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Chao Zhang, Huaxiong Li, Yuhua Qian, Chunlin Chen, and Yang Gao

Abstract—Linear Regression (LR) is a popular and effective
technique in pattern recognition area, which aims to find
a transform matrix between source data and target data
(usually label matrix). However, a binary zero-one label matrix
may be too strict and inappropriate for regression. Besides,
directly projecting source data to target data by one transform
matrix may lose some intrinsic data information. To address
these issues, this paper proposes a novel Pairwise Relations
oriented Discriminative Regression (PRDR) method. In PRDR,
the source data is regressed into a latent space instead of
label space. To supervise the discriminative projection learning,
the pairwise relations in source data space and label space
are exploited in the latent space simultaneously. The pairwise
label relations are transferred into the latent subspace by
solving a distance-distance difference minimization problem,
and the intraclass instance relations are also preserved in latent
space. These two constraints ensure the pairwise similarity
of data points after transformation which is beneficial for
classification. By further enlarging the margins between true
and false classes, PRDR is extended to a robust version,
i.e., R-PRDR. An efficient algorithm is presented to solve
the PRDR model. Extensive experiments on several popular
image datasets demonstrate the effectiveness and efficiency
of the proposed method compared with some state-of-the-art
regression approaches.

Index Terms—Latent representation, discriminative regres-
sion, pairwise relations, classification.

I. INTRODUCTION

L INEAR regression (LR) is one of the most popu-
lar and effective techniques in the fields of machine

learning and pattern recognition, and it has been widely
used in face recognition [1]–[3], image processing [4]–[6]
and classification [7]–[9], visual tracking [10], information
retrieval [11], etc. The fundamental objective of LR is to
seek an appropriate transform matrix between source data
and target data such that the transformed source data can
well fit the target data. As a typical LR method, linear regres-
sion based classification (LRC) learns a regression vector
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between a test sample and training samples, and performs
classification by regression error [12]. Some variants such
as sparse representation based classification (SRC) [13] and
collaborative representation based classification (CRC) [14]
also adopt the linear regression framework and exploit
the characteristic of regression coefficients. However, these
methods pay more attention to regression loss and ignore the
important label information, which limits their performance
in some tasks [15], [16].

To make use of the labels, some researchers directly con-
nect the source data and label information by least squares
regression (LSR). In multi-class classification tasks, a binary
zero-one label matrix is first defined as regression target and
a transform matrix is learned between training data matrix
and label matrix. However, this binary label matrix is strict
for regression, which may lead to overfitting and degraded
performance [17]–[21]. Therefore, various soft label tech-
niques are developed to relax the label matrix [18], [22]–
[25]. Xiang and Nie et al. introduced the ϵ-dragging tech-
nique into LR, and proposed a discriminative least squares
regression (DLSR) method for pattern classification [18].
The core idea of DLSR is to add an auxiliary vector on the
binary label vectors which enlarges the distances between
the true and false classes. By imposing a sparsity constraint
to explicitly control the margins, DLSR is further extended
to margin scalable discriminative LSR (MSDLSR) [17].
Zhang et al. proposed a more flexible model, i.e., retargeted
least squares regression (ReLSR) [22]. ReLSR adaptively
learns a target label matrix, in which the margin between
correct class and false classes of each sample is forced to
be large. These soft label strategies are widely used in other
researches [26]–[29]. These methods mainly pursuit the
large margins between different classes (i.e., to enhance the
interclass separability) by various techniques to improve the
discrimination of projection. However, they cannot guarantee
the label consistency of samples from the same class and the
intraclass compactness is destroyed due to the dynamic of
regression target [30].

To ensure the intraclass compactness in regression, various
regularization terms are utilized including nuclear norm [30],
[31], l2,1 norm [32] and other constraints [33], [34]. In
[30], the authors imposed a classwise low-rank constraint
on the latent features to enhance the similarity of data rep-
resentation, and proposed a group low-rank representation-
based discriminant linear regression (GLRRDLR) method.
In [32], an interclass sparsity based discriminative LSR
(ICS DLSR) method is proposed. ICS DLSR uses a row-
sparsity regularized term to preserve the data similarity
and an error term to relax the label matrix. Wang et al.
extended ReLSR to groupwise ReLSR (GReLSR) by re-
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stricting the regression target [33]. These approaches mainly
impose classwise constraints on transformed data, which can
improve the discrimination of regression to a certain extent
but lead to cumbersome and time-consuming optimization.
Due to the merits of manifold learning on local structure
preservation [35], [36], the graph regularization provides
another effective way to improve the data intraclass com-
pactness [37]–[39]. Yang et al. incorporated a new Laplacian
matrix into regression model to capture the local structure
of data [37]. Shi et al. combined the graph embedding
and sparse regression into a unified model [36]. Xue et al.
constructed a label based graph to regularize the projection
which pulls the samples from the same class to be close [40].
In [41], the authors performed non-negative sparse graph
learning and linear regression simultaneously, and applied it
on semi-supervised classification. These researches demon-
strate that the use of graph based regularization is beneficial
to capture the intrinsic data structure and preserve the local
relationships.

Despite different constraints and regularizations, what
these methods mentioned above have in common is that they
all seek one transform matrix from original data space to
target label space, and we refer to them as one-step transform
based LR methods. The one-step operation may lose some
underlying information or structures of data [42], [43]. Some
researchers proposed two-step transform based methods, in
which a latent space is generated and bridges the data space
and label space [43]–[46]. In [43], the authors conducted LR
in regularized linear discriminant analysis (LDA) space, and
proposed low-rank ridge regression (LRRR) with Frobenius
norm and sparse low-rank regression (SLRR) with l2,1
norm. Fang et al. proposed a robust latent subspace learning
(RLSL) method [44]. RLSL jointly learns a middle transition
space and regresses the latent features to label matrix. The
data reconstruction mechanism like PCA is integrated into
RLSL to regularize the latent features. Zhen et al. learned
a latent space between training data space and label space
with low-rank regularization [46]. Although these methods
flexibly learn the data representation in latent space, they still
try to learn a linear transform matrix from latent space to
label space for supervised learning, thus, the problem of rigid
regression target still exists. Besides, these methods usually
learn multiple projection matrices in a unified model, which
makes the optimization complicated and time-consuming.

To this end, in this paper, we propose a novel pair-
wise relations oriented discriminative regression (PRDR) for
multi-class classification. PRDR can be categorized into two-
step transform based methods, which learns a discriminative
transform matrix leveraging a latent subspace. Differently,
PRDR only learns one projection matrix which makes it
efficient in real application. To avoid a strict regression
target, the proposed method adopts the label relations rather
than original label matrix to supervise the projection learn-
ing. The label relations are explored in latent space by
solving a pairwise distance-distance difference minimization
problem which enhances the intraclass compactness and

interclass separability. Besides, the instance relations are also
explored, and an intraclass similarity graph is constructed
from the training data and embedded into the framework.
PRDR is proved to constrain the pairwise cosine distance
of latent representation. By further enlarging the margins
between different classes, PRDR is extended to a more
discriminative version. The main contributions of this paper
are summarized as follows:

• We propose a novel pairwise relations oriented discrim-
inative regression (PRDR) with application to image
classification. The training data is regressed into the
latent space rather than label space to avoid the strict
regression target problem.

• To make use of label information, a distance-distance
difference minimization constraint is used to preserve
the pairwise label relations of data. Moreover, an in-
traclass similarity graph is incorporated into PRDR to
preserve the pairwise instance relations.

• PRDR is proved to constrain the pairwise distances of
latent representation. By enlarging the margins between
true and false classes, PRDR is further extended to R-
PRDR method.

