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Abstract

Granular computing and acquisition of if-then rules are two basic issues in knowledge represen-

tation and data mining. A rough set approach to knowledge discovery in incomplete multi-scale

decision tables from the perspective of granular computing is proposed in this paper. The con-

cept of incomplete multi-scale information tables in the context of rough sets is first introduced.

Information granules at different levels of scales in incomplete multi-scale information tables are

then described. Lower and upper approximations with reference to different levels of scales in

incomplete multi-scale information tables are also defined and their properties are examined.

Optimal scale selection with various requirements in incomplete multi-scale decision tables are

further discussed. Relationships among different notions of optimal scales in incomplete multi-

scale decision tables are presented. Finally, knowledge acquisition in the sense of rule induction

in consistent and inconsistent incomplete multi-scale decision tables are explored.
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1. Introduction

With the development of computer science and internet technology, Big Data has
been one of the current and future research frontiers. The discovery of non-trivial, pre-
viously unknown, and potentially useful knowledge from databases is of importance in
the processing and utilization of large-scale information. An important task of knowledge
discovery is to establish relations among granules such as classes, clusters, sets, groups,
concepts, etc. As an approach for knowledge representation and data mining, Granular
computing (GrC), which can reduce the data size into different level of granularity, may
be a potential technique to explore Big Data [1]. The purpose of GrC is to seek for an
approximation scheme which can effectively solve a complex problem at a certain level
of granulation. The root of GrC comes from the concept of “information granularity”
proposed by Zadeh in the context of fuzzy set theory [59, 60]. Since its conception, GrC
has become a fast growing field of research in the scope of both applied and theoretical
information sciences [30–33,48, 52, 53, 61].
A primitive notion in GrC is an information granule or simply a granule which is a

clump of objects (points) drawn together by the criteria of indistinguishability, similarity
or functionality [2, 33, 60]. A granule may be interpreted as one of the numerous small
particles forming a larger unit. Alternatively, a granule may be considered as a localized
view or a specific aspect of a large unit satisfying a given specification. The set of granules
provides a representation of the unit with respect to a particular level of granularity. The
process of constructing information granules is called information granulation. It granu-
lates a universe of discourse into a family of disjoint or overlapping granules. Thus one
of the main directions in the study of GrC is the construction, interpretation, represen-
tation of granules, and the search for relations among granules represented as IF-THEN
rules having granular variables and granular values [48, 62].
Rough set theory is perhaps one of the most advanced approaches that popularizes GrC

(see e.g. [11–13,16,17,22,23,34,36,52,54,58]). It was initiated by Pawlak [28] as a formal
tool for modelling and processing incomplete information. The basic notions of rough
set theory are lower and upper approximations constructed by an approximation space.
When the rough set approach is used to extract decision rules from a given information
table, two types of decision rules may be unravelled. Based on the lower approximation of
a decision class, certain information can be discovered and certain rules can be derived
whereas, by using the upper approximation of a decision class, uncertain or partially
certain information can be discovered and possible rules may be induced.
Various approaches using Pawlak’s rough set model have been proposed to induce de-

cision rules from data sets taking the form of decision tables. A typical and rampant
existence of data set is called incomplete information tables in which attribute values for
some objects are unknown (missing, null) [14]. Many authors employed the extensions
of Pawlak’s rough set model to reason in incomplete information tables [3–7, 10, 14–17,
20, 21, 24, 25, 27, 43–45, 50, 51]. For example, Lingras and Yao [24] employed two differ-
ent generalizations of rough set models to generate plausibilistic rules with incomplete
databases instead of probabilistic rules generated by a Pawlak’s rough set model with
complete decision tables. Greco et al. [6], Grzymala-Busse [7], and Kryszkiewicz [14, 15]
used similarity relations in incomplete information tables with missing values. By analyz-
ing similarity classes defined by Kryszkiewicz, Leung and Li [16] introduced the concept
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of maximal consistent block technique for rule acquisition in incomplete information ta-
bles. To unravel certain and possible decision rules in incomplete information tables,
Leung et al. [17] developed new rough set approximations based on a new information
structure called labelled blocks. In [45], Wu explored knowledge reduction approaches by
employing the Dempster-Shafer theory of evidence in incomplete decision tables. With
reference to keeping the lower approximation and upper approximation of the decision
classification in the context of maximal consistent blocks, Qian et al. [36] introduced a
discernibility matrix approach to calculate a lower approximation reduct and an upper
approximation reduct in inconsistent incomplete decision tables.
The Pawlak’s rough set model and its extensive rough set models are mainly concerned

with the approximations of sets described by a single binary relation on the universe of
discourse. Qian et al. [37] extended Pawlak’s rough set model to a multi-granulation
rough set model, where the set approximations are defined by using multi-equivalence
relations on the universe of discourse. In [35], Qian et al. illuminated several basic views
for establishing a multi-granulation rough set model in the context of incomplete infor-
mation tables. In view of the rough-set data analysis, the multi-granulation rough set
models proposed in [35, 37] are in fact obtained by adding/deleting attributes in the in-
formation tables. It is well-known that, in a Pawlak information table, each object under
each attribute can only take on one value. We call such information table a single scale
information table. However, objects are usually measured at different scales under the
same attribute [18]. Thus, in many real-life multi-scale information tables, an object can
take on as many values as there are scales under the same attribute. For example, maps
can be hierarchically organized into different scales, from large to small and vice versa.
The political subdivision of China at the top level has 34 provinces, autonomous regions,
and directly-governed city regions. Under each province, there are many prefecture-level
cities. And, under each prefecture-level city, there are several counties, so on and so forth
down the hierarchy. With respect to different scales, a point in space may be located
in a province, or in a prefecture-level city, or in a county, etc. Another example is that
the examination results of mathematics for students can be recorded as natural num-
bers between 0 to 100, and it can also be graded as “Excellent”, “Good”, “Moderate”,
“Bad”, and “Unacceptable”. Sometimes, if needed, it might be graded into two values,
“Pass” and “Fail”. Hence, how to discover knowledge in hierarchically organized infor-
mation tables is of particular importance in real-life data mining. In [46], Wu and Leung
introduced the notion of multi-scale information tables from the perspective of granular
computing, represented the structure of and relationships among information granules,
and analyzed knowledge acquisition in multi-scale decision tables under different levels of
granularity. In a multi-scale information table, each object under each attribute is repre-
sented by different scales at different levels of granulations having a granular information
transformation from a finer to a coarser labelled value. In [8], Gu and Wu proposed
algorithms to knowledge acquisition in multi-scale decision tables. Wu and Leung [47]
further investigated the optimal scale selection for choosing a proper decision table with
some requirement for final decision or classification.
However, the unravelling of rules in multi-scale information tables in which attribute

values for some objects are unknown is crucial in decision making. Such a system is
called an incomplete multi-scale information table. Hence, the main objective of this
paper is to study the description of information granules and knowledge acquisition in
incomplete multi-scale information tables from the perspective of granular computing.
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For a given incomplete multi-scale information table, there are two key issues crucial to
the discovery of knowledge in the sense of granular IF-THEN rules. One is the optimal
scale selection for choosing a proper incomplete decision table with reference to some
requirement for final decision or classification, and the other is knowledge reduction by
reducing attributes in the selected decision table to maintain structure consistency for
the induction of concise decision rules.
In the next section, we introduce some basic notions related to incomplete information

tables, incomplete decision tables, rough set approximations, and belief and plausibility
functions in the Dempster-Shafer theory of evidence. The concepts of incomplete multi-
scale information tables and the corresponding rough set approximations are explored
in Section 3. In Section 4, we investigate optimal scale selection and rule acquisition in
incomplete multi-scale decision tables. We then conclude the paper with a summary and
outlook for further research in Section 5.

2. Preliminaries

In this section we recall some basic notions and previous results which will be used in
the later parts of this paper.
Throughout this paper, for a nonempty set U , the class of all subsets of U is denoted

by P(U). For X ∈ P(U), we denote the complement of X in U as ∼ X , i.e. ∼ X =
U −X = {x ∈ U |x /∈ X}, when X is a finite set, the cardinality of X is denoted as |X |.

2.1. Incomplete information tables and rough approximations

The notion of information tables (sometimes called information systems, data tables,
attribute-value systems, knowledge representation systems etc.) provides a convenient
tool for the representation of objects in terms of their attribute values.
An information table (IT) S is a pair (U,A), where U = {x1, x2, . . . , xn} is a nonempty

finite set of objects called the universe of discourse and A = {a1, a2, . . . , am} is a
nonempty finite set of attributes such that a : U → Va for any a ∈ A, i.e., a(x) ∈ Va,
where Va is called the domain of attribute a.
We see that in an IT information about any object is uniquely determined by the

values of all the attributes, that is, for each object x ∈ U and each attribute a ∈ A,
there exists unique v ∈ Va such that a(x) = v, such a system is also called a complete
information table (CIT). However, it may happen that our knowledge is not complete
and we are not able to state with certainty what is the value taken by a given attribute
a ∈ A for a given object x ∈ U , that is, the precise value of the attribute for the object
in the information table may be unknown, i.e. missing or null, in such a case, we will
denote the value by ∗. Such a system is referred to as an incomplete information table
(IIT). Any domain value different from ∗ will be called regular.
For an IIT S = (U,A) and B ⊆ A, one can define a binary relation on U as follows [14]:

RB = {(x, y) ∈ U × U |a(x) = a(y), or a(x) = ∗, or a(y) = ∗, ∀a ∈ B}. (1)

Obviously, RB is reflexive and symmetric, that is, it is a similarity relation. The concept
of a similarity relation has a wide variety of applications in classification [15–17, 21]. It
can easily be seen that
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Table 1
An exemplary incomplete information table

Car Price Mileage Size Max-Speed

x1 High Low Full Low

x2 Low ∗ Full Low

x3 ∗ ∗ Compact Low

x4 High ∗ Full High

x5 ∗ ∗ Full High

x6 Low High Full ∗

RB =
⋂

a∈B

R{a}. (2)

Denote SB(x) = {y ∈ U |(x, y) ∈ RB}, SB(x) is called the similarity class of x w.r.t.
B in S, the family of all similarity classes w.r.t. B is denoted by U/RB, i.e., U/RB =
{SB(x)|x ∈ U}.
A similarity relation in an IIT renders a covering of universe of discourse. Information

about similarity can be represented using similarity classes for each object. It is apparent
that an object of a given similarity class may also be similar to an object in another
similarity class. Therefore, the basic granules of knowledge in an IIT are essentially
overlapping.
By the definition of similarity class, it can easily be obtained the following:

Proposition 1 [5] Let S = (U,A) be an IIT. If C ⊆ B ⊆ A, then SB(x) ⊆ SC(x) for
all x ∈ U.
Example 1 Table 1 depicts an IIT S = (U,A) with missing values containing informa-
tion about cars which is a modification in [14]. From Table 1 we have:
U = {x1, x2, x3, x4, x5, x6}, A = {P,M, S,X},

where “P”, “M”, “S”, “X” stand for “Price”, “Mileage”, “Size”, “Max-Speed”, respec-
tively. The attribute domains are as follows:
VP = {High, Low}, VM = {High, Low}, VS = {Full, Compact}, and VX = {High, Low}.

