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Granular Matrix: A New Approach for Granular
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Abstract—Granular structure is a mathematical expression of
knowledge in granular computing and a direct determinant of
the data processing efficiency. To improve the efficiency of data
processing, many scholars have studied the reduction of granular
structure. The attribute reduction and the granular reduction are
two types of reduction on different layers of a granular structure,
with the latter being both an essential step for granular structure
reduction and the foundation of the attribute reduction. Yet
compared with the attribute reduction, the granular reduction
has received less attention from scholars. Therefore, a fuzzy
granular reduction theory and a granular matrix based on the
fuzzy β-coverings is proposed in this work. The insufficiency
of the existing granular reduction theory for fuzzy β-coverings
is pointed out, and proper sufficient and necessary conditions
for two fuzzy β-coverings generating the same upper and lower
approximations are also given in this work. In addition, to reduce
and evaluate a fuzzy β-covering, a novel reduction algorithm
based on granular matrix is proposed for the first time. Also, since
fuzzy covering reduction is NP-hard, a heuristic greedy algorithm
is designed to obtain a reduct. Numerical experiments have shown
that the redundancy rates of neighborhood granule sets induced
by some big scale data sets exceed 99%, which indicates that the
existing neighborhood granulation methods need to be urgently
improved. Based on this, concise granular structures and much
more efficient feature selection algorithms can be proposed in
the future.

Index Terms—Artificial intelligence, Granular computing,
Fuzzy sets, Rough sets, Granular reduction, Granular matrix.

I. INTRODUCTION

WHen analyzing and solving problems, human brains
can break down complex problems into multiple sub-

problems and solve them one by one. Granular computing
can simulate this function. By expressing the knowledge units
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as granules, granular computing establishes a multi-layered
granule structure before selecting the appropriate granular
layer according to the actual problem and performing calcu-
lation and reasoning on it, thus finally obtains the appropriate
solution to the problem [1]. Granular computing, a granu-
lar reasoning-based intelligent computing approach, has been
widely used in artificial intelligence, knowledge extraction
and data mining (the granular computing-based intelligent
computing and intelligence system are referred to as granular
intelligence in this paper). The key of granular computing lies
in the establishment and reduction of the granule structure.
Fuzzy sets [2] and rough sets [3], [4], which provide different
granulation and reasoning methods, are two main branches
of granular computing. The establishment and reduction of
granule structures based on fuzzy rough sets can provide
a theoretical framework for feature selection, classification,
clustering, decision making and knowledge extraction, based
on which a variety of efficient algorithms can be designed.

Covering rough sets [5], [6] and binary relation rough sets
[7]–[9] are two main generalized rough sets, but in fact, there
is no essential difference between them. Covering rough sets
mainly study the granule structure and granular reasoning
from the perspective of geometry, while the binary relation
rough sets focus more on the properties and the axiomatization
of rough approximation operators from the perspective of
algebra. The binary relations are generally transformed into
granule sets through predecessor or successor neighborhoods,
which can still be regarded as coverings on some universes.
Therefore, the granule structure can be established on the basis
of coverings (referred to as the covering granule structure),
which can be used to solve related problems of different
generalized rough sets.

Covering granular structure is a mathematical frame for
intelligent computing, its simplification determines the effec-
tiveness and efficiency of granular computing. Therefore, how
to define and eliminate redundant granules remains a key
problem. Or in other words, under what conditions do two
coverings have the same lower and upper approximations?
Many scholars have carried out studies on this issue [10], [11],
among whom the first author of this paper proposed the cov-
ering approximation space theory based on the covering rough
sets, which includes three covering approximation spaces:
dual approximation space, M-approximation space and N -
approximation space. The simplifications of a granule structure
[11] based on different approximation spaces are studied,
including granular reduction and attribute reduction. (1) In
terms of the granular reduction, it is worth noting that the
existing granular reduction [10] (i.e. union reduction) is based
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on M-approximation space, while the granular reductions of
dual approximation space and N -approximation space are
more complex. The existing literature [11] has offered the cor-
responding algorithm, that can effectively reduce the granule
structure of a single attribute, thereby simplifying the subse-
quent knowledge process. (2) In terms of the attribute reduc-
tion, as the classical attribute reduction methods, namely the
discernibility matrix and dependency degree, can only be used
to solve the attribute reduction of N -approximation space,
the existing attribute reductions [12]–[25] are actually based
on N -approximation space. To solve the attribute reduction
problem of dual approximation space and M-approximation
space, a related family method was proposed by the first
author of this paper. The computational complexity of the
dual approximation space and the M-approximation space is
lower than that of the N -approximation space, which indicates
a lower time and space complexity of the related family
algorithm [26] based on the dual approximation space and the
M-approximation space than that of the discernibility matrix
algorithm and dependency degree algorithm based on the N -
approximation space. Feature selection is an important data
preprocessing method that can effectively compress the data
dimension and provide higher generalization performance for
subsequent machine learning models. In summary, the granular
structure based on the approximation spaces represents the
most important theoretical framework in granular computing.
And on this basis, a systematic and in-depth study of different
generalized rough sets can greatly improve the effectiveness
and efficiency of knowledge extraction and machine learning.

To further improve the ability of knowledge granules to
express information, scholars have studied various fuzzy gran-
ule structures and their reductions. (1) In the aspect of fuzzy
granule reduction, Ma [27] generalized the fuzzy covering
rough sets to the Fuzzy β-Covering rough sets (β-FC), and
relaxed the condition of fuzzy covering. Yang et al. [28],
[29] studied the fuzzy union reduction based on the β-FC.
(2) Numerous attribute reductions based on fuzzy granules
have been done by scholars [14], [20], [30]–[41], and a series
of novel and effective algorithms have been proposed. These
studies are very instructive, yet still exist some problems. The
β-FC granule structure is more complicated than the covering
granule structure, and since the granule structure of the β-FC
has not been established yet, the fuzzy union reduction and
attribute reduction based on the β-FC are easy to get bogged
down into misunderstanding. For example, Yang et al. [28],
[29] claimed that the fuzzy union reduction is the granular
reduction of several β-FC models, yet we point out in this
paper that this reduction is not sufficient. In addition, due to
the complexity of the existing generation process of fuzzy
granules, a variety of fuzzy attribute reduction algorithms
are inefficient, and the introduction of fuzzy β-approximation
space can greatly improve this situation. In short, the root of
these problems is the lack of basic theory of fuzzy granule
space. Therefore, defining an approximation space based on
the β-FC and establishing the granule reduction of β-FC can
help to improve the effectiveness and efficiency of knowledge
extraction and machine learning, and avoid misunderstanding
or repeated research.