• An efficient algorithm based on alternating direction
method of multipliers (ADMM) is presented to solve
the proposed model with both theoretical and empiri-
cal analysis. The experimental results demonstrate the
effectiveness and efficiency of our proposed methods.

The remainder of this paper is organized as follows.
Section II briefly overviews the related methods. Section
III introduces our proposed methods in detail. Section IV
reports the experimental results and analysis. Section V
concludes the paper.

II. RELATED WORKS

For convenience, we first present some notations used
in this paper. Matrices and vectors are written in boldface
uppercase and boldface lowercase, respectively. For matrix
M ∈ Rp×q , Mi,j denotes its i-th row and j-th colum-
n element, Mi,: and M:,j represent the i-th row vector
and j-th column vector, respectively. The Frobenius norm,
nuclear norm and l2,1 norm of matrix M are defined as:
∥M∥F =

√∑p
i

∑q
j=1 M

2
i,j , ∥M∥∗ =

∑
i δi(M), where

δi(M) is the i-th singular value of M, and ∥M∥2,1 =∑p
i=1

√∑q
j=1 M

2
i,j respectively. Tr(·) is the trace function

and I is an identity matrix.
Given a training matrix X = [x1,x2, ...,xn] ∈ Rm×n

composed of n instances and its corresponding binary label
matrix Y = [y1,y2, ...,yn] ∈ Rc×n, where c is the number
of classes. For label vector yi, its k-th entry is 1 and all
the others are 0 if instance xi belongs to the k-th class. The
basic model of LR can be expressed as follows:

min
W
∥Y −WX∥2F + λ∥W∥2F , (1)

where W ∈ Rc×m is the to-be-learned transform matrix
and λ > 0 is a balance parameter. Based on model (1),
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Fig. 1. The overall frameworks of one-step and two-step transform based
LR models.

many robust variants are proposed and developed [18], [22],
[23], [32], [33], [44]. These regression based models can
be generally categorized into two types, i.e., one-step and
two-step transform based methods, depending on whether a
latent space between training data space and label space is
used. Fig. 1 shows the overall frameworks of the two kinds
of models.

A. One-step Transform Based LR

One-step transform based LR methods directly link the
data space with label space. By relaxing the label matrix,
the regression model can be described as

min
W
∥ϑ(Y)−WX∥2F + λψ(W), (2)

where ϑ is a relaxation function, and ψ(W) is the regular-
ization term. The commonly used ψ(W) are ∥W∥2F , ∥W∥∗
and ∥W∥2,1 [42], [43]. ϵ-dragging technique is widely used
to relax Y, i.e., ϑ(Y) = Y + M ⊙ B, where M is a
nonnegative matrix, ⊙ is the element-wise production, and
B is defined as

Bi,j =

{
+1, if Yi,j = 1,
−1, otherwise. (3)

It can be observed that the target value of true class in
relaxed label matrix is above 1, while the values of false
classes are negative. Thus, ϵ-dragging enlarges the margins
between true and false classes to learn a discriminative W.
Its drawback is also obvious that the relaxed label vectors
of two samples from the same class are different due to
the dynamic of M, and the intraclass similarity cannot be
ensured. To address this problem, model (2) is extended as
follows:

min
W
∥ϑ(Y)−WX∥2F + λ1ψ(W) + λ2ϕ(WX), (4)

where ϕ(WX) is a regularization term. Graph regularization
is widely used in ϕ(WX) to preserve the local structure of
data [47], [48], in which a similarity graph is embedded into
projection learning. ICS DLSR adopts classwise l2,1 norm
constraint as ϕ(WX) =

∑c
i=1 ∥WXi∥2,1, where Xi de-

notes the training data of the i-th class [32]. GLRRDLR uses

low-rank constraint, i.e., ϕ(WX) =
∑c

i=1 ∥WXi∥∗ [30].
These classwise constraints can improve the intraclass com-
pactness, which is beneficial to classification. However, they
usually lead to c subproblems in optimization, which are
time-consuming when the number of classes is large.

B. Two-step Transform Based LR

Instead of directly mapping the training data into label
space, two-step transform based methods learn a latent space
as a bridge, which is more flexible compared with one-step
transform based methods. The general framework of two-
step based methods can be formulated as

min
P,Q
∥ϑ(Y)−Q(PX)∥2F + λ1ψ(P,Q) + λ2ϕ(PX), (5)

where two transform matrices P ∈ Rd×m and Q ∈ Rc×d are
learned, and d is the dimension of latent data representation
PX. LRRR restricts the dimension d to force the whole
transform matrix QP to be low-rank [43]. In RLSL [44], the
regularizations of P and Q are the square of Frobenius norm,
i.e., ψ(·) = ∥·∥2F , and data reconstruction property is used as
the constraints on latent features PX. In [46], the authors use
nuclear norm and Frobenius norm to constrain the projection
matrix Q simultaneously. With different constraints, two-
step based methods are generally more flexible to learn
discriminative projections compared with one-step based
methods which can only project original samples into a c-
dimensional subspace. However, two-step based methods are
usually time-consuming since they need to learn multiple
projection matrices. Besides, the strict regression target
problem still exists in these methods.

III. THE PROPOSED METHOD

In this section, we introduce our proposed PRDR method
in detail, and present the optimization algorithm as well
as the convergence and computational complexity analysis.
Finally, we will extend PRDR to R-PRDR method.

A. Formulation

As analyzed before, two-step based methods are more
flexible to exploit the intrinsic information of data and learn
a discriminant projection matrix by using a latent space.
Thus, in this paper, instead of directly regressing the training
data into label space, we use latent data representation as
the regression target. Denote the latent representation as
V ∈ Rd×n, and the preliminary PRDR model can be
described as follows:

min
W

1

2
∥V −WX∥2F +

λ1
2
∥W∥2F . (6)

This is a standard least squares regression problem which
can be efficiently solved with a closed-form solution. How-
ever, the latent representation V is unknown. From the view
of classification, V should have optimal intraclass similarity
as well as interclass separability [49], [50]. To achieve the
goals, in some existing works [44]–[46], another transform
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Fig. 2. The overall framework of PRDR. PRDR learns the discriminative latent representation by simultaneously considering the pairwise instance
relations and label relations. The pairwise label distance is transferred into latent space for supervised learning and the intraclass compactness graph is
embedded into projection learning for structure preserving.

matrix for V is employed into (6) which attempts to approx-
imate label matrix Y by transformed latent representation,
as presented in (5). However, such strategy for supervised
learning introduces rigid regression target problem and more
unknown variables, making the optimization complicated
and inefficient.

