filter, we can constitute a two-dimensional
matrix (Ni+1, K × K). Correlation of any two filters ,i j and

,i h on the same layer could be calculated as follows:

()() ()()
() ()()

()

, , , ,

, , , ,

2
, ,

,T T
i j i j i h i h

T T
i j i j i h i h

T
i h i j F

tr=

=

   

   

 

 (1)

()
() ()()

()()

, , , ,2
1

2

, ,

1
1

cov

T T
i j i j i h i h

i

T
i h i j F

tr
N + −

=

   

 

 (2)

Equations (1) and (2) are extended by the Hilbert-Schmidt
independence criterion (Gretton et al., 2005) to reproduce
the inner product of the kernel Hilbert space. Let

, (,)ji
i j j jK k w w= and , (,),ji

i j h hL l w w= where k and l are

two kernels. There, we use RBF kernel (,)ji
j jk w w =

2 2
2exp(|| || /(2)).ji

j jw w σ− − To ensure that the correlation
index is constant for the isotropic calibration, we choose the
bandwidth σ as part of the median distance. The empirical
estimator of HSIC is:

()2
1

1(,) ()
1i

HSIC K L tr KHLH
N +

=
−

 (3)

where H is the centring matrix 1 1
1

1 .i iN N
i

H I
N+ +

+
= − As a

test statistic, HSIC tests whether two sets of variables are
independent. It can detect any existing dependence with
high probability, as the sample size increases. Normalise
HSIC to keep the isotropic scaling unchanged, then the
structure of CKA is constructed as follows:

(,)(,) .
(,) (,)
HSIC K LCKA K L

HSIC K K HSIC L L
= (4)

3.3 Behavioural change of the filters
In order to explore the behavioural change of the filters
during the training process, we design a small vanilla
ConvNet which has three convolutional layers and one fully
connected layer as a toy example. It is implemented on the
CIFAR-10 dataset. Every convolutional layer has 32 filters.
We use CKA to find the correlation between the filters of
the same layer. Then, we visualise the changes of the filters
during the training process under different layers and
different epochs, which we can see in Figure 1. It shows
a self-evolution process of the filters from random
initialisation learning to finally obtaining recognition
ability. In the early training, the differences between the
filters are small, and the learning features are relatively
single. As the number of training iterations increases, the
correlation between the filters gradually decreases, and the
differences gradually increase, indicating that as the number
of training iterations increases, the filters capture features in
all directions and the learning ability becomes stronger. This
explains why researchers are starting to focus on orthogonal
initialisation of weights. For example, Xiao et al. (2018)
proposed a filter orthogonal initialisation algorithm, which
gave the filters the ability to capture features in all

 Learning the number of filters in convolutional neural networks 79

dimensions from the beginning, greatly improved the
learning speed. Take a closer look at Figure 1, it can be
found that when the network is trained to 10%, the
correlation trend of the filters for the first convolutional
layer is about the same as when it is trained to 100%, but
the trend in the second and third layers are not obvious.
It indicates that early layers converge faster. Further
exploration, we use CKA to measure the correlation of
weights at each layer between the different stages in the
training process and when it reaches the final convergence
state, which shows in Figure 2. It shows that the deeper the
number of layers, the slower the convergence speed.
Raghu et al. (2017) used SVCCA to measure the similarity
between the features of each layer in the training process
and the features they finally trained, and also found that the
layers close to the input converge faster, which shows
that the neural network converges from the bottom up.
Moreover, we also find that after we train to 30%, the
correlation trend between the filters is relatively stable, and
the most highly correlated filters are always in the stable
state. It indicates that increasing the training time of the
model does not always lead to a corresponding increase in
differences between filters in the late training time. Some
filters have been learning features of the same dimension.
Under these circumstances, we can prune the highly
correlated filters in the late training process.