In view of the high granule redundancy rate pointed in
this paper, a new granulation method is proposed to generate
concise β-FCs. It is worth noting that there are only 50-100
fuzzy granules in a covering, while the existing granulation
methods [12]–[20], [23], [26], [32]–[34], [36], [37], [40], [41]
generate n granules (n represents the number of sample).
For big data sets, there may be over a million granules in a
covering, which results in a huge difference in computational
efficiency. In conclusion, the ability of fuzzy granule to express
information is very powerful, which allows us to use very
few granules to express a big scale of data sets. Based on
this advantage, feature selection and other machine learning
processes can be greatly accelerated.

The rest of this paper is organized as follows. Some related
notions and definitions are reviewed in Section II. Fuzzy
neighborhood reduction theory based on fuzzy β-coverings
is studied in Section III. The concept of granular matrix is
proposed and studied in Section IV. In Section V, a heuristic
algorithm to obtain a fuzzy N -reduct is constructed. Experi-
ments are conducted in Section VI. Section VII concludes the
whole paper.

II. BACKGROUND

Firstly, basic notions related to fuzzy β-covering rough sets
are introduced as below.

Definition 1. [27], [29](Fuzzy β-covering) Given a set of
objects U , F(U) is the collection of all fuzzy sets defined on
U . For each β ∈ (0, 1], Ĉ = {Ĉ1, Ĉ2, . . . , Ĉm}, where Ĉi ∈
F(U)(i = 1, 2, . . . ,m), is defined as a Fuzzy β-Covering (β-
FC) of U if (

⋃m
i=1 Ĉi)(x) ≥ β for each x ∈ U . (U, Ĉ ) is

referred to as a Fuzzy β-Covering approximation Space (β-
FCSpace). For each x ∈ U , the fuzzy β-neighborhood (Ñβ

x )Ĉ ,
fuzzy complementary β-neighborhood (M̃β

x )Ĉ and fuzzy β-

minimal description (M̃d
β

x)Ĉ of x are defined as:

(Ñβ
x )Ĉ =

⋂
{Ĉi ∈ Ĉ : Ĉi(x) ≥ β}.

(M̃β
x )Ĉ (y) = (Ñβ

y )Ĉ (x) for all y ∈ U .

(M̃d
β

x)Ĉ = {Ĉ ∈ Ĉ : Ĉ(x) ≥ β, for any D̂ ∈ Ĉ , if
D̂(x) ≥ β and D̂ ⊆ Ĉ, then Ĉ = D̂}.

We call Θβ(Ĉ ) = {Ñβ
x : x ∈ U} a fuzzy β-neighborhood

family, Θ
β
(Ĉ ) = {M̃β

x : x ∈ U} a fuzzy complementary β-

neighborhood family and ∆β(Ĉ ) = {M̃d
β

x : x ∈ U} a fuzzy
β-minimal description family generated by Ĉ (where Ĉ can
be ignored as long as there is no confusion).

When describing an object, generally not all characteristics
are of equal importance. To eliminate redundant informa-
tion and retain its valuable characteristics, notions of fuzzy
β-neighborhood, fuzzy complementary β-neighborhood and
fuzzy β-minimal description are proposed. The remaining
essential characteristics constitute the new β-FCs of U , which
are called fuzzy β-neighborhood family, fuzzy complemen-
tary β-neighborhood family and fuzzy β-minimal description
family.
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Based on the notions of fuzzy β-neighborhoods and fuzzy
complementary β-neighborhoods, scholars have proposed four
kinds of β-FC models [27], [29], which are listed as below.

Definition 2. [27], [29] Given a β-FCSpace (U, Ĉ ), the lower
approximations P̃−(X), F̃L(X), S̃L(X), T̃L(X) and upper
approximations P̃+(X), F̃H(X), S̃H(X), T̃H(X) of X ∈
F(U) are defined as (for any x ∈ U ):
P̃−(X)(x) = ∧y∈U [(1− Ñβ

x (y)) ∨X(y)];

P̃+(X)(x) = ∨y∈U [Ñβ
x (y) ∧X(y)].

F̃L(X)(x) = ∧y∈U [(1− M̃β
x (y)) ∨X(y)];

F̃H(X)(x) = ∨y∈U [M̃β
x (y) ∧X(y)].

S̃L(X)(x) = ∧y∈U [(1− Ñβ
x (y)) ∨ (1− M̃β

x (y)) ∨X(y)];

S̃H(X)(x) = ∨y∈U [Ñβ
x (y) ∧ M̃β

x (y) ∧X(y)].

T̃L(X)(x) = ∧y∈U [((1− Ñβ
x (y))∧ (1− M̃β

x (y)))∨X(y)];

T̃H(X)(x) = ∨y∈U [(Ñβ
x (y) ∨ M̃β

x (y)) ∧X(y)].

These four β-FC models are called the primal (P̃− and
P̃+), the first (F̃L and F̃H), the second (S̃L and S̃H) and the
third (T̃L and T̃H) β-FC model in this paper, respectively. Al-
though their approximation elements and approximation ways
are different, the propositions in following section indicate that
their reduction methods are the same.