To tackle these problems, we consider the pairwise label
relations in this paper to guide the latent representation
learning, instead of using label matrix as regression target.
In label matrix Y ∈ {0, 1}c×n, the samples from the same
class share a same label while others not. In other words,
in label space, the label distance between two samples from
same class is 0, and that is above 0 between two samples
from different classes. To transfer the pairwise label relations
into latent space, we can minimize the following pairwise
distance-distance difference problem

n∑
i,j=1

(hVi,j − hYi,j)2

=

n∑
i,j=1

(∥V:,i −V:,j∥2 − ∥Y:,i −Y:,j∥2)2

=
n∑

i,j=1

(∥V:,i∥2 + ∥V:,j∥2 − 2VT
:,iV:,j − ∥Y:,i∥2

− ∥Y:,j∥2 + 2YT
:,iY:,j)

2,

(7)

where hVi,j is the squared Euclidean distance between sample
X:,i and X:,j in latent feature space, and hYi,j is that in
label space. It is worth noting that ∥Y:,i∥ = 1 because Y:,i

is a one-hot vector. By adding a normalization constraint
∥V:,i∥ = 1(i = 1, ..., n), Eq. (7) can be equivalently
rewritten as

n∑
i,j=1

(2VT
:,iV:,j − 2YT

:,iY:,j)
2 = 4∥VTV −YTY∥2F . (8)

Eq. (8) uses the pairwise label relations from label space
to guide the latent representation learning without other aux-
iliary variables. By minimizing the above distance-distance
difference problem, the label similarity is preserved in latent
space. With the above objective, we can get the following

model

min
W,V

1

2
∥V −WX∥2F +

λ1
2
∥W∥2F +

λ2
2
∥VTV −YTY∥2F

s.t. {∥V:,i∥}ni=1 = 1.
(9)

Although problem (9) considers the pairwise label simi-
larity in latent subspace for supervised learning, the instance
pairwise similarity is ignored, which is important for locality
structure preserving [51]. To further improve the intraclass
compactness, a graph based regularization term is introduced
as follows:

n∑
i,j=1,i̸=j

∥WX:,i −WX:,j∥2Si,j = 2Tr(WXLXTWT ),

(10)
where S = (Si,j)n×n is the intraclass similarity graph of
training data X, and L = D− S is the Laplacian matrix.
D is a diagonal matrix with Di,i =

∑
j Si,j . The similarity

matrix S is defined by Gaussian kernel function as follows:

Si,j =

{
exp(−∥X:,i −X:,j∥2/δ2) if Y:,i = Y:,j ,
0, otherwise,

(11)
where δ is a bandwidth parameter, which is set as the average
distance between all pairs of training samples. Eq. (10) uses
the instance relations from training data space. The effect
of minimizing Eq. (10) is locality preserving, i.e., the close
samples in original training data space are enforced to be
close as well after transformation, which can further improve
the feature intraclass compactness. Combining (10) and (9),
and the final objective function of PRDR is as follows:

min
W,V

1

2
∥V −WX∥2F +

λ1
2
∥W∥2F +

λ2
2
∥VTV −YTY∥2F

+
λ3
2
Tr(WXLXTWT )

s.t. {∥V:,i∥}ni=1 = 1,
(12)

where λ1, λ2, and λ3 are balance parameters. Fig. 2 illus-
trates the overall framework of our proposed method. The
PRDR model jointly learns the transform matrix W and
latent representation V by preserving the label and instance
relations in latent feature space, which is characterized by
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label distance and an intraclass compactness graph. Different
with other methods, PRDR does not learn the projection
from V to Y. It focuses on the label and instance relations
to guide regression learning, which utilizes the information
from two channels (i.e., label space and training data space).
The dimensionality of subspace can be arbitrary in PRDR,
allowing it to learn latent representation with more flexi-
bility. Besides, PRDR only contains two unknown variables
which makes it efficient to be optimized.

B. Solution to PRDR

To directly solve the PRDR model (12) is difficult, since
the overall model is nonconvex. We provide an iterative
algorithm based on ADMM framework which is an effective
tool for constrained optimization problems [52]–[54].

To make the variables in (12) separable, we first introduce
an auxiliary variable U and rewrite it as follows:

min
W,V,U

1

2
∥V −WX∥2F +

λ1
2
∥W∥2F +

λ2
2
∥VTU−YTY∥2F

+
λ3
2
Tr(WXLXTWT )

s.t. {∥V:,i∥}ni=1 = 1,V = U.
(13)

The augmented Lagrangian function of problem (13) is

Lµ =
1

2
∥V −WX∥2F +

λ2
2
∥VTU−YTY∥2F

+
λ1
2
∥W∥2F +

λ3
2
Tr(WXLXTWT )

+ Tr
(
ZT (V −U)

)
+
µ

2
∥V −U∥2F ,

(14)

where Z is Lagrange multiplier and µ > 0 is a penalty factor.
Step 1 (Update W): Fix other variables and update W

by solving the following problem:

min
W

1

2
∥V−WX∥2F +

λ1
2
∥W∥2F +

λ3
2
Tr(WXLXTWT ).

(15)
This is a smooth and convex problem. By setting its deriva-
tive w.r.t W to zero, i.e.,

−(V −WX)XT + λ1W + λ3WXLXT = 0. (16)

We can get its closed-form solution as follows:

W̃ = VXT (XXT + λ3XLXT + λ1I)
−1. (17)

Step 2 (Update V): Fix other variables and update V by
solving the following problem:

min
V

1

2
∥V −WX∥2F +

λ2
2
∥VTU−YTY∥2F

+
µ

2
∥V −U+ Z/µ∥2F .

(18)

With the same optimization strategy of W, we can obtain
its solution as follows:

V =
(
(1 + µ)I+ λ2UUT

)−1

G, (19)

Algorithm 1 algorithm for solving PRDR
Input: Training matrix X ∈ Rm×n, label matrix Y ∈ Rc×n,
parameters λ1, λ2, λ3 and d.
Output: Transform matrix W.

1: Initialization: W and V with random values, U = V,
Z = 0, µmax = 105, µ = 1, ρ = 1.1.

2: Compute similarity graph S by rule (11) and its Lapla-
cian matrix L.

3: Compute H = XT (XXT + λ3XLXT + λ1I)
−1.

4: while not converged do
5: Update W by W = VH;
6: Update V by V = Norm(Ṽ), where Ṽ = ((1 +
µ)I + λ2UUT )−1(WX + λ2UYTY + µU − Z) and
Norm(·) is the column normalization operator;

7: Update U by U = (µI+ λ2VVT )−1(λ2VYTY +
µV + Z);

8: Update Z and µ by Z = Z + µ(V −U) and µ =
min(ρµ, µmax);

9: end while
10: return W.

where G = WX+λ2UYTY+µU−Z. Due to the column
normalization constraint {∥V:,i∥}ni=1 = 1, the optimal Ṽ is

Ṽ = [Ṽ:,1, Ṽ:,2, ..., Ṽ:,n], (20)

where Ṽ:,i = V:,i/
√∑d

k=1 V
2
k,i.

Step 3 (Update U): Fix other variables and update U by
solving the following problem:

min
U

λ2
2
∥VTU−YTY∥2F +

µ

2
∥V −U+ Z/µ∥2F . (21)

This is also a smooth and convex optimization problem,
which can be efficiently solved by a closed-form solution
as below:

Ũ = (µI+ λ2VVT )−1(λ2VYTY + µV + Z). (22)

Step 4 (Update Z and µ):

Z̃ = Z+ µ(V −U),

µ̃ = min(ρµ, µmax),
(23)

where ρ > 1 and µmax are constants. By performing step 1-5
iteratively, the objective function can be gradually minimized
until convergence or reaching the maximum number of iter-
ations. It is noticed that, in step 1, XT (XXT +λ3XLXT +
λ1I)

−1 is fixed in iterations, thus we can compute and store
it in advance for faster speed. The algorithm for solving
the PRDR model is summarized in Algorithm 1. Once the
optimal transform matrix W is learned by Algorithm 1, we
can directly use W to obtain the features WX. Then, the
nearest neighbor classifier is used for classification.

C. Complexity and Convergence Analysis

Apart from classification accuracy, computational com-
plexity is also an important issue for evaluating an algo-
rithm [55]. From Algorithm 1, the time cost contains two
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Fig. 3. Visualization of matrix VTV of (a) PRDR and (b) R-PRDR.

parts: the computation outside the loop and iterative steps
inside the loop. For similarity graph S, the computational
complexity is O(n2). For matrix H, its main time cost
is the inverse operation which takes O(m3). In the loop,
matrix H is only calculated once outside the loop, and the
computation for W equals multiplication operation which
is very simple and can be ignored. For V and U, the main
computational costs are also the inverse operations with
O(d3) complexity. The computations of Lagrange multiplier
Z and penalty factor µ are also very simple, and thus their
computational costs can be ignored. Thus, we can conclude
that the total computational complexity of PRDR is about
O(n2 +m3 + τd3) if there are τ iterations.