The similarity classes determined by A are as follows:
SA(x1) = {x1}, SA(x2) = {x2, x6}, SA(x3) = {x3},
SA(x4) = {x4, x5}, SA(x5) = {x4, x5, x6}, SA(x6) = {x2, x5, x6}.

Definition 1 Let S = (U,A) be an IIT, B ⊆ A, and X ⊆ U , one can characterize X
by a pair of lower and upper approximations w.r.t. B:

RB(X) = {x ∈ U |SB(x) ⊆ X}, RB(X) = {x ∈ U |SB(x) ∩X 6= ∅}. (3)

RB(X) and RB(X) are, respectively, referred to as the lower and upper approximations
of X w.r.t. the knowledge generated by attributes B. X is said to be definable w.r.t. the
knowledge generated by attributes B if RB(X) = RB(X). The pair (RB(X), RB(X)) is
called the rough set of X w.r.t. B.
Given a subset X ⊆ U , by using the lower and upper approximations, the universe of

discourse can be divided into three pair-wise disjoint regions, namely, the positive, the
boundary, and the negative regions:

POS
B
(X) = RB(X),
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BN
B
(X) = RB(X)−RB(X),

NEG
B
(X) =∼ RB(X) = U −RB(X).

Objects in the positive region POS
B
(X) can be with certainty classified as elements of

X on the basis of knowledge generated by B, objects in the negative region NEG
B
(X)

can be with certainty classified as elements not belonging to X on the basis of knowledge
generated by B, and objects in the boundary region BN

B
(X) can only be classified

possibly as elements of X on the basis of knowledge generated by B.
The accuracy of the rough set approximation is defined as follows:

α
B
(X) =

|RB(X)|

|RB(X)|
, (4)

where for the empty set ∅, we define α
B
(∅) = 1. Clearly, 0 ≤ α

B
(X) ≤ 1. If X is definable

w.r.t. B, then α
B
(X) = 1.

Since a similarity relation is reflexive and symmetric, the approximations have following
properties [56]:
Proposition 2 Let (U,A) be an IIT, B,C ⊆ A, then: ∀X,Y ∈ P(U),
(1) RB(X) ⊆ X ⊆ RB(X),

(2) RB(X) =∼ RB(∼ X),

(3) RB(U) = RB(U) = U , RB(∅) = RB(∅) = ∅,

(4) RB(X ∩ Y ) = RB(X) ∩RB(Y ), RB(X ∪ Y ) = RB(X) ∪RB(Y ),

(5) X ⊆ Y =⇒ RB(X) ⊆ RB(Y ), RB(X) ⊆ RB(Y ),

(6) X ⊆ RB(RB(X)), RB(RB(X)) ⊆ X,

(7) C ⊆ B =⇒ RC(X) ⊆ RB(X), RB(X) ⊆ RC(X).
Example 2 In Example 1, if we set X = {x2, x5, x6}, then we can obtain RA(X) =

{x2, x6}, and RA(X) = {x2, x4, x5, x6}.

2.2. Belief structures and belief functions

The Dempster-Shafer theory of evidence, also called the “evidence theory” or the
“belief function theory”, is treated as a promising method of dealing with uncertainty
in intelligent systems. In this section we present results related to evidence theory and
rough approximations in IITs.
The basic representational structure in the Dempster-Shafer theory of evidence is a

belief structure [38].
Definition 2 Let U be a non-empty finite set, a set function m : P(U) → [0, 1] is
referred to as a basic probability assignment or mass distribution, if it satisfies axioms:

(M1) m(∅) = 0, (M2)
∑

X⊆U

m(X) = 1.

The value m(X) represents the degree of belief that a specific element of U belongs to set
X , but not to any particular subset of X . A set X ∈ P(U) with nonzero basic probability
assignment is referred to as a focal element of m. We denote by M the family of all focal
elements of m. The pair (M,m) is called a belief structure on U .
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Associated with each belief structure, a pair of belief and plausibility functions can be
derived [38].
Definition 3 Let (M,m) be a belief structure on U . A set function Bel : P(U) → [0, 1]
is referred to as a belief function on U if

Bel(X) =
∑

{Y⊆U|Y ⊆X}

m(Y ), ∀X ∈ P(U). (5)

A set function Pl : P(U) → [0, 1] is referred to as a plausibility function on U if

Pl(X) =
∑

{Y⊆U|Y ∩X 6=∅}

m(Y ), ∀X ∈ P(U). (6)

In the literature, one can find several interesting properties of belief and plausibility
functions.
Proposition 3 [38] If Bel and Pl are belief and plausibility functions derived from a
belief structure (M,m) on U , then
(1) Bel(∅) = Pl(∅) = 0,
(2) Bel(U) = Pl(U) = 1,
(3) X ⊆ Y ⊆ U =⇒ Bel(X) ≤ Bel(Y ), Pl(X) ≤ Pl(Y ),
(4) ∀{Y1, Y2, . . . , Yk} ⊆ P(U),

Bel
(

k
⋃

i=1

Yi

)

≥
∑

{

(−1)|J|+1Bel
(

⋂

i∈J

Yi

)

| ∅ 6= J ⊆ {1, 2, . . . , k}
}

,

Pl
(

k
⋂

i=1

Yi

)

≤
∑

{

(−1)|J|+1Pl
(

⋃

i∈J

Yi

)

| ∅ 6= J ⊆ {1, 2, . . . , k}
}

,

(5) Bel(X) + Bel(∼ X) ≤ 1, Pl(X) + Pl(∼ X) ≥ 1, ∀X ⊆ U,
(6) Bel(X) = 1− Pl(∼ X), ∀X ⊆ U ,
(7) Bel(X) ≤ Pl(X), ∀X ⊆ U.
For a given belief function, the basic probability assignment can be calculated by

Möbius transformation [38]:

m(X) =
∑

D⊆X

(−1)|X−D|Bel(D), X ⊆ U. (7)

There are strong connections between rough set theory and the Dempster-Shafer theory
of evidence. The following Theorem 1 states that a pair of lower and upper approxima-
tions induced from a reflexive approximation space can interpret a pair of belief and
plausibility functions derived from a special kind of belief structure [49, 57].
Theorem 1 Let (U,R) be a reflexive approximation space, i.e., U is a nonempty finite
set and R a reflexive relation on U , for any X ⊆ U , the lower and upper approximations
of X w.r.t. (U,R) are defined as follows:

R(X) = {x ∈ U |Rs(x) ⊆ X}, R(X) = {x ∈ U |Rs(x) ∩X 6= ∅}, (8)

where Rs(x) = {y ∈ U |(x, y) ∈ R} is the successor neighborhood of x w.r.t. R. Denote

Bel(X) = P (R(X)), Pl(X) = P (R(X)), (9)
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where P (X) = |X |/|U |. Then Bel and Pl are belief and plausibility functions on U
respectively, and the corresponding basic probability assignment is

m(Y ) = P (j(Y )), Y ∈ P(U), (10)

where j(Y ) = {u ∈ U |Rs(u) = Y }. Conversely, if Bel and Pl are a dual pair of belief
and plausibility functions induced from a belief structure (M,m) on U where m(X) is
equivalent to a rational number with |U | as its denominator for all X ∈ P(U), then there
exists a reflexive approximation space (U,R) such that the induced qualities of lower and
upper approximations satisfy

P (R(X)) = Bel(X), P (R(X)) = Pl(X), ∀X ⊆ U. (11)

Since a similarity relation is reflexive, by Theorem 1, we can conclude the following
theorem, which shows that the pair of lower and upper approximations w.r.t. an attribute
set in an IIT generate a dual pair of belief and plausibility functions.
Theorem 2 Let (U,A) be an IIT and B ⊆ A. For any X ⊆ U , denote

BelB(X) = P (RB(X)), PlB(X) = P (RB(X)). (12)

Then BelB and PlB are a dual pair of belief and plausibility functions on U , and the
corresponding basic probability assignment is

m
B
(Y ) = P (j

B
(Y )), Y ∈ P(U), (13)

where j
B
(Y ) = {u ∈ U |SB(u) = Y }.