Definition 3. [29](Fuzzy union reduct) For a given β-FC Ĉ
of U and Ĉ ∈ Ĉ , Ĉ is called a fuzzy union reducible element
of Ĉ if Ĉ is the union of some fuzzy sets in Ĉ−{Ĉ}, or else Ĉ
is a fuzzy union irreducible element of Ĉ . The collection of all
fuzzy union reducible elements and the collection of all fuzzy
union irreducible elements of Ĉ are denoted by FUR(Ĉ )
and FUI(Ĉ ) respectively. For any D̂ ⊆ Ĉ , supposing
FUR(Ĉ ) = Ĉ − D̂ , then D̂ is called a fuzzy union reduct of
Ĉ . We denote it as Γ(Ĉ ).

A reducible element is defined as fuzzy union reducible in
[29]. However, even if we delete all fuzzy union reducible
elements from a β-FC based on the β-FC models in [29],
there may still be some superfluous elements, as shown in the
example below.

Example 1. Considering the set of objects U =
{x1, x2, x3, x4}, Ĉ = {Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6, Ĉ7} is a β-FC
for β = 0.5. The fuzzy blocks are listed below.
Ĉ1 = 0.7

x1
+ 0.1

x2
+ 0.3

x3
+ 0.3

x4
,

Ĉ2 = 0.2
x1

+ 0.7
x2

+ 0.3
x3

+ 0.3
x4

,
Ĉ3 = 0.6

x1
+ 0.1

x2
+ 0.7

x3
+ 0.3

x4
,

Ĉ4 = 0.2
x1

+ 0.8
x2

+ 0.3
x3

+ 0.7
x4

,
Ĉ5 = 0.4

x1
+ 0.1

x2
+ 0.2

x3
+ 0.3

x4
,

Ĉ6 = 0.7
x1

+ 0.9
x2

+ 0.8
x3

+ 0.9
x4

,
Ĉ7 = 0.6

x1
+ 0.1

x2
+ 0.3

x3
+ 0.3

x4
.

Based on Definition 1, the fuzzy β-neighborhood family of
Ĉ is calculated as follows:

(Ñ0.5
x1

)Ĉ = 0.6
x1

+ 0.1
x2

+ 0.3
x3

+ 0.3
x4

,
(Ñ0.5

x2
)Ĉ = 0.2

x1
+ 0.7

x2
+ 0.3

x3
+ 0.3

x4
,

(Ñ0.5
x3

)Ĉ = 0.6
x1

+ 0.1
x2

+ 0.7
x3

+ 0.3
x4

,
(Ñ0.5

x4
)Ĉ = 0.2

x1
+ 0.8

x2
+ 0.3

x3
+ 0.7

x4
.

The fuzzy complementary β-neighborhood family of Ĉ is
calculated as follows:

(M̃0.5
x1

)Ĉ = 0.6
x1

+ 0.2
x2

+ 0.6
x3

+ 0.2
x4

,
(M̃0.5

x2
)Ĉ = 0.1

x1
+ 0.7

x2
+ 0.1

x3
+ 0.8

x4
,

(M̃0.5
x3

)Ĉ = 0.3
x1

+ 0.3
x2

+ 0.7
x3

+ 0.3
x4

,
(M̃0.5

x4
)Ĉ = 0.3

x1
+ 0.3

x2
+ 0.3

x3
+ 0.7

x4
.

We can get Θ0.5(Ĉ ) = Θ0.5(Ĉ − {C1}) = Θ0.5(Ĉ −
{C5}) = Θ0.5(Ĉ − {C6}) = Θ0.5(Ĉ − {C7}), while
Θ0.5(Ĉ ) 6= Θ0.5(Ĉ −{C2}), Θ0.5(Ĉ ) 6= Θ0.5(Ĉ −{C3}) and
Θ0.5(Ĉ ) 6= Θ0.5(Ĉ − {C4}). Since any fuzzy complementary
β-neighborhood is determined by the corresponding fuzzy β-
neighborhood, it is apparently that: Θ

0.5
(Ĉ ) = Θ

0.5
(Ĉ −

{C1}) = Θ
0.5

(Ĉ − {C5}) = Θ
0.5

(Ĉ − {C6}) = Θ
0.5

(Ĉ −
{C7}), while Θ

0.5
(Ĉ ) 6= Θ

0.5
(Ĉ − {C2}), Θ

0.5
(Ĉ ) 6=

Θ
0.5

(Ĉ − {C3}) and Θ
0.5

(Ĉ ) 6= Θ
0.5

(Ĉ − {C4}).
Considering that for the primal, the first, the second, the

third β-FC rough set models, if the Θ0.5(Ĉ ) and Θ
0.5

(Ĉ ) are
invariant, then the corresponding upper and lower approxi-
mations will not change. As a result, the set of all irreducible
elements is {Ĉ2, Ĉ3, Ĉ4} and the set of all reducible elements
is {Ĉ1, Ĉ5, Ĉ6, Ĉ7}. However, none of the reducible elements
is fuzzy union reducible. Thus, only reducing fuzzy union
reducible elements from a β-FC is far from reduced, we need
to find other types of reducible elements.

III. FUZZY NEIGHBORHOOD REDUCTION THEORY

Under what condition do two β-FCs have the same β-FC
lower and upper approximations of an arbitrary fuzzy set?
This is an important question for rough set theory and data
mining. Yang et al. [29] claimed that they had found the
necessary and sufficient conditions for this question, that is,
the β-FC lower and upper approximations of two β-FCs are
the same if and only if their fuzzy union reducts are the same.
As shown in Example 1, the fuzzy union reducts of Ĉ and
Ĉ − {C1} are different, but they have the same lower and
upper approximations of an arbitrary fuzzy set. Obviously, this
condition is not necessary and needs to be revised as below.

Proposition 1. Given two different β-FCs Ĉ1 and Ĉ2 of U ,
then Ĉ1,Ĉ2 generate the same primal, first, second and third
type of β-FC upper and lower approximations of X ∈ F(U)
if Γ(Ĉ1) = Γ(Ĉ2), but not vice versa.