To further prove our idea that the highly correlated
filters are always in the stable state in the later stages of
CNN training. We can prune one of the correlative filters
with strong correlation between two and replace one with
the other, which is shown in Figure 3. For example, suppose
we have three filters, each of which is a three-dimension
vector: A = (2, 2, 2), B = (2, 2.1, 2), C = (0.6, 0.4, 0.2). We
will find that A and B are statistically correlated; they have
the same contribution to the network, so pruning anyone of
A or B is reasonable. But C is different from them so it
cannot be replaced. We experiment on the Alexnet model
with CIFAR-10 dataset as a toy example. Under normal
training, the classification accuracy of the Alexnet model
converges to 87.36%. Then at the same initialisation, the
neural network is retrained with the same learning rate and
epochs. But when accuracy reaches 10%, 30%, 50% and
80%, we respectively prune filters with different pruning
ratios and then observe the final accuracy, which we can see
in Figure 4(a). The pruning rate is set the same for each
layer. We find that pruning the filters at high precision has
less effect on Alexnet performance than at low. It implies
that pruning the filters at an early training stage undermines
the self-evolution of the model. We further observe the final
accuracy of pruning different rates of filters on Alexnet
after its performance reaches 50%, which is shown in
Figure 4(b).

Interestingly, we find that the final accuracy of pruning
the filter when Alexnet performance reached 70%, 80% is
almost identical. So it verifies that in the later stage of CNN
training, the most highly correlated filters are in a stable
state, while also indicates that improvement of the network
performance in the later stage is enhanced by the most

highly differentiated filters with greater differences.
Comparing the changes in the filter correlation when
training reaches 30% and 100% in Figure 1, it can be found
that the correlation of most filters with small correlation
becomes smaller.

3.4 FPC algorithm
Through the above analysis, we find that the highly
correlated filters in the post-training period do not greatly
improve the performance of the model. Therefore, we can
remove some similarly-functioning filters in the later stage
of the training to reduce the complexity of the model. Not
only can this approach ultimately result in a smaller, faster
model, but it can also reduce the amount of computation
during training. In summary, The FPC is summarised in
Algorithm 1.

Algorithm 1 Algorithm description of FPC

Input: training data: X
1 Given: pruning rate Pi
2 Initialise: model parameter W = Wi, 0 ≤ i ≤ L
3 for epoch = 1; epoch ≤ epochmax; epoch + + do
4 Update the model parameter W based on X
5 if accuracy close to convergent accuracy then
6 for i = 1; i ≤ L; i + + do
7 Calculate , ,s CKA(,)i j i h=  
8 Sort s
9 Find Ni+1Pi filters
10 Zeroise selected filters
11 Selected parameters are not updated
12 end for
13 end if
14 end for
15 Obtain the compact model W* from W
Output: the compact model and its parameters W*

3.5 Computation complexity analysis
We analyse the acceleration process of the model from
theory. For the ith layer, suppose Ni and Ni+1 denote the
input channels and output channels, respectively. Hi × Wi
represents a feature map. The pruning rate of the ith layer is
set to Pi. When the ith layer is pruned, Ni+1Pi filters are
reduced, and Ni+1Pi feature maps are correspondingly
reduced. For the (i + 1)th layer, the output dimension of
Ni+1Pi × Hi+1 × Wi+1 feature maps become the input of the
(i + 1)th layer. Setting the pruning rate to Pi+1, the remaining
amount of calculation is [Ni+1(1 – Pi) × Ni+2(1 – Pi+1)
× Hi+2 × Wi+2]. Therefore, the reduced calculation ratio is
[1 – (1 – Pi)(1 – Pi+1)], which greatly accelerates the
inference speed of the model.

80 J. Li et al.

Figure 1 Changes in the filters between different layers and different epochs (see online version for colours)

Notes: We use CKA to measure the correlation between any two filters in each layer to form a symmetrical correlation matrix.

The darker the colour, the less the correlation. We find that with the increase of training time, the differences between the
filters increase.

Figure 2 CKA correlation between the weights of different

epochs and the final convergence weights per layer
(see online version for colours)

Note: For example, the correlation between the weight of

the first convolution layer after 2 epochs and the
weight after 100 epochs is 0.62.