The initial results from rough set theory into evidence theory are presented by Skowron
[39–41]. Theorem 1, which includes results from evidence theory into rough set theory, was
first described by Yao [57]. The results of Theorem 2 can be found in [41]. In literature,
P (RB(X)) and P (RB(X)) are referred to as qualities of lower and upper approximations
of X w.r.t. B [41, 57], and they are called random qualities of lower and upper approxi-
mations of X w.r.t. B when P is an arbitrary probability on U [49]. The quality of lower
approximation of X w.r.t. B is the probability of set of all certainly classified objects
by attributes from B, whereas the quality of upper approximation of X w.r.t. B is the
probability of set of all possibly classified objects by attributes from B.
Combining Theorem 2 and Proposition 2, we obtain the following:

Proposition 4 Let (U,A) be an IIT. If C ⊆ B ⊆ A, then, for any X ⊆ U ,

BelC(X) ≤ BelB(X) ≤ P (X) ≤ PlB(X) ≤ PlC(X). (14)

2.3. Incomplete decision tables and decision rules

A decision table (DT) (also called a decision system) is a system S = (U,C ∪ {d})
where (U,C) is an information table, d /∈ C and d is a complete attribute called decision,
in this case C is called the conditional attribute set, d is a mapping d : U → Vd from
the universe U into the value set Vd, we assume, without any loss of generality, that
Vd = {1, 2, . . . , r}. Define

Rd = {(x, y) ∈ U × U |d(x) = d(y)}. (15)
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Then Rd is an equivalence relation and it forms a partition U/Rd = {D1, D2, . . . , Dr} =
{[x]d|x ∈ U} of U into decision classes, where Dj = {x ∈ U |d(x) = j}, j = 1, 2, . . . , r,
and [x]d = {y ∈ U |(x, y) ∈ Rd}. If (U,C) is a CIT, then S is referred to as a complete
decision table (CDT), and if (U,C) is an IIT, then S is called an incomplete decision
table (IDT).
Let S = (U,C ∪ {d}) be an IDT and B ⊆ C, denote

∂B(x) = {d(y)|y ∈ SB(x)}, x ∈ U. (16)

∂B(x) is called the generalized decision of x w.r.t. B in S. S is said to be consistent if
|∂C(x)| = 1 for all x ∈ U , otherwise it is inconsistent. In a consistent IDT S = (U,C∪{d}),
we have RC ⊆ Rd, i.e., SC(x) ⊆ [x]d for all x ∈ U , alternatively, ∂C(x) = {d(x)} for all
x ∈ U .
In the discussion to follow, the symbols ∧ and ∨ denote the logical connectives “and”

(conjunction) and “or”(disjunction), respectively. Any attribute-value pair (a, v), v ∈
Va, a ∈ B,B ⊆ C, is called a B-atomic property. Any B-atomic property or conjunction
of different B-atomic properties is called a B-descriptor. Let t be a B-descriptor, the
attribute set occurring in t is denoted by B(t). If (a, v) is an atomic property occurring
in t, we simply say that (a, v) ∈ t. The set of objects having descriptor t is called the
support of t and is denoted by ‖t‖, i.e., ‖t‖ = {x ∈ U |v = a(x), ∀(a, v) ∈ t}. If t
and s are two atomic properties, then it can be observed that ‖t ∧ s‖ = ‖t‖ ∩ ‖s‖ and
‖t ∨ s‖ = ‖t‖ ∪ ‖s‖.
For B ⊆ C, we denote

DES(B) = {t|t is a B-descriptor and ‖t‖ 6= ∅}. (17)

For any t ∈ DES(B), if B(t) = B, then t is called a full B-descriptor. Denote

FDES(B) = {t|t is a full B-descriptor}. (18)

Example 3 In Example 1, let B = {S,X}, then all B-atomic properties are (S,Full),
(S,Compact), (X,Low), and (X,High).
The set of all B-descriptors is {(S,Full), (S,Compact), (X,Low), (X,High), (S,Full)∧

(X,Low), (S,Full) ∧ (X,High), (S,Compact) ∧ (X,Low), (S,Compact) ∧ (X,High)}.
And it can be derived from Table 1 that

DES(B) = {(S,Full), (S,Compact), (X,Low), (X,High), (S,Full) ∧ (X,Low),

(S,Compact) ∧ (X,Low), (S,Full) ∧ (X,High)}.

FDES(B) = {(S,Full) ∧ (X,Low), (S,Compact) ∧ (X,Low), (S,Full) ∧ (X,High)}.

For any B-descriptor t, denote

∂(t) = {d(y)|y ∈ ‖t‖}, (19)

∂(t) is called the generalized decision of t in S. Any (d, w), w ∈ ∂(t), is referred to as a
generalized decision descriptor of t.
If |(∂(t))| = 1, we then say that descriptor t is consistent, otherwise it is inconsistent.
The following proposition can easily be concluded [17]:
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Proposition 5 Let S = (U,C ∪ {d}) be an IDT, w ∈ Vd, and t ∈ DES(C). Then
(1) ‖t‖ ⊆ ‖(d, w)‖ iff ∂(t) = {w},
(2) ‖t‖ ∩ ‖(d, w)‖ 6= ∅ iff w ∈ ∂(t).
Thus, we can see that an IDT S is consistent iff |∂(t)| = 1 for all t ∈ FDES(C).
For X ⊆ U and B ⊆ C, it can be verified that

RB(X) = ∪{‖t‖| ‖t‖ ⊆ X, t ∈ FDES(B)},

RB(X) = ∪{‖t‖| ‖t‖ ∩X 6= ∅, t ∈ FDES(B)}.
(20)

Let w ∈ Vd and t ∈ FDES(B). If ‖t‖ ⊆ RB(‖(d, w)‖) (resp. ‖t‖ ⊆ RB(‖(d, w)‖)),
then we call t a lower (resp. an upper) approximation B-descriptor of (d, w). The set of
all lower (resp. upper) approximation B-descriptors of (d, w) is denoted by RB((d, w))

(resp. RB((d, w))). And also, if ‖t‖ ⊆ BNB(‖(d, w)‖), then t is referred to as a boundary
descriptor of (d, w) w.r.t. B. The set of all boundary descriptors of (d, w) w.r.t. B is
denoted by BNDESB((d, w)).
Proposition 6 below shows that the approximations of decision classes can be expressed

by means of the generalized decision [17].
Proposition 6 Let S = (U,C ∪ {d}) be an IDT. If w ∈ Vd, t is a C-descriptor, and
B ⊆ C, then
(1) RB(‖(d, w)‖) = ∪{‖t‖|t ∈ FDES(B), ∂(t) = {w}},

(2) RB(‖(d, w)‖) = ∪{‖t‖|t ∈ FDES(B), w ∈ ∂(t)},
(3) RB((d, w)) = { t ∈ FDES(B)|∂(t) = {w}},

(4) RB((d, w)) = {t ∈ FDES(B)|w ∈ ∂(t)}.
The knowledge hidden in an IDT S = (U,C ∪{d}) may be discovered and expressed in

the form of decision rules: t → s, where t = ∧(a, v), a ∈ B ⊆ C, and s = (d, w), w ∈ Vd,
t and s are, respectively, called the condition and decision parts of the rule.
We say that an object x ∈ U supports a rule t → s in the IDT S iff x ∈ ‖t‖ ∩ ‖s‖.
A decision rule t → s = (d, w) is referred to as certain in the IDT S iff ‖t‖ 6= ∅ and

‖t‖ ⊆ ‖s‖, in such a case, we denote t ⇒ s instead of t → s.
A decision rule t → s = (d, w) is referred to as possible in the IDT S iff ‖t‖ 6⊆ ‖s‖ and

‖t‖ ∩ ‖s‖ 6= ∅.
By using the lower and upper approximations of decision classes w.r.t. a conditional

attribute subset, one can acquire certain decision rules and possible decision rules from
an IDT.
With each decision rule t → s = (d, w) in an IDT S, we associate a quantitative

measure, called the certainty, of the rule in S and is defined by [17, 29]:

Cer(t → s) =
| ‖t‖ ∩ ‖s‖ |

| ‖t‖ |
. (21)

The quantity Cer(t → s) shows the degree to which objects supporting descriptor t also
support decision s in S. If Cer(t → s) = α, then (100α)% of objects supporting t also
support s in S.
The following Proposition 7 shows that the types of decision rules can be expressed

by means of the certainty factors of the rules as well as the lower and the upper approx-
imations of each decision class w.r.t the set of conditional attributes in an IDT.
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Proposition 7 Let S = (U,C ∪ {d}) be an IDT. If w ∈ Vd, t is a C-descriptor, and
s = (d, w), then the decision rule t → s

(1) is certain in S ⇐⇒ ‖t‖ ⊆ RC(t)(‖(d, w)‖)

⇐⇒ t ∈ RC(t)((d, w))

⇐⇒ ∂(t) = {w}

⇐⇒ Cer(t → (d, w)) = 1.

(2) is a possible rule in S ⇐⇒ ‖t‖ ⊆ BNC(t)(‖(d, w)‖)

⇐⇒ t ∈ BNDESC(t)((d, w))

⇐⇒ w ∈ ∂(t) and | ∂(t) |≥ 2

⇐⇒ 0 < Cer(t → (d, w)) < 1.

One can acquire certainty decision rules from consistent IDTs and uncertainty decision
rules from inconsistent IDTs. In fact, if |∂C(x)| = 1, then the decision rule correspond-
ing to (or supported by the objects in) the similarity class SC(x) is certain, otherwise,
|∂C(x)| ≥ 2, the decision rule corresponding to the similarity class SC(x) is uncertain.
We can see that the lower and upper approximations divide the universe of objects

into three pair-wise disjoint regions: the lower approximation as the positive region, the
complement of the upper approximation as the negative region, and the difference be-
tween the upper and lower approximations as the boundary region. Observing that rules
constructed from the three regions are associated with different actions and decisions,
by employing probabilistic rough sets and Bayesian decision theory, Yao [55] proposed
a new notion of three-way decision rules in which a positive rule makes a decision of
acceptance, a negative rule makes a decision of rejection, and a boundary rule makes a
decision of abstaining.
A decision rule with too long a description means high prediction cost. To acquire

concise decision rules from IDTs, knowledge reduction is needed. It is well-known that
not all conditional attributes are necessary to depict the decision attribute before decision
rules are generated. Thus knowledge reduction by reducing attributes is one of the main
problems in the study of rough set theory and it is performed in information tables by
means of the notion of a reduct (see e.g. [9, 11, 19, 26, 28, 42, 45, 48]).
Definition 4 Let S = (U,C ∪ {d}) be an IDT and B ⊆ C. Then
(1) B is referred to as a lower approximation consistent set of S if RB(D) = RC(D)

for all D ∈ U/Rd. If B is a lower approximation consistent set of S and no proper
subset of B is a lower approximation consistent set of S, then B is referred to as a lower
approximation reduct of S.
(2) B is referred to as an upper approximation consistent set of S if RB(D) = RC(D)

for all D ∈ U/Rd. If B is an upper approximation consistent set of S and no proper
subset of B is an upper approximation consistent set of S, then B is referred to as an
upper approximation reduct of S.
(3) B is referred to as a generalized decision consistent set of S if ∂B(x) = ∂C(x) for

all x ∈ U . If B is a generalized decision consistent set of S and no proper subset of B is
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a generalized decision consistent set of S, then B is referred to as a generalized decision
reduct of S.
(4) B is referred to as a belief consistent set of S if BelB(D) = BelC(D) for all D ∈