This proposition suggests that there must be other kinds
of reducible elements besides fuzzy union reducible elements.
Thus, an appropriate method should be constructed to reduce
β-FCs. It is worth noting that the fuzzy β-neighborhood family
and fuzzy complementary β-neighborhood family are the
collection of all approximation elements applied to the primal,
the first, the second and the third β-FC models, which means
that the lower and upper approximations of an arbitrary fuzzy
set will not change as long as the fuzzy β-neighborhood family
and fuzzy complementary β-neighborhood family of a β-FC
remain the same. Evidently, the fuzzy β-neighborhood family
and fuzzy complementary β-neighborhood family are the key
notions for the β-FC reduction. Thus, the granular reduction
based on the primal, the first, the second and the third β-FC
models is refered to as fuzzy neighborhood reduction theory
(or fuzzy N -reduction theory for short).
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To reveal the relation between a fuzzy β-neighborhood
family and the related fuzzy complementary β-neighborhood
family, their matrix representations are defined.

Definition 4. For a given β-FC Ĉ of U , Θβ(Ĉ ) = {Ñβ
xi

:

xi ∈ U} and Θ
β
(Ĉ ) = {M̃β

xi
: xi ∈ U} are the

fuzzy β-neighborhood family and the fuzzy complementary β-
neighborhood family, respectively. M(Θβ(Ĉ )) = (aij)n×n,
where aij = Ñβ

xi
(xj) is a matrix representation of Θβ(Ĉ ). In

the same way, M(Θ
β
(Ĉ )) = (bij)n×n, where bij = M̃β

xi
(xj)

is a matrix representation of Θ
β
(Ĉ ).

Proposition 2. (M(Θβ(Ĉ )))T = M(Θ
β
(Ĉ )), where

(M(Θβ(Ĉ )))T denotes the transpose of M(Θβ(Ĉ )).

The following proposition reveals the relation between
fuzzy β-neighborhood family and fuzzy complementary β-
neighborhood family based on Definition 1 and Proposition
2.

Proposition 3. Given two different β-FCs Ĉ1 and Ĉ2 of U ,
then Θβ(Ĉ1) = Θβ(Ĉ2) if and only if Θ

β
(Ĉ1) = Θ

β
(Ĉ2).

Considering that the lower and upper approximations of β-
FCs are determined by the fuzzy β-neighborhood family and
the fuzzy complementary β-neighborhood family, while the
fuzzy complementary β-neighborhood family is determined
by the fuzzy β-neighborhood family, then the lower and upper
approximations of β-FCs can only be determined by the fuzzy
β-neighborhood family.

For fuzzy granular reduction, although there is only one
fuzzy union reduct for each β-FC, there may be more than
one fuzzy N -reduct of a β-FC, indicating that the granular
reduction about fuzzy β-neighborhood family is much more
complex than the fuzzy union reduction. In this section,
definitions are first given to a fuzzy N -reducible element, a
fuzzy N -irreducible β-FC and a fuzzy N -reduct based on
fuzzy β-neighborhood family. Meanwhile, the characteristics
of fuzzy N -reduction are studied and the relation between the
fuzzy union reduction and the fuzzy N -reduction is examined.
On this basis, a new granular reduction algorithm based on
granular matrix is initially proposed to obtain all fuzzy N -
reducts of a β-FC.

Definition 5. (Fuzzy N -reducible element) For a given β-FC
Ĉ of U and Ĉ ∈ Ĉ , Θβ(Ĉ ) is the fuzzy β-neighborhood fam-
ily. Ĉ is called a fuzzy N -reducible element of Ĉ if Θβ(Ĉ ) =
Θβ(Ĉ − {Ĉ}), or else Ĉ is called a fuzzy N -irreducible
element of Ĉ . The collection of all fuzzy N -reducible elements
and the collection of all fuzzy N -irreducible elements of Ĉ are
denoted by FNR(Ĉ ) and FNI(Ĉ ) respectively.

Since the fuzzy β-neighborhood family is the collection of
all approximation elements in the primal, first, second and
third type of β-FC models, it is defined as the fuzzy N -
approximation space in this paper. Hence, a reduct of a β-FC
is the minimal subsets that keeps the fuzzy β-neighborhood
family invariant.

The following definition describes a special block of a β-FC
that has no contribution to the β-FC.

Definition 6. (Null element) For a given β-FC Ĉ of U and
Ĉ ∈ Ĉ , Ĉ is called a null element of Ĉ if Ĉ(x) < β for all
x ∈ U .

It is obvious that a null element is a fuzzy N -reducible
element for any β-FC.

Proposition 4. For a given β-FC Ĉ of U and Ĉ ∈ Ĉ , suppose
Ĉ is a null element of Ĉ , then Ĉ is a fuzzy N -reducible
element.

Proof. It is evident from the definitions of null element and
fuzzy β-neighborhood description.

Definition 7. (Fuzzy N -irreducible β-FC) For a given β-FC
Ĉ of U , Θβ(Ĉ ) is the fuzzy β-neighborhood family, Ĉ is fuzzy
N -irreducible if each Ĉ ∈ Ĉ is a fuzzy N -irreducible element
of Ĉ , or else Ĉ is called a fuzzy N -reducible β-FC.

Definition 8. (Fuzzy N -reduct) For a given β-FC Ĉ of U
and Ĉ ′ ⊆ Ĉ , we call Ĉ ′ a fuzzy N -reduct of Ĉ if Θβ(Ĉ ) =
Θβ(Ĉ ′) and Ĉ ′ is fuzzy N -irreducible. The collection of all
fuzzy N -reducts is denoted by FNRed(Ĉ ) = {Ĉ ′ : Ĉ ′ is a
fuzzy N -reduct of Ĉ }.

Definition 8 implies that the fuzzy N -reduct of a β-FC
is the minimal subset that keeps the fuzzy β-neighborhood
family invariant. Since the lower and upper approximations
are determined by both the fuzzy β-neighborhood family and
approximation operations, once the β-FC approximation op-
erations are selected, the lower and upper approximations for
every X ∈ F(U) only depend on the fuzzy β-neighborhood
family. As a consequence, the fuzzy N -reduction is to find the
minimal subset that keeps the upper and lower approximations
invariant.