As presented in previous section, the classical ADMM
framework is adopted to solve the proposed model. The
overall problem (12) w.r.t all unknown variables is non-
convex, and it is difficult to theoretically prove the strong
convergence property of Algorithm 1. In this section, we
present a proof of its weak convergence to a local mini-
mum. It is worth noting that Karush-Kuhn-Tucker (KKT)
conditions are the necessary conditions for a constrained
local optimal solution, and any converging point must be
a KKT point [56]. The following theorem guarantees a
weak convergence property of the proposed optimization
algorithm.

Theorem 1. Let {θt}∞t=1 be a solution sequence generated
by Algorithm 1 with θt = (Wt,Vt,Ut,Zt). Suppose the
solution sequence {θt}∞t=1 is bounded and limt→∞(θt+1 −
θt) = 0, then every limit point of {θt}∞t=1 satisfies the KKT
conditions. Whenever {θt}∞t=1 converges, it converges to a
KKT point.

Proof. Please refer to the Appendix for the detailed proof
of Theorem 1.

D. Discussion and Extension of PRDR

Instead of regressing the training data to label matrix,
PRDR leverages a latent subspace to facilitate the regression
learning by considering the pairwise instance relations in
original feature space and label space simultaneously. The
pairwise label distance is used as supervised information
and transferred into latent space to guide the regression. In
specific, for training sample pair (xi, xj), it minimizes the

following problem with {∥V:,i∥}ni=1 = 1,

(VT
:,iV:,j −YT

:,iY:,j)
2

=

(
VT

:,iV:,j

∥V:,i∥ · ∥V:,j∥
−

YT
:,iY:,j

∥Y:,i∥ · ∥Y:,j∥

)2

=
(
cos(θVij)− cos(θYij)

)2
=
(
cos(θVij)− 1

)2
I(Y:,i = Y:,j)

+
(
cos(θVij)− 0

)2
I(Y:,i ̸= Y:,j),

(24)

where V:,i and V:,j are the latent features of xi and xj ,
∥Y:,i∥ = 1, and I(·) is an indicator operator that I(g) = 1
if condition g holds and otherwise 0. Under the observation
of YT

:,iY:,j = 1 if xi and xj belong to the same class and
otherwise 0, the ∥VTV − YTY∥2F term in PRDR model
(9) reveals the pairwise cosine distance of latent feature
V and label matrix Y is in one-to-one correspondence,
which preserves the semantic similarity of training data and
enforces the learned regression target V to be semantically
discriminative. In other words, PRDR directly enforces the
training samples from the same class to be close as much as
possible (i.e., enforce the pairwise cosine distance to be 1)
after projection, which improves the intraclass compactness
in regression.

As mentioned previously, some one-step and two-step
based regression methods directly regress the training data
X or latent features V to the rigid binary label matrix Y
(i.e., minimize ∥WX−Y∥2F or ∥WV −Y∥2F ), which may
be not suitable as regression target and lead to overfitting.
In standard least squares regression, the Euclidean distance
of regression targets between two samples from different
classes is a definite constant, i.e.,

√
2, no matter the data

dimensionality. Such rigid Euclidean distance constraint may
harm the discriminative learning capacity [32]. DLSR and
ReLSR adopt soft label technique to relax the label matrix, in
which the regression target is adaptively learned. Although
the margins between true and false classes are enlarged,
however, the distances of samples from the same class
may be also enlarged after projection in these soft label
based methods [32]. That is said, the semantic correlation of
samples from the same class is weakened after relaxation,
and the discriminative power of transformation matrix will
certainly be compromised. Besides, these methods regress
each sample to the pre-defined label vectors separately,
which may ignore the data relationships and easily lead to
overfitting [43]. Different with these existing methods, on
the one hand, PRDR regresses the training data to a latent
subspace V rather than label space, which discards the rigid
Euclidean distance constraint. The dimensionality of V can
be arbitrary and V may be more flexible for regression.
On the other hand, PRDR considers the pairwise relations
among all training samples, which are ignored by previous
regression methods, to improve the intraclass compactness
and interclass separability. Although some methods like
ICS DLSR and GLRRDLR also consider the intraclass
compactness, they generally adopt classwise constraints on
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TABLE I
GENERAL STATISTICS OF SIX DATASETS USED IN EXPERIMENTS.

Datasets # Classes # Instances # Features

PIE 68 11554 1024
LFW 86 1251 1024
USPS 10 9298 256

COIL100 100 7200 1024
Caltech101 101 8731 4096

AwA 50 30733 4096

(a)

(b)

(c)

(d)

(e)

Fig. 4. Some typical images from (a) PIE, (b) LFW, (c) USPS, (d)
COIL100, and (e) Caltech101 datasets (The images of AwA are unavailable
because of copyright restrictions).

the features of each class. The classwise constraints may
have a limited effect on reducing the distances between
samples from the same class, while the regularization term in
PRDR directly minimizes the pairwise intraclass distances,
which has a direct effect on improving the discrimination of
regression. Furthermore, the regularization term in PRDR p-
reserves the local data structure, which is helpful to alleviate
the overfitting problem [23].

It is known that the maximum of cos(θij) could be 1 and
the minimum could be −1. The smaller the cosine similarity
value is, the larger the angle or difference between V:,i and
V:,j is. In PRDR, the cosine similarity value is forced to be
1 for two samples from the same class and 0 from different
classes. For optimal interclass separability, the cosine value
(i.e., VT

:,iV:,j) is expected to be −1 for two samples from
different classes, which pulls the two samples away from
each other as much as possible. Therefore, the PRDR model
can be extended to a more discriminative version by further
enlarging the distances between different classes, i.e.,

min
W,V

1

2
∥V −WX∥2F +

λ1
2
∥W∥2F +

λ3
2
Tr(WXLXTWT )

+
λ2
2
∥VTV − S(YTY)∥2F

s.t. {∥V:,i∥}ni=1 = 1,
(25)

where S(·) is an operator that sets element 0 to −1. We
denote the extended model (25) as R-PRDR. It can be
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Fig. 5. Classification accuracies (%) versus the dimensionality of latent
space on (a) PIE, (b) LFW, (c) USPS and (d) COIL100 datasets. For the
four datasets, we randomly select 20, 10, 20, and 20 images per subject for
training and the rest for testing, respectively.

observed that the only difference between PRDR and R-
PRDR is the matrix YTY. Thus R-PRDR can be solved by
Algorithm 1 as well. In specific, we only need to replace
the YTY by S(YTY) in optimization. The computational
complexity and convergence property of R-PRDR are also
the same as PRDR. The matrix VTV in PRDR and R-
PRDR characterizes the pairwise cosine distances of all
training samples. To more clearly illustrate the effect of
proposed methods, the matrix VTV of PRDR and R-PRDR
are visualized in Fig. 3. Obviously, the cosine distances
between samples from the same class are small (i.e., the
diagonal blocks) and the distances between samples from
different classes are large, which indicates the effectiveness
of PRDR and R-PRDR to improve the intraclass similarity
and interclass separability.