U/Rd. If B is a belief consistent set of S and no proper subset of B is a belief consistent
set of S, then B is referred to as a belief reduct of S.
(5) B is referred to as a plausibility consistent set of S if PlB(D) = PlC(D) for all

D ∈ U/Rd. If B is a plausibility consistent set of S and no proper subset of B is a
plausibility consistent set of S, then B is referred to as a plausibility reduct of S.
By Definition 4, we see that a lower approximation reduct in an IDT is a minimal

attribute subset to preserve the lower approximations of the decision classes w.r.t. the
full conditional attribute set; An upper approximation reduct in an IDT is a minimal
attribute subset to preserve the upper approximations of the decision classes w.r.t. the
full conditional attribute set; A generalized decision reduct in an IDT is a minimal at-
tribute subset to preserve the generalized decisions of the objects in the similarity classes
generated by the full conditional attribute set. And a belief (resp. plausibility) reduct in
an IDT is a minimal attribute subset to keep the degree of belief (resp. plausibility) of
each decision class w.r.t. the full conditional attribute set.
It has been proved [45] that an attribute subset B ⊆ C in an IDT S = (U,C ∪ {d})

is a lower approximation reduct of S iff it is a belief reduct of S; and B is an upper
approximation reduct of S iff it is a generalized decision reduct of S iff it is a plausibility
reduct of S. So, in fact, there are only two different types of reducts in Definition 4,
namely, the lower approximation reduct (belief reduct) and the upper approximation
reduct (generalized decision reduct, plausibility reduct), which are related to certain and
possible decision rules, respectively.
More specifically, if S = (U,C ∪ {d}) is a consistent IDT, that is, RC ⊆ Rd, then it

is easy to see that ∂C(x) = {d(x)} for all x ∈ U. In such case, a subset B ⊆ C is a
consistent set of S iff RB ⊆ Rd and B is a reduct of the consistent IDT S iff B is a
minimal attribute set keeping the subtable (U,B ∪ {d}) consistent, i.e. RB ⊆ Rd. In this
case, all the five types of reducts in Definition 4 are equivalent (see [45]), in the literature,
it is called a relative reduct.
As for an inconsistent IDT S = (U,C∪{d}), for any B ⊆ C, we define a binary relation

RB
d on U as follows:

RB
d = {(x, y) ∈ U × U |∂

B
(x) = ∂

B
(y)}. (22)

It can easily be verified that RB
d is an equivalence relation on U and (U,C ∪ {∂C}) is a

consistent IDT. Moreover, it can be checked that ∂
B
(x) = ∂

C
(x) for all x ∈ U iff RB ⊆

RC
d , that is, B is a generalized decision consistent set of the inconsistent IDT (U,C∪{d})

iff B is a (lower approximation) consistent set of the consistent IDT (U,C ∪ {∂C}), and
consequently, B is a generalized decision reduct of the inconsistent IDT (U,C ∪ {d})
iff B is a (lower approximation) reduct of consistent IDT (U,C ∪ {∂C}). Thus, we can
calculate reducts in the consistent IDT (U,C ∪ {∂C}) in stead of computing generalized
decision reducts in the inconsistent IDT (U,C ∪ {d}).
Computing reducts in an IDT can also be translated into the computation of prime

implicants of a Boolean function. For the detail, we refer the reader to [14, 15, 36].
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3. Incomplete multi-scale information tables

In an information table, each object can only take on one value under each attribute.
However, in some real-life applications, one has to make decision with different levels
of scales. That is, an object may take on different values under the same attribute,
depending on at which scale it is measured. In this section we introduce the concept of
incomplete multi-scale information tables from the perspective of granular computing.
Definition 5 [46] A multi-scale information table is a tuple S = (U,A), where
• U = {x1, x2, . . . , xn} is a non-empty, finite set of objects called the universe of

discourse;
• A = {a1, a2, . . . , am} is a non-empty, finite set of attributes, and each aj ∈ A is

a multi-scale attribute, i.e., for the same object in U , attribute aj can take on different
values at different scales.
In the discussion to follow, we always assume that all the attributes have the same

number I of levels of scales. Hence, a multi-scale information table can be represented
as a table (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}), where akj : U → V k

j is a surjective

mapping and V k
j is the domain of the k-th scale attribute akj . For k ∈ {1, 2, . . . , I − 1},

there exists a surjective mapping gk,k+1
j : V k

j → V k+1
j such that ak+1

j = gk,k+1
j ◦ akj , i.e.

ak+1
j (x) = gk,k+1

j (akj (x)), x ∈ U, (23)

where gk,k+1
j is called a granular information transformation mapping.

For k ∈ {1, 2, . . . , I}, we denote Ak = {akj |j = 1, 2, . . . ,m}. Then a multi-scale infor-

mation table S = (U,A) can be decomposed into I ITs Sk = (U,Ak), k = 1, 2, . . . , I.
If S1 = (U,A1) is an IIT, then (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}) is called

an incomplete multi-scale information table, in such a case, the granular information
transformation mappings are defined as follows:

ak+1
j (x) =







∗, if akj (x) = ∗,

gk,k+1
j (akj (x)), otherwise.

(24)

where k = 1, 2, . . . , I − 1, x ∈ U, j = 1, 2, . . . ,m. Hence, an incomplete multi-scale infor-
mation table S = (U,A) can be decomposed into I IITs Sk = (U,Ak), k = 1, 2, . . . , I.
Definition 6 Let U be a nonempty set, and A1 and A2 two coverings of U . If for each
A1 ∈ A1, there exists A2 ∈ A2 such that A1 ⊆ A2, then we say that A1 is finer than A2

or A2 is coarser than A1, and is denoted as A1 ⊑ A2.
The following Proposition 8 can easily be concluded.

Proposition 8 Let S = (U,A) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}) be an incom-
plete multi-scale information table, and B ⊆ A, for k ∈ {1, 2, . . . , I}, denote

RBk = {(x, y) ∈ U × U |ak(x) = ak(y), or a(x) = ∗, or a(y) = ∗, ∀a ∈ B},

S
Bk

(x) = {y ∈ U |(x, y) ∈ RBk},

U/RBk = {S
Bk

(x)|x ∈ U}.

(25)

Then
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RB1 ⊆ RB2 ⊆ · · · ⊆ RBI ,

S
B1

(x) ⊆ S
B2

(x) ⊆ · · · ⊆ S
BI

(x), x ∈ U,

U/RB1 ⊑ U/RB2 ⊑ · · · ⊑ U/RBI .

(26)

Let S = (U,A) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}) be an incomplete multi-
scale information table, B ⊆ A, k ∈ {1, 2, . . . , I}, and X ⊆ U , the lower and upper
approximations of X w.r.t. Bk are defined as follows:

RBk(X) = {x ∈ U |SBk(x) ⊆ X}, RBk(X) = {x ∈ U |SBk(x) ∩X 6= ∅}. (27)

The following Proposition 9 presents some properties of set approximations with dif-
ferent scales.
Proposition 9 Let S = (U,A) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}) be an incom-
plete multi-scale information table, B ⊆ A, and k ∈ {1, 2, . . . , I}, then: ∀X,Y ∈ P(U),
(1) RBk(X) =∼ RBk(∼ X),

(2) RBk(X) =∼ RBk(∼ X),

(3) RBk(∅) = RBk(∅) = ∅,

(4) RBk(U) = RBk(U) = U ,
(5) RBk(X ∩ Y ) = RBk(X) ∩RBk(Y ),

(6) RBk(X ∪ Y ) = RBk(X) ∪RBk(Y ),
(7) X ⊆ Y =⇒ RBk(X) ⊆ RBk(Y ),

(8) X ⊆ Y =⇒ RBk(X) ⊆ RBk(Y ),
(9) RBk(X ∪ Y ) ⊇ RBk(X) ∪RBk(Y ),

(10) RBk(X ∩ Y ) ⊆ RBk(X) ∩RBk(Y ),
(11) RBk(X) ⊆ X ⊆ RBk(X),
(12) RBk+1(X) ⊆ RBk(X), where k ∈ {1, 2, . . . , I − 1},

(13) RBk(X) ⊆ RBk+1(X), where k ∈ {1, 2, . . . , I − 1}.
For B ⊆ A and X ⊆ U , since U/RB1 ⊑ U/RB2 ⊑ · · · ⊑ U/RBI , according to

Proposition 9, we can obtain a nested sequence of set approximations as follows:

RBI (X) ⊆ RBI−1(X) ⊆ · · · ⊆ RB2(X) ⊆ RB1(X) ⊆ X,

X ⊆ RB1(X) ⊆ RB2(X) ⊆ · · · ⊆ RBI−1(X) ⊆ RBI (X).
(28)

Therefore, we have nested sequences of the positive, the boundary, and the negation
regions:

POSBI (X) ⊆ POSBI−1(X) ⊆ · · · ⊆ POSB2(X) ⊆ POSB1(X),

BNB1(X) ⊆ BNB2(X) ⊆ · · · ⊆ BNBI−1(X) ⊆ BNBI (X),

NEGBI (X) ⊆ NEGBI−1(X) ⊆ · · · ⊆ NEGB2(X) ⊆ NEGB1(X).

(29)

Consequently, we obtain a sequence of accuracies for approximations w.r.t. different
scales:

α
BI

≤ α
BI−1

≤ · · · ≤ α
B2

≤ α
B1

. (30)

14



Table 2
An incomplete multi-scale decision table with three levels of scales

U a1
1

a2
1

a3
1

a1
2

a2
2

a3
2

a1
3

a2
3

a3
3

d

x1 1 S N 2 S N 3 M Y 1

x2 2 S N 2 S N 3 M Y 1

x3 2 S N ∗ ∗ ∗ 4 L Y 2

x4 3 M Y 5 L Y 1 S N 2

x5 3 M Y 4 L Y 4 L Y 2

x6 4 L Y 4 L Y ∗ ∗ ∗ 2

x7 5 L Y 4 L Y 3 M Y 2

x8 1 S N 5 L Y 3 M Y 2

By employing Theorem 2 and inclusion relation (28), we can conclude following:
Proposition 10 Let S = (U,A) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}) be an in-
complete multi-scale information table, and B ⊆ A, for k ∈ {1, 2, . . . , I}, denote

BelBk(X) = P (RBk(X)) =
|RBk(X)|

|U |
, ∀X ∈ P(U),

PlBk(X) = P (RBk(X)) =
|RBk(X)|

|U |
, ∀X ∈ P(U).