Figure 3 Measure the correlation between any two filters via
CKA (see online version for colours)

Note: We measure the correlation between any

two filters through CKA, and then rank their
values from large to small, if the value is greater
than a certain threshold r (r is determined by the
pruning ratio Pi) of each layer, prune one of them.

Figure 4 Changes in performance of Alexnet with pruning filters
respectively in different pruning ratio when the
performance reached different accuracy (see online
version for colours)

(a)

(b)

 Learning the number of filters in convolutional neural networks 81

4 Experiment
4.1 Benchmark datasets and experimental setting
We evaluate FPC for Alexnet and ResNet on
two benchmarks: CIFAR-10 and CIFAR-100. Both CIFAR
datasets (Krizhevsky et al., 2009) contain 60,000 32
× 32 colour images, in which 50,000 training images and
10,000 testing images are included. The CIFAR-10 dataset
is categorised into ten classes, and the CIFAR-100 is
categorised into 100 classes.

Our models are implemented on the Pytorch framework.
In particular, For CIFAR-10 dataset, following the Alexnet
as the base network structure, we train the network for
100 epochs with the constant learning rate of 0.01 as
the pre-trained model. For fair comparison, Alexnet are
retrained with the same epochs and learning rate, in the later
stages of training (accuracy is about 70%), filters are pruned
with 10%, 20%, 30%, …, 90% rate respectively, then we
compare our final results with the accuracy of pre-trained
model and recent advanced filter pruning accelerated
method. In order to prove the generality of the FPC
algorithm, it is also evaluated on the larger network such as
ResNet-56 and ResNet-110. For ResNet-56, 110, firstly, the
network is trained for 60 epochs with the constant learning
rate of 0.1, and then trained 60 epochs with the learning rate
of 0.01. Finally, it continues to be trained 80 epochs with
the learning rate of 0.001 to achieve convergence accuracy.
Similarly, we prune the filters with different pruning rates in
the later stage of training and observe the performance
changes. For CIFAR-100 dataset, testing FPC on the
ResNet-56, 110 network set as above also brings good
results. For the pruning step, we just need to prune all
convolution layers with the same pruning rate at same time,
which is the same as He et al. (2018b, 2019a). FPC is
compared with previous acceleration algorithms, e.g., PFEC
(Li et al., 2016), CP (He et al., 2017), AMC (He et al.,
2018a), SFP (He et al., 2018b), MFP (He et al., 2019b),
MIL (Dong et al., 2017) and FPGM (He et al., 2019a). Not
surprisingly, our FPC method achieves the better result.
(The method with * in Table 2 is implemented with the code
in its original article, without * is a comparison with the
results in the original paper).

4.2 Evaluation protocol
FLOPs are the number of floating point operations per
second, which is a widely-used measure to test the model
computational complexity. We follow the criterion in
Molchanov et al. (2016), the formulation is described as
below.

For convolutional layers:

()22 1in outFLOPs HW C K C= + (5)

where H, W are the size of the input feature map, K is the
size of the kernel, and Cin and Cout are the input and output
channels, respectively. For fully connected layers:

()2 1in outFLOPs C C= − (6)

where Cin and Cout are the input and output channels.

4.3 Results on CIFAR-10

4.3.1 Alexnet base network
For the CIFAR-10 dataset, we test our FPC on Alexnet,
and set the pruning rate to 0.1, 0.2, …, 0.9, respectively.
Figure 5 explains the comparison between our method and
SFP (He et al., 2018b) and FPGM (He et al., 2019a). As we
can see, our approach achieves better performance than
others. When pruning 10% and 20% filters respectively, the
performance of our method is not obviously different from
SFP, FPGM. But after 20%, the SFP and FPGM algorithms
cause the model’s performance to decrease significantly,
and the FPC has only a small change, especially after
80%. In addition, we prune 60% of the filters, and the
performance decreases by less than 1%, which greatly
reduces the complexity of the model. These results
demonstrate that small networks also have great redundancy
and our method is suitable for pruning small networks.