IV. EXPERIMENTS

In this section, we conduct experiments on several pop-
ular datasets, including PIE1, LFW2, USPS3, COIL1004,
Caltech1015 and AwA6, to validate the effectiveness of our
proposed PRDR and R-PRDR. Some state-of-the-art related
methods for classification are used for fair comparison,
including LRC [12], CRC [14], LRRR [43], SLRR [43],
DLSR [18], ReLSR [22], ICS DLSR [32], RDR [47], RSL-
DA [57], RLSL [44] and GLRRDLR [30]. For LRC and
CRC, the label of a test sample is determined by minimum
classwise regression error. For other methods and PRDR,

1https://www.ri.cmu.edu/project/pie-database/
2http://vis-www.cs.umass.edu/lfw/
3http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
4https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
5http://www.vision.caltech.edu/Image Datasets/Caltech101/
6https://cvml.ist.ac.at/AwA/
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Fig. 6. Classification accuracies (%) of PRDR versus λ1, λ2, and λ3 on (a) PIE, (b) LFW, (c) COIL100 and (d) Caltech101 datasets. For each dataset,
the number of training samples per subject is 10.

TABLE II
MEAN CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON

PIE DATASET. NOTE: ICSR AND GLRR DENOTE ICS DLSR AND
GLRRDLR METHOD RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

Method 10 15 20 25

LRC 75.63±0.88 85.01±0.66 90.21±0.37 92.54±0.16
CRC 85.98±0.64 90.68±0.81 92.95±0.28 94.20±0.24

LRRR 85.63±0.75 89.71±0.33 92.61±0.80 93.89±0.36
SLRR 88.03±0.62 91.54±0.51 93.55±0.32 94.27±0.23
DLSR 87.23±0.69 91.81±0.62 93.76±0.44 94.61±0.29
ReLSR 87.48±0.48 91.79±0.53 93.74±0.30 94.98±0.28
RLSL 88.17±0.57 91.95±0.56 93.71±0.26 94.85±0.17
RDR 86.85±0.62 91.28±0.33 93.77±0.30 94.99±0.38

RSLDA 78.82±1.09 85.03±0.70 89.22±0.45 91.75±0.19
ICSR 88.78±0.51 92.12±0.43 94.14±0.31 95.05±0.23
GLRR 88.29±0.60 92.46±0.58 94.36±0.18 95.70±0.27
PRDR 89.31±0.67 92.45±0.42 94.29±0.23 95.59±0.23

R-PRDR 89.53±0.61 92.74±0.44 94.89±0.24 96.09±0.21

a transform matrix W is learned and the nearest neighbor
is used for classification on transformed data WX [16],
[30], [32]. In these methods, DLSR, ReLSR, ICS DLSR
and GLRRDLR are one-step based methods which directly
regress the training data to the label space. LRRR, SLRR,
RDR, RLSL, RSLDA and PRDR can be regarded as two-
step based methods that leverage a middle latent subspace
for classification. For each experiment on all datasets, these
methods are repeated 10 times with random training and
test data partitions. We report the mean accuracies with
standard deviations for comparison. All experiments are
implemented on MATLAB R2017b with Win10 system,
Inter Core i7-8550 CPU and 8GB RAM. TABLE I lists the
main information of the six datasets and Fig. 4 shows some
example samples. The MATLAB code for proposed method
is available at https://github.com/ChZhang96/PRDR.

TABLE III
MEAN CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON

LFW DATASET. NOTE: ICSR AND GLRR DENOTE ICS DLSR AND
GLRRDLR METHOD RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

Method 7 8 9 10

LRC 35.83±1.74 37.44±1.26 39.56±1.89 40.27±2.37
CRC 36.66±1.94 37.87±1.53 38.83±1.59 39.80±2.35

LRRR 38.58±1.59 39.33±1.25 40.62±2.25 41.56±1.67
SLRR 31.37±1.02 32.54±1.16 33.51±1.12 33.80±2.00
DLSR 35.12±2.75 36.34±1.47 38.72±2.20 39.80±2.27
ReLSR 36.50±1.65 38.17±1.42 40.19±2.16 41.74±2.15
RLSL 41.51±2.72 42.38±1.42 44.47±1.88 45.19±1.56
RDR 36.41±1.90 37.56±1.64 38.88±1.98 40.87±1.98

RSLDA 30.21±2.25 31.48±1.57 32.76±2.45 33.24±2.14
ICSR 42.13±1.45 42.91±2.07 45.12±2.08 45.93±1.74
GLRR 43.62±2.63 44.51±1.14 46.32±1.55 48.21±2.31
PRDR 43.70±2.08 44.55±2.19 46.27±1.69 48.13±1.73

R-PRDR 43.87±2.74 44.82±1.68 46.87±1.92 48.44±2.22

A. Parameter Analysis

1) The Dimensionality of Latent Space: In PRDR, the
dimensionality d of latent space V is a hyperparameter and
difficult to determine, since it can range from zero to infinity.
A small d is not enough to preserve the discriminative
information, while a large d will increase the computational
and storage costs. According to [43], [44], the dimension d
can be set around c, where c is the number of classes. In our
experiments. we observe that PRDR can achieve satisfactory
performance where the value of d approximately equals to c.
Fig. 5 shows the classification accuracies of PRDR versus d
on PIE, LFW, USPS and COIL100 datasets. We can see that
the changes of accuracy are not obvious when d > c and the
peak is achieved if d is around c. Thus, in our experiments,
the dimensionality d of PRDR and R-PRDR is fixed as c for
all datasets.
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TABLE IV
MEAN CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON

USPS DATASET. NOTE: ICSR AND GLRR DENOTE ICS DLSR AND
GLRRDLR METHOD RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

Method 10 30 50 70

LRC 80.76±2.00 87.79±0.64 90.13±0.45 90.93±0.41
CRC 81.77±1.36 87.37±0.42 89.18±0.54 89.93±0.30

LRRR 78.67±1.46 86.73±0.70 88.75±0.62 89.28± 0.43
SLRR 81.34±2.92 88.67±0.59 89.88±0.36 90.39±0.69
DLSR 81.07±2.12 86.66±1.19 88.78±0.55 90.40±0.67
ReLSR 84.28±1.53 88.80±0.84 89.97±0.40 91.15±0.50
RLSL 84.78±1.12 86.91±1.39 88.48±0.68 89.05±0.47
RDR 84.21±1.49 88.93±0.92 89.45±0.68 90.33±0.39

RSLDA 78.00±2.26 83.61±0.79 86.51±0.49 87.76±0.65
ICSR 86.10±1.23 89.58±0.64 90.23±0.31 91.06±0.57
GLRR 86.02±1.15 90.41±0.68 91.05±0.42 91.95±0.39
PRDR 86.11±1.23 90.42±0.64 90.98±0.31 91.79±0.47

R-PRDR 87.43±1.13 91.03±0.57 91.87±0.32 92.48±0.53

2) Regularization Parameters Sensitivity Analysis: In
PRDR, there are three regularization parameters, i.e., λ1,
λ2 and λ3, which influence the performance of algorithm.
To analyze the parameter sensitivity of PRDR, we first
define a candidate set {10−6,10−5, 10−4, 10−3, 10−2,
10−1, 100, 101, 102} for λ1 and λ2, and {10−6,10−5,
10−4, 10−3, 10−2, 10−1, 100, 101} for λ3. Then PRDR is
performed on PIE, LFW, COIL100 and Caltech101 datasets
with different combinations of the three parameters. Fig.
6 shows the changes of classification accuracy versus the
three parameters on four datasets. It can be observed that
all three parameters influence the classification performance.
Compared with λ1, the proposed method is less sensitive to
parameter λ2. We can further find that the proposed method
can achieve a satisfactory classification result when λ1 and
λ2 are located in [10−3, 1] and [10−2, 101], respectively.
The performance degrades when λ3 is extremely small or
large, which indicates that the locality relationships between
data points is beneficial to preserve intraclass similarity
and improve the classification accuracy. When λ3 is tuned
from 0.1 to 1, our method can always achieve the best
performance. In our experiments, we first find an optimal λ3
due to the robustness by fixing other parameters in candidate
range. Then, by fixing the value of λ3, the optimal λ1 and λ2
are searched with a fixed step in their own candidate range.