Based on the above discussion, proper sufficient and nec-
essary conditions for two β-FCs that generate the same β-FC
lower and upper approximations can be obtained based on all
the four types of β-FC models as defined in Definition 2.

Proposition 5. Given two different β-FCs Ĉ1 and Ĉ2 of U ,
Ĉ1, Ĉ2 generate the same primal, first, second or third type of
β-FC upper and lower approximations of any X ∈ F(U) if
and only if Θβ(Ĉ1) = Θβ(Ĉ2).

Since Θ
β
(Ĉ ) changes if and only if Θβ(Ĉ ) changes, we

can also have some other sufficient and necessary conditions
displayed as below:

Proposition 6. Given two different β-FCs Ĉ1 and Ĉ2 of U ,
Ĉ1, Ĉ2 generate the same primal, first, second or third type of
β-FC upper and lower approximations of any X ∈ F(U) if
and only if Θ

β
(Ĉ1) = Θ

β
(Ĉ2).

According to Definitions 1 and 3, it can be known that
deleting some fuzzy union reducible elements from a β-FC
does not change the fuzzy β-neighborhood family, suggesting
that a fuzzy union reducible element is a fuzzy N -reducible
element. However, not all fuzzy N -reducible elements are
fuzzy union reducible, as shown in the example below. Thus,
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the fuzzy union reducible element is a special case of the fuzzy
N -reducible element.

Example 2. Considering the set of objects U =
{x1, x2, x3, x4}. Ĉ = {Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5} is a β-FC for
β = 0.5. Fuzzy blocks are listed as below.
Ĉ1 = 0.6

x1
+ 0.8

x2
+ 0.4

x3
+ 0.6

x4
,

Ĉ2 = 0.4
x1

+ 0.8
x2

+ 0.4
x3

+ 0.6
x4

,
Ĉ3 = 0.5

x1
+ 0.3

x2
+ 0.5

x3
+ 0.2

x4
,

Ĉ4 = 0.6
x1

+ 0.6
x2

+ 0.1
x3

+ 0.3
x4

,
Ĉ5 = 0.7

x1
+ 0.4

x2
+ 0.6

x3
+ 0.4

x4
.

Θβ(Ĉ ) is calculated as follows:
Ñ0.5
x1

= Ĉ1

⋂
Ĉ3

⋂
Ĉ4

⋂
Ĉ5 = Ĉ3

⋂
Ĉ4,

Ñ0.5
x2

= Ĉ1

⋂
Ĉ2

⋂
Ĉ4 = Ĉ2

⋂
Ĉ4,

Ñ0.5
x3

= Ĉ3

⋂
Ĉ5 = Ĉ3,

Ñ0.5
x4

= Ĉ1

⋂
Ĉ2 = Ĉ2.

It is obvious that Ĉ1 = Ĉ2

⋃
Ĉ4 is both fuzzy union

reducible and fuzzy N -reducible; while Ĉ5 is just a fuzzy N -
reducible element.

Proposition 7. For a given β-FC Ĉ of U ,
(1) Ĉ ∈ Ĉ is fuzzyN -reducible if it is fuzzy union reducible;
(2) Ĉ ∈ Ĉ is fuzzy union irreducible if it is fuzzy N -

irreducible;
(3) Ĉ is a fuzzy union irreducible β-FC if it is a fuzzy

N -irreducible β-FC.

This proposition indicates that the fuzzy N -reduction is a
further reduction compared to the fuzzy union reduction, and
the fuzzy N -reducible element is an extension of the fuzzy
union reducible element. With regard to the four β-FC models
in this paper, the fuzzy union reduction is insufficient. In other
words, for a fuzzy N -reduction procedure, it is not enough to
simply delete fuzzy union reducible elements from a β-FC.

Example 3. Considering the set of objects U =
{x1, x2, x3, x4, x5}, Ĉ = {Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5} is a β-FC for
β = 0.5. Fuzzy blocks are listed below.
Ĉ1 = 0.8

x1
+ 0.4

x2
+ 0.2

x3
+ 0.4

x4
+ 0.3

x5
,

Ĉ2 = 0.4
x1

+ 0.5
x2

+ 0.4
x3

+ 0.6
x4

+ 0.1
x5

,
Ĉ3 = 0.5

x1
+ 0.3

x2
+ 0.5

x3
+ 0.2

x4
+ 0.7

x5
,

Ĉ4 = 0.6
x1

+ 0.4
x2

+ 0.2
x3

+ 0.3
x4

+ 0.3
x5

,
Ĉ5 = 0.7

x1
+ 0.3

x2
+ 0.3

x3
+ 0.4

x4
+ 0.4

x5
.

Θβ(Ĉ ) is calculated as follows:
Ñ0.5
x1

= Ĉ1

⋂
Ĉ3

⋂
Ĉ4

⋂
Ĉ5 = Ĉ1

⋂
Ĉ3 = Ĉ3

⋂
Ĉ4,

Ñ0.5
x2

= Ĉ2, Ñ0.5
x3

= Ĉ3, Ñ0.5
x4

= Ĉ2, Ñ0.5
x5

= Ĉ3.
Since Θ0.5(Ĉ − {Ĉ2}) 6= Θ0.5(Ĉ ), Θ0.5(Ĉ − {Ĉ3}) 6=

Θ0.5(Ĉ ), Θ0.5(Ĉ − {Ĉ1}) = Θ0.5(Ĉ − {Ĉ4}) = Θ0.5(Ĉ −
{Ĉ5}) = Θ0.5(Ĉ ), and Θ0.5(Ĉ − {Ĉ1} − {Ĉ4}) 6= Θ0.5(Ĉ ),
we have FNR(Ĉ ) = {Ĉ1, Ĉ4, Ĉ5}, FNI(Ĉ ) = {Ĉ2, Ĉ3},
FNRed(Ĉ ) = {{Ĉ1, Ĉ2, Ĉ3}, {Ĉ2, Ĉ3, Ĉ4}}.