(31)

Then BelBk : P(U) → [0, 1] and PlBk : P(U) → [0, 1] are a dual pair of belief and
plausibility functions on U , and the corresponding basic probability assignment m

Bk
:

P(U) → [0, 1] is

m
Bk

(Y ) =











P (j
Bk

(Y )) =
|j

Bk
(Y )|

|U |
, if Y ∈ U/R

Bk
,

0, otherwise.

(32)

where j
Bk

(Y ) = {u ∈ U |SBk(u) = Y }. Moreover, the belief and plausibility functions
satisfy the following properties:
(1) BelBI (X) ≤ BelBI−1(X) ≤ · · · ≤ BelB2(X) ≤ BelB1(X) ≤ P (X),
(2) P (X) ≤ PlB1(X) ≤ PlB2(X) ≤ · · · ≤ PlBI−1(X) ≤ PlBI (X),
(3) C ⊆ B ⊆ A =⇒ BelCk(X) ≤ BelBk(X) ≤ P (X) ≤ PlBk(X) ≤ PlCk(X).

Definition 7 A system S = (U,C∪{d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}∪{d})

is referred to as an incomplete multi-scale decision table, where (U,C) = (U, {akj |k =
1, 2, . . . , I, j = 1, 2, . . . ,m}) is an incomplete multi-scale information table and d /∈
{akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}, d : U → Vd, is a special attribute called the decision.

Such a system can be decomposed into I IDTs Sk = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) =

(U,Ck ∪ {d}), k = 1, 2, . . . , I, with the same decision d. An incomplete multi-scale deci-
sion table S is referred to as consistent if the IDT under the first (finest) level of scale,
S1 = (U, {a1j |j = 1, 2, . . . ,m} ∪ {d}) = (U,C1 ∪ {d}), is consistent, and S is called

inconsistent if S1 is an inconsistent IDT.

Example 4 Table 2 is an example of an incomplete multi-scale decision table S =
(U, {akj |k = 1, 2, 3, j = 1, 2, 3} ∪ {d}), where U = {x1, x2, . . . , x8}, C = {a1, a2, a3}. The
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Table 3
The incomplete decision table with the first level of scale of Table 2

U a1
1

a1
2

a1
3

d

x1 1 2 3 1

x2 2 2 3 1

x3 2 ∗ 4 2

x4 3 5 1 2

x5 3 4 4 2

x6 4 4 ∗ 2

x7 5 4 3 2

x8 1 5 3 2

Table 4
The incomplete decision table with the second level of scale of Table 2

U a2
1

a2
2

a2
3

d

x1 S S M 1

x2 S S M 1

x3 S ∗ L 2

x4 M L S 2

x5 M L L 2

x6 L L ∗ 2

x7 L L M 2

x8 S L M 2

Table 5
The incomplete decision table with the third level of scale of Table 2

U a3
1

a3
2

a3
3

d

x1 N N Y 1

x2 N N Y 1

x3 N ∗ Y 2

x4 Y Y N 2

x5 Y Y Y 2

x6 Y Y ∗ 2

x7 Y Y Y 2

x8 N Y Y 2

table has three levels of scales, where “S”, “M”, “L”, “Y”, and “N” stand for, respec-
tively, “Small”, “Medium”, “Large”, “Yes”, and “No”. For these levels of granularities,
the system is associated with three IDTs which are described as Tables 3–5, respectively.
It can easily be checked that RC1 ⊆ Rd, thus S is a consistent incomplete multi-scale
decision table.
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4. Knowledge discovery in incomplete multi-scale decision tables

In this section we discuss knowledge discovery with rough set approach in incomplete
multi-scale decision tables.

4.1. Rule acquisition in consistent incomplete multi-scale decision tables

In this subsection we investigate knowledge acquisition in the sense of rule induction
from a consistent incomplete multi-scale decision table.
Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}) be a consistent

incomplete multi-scale decision table which has I levels of scales. For 1 ≤ i < k ≤ I, if
Sk = (U,Ck ∪ {d}) = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is a consistent IDT, i.e. R

Ck
⊆ Rd,

then, by Proposition 8, we can observe thatR
Ci

⊆ R
Ck

⊆ Rd. Hence, S
i = (U,Ci∪{d}) =

(U, {aij |j = 1, 2, . . . ,m} ∪ {d}) is also a consistent IDT.

Definition 8 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}) be
a consistent incomplete multi-scale decision table which has I levels of scales, the k-th
level of scale is said to be optimal if Sk is consistent and Sk+1 (if there exists k + 1) is
inconsistent.
According to Definition 8, we can see that the optimal scale of a consistent incomplete

multi-scale decision table is the best scale for decision making or classification in the
multi-scale decision table. And k is the optimal scale iff k is the maximal number such
that Sk is a consistent IDT.
Lemma 1 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}) be a

consistent incomplete multi-scale decision table, for k ∈ {1, 2, . . . , I}, if Sk = (U,Ck ∪
{d}) = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is a consistent IDT, i.e., RCk ⊆ Rd, then
(1) RCk(D) = D for all D ∈ U/Rd.

(2) RCk(D) = D for all D ∈ U/Rd.
Proof. (1) For each D ∈ U/Rd, by Proposition 9, we have RCk(D) ⊆ D. On the other

hand, for any x ∈ D, clearly, [x]d = D. Since Sk = (U,Ck ∪ {d}) is consistent, we have
SCk(x) ⊆ [x]d = D. By the definition of lower approximation, we conclude x ∈ RCk(D).
Consequently, D ⊆ RCk(D). Thus RCk(D) = D.

(2) For each D ∈ U/Rd, by Proposition 9, we have D ⊆ RCk(D). Conversely, assume
that x ∈ RCk(D), by the definition of upper approximation, we have SCk(x) ∩ D 6= ∅.
For any y ∈ SCk(x) ∩ D, it is easy to observe that [y]d = D. Since RCk is symmetric,
from y ∈ SCk(x) we have x ∈ SCk(y). Since Sk = (U,Ck ∪ {d}) is consistent, we obtain
SCk(y) ⊆ [y]d, hence x ∈ SCk(y) ⊆ [y]d = D. It follows that RCk(D) ⊆ D. Thus
RCk(D) = D. 2

Theorem 3 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d})
be a consistent incomplete multi-scale decision table which has I levels of scales. For
k ∈ {1, 2, . . . , I}, then the following statements are equivalent:
(1) Sk = (U,Ck ∪ {d}) = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is a consistent IDT, i.e.,

RCk ⊆ Rd.
(2)

∑

D∈U/Rd
BelCk(D) = 1.

(3)
∑

D∈U/Rd
PlCk(D) = 1.
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Proof. “(1) ⇒ (2)” Since Sk = (U,Ck ∪ {d}) is consistent, by Lemma 1, we have
RCk(D) = D for all D ∈ U/Rd. Therefore,

∑

D∈U/Rd

BelCk(D) =
∑

D∈U/Rd

|RCk(D)|

|U |
=

∑

D∈U/Rd

|D|

|U |
= 1. (33)

“(2) ⇒ (1)” Assume that
∑

D∈U/Rd
BelCk(D) = 1. Since S is a consistent incomplete

multi-scale decision table, by the definition, we see that S1 = (U,C1∪{d}) = (U, {a1j |j =
1, 2, . . . ,m} ∪ {d}) is a consistent IDT. Hence,

∑

D∈U/Rd
BelC1(D) = 1. That is to say,

∑

D∈U/Rd

BelCk(D) =
∑

D∈U/Rd

BelC1(D) = 1. (34)

By Proposition 10, we observe that BelCk(D) ≤ BelC1(D) for all D ∈ U/Rd, then, by
Eq. (34), we obtain

BelCk(D) = BelC1(D) =
|D|

|U |
, ∀D ∈ U/Rd. (35)

It follows that

|RCk(D)| = |RC1(D)| = |D|, ∀D ∈ U/Rd. (36)

According to Proposition 9, we have RCk(D) ⊆ D, by Eq. (36), we then conclude that
RCk(D) = D for all D ∈ U/Rd, i.e., for any x ∈ U , we have RCk([x]d) = [x]d. Therefore,
for any y ∈ [x]d, we obtain y ∈ RCk([x]d). By the definition of lower approximation, we
conclude SCk(y) ⊆ [x]d. Let y = x, we get SCk(x) ⊆ [x]d. Thus we have proved that
RCk ⊆ Rd, which means that Sk = (U,Ck ∪ {d}) is a consistent IDT.
“(1) ⇒ (3)” Since Sk = (U,Ck∪{d}) is consistent, by Lemma 1, we have RCk(D) = D

for all D ∈ U/Rd. Therefore,

∑

D∈U/Rd

PlCk(D) =
∑

D∈U/Rd

|RCk(D)|

|U |
=

∑

D∈U/Rd

|D|

|U |
= 1. (37)

“(3) ⇒ (1)” Assume that
∑

D∈U/Rd
PlCk(D) = 1. Since S is a consistent incomplete

multi-scale decision table, by the definition, we see that S1 = (U,C1∪{d}) = (U, {a1j |j =
1, 2, . . . ,m} ∪ {d}) is a consistent IDT. Hence,

∑

D∈U/Rd
PlC1(D) = 1, that is,

∑

D∈U/Rd

PlCk(D) =
∑

D∈U/Rd

PlC1(D) = 1. (38)

By Proposition 10, we see that PlC1(D) ≤ PlCk(D) for all D ∈ U/Rd, then, by Eq. (38),
we obtain

PlCk(D) = PlC1(D) =
|D|

|U |
, ∀D ∈ U/Rd. (39)

It follows that

|RCk(D)| = |RC1(D)| = |D|, ∀D ∈ U/Rd. (40)
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According to Proposition 9, we see that

D ⊆ RC1(D) ⊆ RCk(D), ∀D ∈ U/Rd. (41)

Combining Eq. (40) and inclusion relation (41), we conclude

D = RC1(D) = RCk(D), ∀D ∈ U/Rd. (42)