Figure 5 Compare our method with SFP and FPGM (see online
version for colours)

4.3.2 ResNet-56, 110 base network
We also evaluate our method on two deeper networks to
show its strength. As a deep and powerful network, ResNet
is our primary choice. We utilise ResNet-56, 110 as our
base networks. The results are illustrated in Table 1. For
ResNet-56, we set two different pruning rates: 40%, 50%.
Compared with recent filter pruning methods, our FPC
achieves advanced performance. For example, CP (He et al.,
2017) with fine-tuning accelerates ResNet-56 by 50%
speedup ratio with 1% accuracy drop, whereas FPC without
fine-tuning attains 52.6% speedup ratio with only 0.69%
accuracy loss. Compared with SFP (He et al., 2018b), when
pruning 52.6% FLOPs of ResNet-56, our FPC has only
0.69% accuracy drop, which is much less than SFP (He
et al., 2018b) (1.33%). For ResNet-110, we set 30% and
40% pruning rates. FPC achieves the same speedup with
SFP (He et al., 2018b), but its accuracy exceeds by 0.65%.
That is all thanks to the effectiveness of our methods.

82 J. Li et al.

Table 1 Comparison of pruning ResNet-56, 110 on CIFAR-10

Depth Method Fine-tune? Baseline acc. (%) Accelerated acc. (%) Acc.↓ (%) FLOPs FLOPs↓ (%)

56 PFEC × 93.04 91.31 1.75 9.09E7 27.6
CP × 92.80 90.90 1.90 - 50.0
CP √ 92.80 91.80 1 - 50.0

AMC √ 92.80 91.90 0.90 - 50.0
SFP × 93.59 92.26 1.33 5.94E7 52.6
MFP × 93.59 92.76 0.83 5.94E7 52.6

Ours (40%) × 93.64 92.95 0.69 5.94E7 52.6
Ours (50%) × 93.64 92.39 1.25 4.62E7 63.2

110 MIL × 93.63 93.44 0.19 - 34.2
PFEC × 93.53 92.94 0.61 1.55E8 38.6
PFEC √ 93.53 93.30 0.2 1.55E8 38.6
SFP × 93.68 93.38 0.30 1.50E8 40.8

Ours (30%) × 94.0 94.03 –0.03 1.50E8 40.8
Ours (40%) × 94.0 93.70 0.3 1.21E8 52.3

Notes: In ‘fine-tune?’ column, ‘√’ and ‘×’ represent whether to use the pre-trained model as initialisation or not, respectively. The
‘Accu.Drop’ indicates how much the accuracy of the pruned model decreases compared to the baseline model, so a
negative number means that the pruned model is more accurate than the baseline model.

Table 2 Comparison of pruning ResNet on CIFAR100

Depth Method Fine-tune? Baseline top-1
acc. (%)

Accelerated
top-1 acc. (%)

Baseline top-5
acc. (%)

Accelerated
top-5 acc. (%)

Top-1
acc.↓ (%)

Top-5
acc.↓ (%)

FLOPs↓
(%)

56 SFP* × 72.56 70.18 92.5 91.8 2.38 0.7 52.6
FPGM* × 72.56 70.53 92.5 92.13 2.03 0.37 52.6

Ours (10%) × 72.56 72.71 92.5 92.72 –0.15 –0.22 14.7
Ours (40%) × 72.56 70.86 92.5 92.46 1.7 0.04 52.6

110 FPGM* × 74.03 72.24 92.71 92.57 1.79 0.14 52.3
SFP* × 74.03 72.71 92.71 92.61 1.32 0.1 52.3

Ours (10%) × 74.03 74.21 92.71 93.01 –0.18 –0.3 14.6
Ours (40%) × 74.03 73.16 92.71 92.74 0.87 –0.04 52.3

Note: Fine-tune? and Accu.Drop have the same meaning with Table 1.