This example shows that deleting a fuzzy N -reducible ele-
ment may transform other original fuzzyN -reducible elements
into fuzzy N -irreducible elements, and a β-FC may have
multiple fuzzy N -reducts.

Proposition 8. For a given β-FC Ĉ of U , Ĉ ∈ Ĉ is a fuzzy
N -reducible element and Ĉ1 ∈ Ĉ − {Ĉ}, then we have

(1) Ĉ1 is fuzzy N -reducible in Ĉ if it is fuzzy N -reducible
in Ĉ − {Ĉ};

(2) Ĉ1 is fuzzy N -irreducible in Ĉ − {Ĉ} if it is fuzzy N -
irreducible in Ĉ .

Proof. (1) Suppose Ĉ1 is a fuzzy N -reducible element in Ĉ −
{Ĉ}, then Θβ(Ĉ−{Ĉ}) = Θβ(Ĉ−{Ĉ, Ĉ1}) . Since Ĉ ∈ Ĉ is
fuzzy N -reducible, there is Θβ(Ĉ ) = Θβ(Ĉ −{Ĉ}). Thus we
have Θβ(Ĉ ) = Θβ(Ĉ −{Ĉ, Ĉ1}), it is evident that Θβ(Ĉ ) =
Θβ(Ĉ − {Ĉ1}). That means Ĉ1 is fuzzy N -reducible in Ĉ .

(2) Suppose Ĉ1 is fuzzy N -irreducible in Ĉ , then
Θβ(Ĉ ) 6= Θβ(Ĉ − {Ĉ1}), and it is evident that
Θβ(Ĉ ) 6= Θβ(Ĉ − {Ĉ, Ĉ1}). Since Ĉ is fuzzy N -
reducible in Ĉ , we have Θβ(Ĉ ) = Θβ(Ĉ − {Ĉ}). Therefore
Θβ(Ĉ − {Ĉ}) 6= Θβ(Ĉ − {Ĉ, Ĉ1}), which means Ĉ1 is
fuzzy N -irreducible in Ĉ − {Ĉ}.

As can be seen from the above proposition, deleting a fuzzy
N -reducible element in a β-FC will not transform any fuzzy
N -irreducible elements into fuzzy N -reducible elements. As
shown in Example 3, it is obvious that deleting a fuzzy N -
reducible element may cause other original fuzzy N -reducible
elements to be fuzzy N -irreducible. Thus, the reverse does not
hold.

Proposition 9. For a given β-FC Ĉ of U , FNI(Ĉ ) =⋂
FNRed(Ĉ ).

Proof. From Proposition 8, we get that FNI(Ĉ ) ⊆⋂
FNRed(Ĉ ).
For any Ĉ ∈

⋂
FNRed(Ĉ ), suppose Ĉ /∈ FNI(Ĉ ),

then Θβ(Ĉ ) = Θβ(Ĉ − {Ĉ}). Thus there is a
fuzzy N -reduct Ĉ ′ which satisfies Ĉ ′ ∈ Ĉ − {Ĉ}.
That means Ĉ /∈ Ĉ ′ ∈ FNRed(Ĉ ), therefore
Ĉ /∈

⋂
FNRed(Ĉ ), which is a contradiction. Consequently,

FNI(Ĉ ) =
⋂
FNRed(Ĉ ).

As can be easily seen from the properties above, an element
will not be deleted in any fuzzy N -reduction procedure if and
only if it is fuzzy N -irreducible. In other words, all fuzzy
N -irreducible elements will remain in any fuzzy N -reduction
procedure. Therefore, the fuzzy N -reduction procedure of a β-
FC can be realized by keeping fuzzyN -irreducible elements as
the first step. Since fuzzy N -irreducible elements are the most
essential elements in fuzzy N -reduction, it is very important
to study the properties of fuzzy N -irreducible elements.

Definition 9. (Related set) For a given β-FC Ĉ of U , C̃β
x =

{Ĉ ∈ Ĉ : Ĉ(x) ≥ β} is called the related set of x.

It is evident that Ñβ
x = ∩C̃β

x .

Proposition 10. For a given β-FC Ĉ of U , the following
statements are equivalent:

(1) Ĉ ∈ FNI(Ĉ );
(2) Ĉ ∈

⋂
FNRed(Ĉ );

(3) There exist xi, xj ∈ U such that Ĉ is the only element
which satisfies Ĉ(xi) ≥ β and Ĉ(xj) = Ñβ

xi
(xj);
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(4) There exist xi, xj ∈ U such that Ĉ(xj) = min{D̂(xj) :

D̂ ∈ C̃β
xi
}.

Proof. It is easy to see that (1)⇐⇒(2) and (3)⇐⇒(4). Next
we prove (1)⇐⇒(3).

(1)=⇒(3) Let Ĉ ∈ FNI(Ĉ ), then there exist xi, xj ∈ U
such that rij = {Ĉ}. That means Ĉ is the only element such
that Ĉ(xi) ≥ β and Ĉ(xj) = Ñβ

xi
(xj).

(1)⇐=(3) Suppose there exist xi, xj ∈ U such that
Ĉ is the only element which satisfies Ĉ(xi) ≥ β and
Ĉ(xj) = Ñβ

xi
(xj), then rij = {Ĉ}, thus Ĉ ∈ FNI(Ĉ ).

From Proposition 4, Proposition 7 and Example 2, it can
be known that both fuzzy union reducible elements and null
elements are fuzzy N -reducible elements, whereas fuzzy N -
reducible elements may neither be fuzzy union reducible nor
null. In the following discussion, we continue to analyze which
subsets of a β-FC Ĉ should be deleted and which should be
reserved.

Definition 10. (Fuzzy independent subset) For a given β-
FC Ĉ of U , B̂ ⊆ FNR(Ĉ ), B̂ is called a fuzzy indepen-
dent subset of Ĉ about the fuzzy β-neighborhood family if
Θβ(Ĉ ) = Θβ(Ĉ − B̂).