For any x ∈ U , we select D ∈ U/Rd such that x ∈ D, clearly, [x]d = D. For any
y ∈ SCk(x), from the symmetry of RCk , we have x ∈ SCk(y). Hence SCk(y) ∩ [x]d 6= ∅,
by the definition of upper approximation, we get y ∈ RCk([x]d). Consequently, by Eq.
(42), we conclude y ∈ [x]d. Thus we have proved that SCk(x) ⊆ [x]d for all x ∈ U, i.e.,
RCk ⊆ Rd, which means that Sk = (U,Ck ∪ {d}) is a consistent IDT. 2

According to Theorem 3 and Proposition 10, we can conclude following:
Theorem 4 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d})
be a consistent incomplete multi-scale decision table which has I levels of scales. For
k ∈ {1, 2, . . . , I}, the following statements are equivalent:
(1) the k-th level of scale is the optimal scale.
(2)

∑

D∈U/Rd

BelCk(D) = 1. (43)

And (if there is k + 1 ≤ I)
∑

D∈U/Rd

BelCk+1(D) < 1. (44)

(3)
∑

D∈U/Rd

PlCk(D) = 1. (45)

And (if there is k + 1 ≤ I)
∑

D∈U/Rd

PlCk+1(D) > 1. (46)

Theorem 4 shows that, in a consistent incomplete multi-scale decision table, k is the
optimal scale iff k is the maximum number such that the sum of degrees of belief (and,
the sum of degrees of plausibility) of all decision classes in Sk is 1.
Example 5 In Example 4, since

∑

D∈U/Rd

BelC1(D) =
∑

D∈U/Rd

BelC2(D) = 1,

∑

D∈U/Rd

BelC3(D) = 5/8 < 1,

∑

D∈U/Rd

PlC1(D) =
∑

D∈U/Rd

PlC2(D) = 1,

∑

D∈U/Rd

PlC3(D) = 11/8 > 1,

by Theorem 4, we conclude that the second scale is optimal in making decision d. On
the other hand, it can be calculated that RC1 ⊆ Rd and RC2 ⊆ Rd, however, RC3 6⊆ Rd,
therefore, the second is indeed the optimal scale of S.
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Definition 9 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d})
be a consistent incomplete multi-scale decision table which has I levels of scales, for
k ∈ {1, 2, . . . , I}, we assume that Sk = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is a consistent
IDT. For B ⊆ C, if R

Bk
⊆ Rd, then B is referred to as a k-scale consistent set of S. If

B is a k-scale consistent set of S and no proper subset of B is a k-scale consistent set
of S, then B is referred to as a k-scale reduct of S, that is to say, a k-scale reduct of S
is a minimal set of attributes B ⊆ C such that R

Bk
⊆ Rd.

Using Proposition 8, we can easily conclude the following:
Proposition 11 Let S = (U,C ∪ {d}) be a consistent incomplete multi-scale decision
table. For 1 ≤ i < k ≤ I, we assume that Sk = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is a
consistent IDT. If B ⊆ C is a k-scale consistent set of S, then B is also an i-scale
consistent set of S.
Proposition 11 shows that if an attribute subset B is a consistent set of a coarser

consistent IDT, then it must be a consistent set of a finer consistent IDT. This means
that if an attribute set B ⊆ C is a reduct of a coarser consistent IDT, then there must
exist E ⊆ B such that E is a reduct of a finer consistent IDT. Formally, we summarize
the result as follows:
Proposition 12 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d})
be a consistent incomplete multi-scale decision table. For 1 ≤ i < k ≤ I, we assume that
Sk = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is a consistent IDT. If Bk ⊆ Ck is a reduct of Sk,

then there exists an E ⊆ B such that E is an i-scale reduct of S, i.e., Ei is a reduct of
Si.
After we select the optimal scale k, based on computing reducts of the kth IDT Sk,

we can unravel the set of decision rules hidden in S.
Example 6 In Example 4, since the second is the optimal scale for making decision, by
using approaches in [14,15,17,36,45], we can calculate that {a22, a

2
3} is the unique reduct of

the consistent IDT S2 = (U, {a21, a
2
2, a

2
3}∪{d}). Furthermore, based on the reduct {a22, a

2
3},

we can obtain all local reducts for all decision classes, we then derive the certain decision
rules from Table 4 as follows:

r21 : (a22, S)∧ (a23,M) =⇒ (d, 1) supported by x1, x2

r22 : (a23,L) =⇒ (d, 2) supported by x3, x5, x6

r23 : (a23, S) =⇒ (d, 2) supported by x4, x6

r24 : (a22,L) =⇒ (d, 2) supported by x3, x4, x5, x6, x7, x8

According to Proposition 11, {a12, a
1
3} is also a consistent set of S1 = (U, {a11, a

1
2, a

1
3} ∪

{d}), it can be verified that {a12, a
1
3} is a reduct of S1, by calculating all local reducts for

all decision classes in S1, we can derive the following certain decision rules from S1:
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r11 : (a12, 2)∧ (a13, 3) =⇒ (d, 1) supported by x1, x2

r12 : (a13, 4) =⇒ (d, 2) supported by x3, x5, x6

r13 : (a13, 1) =⇒ (d, 2) supported by x4, x6

r14 : (a12, 5) =⇒ (d, 2) supported by x3, x4, x8

r15 : (a12, 4) =⇒ (d, 2) supported by x3, x5, x6, x7

Using the same consistent set or reduct of IDTs at different scales, it can easily be
verified that a set of decision rules derived from a coarser IDT are more general than
that from a finer one. In Example 6, we can see that the decision rule r24 is more general
than any decision rule in {r12 , r

1
3 , r

1
4 , r

1
5}.

In fact, intuitively, we have the following granular transformation from the finer to the
coarser scale:

(a12, 2)∧ (a13, 3)
g12
−→ (a22, S)∧ (a23,M)

(a13, 4)
g12
−→ (a23,L)

(a13, 1)
g12
−→ (a23, S)

(a12, 5)
g12
−→ (a22,L)

(a12, 4)
g12
−→ (a22,L)

Hence,

‖(a12, 2) ∧ (a13, 3)‖ ⊆ ‖(a22, S) ∧ (a23,M)‖ ⊆ ‖(d, 1)‖,

‖(a13, 4)‖ ⊆ ‖(a23,L)‖ ⊆ ‖(d, 2)‖,

‖(a13, 1)‖ ⊆ ‖(a23,L)‖ ⊆ ‖(d, 2)‖,

‖(a12, 5)‖ ⊆ ‖(a22,L)‖ ⊆ ‖(d, 2)‖,

‖(a12, 4)‖ ⊆ ‖(a22,L)‖ ⊆ ‖(d, 2)‖.

4.2. Rule acquisition in inconsistent incomplete multi-scale decision tables

In this subsection we investigate knowledge acquisition in the sense of rule induction
from an inconsistent incomplete multi-scale decision table.
Let S = (U,C ∪{d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}∪{d}) be an incomplete

multi-scale decision table which has I levels of scales. For 1 ≤ i < k ≤ I, if (U, {aij|j =

1, 2, . . . ,m}∪{d}) is an inconsistent IDT, then it can easily be observed that (U, {akj |j =
1, 2, . . . ,m} ∪ {d}) is also an inconsistent IDT.
For k ∈ {1, 2, . . . , I}, and X ⊆ U , define

RCk(X) = {x ∈ U |SCk(x) ⊆ X}, RCk(X) = {x ∈ U |SCk(x) ∩X 6= ∅}, (47)

where

RCk = {(x, y) ∈ U × U |ak(x) = ak(y), or ak(x) = ∗, or ak(y) = ∗, ∀a ∈ C}

and
SCk(x) = {y ∈ U |(x, y) ∈ RCk}.
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Denote

LCk(d) =
(

RCk(D1), RCk(D2), . . . , RCk(Dr)
)

,

HCk(d) =
(

RCk(D1), RCk(D2), . . . , RCk(Dr)
)

,

BelCk(d) =
(

BelCk(D1),BelCk(D2), . . . ,BelCk(Dr)
)

,

PlCk(d) =
(

PlCk(D1),PlCk(D2), . . . ,PlCk(Dr)
)

,

∂
Ck

(x) = {d(y)|y ∈ SCk(x)}, x ∈ U,

where BelCk(Dj) = P (RCk(Dj)) =
|R

Ck (Dj)|

|U| , and PlCk(Dj) = P (RCk(Dj)) =
|R

Ck (Dj)|

|U| ,
j = 1, 2, . . . , r.
LCk(d) and HCk(d) are referred to as the lower approximation distribution and upper

approximation distribution of decision classes U/Rd under the k-th scale in S, respectively.
BelCk(d) and PlCk(d) are said to be the belief distribution and plausibility distribution of
decision classes U/Rd under the k-th scale in S, respectively. And ∂

Ck
(x) is the generalized

decision values of object x under the k-th scale in S. According to Proposition 8, it is
easy to see that

∂
C1

(x) ⊆ ∂
C2

(x) ⊆ · · · ⊆ ∂
CI−1

(x) ⊆ ∂
CI

(x), x ∈ U. (48)

Definition 10 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d})
be an inconsistent incomplete multi-scale decision table which has I levels of scales. For
k ∈ {1, 2, . . . , I}, we say that
(1) Sk = (U,Ck ∪ {d}) = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is lower approximation

consistent to S if LCk(d) = LC1(d). And, the kth level of scale is said to be the lower
approximation optimal scale of S if Sk is lower approximation consistent to S and Sk+1

(if there is k + 1) is not lower approximation consistent to S.
(2) Sk = (U,Ck ∪ {d}) = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is upper approximation

consistent to S if HCk(d) = HC1(d). And, the kth level of scale is said to be the upper
approximation optimal scale of S if Sk is upper approximation consistent to S and Sk+1

(if there is k + 1) is not upper approximation consistent to S.
(3) Sk = (U,Ck ∪ {d}) = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is belief consistent to S if