B. Classification Performance

Six popular datasets listed in TABLE I are used to evaluate
the performance of our proposed methods.

1) CMU PIE Face Dataset: PIE dataset contains total
41,368 images of 68 subjects, collected under various fa-
cial poses, illumination conditions and expressions. In this
experiment, all methods are compared on a subset of PIE
which contains 11,554 samples of 68 classes with 5 poses.
All images are resized to 32×32 pixels and reshaped to 1024
dimensional vectors [44], [57], [58]. We randomly select 10,
15, 20 and 25 samples for training and the rest for testing.
The mean classification accuracies with standard deviations
are listed in TABLE II. We can see that DLSR and ReLSR

TABLE V
MEAN CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON
COIL100 DATASET. NOTE: ICSR AND GLRR DENOTE ICS DLSR AND
GLRRDLR METHOD RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

Method 10 15 20 25

LRC 81.03±0.94 88.58±0.34 90.41±0.47 92.89±0.19
CRC 74.56±0.40 79.83±0.54 82.97±0.45 84.76±0.50

LRRR 80.35±0.41 86.27±0.58 89.05±0.36 91.88±0.57
SLRR 81.61±0.95 87.33±0.67 90.57±0.32 92.96±0.47
DLSR 82.68±0.61 87.81±0.49 91.20±0.75 93.27±0.51
ReLSR 85.94±0.47 90.45±0.52 93.44±0.45 94.95±0.44
RLSL 87.39±0.49 90.88±0.56 93.34±0.44 94.62±0.44
RDR 84.78±0.55 89.12±0.58 93.13±0.39 94.56±0.27

RSLDA 84.73±0.37 89.59±0.59 93.23±0.45 93.82±0.47
ICSR 87.02±0.87 92.36±0.55 93.97±0.49 94.84±0.38
GLRR 87.27±0.50 91.38±0.68 94.08±0.47 95.56±0.41
PRDR 88.75±0.49 92.48±0.53 94.51±0.34 95.64±0.39

R-PRDR 88.92±0.44 92.61±0.60 94.98±0.37 96.02±0.46

outperform LRRR, which indicates that the ϵ-dragging and
dynamic regression target learning techniques are effective to
improve the performance. ICSR also obtains comparable re-
sults which relaxes the label matrix and considers the class-
wise data similarity in projection learning. PRDR utilizes the
local relationship information from training data space and
distance information from label space simultaneously, and
it outperforms ReLSR, RLSL and ICSR. GLRR combines
the dynamic regression target technique and classwise low-
rank constraint, and it can achieve competitive and similar
performance with PRDR. R-PRDR extends PRDR by further
enlarging the distances between true and false classes, and
it achieves the best classification accuracy in all competing
methods.

2) LFW Face Dataset: LFW is a challenging large-
scale wild dataset for unconstrained face recognition whose
images are collected from the web. In this experiment, we
use a subset of LFW which contains 1251 samples of 86
subjects to evaluate these different methods. Each class
has 11-20 images and all images are resized to 32 × 32
pixels [32]. We randomly select 7, 8, 9 and 10 images
per subject as training set and the rest as test set. The
classification rates of different methods are listed in TABLE
III. Under all training protocols, R-PRDR outperforms other
methods. Due to the big challenge of LFW, the performance
of DLSR, ReLSR, RDR and RSLDA is not desirable. RLSL
and GLRR obtain comparable results with PRDR which are
more robust than DLSR and ReLSR. Under the four training
protocols, the average accuracy improvements of R-PRDR
over RLSL and ReLSR are 2.61% and 6.92%, respectively.
These experimental results demonstrate the superiority of the
proposed method on challenging datasets.

3) USPS Dataset: USPS is a handwritten digits dataset
containing 9298 images of 10 classes, i.e., 0-9. All images
are 16×16 grayscale pixels [18]. In our experiments, 10,
30, 50 and 70 images per subject are randomly selected for
training and the rest for testing. The mean classification rates
of PRDR, R-PRDR and baselines are listed in TABLE IV.
It is obvious that our PRDR and R-PRDR achieve the best
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TABLE VI
MEAN CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON
CALTECH101 DATASET. NOTE: ICSR AND GLRR DENOTE ICS DLSR

AND GLRRDLR RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

Method 10 15 20 25

LRC 75.84±0.59 78.17±0.37 78.89±0.37 79.22±0.25
CRC 76.61±0.51 79.11±0.38 79.97±0.29 80.63±0.36

LRRR 74.62±0.74 76.67±0.44 78.38±0.28 79.34±0.26
SLRR 74.71±0.30 78.46±0.10 80.58±0.31 82.46±0.53
DLSR 78.65±0.39 80.29±0.43 81.28±0.47 81.64±0.55
ReLSR 79.48±0.53 81.26±0.49 82.17±0.31 82.47±0.55
RLSL 79.17±0.48 81.39±0.40 82.54±0.36 83.06±0.35
RDR 80.12±0.41 81.32±0.56 82.14±0.37 82.46±0.42

RSLDA 74.36±0.46 76.30±0.66 77.43±0.42 78.35±0.28
ICSR 79.53±0.45 82.07±0.29 82.96±0.24 83.19±0.44
GLRR 80.42±0.49 81.88±0.33 82.71±0.40 83.05±0.42
PRDR 80.75±0.42 82.29±0.36 82.63±0.24 83.85±0.46

R-PRDR 80.98±0.51 82.64±0.33 83.09±0.31 83.97±0.39
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Fig. 7. The confusion matrix of PRDR and R-PRDR on USPS dataset
(50 samples per subject are selected for training).

classification performance among all competing algorithms.
Fig. 7 shows the confusion matrix of PRDR and R-PRDR on
USPS dataset with 50 images per subject used for training,
in which the classification accuracy on each class locates
along the diagonal. Specifically, for the digit “1”, PRDR can
achieve over 99% recognition accuracy. The classification
accuracy of R-PRDR on digit “1” is slightly lower than
that of PRDR, however, R-PRDR obtains 5.6% accuracy
improvement on digit “8” than PRDR.

4) COIL100 Dataset: COIL100 is an object image
dataset containing 7200 images of 100 objects. The images
are captured at pose intervals of 5 degrees. All images are
resized to 32 × 32 pixels [26], [44]. For each class, we
randomly select 10, 15, 20 and 25 images for training and
the rest for testing. TABLE V shows the classification results
of different methods on COIL100 dataset. From TABLE V,
we can observe that our PRDR and R-PRDR are superior
to other baseline approaches. To better illustrate the effect
the PRDR, the high-dimensional original data and low-
dimensional latent features learned by PRDR are visualized
in Fig. 8 using t-SNE [59]. Total 1440 samples from the
first 20 classes, including training samples and test samples,
are visualized. Fig. 8(a) visualizes the original data. It can
be obviously observed that the samples of some classes are
scattered messily. Fig. 8(b), (c) and (d) visualize the PRDR
features when 10, 30 and 50 images per subject are used for