It is evident that FUR(Ĉ ) is a fuzzy independent subset of
Ĉ about the fuzzy β-neighborhood family.

According to the above definition, it is easy to conclude
that deleting a fuzzy independent subset will not change the
fuzzy β-neighborhood family. Thus, the β-FC lower and upper
approximations will remain unchanged.

Definition 11. (Fuzzy maximal independent subset) For a
given β-FC Ĉ of U , B̂ ⊆ FNR(Ĉ ) is a fuzzy independent
subset of Ĉ , B̂ is called a fuzzy maximal independent subset
of Ĉ about the fuzzy β-neighborhood family if Θβ(Ĉ ) 6=
Θβ(Ĉ − B̂ − {Ĉ}) for each Ĉ ∈ Ĉ − B̂.

It is obvious that for each Ĉ ′ ⊆ Ĉ , Ĉ ′ ∈ FNRed(Ĉ ) if
and only if there exist a fuzzy maximal independent subset B̂
which satisfies Ĉ ′ = Ĉ − B̂. Thus, we can obtain a fuzzy N -
reduct of a β-FC Ĉ if there is a fuzzy maximal independent
subset of Ĉ .

Since FUR(Ĉ ) is a fuzzy independent subset of Ĉ about
the fuzzy β-neighborhood family, FUR(Ĉ ) can be deleted.
However, as FUR(Ĉ ) is not a fuzzy maximal independent
subset of Ĉ , this reduction is insufficient, which explains why
the reductions in [29] are inadequate.

Proposition 11. For a given β-FC Ĉ of U , B̂ is a fuzzy
independent subset of Ĉ about the fuzzy β-neighborhood
family. Then for each B̂′ ⊆ B̂, B̂′ is a fuzzy independent
subset of Ĉ as well.

Proof. Let Θβ(Ĉ ) = {(Ñβ
x )1 : x ∈ U}, Θβ(Ĉ − B̂′) =

{(Ñβ
x )2 : x ∈ U}, Θβ(Ĉ − B̂) = {(Ñβ

x )3 : x ∈ U}. As
B̂′ ⊆ B̂ ⊆ Ĉ , (Ñβ

x )1(x) ⊆ (Ñβ
x )2(x) ⊆ (Ñβ

x )3(x) for
each x ∈ U . Given that Θβ(Ĉ ) = Θβ(Ĉ − B̂), there is
(Ñβ

x )1(x) = (Ñβ
x )3(x). It is clear that (Ñβ

x )1(x) = (Ñβ
x )2(x)

for each x ∈ U , therefore Θβ(Ĉ ) = Θβ(Ĉ − B̂′). Thus,
B̂′ is a fuzzy independent subset of Ĉ about the fuzzy

β-neighborhood family.

Assuming B̂ ⊆ Ĉ , B̂ may be not a fuzzy independent
subset of Ĉ despite each B̂′ ⊆ B̂ is a fuzzy independent
subset of Ĉ . As shown in Example 3, Θβ(Ĉ − {Ĉ1}) =
Θβ(Ĉ − {Ĉ4}) = Θβ(Ĉ ), while Θβ(Ĉ − {Ĉ1} − {Ĉ4}) 6=
Θβ(Ĉ ).

IV. GRANULAR MATRIX

To keep the fuzzy β-neighborhood family Θβ(Ĉ ) invariant,
it is necessary to ensure that each fuzzy β-neighborhood Ñβ

x

remains unchanged. Therefore, based on the theoretical discus-
sion in Section III, a granular matrix method is introduced.

Definition 12. (Granular matrix) For a given β-FC Ĉ of U ,
Θβ(Ĉ ) = {Ñβ

x : x ∈ U} is the fuzzy β-neighborhood family.
Rβ(Ĉ ) = (rij)n×n is called the granular matrix of Ĉ , where
rij = {Ĉ ∈ C̃β

xi
|Ĉ(xj) = Ñβ

xi
(xj)}.

Proposition 12. If Ĉ ∈ rij ∈ Rβ(Ĉ ), then
(1) Ĉ(xi) ≥ β;
(2) For any Ĉ ′ ∈ Ĉ , if Ĉ ′(xi) ≥ β, then Ĉ ′(xj) ≥ Ĉ(xj).

Proof. From Definition 9 and Definition 12, rij = {Ĉ ∈
C̃β
xi
|Ĉ(xj) = Ñβ

xi
(xj)}, C̃β

xi
= {C̃ ∈ Ĉ : C̃(xi) ≥ β}.

(1) If Ĉ ∈ rij ∈ Rβ(Ĉ ), then Ĉ ∈ C̃β
xi

, it is obvious that
Ĉ(xi) ≥ β.

(2) Since Ĉ ∈ rij ∈ Rβ(Ĉ ), Ĉ(xj) = Ñβ
xi

(xj). For
each Ĉ ′ ∈ Ĉ , if Ĉ ′(xi) ≥ β, then Ĉ ′(xj) ≥ Ñβ

xi
(xj), thus

Ĉ ′(xj) ≥ Ĉ(xj).

Proposition 13. For a given β-FC Ĉ of U , Rβ(Ĉ ) =
(rij)n×n is the granular matrix of Ĉ , then

(1) P̂ ⊆ Ĉ is a fuzzy N -reduct of Ĉ if and only if P̂
is a minimal subset of Ĉ such that P̂ ∩ rij 6= ∅ for each
1 ≤ i, j ≤ n;

(2) Ĉ ∈ FNI(Ĉ ) if and only if there is rij ∈ Rβ(Ĉ ) such
that rij = {Ĉ}.