BelCk(d) = BelC1(d). And, the kth level of scale is said to be the belief optimal scale of
S if Sk is belief consistent to S and Sk+1 (if there is k+1) is not belief consistent to S.
(4) Sk = (U,Ck ∪ {d}) = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is plausibility consistent to S

if PlCk(d) = PlC1(d). And, the kth level of scale is said to be the plausibility optimal scale
of S if Sk is plausibility consistent to S and Sk+1 (if there is k + 1) is not plausibility
consistent to S.
(5) Sk = (U,Ck ∪{d}) = (U, {akj |j = 1, 2, . . . ,m}∪ {d}) is generalized decision consis-

tent to S if ∂
Ck

(x) = ∂
C1

(x) for all x ∈ U . And, the kth level of scale is said to be the

generalized decision optimal scale of S if Sk is generalized decision consistent to S and
Sk+1 (if there is k + 1) is not generalized decision consistent to S.
In an inconsistent incomplete multi-scale decision table which has I levels of scales, it

can be observed that Sk = (U, {akj |j = 1, 2, . . . ,m} ∪ {d}) is an inconsistent IDT for all
k ∈ {1, 2, . . . , I}. Moreover, we can see that
• Sk is lower approximation consistent to S iff Sk preserves the lower approximations

of all decision classes of the finest scale IDT S1, in this case, an object supports a certain
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decision rule derived from S1 iff it supports a certain decision rule derived from Sk. And
k is the lower approximation optimal scale of S iff k is the maximal number such that
Sk preserves the lower approximations of all decision classes of S1.
• Sk is upper approximation consistent to S iff Sk preserves the upper approximations

of all decision classes of the finest scale IDT S1, in this case, an object supports a possible
rule derived from S1 iff it supports a possible rule derived from Sk. And k is the upper
approximation optimal scale of S iff k is the maximal number such that Sk preserves the
upper approximations of all decision classes of S1.
• Sk is belief consistent to S iff Sk preserves the same belief degree of each decision

class in the finest scale IDT S1. And k is the belief optimal scale of S iff k is the maximal
number such that Sk preserves the same belief degree of each decision class in S1.
• Sk is plausibility consistent to S iff Sk preserves the same plausibility degree of each

decision class in the finest scale IDT S1. And k is the plausibility optimal scale of S iff
k is the maximal number such that Sk preserves the same plausibility degree of each
decision class in S1.
• Sk is generalized decision consistent to S iff Sk keeps the generalized decision values

of the finest scale IDT S1. And k is the generalized decision optimal scale of S iff k is
the maximal number such that Sk keeps the generalized decision values of S1.
It is important to clarify the interrelationships among the types of optimal scale in

Definition 10.
Theorem 5 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}) be
an inconsistent incomplete multi-scale decision table which has I levels of scales. For
k ∈ {1, 2, . . . , I}, then the following statements are equivalent:
(1) LCk(d) = LC1(d).
(2) BelCk(d) = BelC1(d).
(3)

∑r
j=1 BelCk(Dj) =

∑r
j=1 BelC1(Dj).

Proof. “(1)⇒(2)”. By the definitions, we have

LCk(d) = LC1(d) =⇒ RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r},

=⇒ P (RCk(Dj)) = P (RC1(Dj)), ∀j ∈ {1, 2, . . . , r},

=⇒ BelCk(Dj) = BelC1(Dj), ∀j ∈ {1, 2, . . . , r},

=⇒ BelCk(d) = BelC1(d).

“(2)⇒(3)”. It is obvious.
“(3)⇒(1)”. Since

∑r
j=1 BelCk(Dj) =

∑r
j=1 BelC1(Dj), we have

r
∑

j=1

|RCk(Dj)| =
r

∑

j=1

|RC1(Dj)|. (49)

By Proposition 9, we observe that

RCk(Dj) ⊆ RC1(Dj), ∀j ∈ {1, 2, . . . , r}, (50)

then

|RCk(Dj)| ≤ |RC1(Dj)|, ∀j ∈ {1, 2, . . . , r}. (51)
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Hence, according to inequality (51), Eq. (49) implies that

|RCk(Dj)| = |RC1(Dj)|, ∀j ∈ {1, 2, . . . , r}. (52)

In terms of inclusion relation (50), we must have

RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r}. (53)

It follows that LCk(d) = LC1(d). 2

Theorem 5 shows that the k-th level of scale is the lower approximation optimal scale
of S iff it is the belief optimal scale of S. Moreover, we can easily conclude following:
Theorem 6 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}) be
an inconsistent incomplete multi-scale decision table which has I levels of scales. For
k ∈ {1, 2, . . . , I}, the k-th level of scale is the lower approximation optimal scale of S iff

r
∑

j=1

BelCk(Dj) =

r
∑

j=1

BelC1(Dj). (54)

And (if there is k + 1 ≤ I)

r
∑

j=1

BelCk+1(Dj) <
r

∑

j=1

BelC1(Dj). (55)

Theorem 7 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}) be
an inconsistent incomplete multi-scale decision table which has I levels of scales. For
k ∈ {1, 2, . . . , I}, then the following statements are equivalent:
(1) HCk(d) = HC1(d).
(2) PlCk(d) = PlC1(d).
(3)

∑r
j=1 PlCk(Dj) =

∑r
j=1 PlC1(Dj).

(4) ∂
Ck

(x) = ∂
C1

(x), ∀x ∈ U.
Proof. “(1)⇒(2)”. By the definitions, we have

HCk(d) = HC1(d) =⇒ RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r},

=⇒ P (RCk(Dj)) = P (RC1(Dj)), ∀j ∈ {1, 2, . . . , r},

=⇒ PlCk(Dj) = PlC1(Dj), ∀j ∈ {1, 2, . . . , r},

=⇒ PlCk(d) = PlC1(d).

“(2)⇒(3)”. It is obvious.
“(3)⇒(1)”. Since

∑r
j=1 PlCk(Dj) =

∑r
j=1 PlC1(Dj), we have

r
∑

j=1

|RCk(Dj)| =
r

∑

j=1

|RC1(Dj)|. (56)

By Proposition 9, we see that

RC1(Dj) ⊆ RCk(Dj), ∀j ∈ {1, 2, . . . , r}, (57)

then we conclude that

|RC1(Dj)| ≤ |RCk(Dj)|, ∀j ∈ {1, 2, . . . , r}. (58)
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Hence, according to inequality (58), Eq. (56) implies that

|RCk(Dj)| = |RC1(Dj)|, ∀j ∈ {1, 2, . . . , r}. (59)

In terms of inclusion relation (57), we must have

RCk(Dj) = RC1(Dj), ∀j ∈ {1, 2, . . . , r}. (60)

It follows that HCk(d) = HC1(d).
“(4)⇒(1)”. Assume that ∂

Ck
(x) = ∂

C1
(x) for all x ∈ U. For any Dj ∈ U/Rd and any

y ∈ RCk(Dj), by the definition of upper approximation, we have SCk(y) ∩ Dj 6= ∅. We
select u ∈ U such that [u]d = Dj . Let d(u) = w, obviously, d(u′) = w for all u′ ∈ Dj.
Then we can find z ∈ SCk(y) such that z ∈ [u]d. Clearly, d(z) = w ∈ ∂Ck(y). Since
∂

Ck
(x) = ∂

C1
(x) for all x ∈ U , we have ∂

Ck
(y) = ∂

C1
(y). Thus w ∈ ∂

C1
(y), consequently,

we can find y′ ∈ SC1(y) such that d(y′) = w. It is easy to observe that y′ ∈ [u]d. Hence
we conclude SC1(y) ∩ [u]d 6= ∅, by the definition of upper approximation, we deduce
y ∈ RC1(Dj). It follows that

RCk(Dj) ⊆ RC1(Dj), ∀Dj ∈ U/Rd. (61)

On the other hand, by Proposition 9, we have

RC1(Dj) ⊆ RCk(Dj), ∀Dj ∈ U/Rd. (62)

Combining inclusion relations (61) and (62), we conclude RCk(Dj) = RC1(Dj) for all
Dj ∈ U/Rd, that is, HCk(d) = HC1(d).
“(1)⇒(4)”. Assume that HCk(d) = HC1(d), that is,

RCk(Dj) = RC1(Dj), ∀Dj ∈ U/Rd. (63)

For any x ∈ U and w ∈ ∂Ck(x), there exists y ∈ SCk(x) such that w = d(y). Let
Dw = {z ∈ U |d(z) = w}. Clearly, Dw ∈ U/Rd and y ∈ Dw. Hence

SCk(x) ∩Dw 6= ∅, (64)

by the definition of upper approximation, we have x ∈ RCk(Dw). Since RCk(Dw) =
RC1(Dw), we obtain x ∈ RC1(Dw), by the definition of upper approximation again, we
conclude SC1(x) ∩ Dw 6= ∅, consequently, there exists z ∈ SC1(x) such that z ∈ Dw.
Obviously, d(z) = w, thus w ∈ ∂C1(x). It follows that

∂Ck(x) ⊆ ∂C1(x). (65)

On the other hand, by Proposition 8, we have SC1(x) ⊆ SCk(x). Hence

∂C1(x) ⊆ ∂Ck(x). (66)

Combining inclusion relations (65) and (66), we conclude that ∂
Ck

(x) = ∂
C1

(x) for all
x ∈ U . 2

Theorem 7 shows that, in an inconsistent incomplete multi-scale decision table, the kth
level of scale is the upper approximation optimal scale iff it is the plausibility optimal scale
iff it is the generalized decision optimal scale, in other words, all the upper approximation
optimal scale, the plausibility optimal scale, and the generalized decision optimal scale
are the same. Similar to Theorem 6, we have following:
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Table 6
An inconsistent incomplete multi-scale decision table

U a1
1

a2
1

a3
1

a1
2

a2
2

a3
2

a1
3

a2
3

a3
3

a1
4

a2
4

a3
4

d ∂C1

x1 1 S Y 1 E Y 3 G Y 4 L N 1 {1}

x2 2 S Y 1 E Y 2 G Y 4 L N 1 {1}

x3 3 M Y 3 G Y 2 G Y 3 M Y 1 {1}

x4 3 M Y 2 G Y 2 G Y 3 M Y 1 {1}

x5 ∗ ∗ ∗ 2 G Y 2 G Y 3 M Y 1 {1, 2}

x6 ∗ ∗ ∗ 3 G Y 2 G Y 3 M Y 1 {1, 2}

x7 4 L N 2 G Y ∗ ∗ ∗ 3 M Y 2 {1, 2}

x8 5 L N 3 G Y ∗ ∗ ∗ 3 M Y 2 {1, 2}

x9 6 L N 2 G Y 1 E Y 2 S Y 2 {2}

x10 6 L N 3 G Y 1 E Y 1 S Y 2 {2}

Theorem 8 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}) be
an inconsistent incomplete multi-scale decision table which has I levels of scales. For
k ∈ {1, 2, . . . , I}, then the kth level of scale is the generalized decision optimal scale of S
iff

r
∑

j=1

PlCk(Dj) =

r
∑

j=1

PlC1(Dj). (67)