TABLE VII
MEAN CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON

AWA DATASET. NOTE: ICSR AND GLRR DENOTE ICS DLSR AND
GLRRDLR RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

Method 10 30 50 70

LRC 38.90±0.89 50.23±0.60 57.55±0.44 58.63±0.67
CRC 35.90±0.76 47.25±0.37 54.09±0.31 57.71±0.42

LRRR 42.94±1.01 50.14±0.53 52.58±0.51 53.52±0.42
SLRR 32.32±1.24 41.65±0.53 50.68±0.04 54.80±0.35
DLSR 45.18±1.09 52.96±0.48 55.43±0.59 56.85±0.36
ReLSR 45.61±1.12 53.73±0.69 56.52±0.40 57.89±0.31
RLSL 46.45±1.02 53.88±0.38 56.77±0.48 58.26±0.41
RDR 46.16±1.03 53.78±0.32 56.06±0.23 57.00±0.40

RSLDA 42.89±0.68 49.31±0.39 52.70±0.36 54.51±0.43
ICSR 44.06±1.02 52.86±0.37 56.15±0.45 57.75±0.42
GLRR 47.36±0.93 55.71±0.22 58.78±0.27 60.26±0.35
PRDR 48.13±0.89 56.24±0.38 59.01±0.39 61.08±0.31

R-PRDR 48.59±0.85 56.59±0.34 59.58±0.30 61.33±0.28

1 2 3 4 5 6 7 8 9 10 11 12 13

R-PRDR

PRDR

GLRR

ICSR

RLSL

ReLSR

RDR

DLSR

SLRR

LRC

CRC

LRRR

RSLDA

CD

Fig. 10. CD diagram of different methods with significance level α = 0.1.

training, respectively. When the training scale per subject is
50, our PRDR can achieve 98.55% classification accuracy.
Obviously, the intraclass compactness and interclass separa-
bility are greatly enhanced in the learned features of PRDR.
From Fig. 8(b) to (d), the projection gets more discriminative
with the increase of training samples. In particular, samples
from the same class are obviously clustered together, which
demonstrates that the proposed method can greatly enhance
the intraclass similarity and pull data points to their own
subspace.

5) Caltech101 Dataset: Caltech101 is a widely used
image dataset for object recognition which contains over
9000 images from 101 objects categories and a background
category. Following [44], the 4096-dimensional DeCAF6
deep features of 8791 images in 101 classes are used for
experiments. The DeCAF6 deep features are available at
https://sites.google.com/site/crossdataset/home/files. To im-
prove the computational efficiency, PCA is used as pre-
processing step to preserve the 98% energy of data. 10,
15, 20 and 25 samples per subject are randomly chosen
for training and the remaining for testing. We report the
mean classification accuracies and standard deviations for
all algorithms in TABLE VI. In general, PRDR and R-
PRDR perform the best among all competing approaches,
which indicates that our proposed methods can flexibly
leverage deep features. Total 1312 original samples from 20
classes and corresponding learned features are visualized in
Fig. 9 by t-SNE. For each class, 20 samples are randomly
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(a) Original data (b) PRDR features (No. Train=10) (c) PRDR features (No. Train=30) (d) PRDR features (No. Train=50)

Fig. 8. t-SNE visualization of original samples and learned features of PRDR on COIL100 dataset. The 1440 samples from the first 20 classes are
visualized when 10, 30 and 50 images per subject are used for training, respectively. Both training samples and testing samples are visualized.

(a) Original data (b) RSLDA features (c) ReLSR features (d) PRDR features

Fig. 9. t-SNE visualization of (a) original data and (b) RSLDA, (c) ReLSR and (d) PRDR features on Caltech101 dataset. Total 1312 samples from 20
classes are selected for visualization and the training data size is 20 per subject.

selected to learn the discriminative projection matrix and
both training samples and test samples are visualized. The
features of RSLDA and ReLSR, which focus on enlarging
the distances between different classes, are taken for compar-
ison. Obviously, PRDR features have larger interclass scatter
and smaller intraclass scatter, which indicates that PRDR can
learn a more discriminant regression model.

6) AwA Dataset: AwA dataset contains over 30,000 im-
ages of 50 animals classes. Similar to the tests on Caltech101
dataset, the DeCAF6 deep features of AwA are adopted for
experiments. Total 30,733 instances of 50 classes in 4096
dimensions are used and then PCA is applied to save 98%
energy. We randomly select 10, 30, 50 and 70 instances
per subject for training and the rest for testing. The mean
classification accuracies and standard deviations of different
methods are listed in TABLE VII. PRDR and R-PRDR
outperform other methods. All the experimental results on
PIE, LFW, USPS, COIL100, Caltech101 and AwA datasets
demonstrate that the proposed PRDR and R-PRDR can
outperform other regression methods for image classification
with discriminative projection learning.

C. Statistical Significance

The Friedman test with a post-hoc test [60] is widely
used to compare different algorithms on multiple datasets.
In Friedman test, the null hypothesis states that all the
algorithms are equivalent, and thus their average ranks
should be equal. If the null hypothesis is rejected, we can
proceed with a post-hoc Nemenyi test to find out those
algorithms that significantly differ. If the average ranks

TABLE VIII
THE TIME COMPLEXITY OF DIFFERENT METHODS FOR TRAINING. ICSR

AND GLRR DENOTE ICS DLSR AND GLRRDLR RESPECTIVELY.

Method Time Complexity Method Time Complexity

LRRR O(m3 + d3) RLSL O(τ(m3 +m2n+ d3))
SLRR O(τ(m3 + d3)) RSLDA O(τ(m3 +m2n+ d3))
DLSR O(τmn+m2n) RDR O(τ(m3 +mn2 + d3))
ReLSR O(τmn+m2n) GLRR O(τ(m3 + n2))
ICSR O(τ(m3 + n2)) PRDR O(τd3 +m3 + n2)

of two algorithms differ by at least the critical difference
(CD), the performance of the two algorithms is significantly
different [60].

In Section IV-B, total 13 algorithms are evaluated on six
datasets with different train/test splits. For each algorithm,
the average classification accuracy on each dataset is regard-
ed as its final performance on this dataset. Fig. 10 shows
the CD diagram of the 13 methods, where the average rank
of each method locates along the axis. The methods in a
group linked by a thick line are not significantly different.
We can see that LRC, CRC, LRRR, SLRR and RSLDA have
high ranks and they are significantly different with proposed
PRDR and R-PRDR. R-PRDR achieves the lowest (best)
rank, and PRDR ranks the second in all methods.

D. Time Cost

In Section III-C, we analyzed the computational complex-
ity of the proposed algorithm. In this section, we conduct
experiments on the PIE, LFW, USPS, COIL100, Caltech101
and AwA datasets to illustrate the efficiency of PRDR. In
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TABLE IX
AVERAGE TRAINING TIME (SECOND) OF DIFFERENT METHODS ON PIE, LFW, USPS, COIL100, CALTECH101 AND AWA DATASETS WITH

DIFFERENT NUMBERS OF TRAINING SAMPLES PER SUBJECT. NOTE: “#TR.” MEANS THAT # SAMPLES PER SUBJECT ARE USED FOR TRAINING AND
THE RESTING FOR TESTING, ICSR AND GLRR DENOTE THE ICS DLSR AND GLRRDLR METHOD RESPECTIVELY.

Method
PIE LFW USPS COIL100 Caltech101 AwA

10Tr. 20Tr. 25Tr. 7Tr. 8Tr. 10Tr. 10Tr. 30Tr. 50Tr. 10Tr. 20Tr. 25Tr. 10Tr. 20Tr. 25Tr. 10Tr. 30Tr. 50Tr.