4.4 Results on CIFAR-100
ResNet-56, 110 base network, for CIFAR-100 dataset, we
evaluate our approach on ResNet-56, 110. As we can see in
Table 2, compared with recent two method SFP (He et al.,
2018b) and FPGM (He et al., 2019a), our FPC achieves
better performance. For example, FPC without fine-tuning
attains the same acceleration with He et al. (2019a) on
ResNet-110, but its top-1 accuracy exceeds by 0.92% and
top-5 accuracy exceeds by 0.17%. SFP (He et al., 2018b)
and FPGM (He et al., 2019a) both pruning filters from
beginning, but they will restore the model’s capacity in the
next training, which will not reduce the amount of
calculation during the training process. But once our FPC
prunes filters during the training, model capacity will no
longer restore, which greatly improves computing
efficiency. Moreover, pruning a small number of filters will
also improve the generalisation ability of the model. For
instance, FPC prunes 10% filters on ResNet-56, where top-1

accuracy improves 0.15 and top-5 accuracy improves 0.22.
It can be seen that our FPC brings great convenience.

Table 3 CKA compare with other filter pruning criterion

Criterion Acc(Pi = 0.5) Acc(Pi = 0.6)

Stand (baseline) 87.3 87.3
Ortho 85.4 84.4
Person 86.0 84.6
Random 86.1 85.1
CKA 86.9 86.4

4.5 Compare with other criterion
This work prunes redundant filters through CKA (Kornblith
et al., 2019) which can detect any existing dependencies.
Prakash et al. (2019) and Singh et al. (2018b) use ortho and
person criteria to evaluate the strength of filter correlation,
respectively. But they can only find linear correlations, this

 Learning the number of filters in convolutional neural networks 83

is a limitation for them. We combine ortho, person and
random criterion with our pruning method and experiment
on Alexnet with CIFAR-10. Setting the pruning ratio to 0.5
and 0.6, respectively. From Table 3, it shows that CKA
works better than other indicators.

5 Conclusions and future work
Most filter pruning methods need fine-tuning to reduce
performance degradation. These pruning methods because
the black box of neural networks brings some repeated
efforts. In order to solve this problem, in this work, we
analyse the evolution of the filter during the training process
though CKA. The following points were found:

1 The learning ability of the filter is proportional to the
training time.

2 In the early training, the features learned by the filters
are relatively single.

3 Convolution layer converges from bottom to top.

4 In the later stage of training, most of the filters with
strong correlation are in a stable state, and the
performance of the model in the later period is mostly
improved by the difference of the filters with strong
differences.

According to the discovery 4, we propose a model
acceleration algorithm FPC, which can prune highly
correlated filters in the later stage of training.

FPC achieves the advanced performance in several
benchmarks. However, this work only explores the
correlation changes of filters at same layer, it does not pay
attention to the interaction between filters at different layers,
therefore, this is a direction for future efforts, and we also
try to combine FPC with other acceleration algorithms,
e.g., quantisation and knowledge distilling, to improve the
acceleration performance to a higher stage.

Acknowledgements
We would like to thank the anonymous reviewers for their
helpful comments and suggestions. This work is supported
by the National Key Research and Development Program
(No. 2018YFB1004300), National Natural Science Fund of
China (Nos. 61672332, 61872226), Shanxi Key Research
and Development Program (International Scientific
and Technological Cooperation) (201903D421003), and
Research Project for Overseas Returnees in Shanxi Province
(No. 2017023).

References
Baker, B., Gupta, O., Naik, N. and Raskar, R. (2016) Designing

Neural Network Architectures Using Reinforcement Learning,
arXiv preprint arXiv: 1611.02167.

Dong, X., Huang, J., Yang, Y. and Yan, S. (2017) ‘More is less:
a more complicated network with less inference complexity’,
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp.5840–5848.

Gretton, A., Bousquet, O., Smola, A. and Schölkopf, B. (2005)
‘Measuring statistical dependence with Hilbert-Schmidt
norms’, International Conference on Algorithmic Learning
Theory, pp.63–77.