And (if there is k + 1 ≤ I)

r
∑

j=1

PlCk+1(Dj) >

r
∑

j=1

PlC1(Dj). (68)

Definition 11 Let S = (U,C ∪ {d}) = (U, {akj |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d})
be an inconsistent incomplete multi-scale decision table which has I levels of scales. Let
k ∈ {1, 2, . . . , I}, for B ⊆ C, if ∂

Bk
(x) = ∂

C1
(x) for all x ∈ U , then B is referred to as a

k-scale consistent set of S. If B is a k-scale consistent set of S and no proper subset of
B is a k-scale consistent set of S, then B is referred to as a k-scale reduct of S.
If B is a k-scale reduct of S, then it is easy to see that Sk = (U, {akj |j = 1, 2, . . . ,m}∪

{d}) must be consistent to S. According to Definition 11, we see that B ⊆ C is a k-scale
reduct of S iff it is a minimal set of attributes to keep the generalized decisions of full
attributes at the k-th level of scale, i.e. ∂

Bk
(x) = ∂

Ck
(x) for all x ∈ U .

Example 7 Table 6 depicts an example of an inconsistent incomplete multi-scale de-
cision table S = (U, {akj |k = 1, 2, 3, j = 1, 2, 3, 4} ∪ {d}), where U = {x1, x2, . . . , x10},
C = {a1, a2, a3, a4}. The table has three levels of scales, where “S”, “M”, “L”, “E”,
“G”, “Y”, and “N” stand for, respectively, “Small”, “Medium”, “Large”, “Excellent”,
“Good”, “Yes”, and “No”. For these levels of scales, the table is associated with three
inconsistent IDTs which are depicted as Tables 7–9, respectively.
It is easy to observe that D1 = {x ∈ U |d(x) = 1} = {x1, x2, . . . , x6} and D2 = {x ∈

U |d(x) = 2} = {x7, x8, x9, x10}. Then it can be calculated that

BelC1(D1) + BelC1(D2) = BelC2(D1) + BelC2(D2) = 6/10,
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Table 7
The incomplete decision table at the first level of scale

U a1
1

a1
2

a1
3

a1
4

d ∂C1

x1 1 1 3 4 1 {1}

x2 2 1 2 4 1 {1}

x3 3 3 2 3 1 {1}

x4 3 2 2 3 1 {1}

x5 ∗ 2 2 3 1 {1, 2}

x6 ∗ 3 2 3 1 {1, 2}

x7 4 2 ∗ 3 2 {1, 2}

x8 5 3 ∗ 3 2 {1, 2}

x9 6 2 1 2 2 {2}

x10 6 3 1 1 2 {2}

Table 8
The incomplete decision table at the second level of scale

U a2
1

a2
2

a2
3

a2
4

d ∂
C2

x1 S E G L 1 {1}

x2 S E G L 1 {1}

x3 M G G M 1 {1}

x4 M G G M 1 {1}

x5 ∗ G G M 1 {1, 2}

x6 ∗ G G M 1 {1, 2}

x7 L G ∗ M 2 {1, 2}

x8 L G ∗ M 2 {1, 2}

x9 L G E S 2 {2}

x10 L G E S 2 {2}

and
BelC3(D1) + BelC3(D2) = 4/10 < 6/10.

Hence, by Theorem 6, we see that k = 2 is the lower approximation optimal scale of S.
Similarly, since

PlC1(D1) + PlC1(D2) = PlC2(D1) + PlC2(D2) = 14/10,

and
PlC3(D1) + PlC3(D2) = 16/10 > 14/10,

by Theorem 8, we conclude that k = 2 is the generalized decision optimal scale of S.
We can see directly from Tables 7-9 that ∂

C2
(x) = ∂

C1
(x) for all x ∈ U , and ∂

C3
(x9) 6=

∂
C1

(x9). So S3 is not consistent to S and the second level of scale is optimal for making
decision of S.
By using approaches in [17, 45], we can conclude that the inconsistent IDT S2 =

(U,C2 ∪ {d}) has two generalized decision reducts B2
1 = {a21, a

2
4} and B2

2 = {a21, a
2
3}.

27



Table 9
The incomplete decision table at the third level of scale

U a3
1

a3
2

a3
3

a3
4

d ∂C3

x1 Y Y Y N 1 {1}

x2 Y Y Y N 1 {1}

x3 Y Y Y Y 1 {1}

x4 Y Y Y Y 1 {1}

x5 ∗ Y Y Y 1 {1, 2}

x6 ∗ Y Y Y 1 {1, 2}

x7 N Y ∗ Y 2 {1, 2}

x8 N Y ∗ Y 2 {1, 2}

x9 N Y Y Y 2 {1, 2}

x10 N Y Y Y 2 {1, 2}

On the other hand, for B ⊆ C, similar to Eq. (22) in Subsection 2.3, we define an

equivalence relation RB2

d on U as follows:

RB2

d = {(x, y) ∈ U × U |∂B2(x) = ∂B2(y)}. (69)

Then, according to Subsection 2.3, we can see that (U,C2 ∪ {∂C2}) = (U,C2 ∪ {∂C1}) is
a consistent IDT. It can be observed that an attribute subset B2 ⊆ C2 is a generalized
decision consistent set of the inconsistent IDT (U,C2 ∪ {d}) iff B2 is a consistent set of
the consistent IDT (U,C2 ∪ {∂C1}). Hence, B2 ⊆ C2 is a generalized decision reduct of
the inconsistent IDT (U,C2∪{d}) iff B is a reduct of the consistent IDT (U,C2∪{∂C1}).
That is, we can find generalized decision reducts of (U,C2 ∪ {d}) via calculating reducts
of (U,C2 ∪ {∂C1}). And, by employing the approach in Subsection 4.1, we can calculate
all reducts of (U,C2∪{∂C1}). In fact, similar to Subsection 4.1, we can calculate that the
consistent IDT (U,C2∪{∂C1}) has two reducts B2

1 = {a21, a
2
4} and B2

2 = {a21, a
2
3}, thus, the

inconsistent IDT S2 = (U,C2 ∪ {d}) has two generalized decision reducts B2
1 = {a21, a

2
4}

and B2
2 = {a21, a

2
3}.

Based on the generalized decision reduct {a21, a
2
4}, and by further calculating all local

generalized decision reducts of objects, we can derive decision rules hidden in the incon-
sistent IDT (U,C2 ∪ {d}) as follows:
Certain rules:

r21 : (a21, S) =⇒ (d, 1) with certainty 1, supported by x1, x2, x5, x6

r22 : (a24,L) =⇒ (d, 1) with certainty 1, supported by x1, x2

r23 : (a21,M) =⇒ (d, 1) with certainty 1, supported by x3, x4, x5, x6

r24 : (a24, S) =⇒ (d, 2) with certainty 1, supported by x9, x10

Possible rules:

r25 : (a21,L) ∧ (a24,M) −→ (d, 1) with certainty 1/2, supported by x5, x6

r25
′
: (a21,L) ∧ (a24,M) −→ (d, 2) with certainty 1/2, supported by x7, x8.
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It can be verified that {a11, a
1
4} is also a reduct of S1 = (U,C1 ∪ {d}), then, by using

{a11, a
1
4}, we can further calculate all local generalized decision reducts of all objects in

S1 = (U,C1 ∪ {d}), therefore, we can derive the decision rules in the inconsistent IDT
(U,C1 ∪ {d}) (at the first level of scale) as follows:
Certain rules:

r11 : (a11, 1) =⇒ (d, 1) with certainty 1, supported by x1, x5, x6

r12 : (a11, 2) =⇒ (d, 1) with certainty 1, supported by x2, x5, x6

r13 : (a11, 3) =⇒ (d, 1) with certainty 1, supported by x3, x4, x5, x6

r14 : (a14, 4) =⇒ (d, 1) with certainty 1, supported by x1, x2

r15 : (a14, 2) =⇒ (d, 2) with certainty 1, supported by x9

r16 : (a14, 1) =⇒ (d, 2) with certainty 1, supported by x10

Possible rules:

r17 : (a11, 4) −→ (d, 1) with certainty 2/3, supported by x5, x6

r17
′
: (a11, 4) −→ (d, 2) with certainty 1/3, supported by x7

r18 : (a11, 5) −→ (d, 1) with certainty 2/3, supported by x5, x6

r18
′
: (a11, 5) −→ (d, 2) with certainty 1/3, supported by x8

We can see that, based on the same reduct {a1, a4}, the set of decision rules derived
from (U,C2 ∪ {d}) are more general than that from (U,C1 ∪ {d}).

5. Conclusion

In traditional rough-set-data-analysis, each object under each attribute in information
tables can only take on one value. However, in many real-life applications, objects are
usually measured at different scales under the same attribute, i.e. an object can take
on as many values as there are scales under the same attribute, on the other hand, the
precise values of some attributes for some objects may be missing. Such a system is called
an incomplete multi-scale information table. We have developed in this paper a general
framework for the study of knowledge acquisition in incomplete multi-scale decision tables
from the perspective of granular computing. We have analyzed information granules with
reference to different levels of scales in incomplete multi-scale information tables. We have
also defined lower and upper approximations at different levels of scales in incomplete
multi-scale information tables and examined their properties. We have further discussed
optimal scale selection with various requirements in incomplete multi-scale decision tables
and have presented relationships of different notions of optimal scales. With reference to
different levels of scales and by using rough set approach, we have explored knowledge
acquisition in the sense of rule induction in consistent and inconsistent incomplete multi-
scale decision tables. For further study, new approaches to granular representation and
new models for knowledge acquisition in complicated multi-scale information tables need
to be formulated.
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