LRRR 0.771 0.780 0.791 0.691 0.699 0.705 0.032 0.039 0.043 0.651 0.678 0.691 0.324 0.358 0.374 0.475 0.507 0.557
SLRR 7.987 8.554 8.885 7.789 7.816 8.017 0.292 0.328 0.398 7.282 7.429 7.633 3.684 3.805 3.924 4.708 5.176 5.394
DLSR 0.461 1.057 1.174 0.422 0.505 0.685 0.015 0.044 0.052 0.893 1.446 1.678 0.681 0.968 1.179 0.275 0.952 1.305
ReLSR 0.171 0.321 0.406 0.181 0.203 0.251 0.005 0.011 0.016 0.354 0.704 0.914 0.328 0.671 0.918 0.089 0.262 0.494
RLSL 12.68 15.52 16.89 13.24 13.60 14.81 0.486 0.548 0.582 13.43 18.71 21.34 8.684 10.87 12.37 9.032 13.91 16.73
RDR 4.453 5.994 7.396 3.642 3.855 4.256 0.167 0.285 0.539 5.172 11.34 17.44 2.629 6.420 11.62 2.309 5.853 10.58

RSLDA 3.105 4.920 5.831 2.994 3.221 3.724 0.075 0.121 0.163 4.098 7.029 9.032 2.617 4.226 5.812 2.180 4.564 7.051
ICSR 1.240 1.465 1.605 1.273 1.299 1.359 0.058 0.062 0.075 1.486 1.906 2.438 1.008 1.312 1.594 0.982 1.296 1.557
GLRR 2.581 4.412 5.276 2.910 3.231 3.777 0.089 0.134 0.199 5.404 9.363 10.67 4.480 6.126 7.979 1.693 3.632 5.722
PRDR 0.332 0.619 0.809 0.284 0.328 0.420 0.012 0.026 0.043 0.546 1.178 1.781 0.512 1.201 1.763 0.173 0.572 1.278

R-PRDR 0.306 0.610 0.818 0.288 0.339 0.427 0.012 0.022 0.048 0.557 1.196 1.799 0.492 1.137 1.709 0.183 0.586 1.219
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Fig. 11. Convergence curve and classification accuracy (%) versus iterations on (a) PIE, (b) LFW, (c) USPS and (d) COIL100 datasets.

those competing methods, LRRR, SLRR, DLSR, ReLSR,
RLSL, RDR, RSLDA, ICSR, GLRR, PRDR and R-PRDR
all learn a transform matrix and use nearest neighbor for
classification. Thus, we compare the training time of these
methods for learning the transform matrix. For a fair com-
parison, the dimension of learned transform matrix keeps
the same for these algorithms (i.e., d = c). Since LRC and
CRC do not learn a transform matrix, they are not included
in comparisons. The experiments are repeated 20 times and
the average training time of different methods are reported.
Since the training time is relevant to the training data scale,
we set different numbers of training samples for each dataset
and compare the execution time of these methods. TABLE
VIII lists the time complexity of different methods. TABLE
IX exhibits the average training time (second) of different
methods on six datasets under different training protocols.

We can see that ReLSR is the fastest algorithm in these
methods which has linear computational complexity w.r.t
training data size n and the computations in iterations are
simple [22]. RLSL, a two-step transform based method,
consumes the longest training time in all algorithms. The
main reason is that RLSL needs to conduct SVD operation
and solve a Sylvester equation problem in each iteration [44].
The l2,1 norm and classwise constraints in SLRR, RDR,
RSLDA, ICSR and GLRR make these algorithms inefficient
as well. For LRRR, it can outperform PRDR on some
datasets like COIL100 when the training size is large. It
is because LRRR is equivalent to perform ridge regression
in regularized LDA subspace and can be directly solved

without iterations [43]. The training time costs of PRDR
and R-PRDR are very close. In general, PRDR significantly
outperforms most other regression methods on training time
cost, which demonstrates the efficiency of proposed method.
Although LRRR and ReLSR can obtain faster speed than
PRDR, PRDR and R-PRDR achieve better classification
performance than these methods.

E. Convergence Analysis

In Section III-C, we present a weak proof of convergence
of the proposed optimization algorithm. Here we demon-
strate its good convergence property by experimental ex-
amples. We show the convergence curves and classification
accuracies of PRDR versus the number of iterations on PIE,
LFW, USPS and COIL100 datasets in Fig. 11, where the
red line is the convergence curve and the blue one is the
classification accuracy curve. We can see that the objective
function value fast decreases to a stable value, usually after
5 iterations. The classification accuracy goes up quickly in
the first several iterations and changes only a litter bit after
10 iterations. The results in Fig. 11 prove that the proposed
optimization algorithm is effective and efficient for solving
PRDR model.

V. CONCLUSION

In this paper, we propose a novel pairwise relations
oriented discriminative regression (PRDR) method with ap-
plications to image classification. In PRDR, the training data
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is transformed into a latent space rather than label space to
avoid the strict regression target problem. The pairwise label
relations are exploited and preserved in latent space to guide
the projection learning in a supervised manner. Besides, a
graph based regularization term is introduced into PRDR
to preserve the pairwise instance relations. The pairwise
label relations, instance relations and projection learning
are seamlessly integrated into a unified model. PRDR is
proved to constrain the pairwise cosine distances between
samples. By further enlarging the margins between true and
false classes, PRDR is extended to a more discriminative
version, i.e., R-PRDR. An iterative optimization algorithm
is proposed to solve the proposed model. Extensive experi-
ments on PIE, LFW, USPS, COIL100, Caltech101 and AwA
datasets demonstrate that our proposed methods can achieve
higher classification accuracy and lower training time costs
than some state-of-the-art regression methods.

APPENDIX

Proof of Theorem 1. For optimization problem (14), its
KKT conditions are as follows (note that the normalization
constraint of V does not involve in the Lagrange multipliers,
thus we do not proof the KKT condition for it):

V = U, (26)

∂J /∂W = WXXT −VXT + λ1W+ λ3WP = 0, (27)

∂J /∂V = V −WX+λ2U(UTV−YTY)+Z = 0, (28)

∂J /∂U = λ2VVTU− λ2YTY − Z = 0. (29)

For Lagrange multiplier Z, we update it by

Z+ ← Z+ µ(V −U), (30)

where Z+ is the next point of Z in the solution sequence
{θt}∞t=1. If sequences of variables {Zj}∞j=1 converge to a
stationary point, i.e., Z+ − Z → 0, then V −U → 0.
Therefore, the first KKT condition (26) is obtained.

The second condition (27) obviously holds since the
optimal W+ is derived from it.

For the third condition (28), we can obtain the following
equation from the solution of V:

V+ −V =
(
(1 + µ)I+ λ2UUT

)−1
•

(WX+ λ2UYTY + µU− Z)−V.
(31)

Then we can obtain(
(1 + µ)I+ λ2UUT

)
(V+ −V)

=WX+ λ2UYTY + µU− Z− (1 + µ)V − λ2UUTV

=−
(
V −WX+ λ2U(UTV −YTY) + Z

)
+ µ(V −U).

(32)
Based on the equation V −U = 0, it can be inferred that
V −WX+λ2U(UTV−YTY)+Z→ 0, when V+−V→
0. The third KKT condition is proved.

For the last condition (29), we can obtain that

U+ −U = (µI+ λ2VVT )−1(λ2VYTY+ µV+Z)−U,
(33)

which can be equivalently rewritten as

(µI+ λ2VVT )(U+ −U)

= λ2VYTY + µV + Z− µU− λ2VVTU

= −(λ2VVTU− λ2YTY − Z) + µ(V −U).

(34)

Similar to the procedure of proving the third condition, we
can obtain that λ2VVTU−λ2YTY−Z→ 0, when U+−
U→ 0. The fourth KKT condition is proved.

Since the solution sequence {θt}∞t=1 is assumed to be
bounded and satisfy the condition of limt→∞(θt+1−θt) = 0,
every limit point of {θt}∞t=1 satisfies the above four KKT
conditions. Thus, we complete the proof.
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