Han, S., Pool, J., Tran, J. and Dally, W. (2015) ‘Learning both
weights and connections for efficient neural network’,
Advances in Neural Information Processing Systems,
pp.1135–1143.

He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep residual
learning for image recognition’, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp.770–778.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L-J. and Han, S. (2018a)
‘AMC: AutoML for model compression and acceleration
on mobile devices’, International Conference on Machine
Learning, pp.815–832.

He, Y., Kang, G., Dong, X., Fu, Y. and Yang, Y. (2018b) Soft
Filter Pruning for Accelerating Deep Convolutional Neural
Networks, arXiv preprint arXiv: 1808.06866.

He, Y., Liu, P., Wang, Z., Hu, Z. and Yang, Y. (2019a) ‘Filter
pruning via geometric median for deep convolutional neural
networks acceleration’, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp.4340–4349.

He, Y., Liu, P., Zhu, L. and Yang, Y. (2019b) Meta Filter Pruning
to Accelerate Deep Convolutional Neural Networks, arXiv
preprint arXiv: 1904.03961.

He, Y., Zhang, X. and Sun, J. (2017) ‘Channel pruning for
accelerating very deep neural networks’, Proceedings of
the IEEE International Conference on Computer Vision,
pp.1389–1397.

Hinton, G., Vinyals, O. and Dean, J. (2015) Distilling the
Knowledge in a Neural Network, arXiv preprint arXiv: 1503.
02531.

Hu, H., Peng, R., Tai, Y-W. and Tang, C-K. (2016) Network
Trimming: A Data-driven Neuron Pruning Approach
Towards Efficient Deep Architectures, arXiv preprint arXiv:
1607.03250.

Ioannou, Y., Robertson, D., Shotton, J., Cipolla, R. and
Criminisi, A. (2015) Training CNNs with Low-rank Filters
for Efficient Image Classification, arXiv preprint arXiv: 1511.
06744.

Kim, J., Park, S. and Kwak, N. (2018) ‘Paraphrasing complex
network: network compression via factor transfer’, Advances
in Neural Information Processing Systems, pp.2760–2769.

Kornblith, S., Norouzi, M., Lee, H. and Hinton, G. (2019)
Similarity of Neural Network Representations Revisited,
arXiv preprint arXiv: 1905.00414.

Krizhevsky, A., Hinton, G. et al. (2009) Learning Multiple Layers
of Features from Tiny Images, Computer Science
Department, University of Toronto, Tech. Rep.

84 J. Li et al.

Li, H., Kadav, A., Durdanovic, I., Samet, H. and Graf, H.P. (2016)
Pruning Filters for Efficient ConvNets, arXiv preprint arXiv:
1608.08710.

Li, Y., Yosinski, J., Clune, J., Lipson, H. and Hopcroft, J.E. (2015)
‘Convergent learning: do different neural networks learn the
same representations?’, FE@ NIPS, pp.196–212.

Liu, C., Wu, Y., Lin, Y. and Chien, S. (2017) A Kernel
Redundancy Removing Policy for Convolutional Neural
Network, arXiv preprint arXiv.

Long, J., Shelhamer, E. and Darrell, T. (2015) ‘Fully convolutional
networks for semantic segmentation’, Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp.3431–3440.

Luo, J-H. and Wu, J. (2017) An Entropy-based Pruning Method
for CNN Compression, arXiv preprint arXiv: 1706.05791.

Luo, J-H., Wu, J. and Lin, W. (2017) ‘Thinet: a filter level pruning
method for deep neural network compression’, Proceedings
of the IEEE International Conference on Computer Vision,
pp.5058–5066.

Molchanov, P., Tyree, S., Karras, T., Aila, T. and Kautz, J. (2016)
Pruning Convolutional Neural Networks for Resource
Efficient Inference, arXiv preprint arXiv: 1611.06440.

Morcos, A., Raghu, M. and Bengio, S. (2018) ‘Insights on
representational similarity in neural networks with canonical
correlation’, Advances in Neural Information Processing
Systems, pp.5727–5736.

Prakash, A., Storer, J., Florencio, D. and Zhang, C. (2019)
‘Measuring statistical dependence with Hilbert-Schmidt
norms’, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp.10666–10675.

Qin, Z., Yu, F., Liu, C. and Chen, X. (2018) Functionality-oriented
Convolutional Filter Pruning, arXiv preprint arXiv: 1810.
07322.

Raghu, M., Gilmer, J., Yosinski, J. and Sohl-Dickstein, J. (2017)
‘SVCCA: singular vector canonical correlation analysis for
deep learning dynamics and interpretability’, Advances in
Neural Information Processing Systems, pp.6076–6085.

Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A.
(2016) ‘XNOR-Net: ImageNet classification using binary
convolutional neural networks’, European Conference on
Computer Vision, pp.525–542.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J.,
Le, Q.V. and Kurakin, A. (2017) ‘Large-scale evolution of
image classifiers’, Proceedings of the 34th International
Conference on Machine Learning, Vol. 70, pp.2902–2911.

Schroff, F., Kalenichenko, D. and Philbin, J. (2015) ‘Facenet:
a unified embedding for face recognition and clustering’,
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp.815–823.

Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional
Networks for Large-scale Image Recognition, arXiv preprint
arXiv: 1409.1556.

Singh, B., Najibi, M. and Davis, L.S. (2018a) ‘SNIPER: efficient
multi-scale training’, Advances in Neural Information
Processing Systems, pp.9310–9320.

Singh, P., Verma, V.K., Rai, P. and Namboodiri, V.P. (2018b)
Leveraging Filter Correlations for Deep Model Compression,
arXiv preprint arXiv: 1811.10559.

Tai, C., Xiao, T., Zhang, Yi., Wang, X. et al. (2015) Convolutional
Neural Networks with Low-rank Regularization, arXiv
preprint arXiv: 1511.06067.

Wang, D., Zhou, L., Zhang, X., Bai, X. and Zhou, J. (2018)
Exploring Linear Relationship in Feature Map Subspace for
ConvNets Compression, arXiv preprint arXiv: 1803.05729.

Wang, W., Fu, C., Guo, J., Cai, D. and He, X. (2019) COP:
Customized Deep Model Compression Via Regularized
Correlation-based Filter-level Pruning, arXiv preprint arXiv:
1906.10337.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.S. and
Pennington, J. (2018) ‘Dynamical isometry and a mean
field theory of CNNs: how to train 10,000-layer vanilla
convolutional neural networks’, International Conference on
Machine Learning, pp.5389–5398.

Ye, J., Lu, X., Lin, Z. and Wang, J.Z. (2018) Rethinking
the Smaller-norm-less-informative Assumption in Channel
Pruning of Convolution Layers, arXiv preprint arXiv: 1802.
00124.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. and Lipson, H.
(2015) ‘Understanding neural networks through deep
visualization’, International Conference on Machine
Learning – Deep Learning Workshop 2015, p.12, p.7, p.8.

Yu, R., Li, A., Chen, C-F., Lai, J-H., Morariu, V.I., Han, X.,
Gao, M., Lin, C-Y. and Davis, L.S. (2018) ‘NISP: pruning
networks using neuron importance score propagation’,
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp.9194–9203.

Zhang, X., Zou, J., He, K. and Sun, J. (2015) ‘Accelerating very
deep convolutional networks for classification and detection’,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp.1943–1955.

Zhu, F., Zhu, L. and Yang, Y. (2019) ‘Sim-Real joint
reinforcement transfer for 3d indoor navigation’, Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp.11388–11397.

Zhuo, H., Qian, X., Fu, Y., Yang, H. and Xue, X. (2018) SCSP:
Spectral Clustering Filter Pruning with Soft Self-adaption
Manners, arXiv preprint arXiv: 1806.05320.