Proof. (1) (⇐) If P̂ is a minimal subset of Ĉ such that P̂ ∩
rij 6= ∅ for each 1 ≤ i, j ≤ n. Suppose Ĉij ∈ P̂ ∩ rij ,
then Ĉij(xi) ≥ β and Ĉij(xj) = (Ñβ

xi
)(xj). Then we have

∩nj=1Ĉij = Ñβ
xi

(i = 1...n). Thus (Ñβ
x )Ĉ = (Ñβ

x )
P̂

for any
x ∈ U . Since P̂ is a minimal subset, for any proper subset P̂ ′

there must be rij such that P̂ ′ ∩ rij = ∅. Thus for any Ĉ ∈
P̂ ′, Ĉ(xj) > (Ñβ

xi
)Ĉ (xj), then ∩P̂ ′(xj) > (Ñβ

xi
)Ĉ (xj). In

other words, (Ñβ
xi

)Ĉ 6= (Ñβ
xi

)
P̂′ . Consequently, P̂ is a fuzzy

N -reduct of Ĉ .
(⇒) If P̂ ⊆ Ĉ is a fuzzy N -reduct of Ĉ , then (Ñβ

x )
P̂

=

(Ñβ
x )Ĉ for any x ∈ U . Suppose P̂ ∩ rij = ∅, then there

must exist Ĉij /∈ P̂ such that Ĉij ∈ rij . From Definition 12,
∀Ĉ ∈ P̂ ,Ĉ(xj) > Ĉij(xj) = Ñβ

xi
(xj). That is, (Ñβ

x )
P̂
6=

(Ñβ
x )Ĉ , which is a contradiction. Thus, P̂ ∩ rij 6= ∅ for any

rij ∈ Rβ(Ĉ ). Since P̂ is a minimal subset of Ĉ such that
(Ñβ

x )
P̂

= (Ñβ
x )Ĉ for any x ∈ U , it is not difficult to know
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that P̂ is a minimal subset of Ĉ such that P̂ ∩ rij 6= ∅ for
each rij ∈ Rβ(Ĉ ).

(2) (⇐) If there is rij ∈ Rβ(Ĉ ) such that rij = {Ĉ0}.
Suppose Ĉ0 ∈ FNR(Ĉ ), Ĉ ′ = Ĉ − Ĉ0, then ∀Ĉ ∈ Ĉ ′,
Ĉ(xj) > Ĉ0(xj) = Ñβ

xi
(xj), that is (Ñβ

x )Ĉ ′ 6= (Ñβ
x )Ĉ , Ĉ0 /∈

FNR(Ĉ ), which is a contradiction. Thus, Ĉ0 ∈ FNI(Ĉ ).
(⇒) Suppose Ĉ ∈ FNI(Ĉ ), then there must

exist 1 ≤ i, j ≤ n such that if we delete Ĉ from
Ĉ , Ñβ

xi
(xj) will be changed. Suppose Ĉ ′ ∈ rij

and Ĉ ′ 6= Ĉ, then Ĉ ′(xj) = (Ñβ
xi

)Ĉ (xj). Since
Ĉ ′ ∈ Ĉ − {Ĉ}, (Ñβ

xi
)Ĉ−{Ĉ}(xj) ≤ Ĉ ′(xj), then

(Ñβ
xi

)Ĉ (xj) = Ĉ ′(xj) = (Ñβ
xi

)Ĉ−{Ĉ}(xj). That means

deleting Ĉ from Ĉ doesn’t make Ñβ
xi

(xj) change, which is a
contradiction. Consequently, rij = {Ĉ}.

Proposition 14. β1, β2 ∈ [0, 1], β1 > β2, Ĉ is a β-FC of U for
both β1 and β2, Rβ1(Ĉ ) = (r1ij)n×n and Rβ2(Ĉ ) = (r2ij)n×n
are the granular matrices of Ĉ for β1 and β2, respectively.
We have

(1) Ñβ1
xi

(xj) ≥ Ñβ2
xi

(xj);
(2) If Ñβ2

xi
(xj) ≥ β1, then r1ij = r2ij; otherwise, r1ij 6= r2ij .

Proof. (1) Since β1 > β2, {Ĉi ∈ Ĉ : Ĉi(x) ≥ β1} ⊆ {Ĉi ∈
Ĉ : Ĉi(x) ≥ β2}, then

⋂
{Ĉi ∈ Ĉ : Ĉi(x) ≥ β1} ≥

⋂
{Ĉi ∈

Ĉ : Ĉi(x) ≥ β2}, thus Ñβ1
xi

(xj) ≥ Ñβ2
xi

(xj).
(2) If β1 > β2 and Ñβ2

xi
(xj) ≥ β1, then min{Ĉi(xj) : Ĉi ∈

Ĉ , Ĉi(x) ≥ β2} ≥ β1. Then {Ĉi ∈ C : Ĉi(x) ≥ β2} = {Ĉi ∈
C : Ĉi(x) ≥ β1}, in other words, Ñβ1

xi
(xj) = Ñβ2

xi
(xj) and

C̃β1
xi

= C̃β2
xi

. Since r1ij = {Ĉ ∈ C̃β1
xi

: Ĉ(xj) = Ñβ1
xi

(xj)},
r2ij = {Ĉ ∈ C̃β2

xi
: Ĉ(xj) = Ñβ2

xi
(xj)}, r1ij = r2ij .

If β1 > β2 and Ñβ2
xi

(xj) < β1, then Ñβ1
xi

(xj) ≥ β1
> Ñβ2

xi
(xj), thus r1ij 6= r2ij .

This proposition illustrates how the granular matrix changes
when the parameter β changes. Next, a method for obtaining
all the reducts through Boolean operation and the granular
matrix is introduced.

Definition 13. (Reduction function) For a given β-FC Ĉ of
U , where Ĉ = {Ĉ1, Ĉ2, ..., Ĉm}, U = {x1, x2, ..., xn}, and
Rβ(Ĉ ) = (rij)n×n is the granular matrix of Ĉ . A reduction
function fĈ for Ĉ is a Boolean function of m Boolean

variables Ĉ1, Ĉ2, ..., Ĉm corresponding to β-FC elements
Ĉ1, Ĉ2, ..., Ĉm, respectively. We define fĈ (Ĉ1, Ĉ2, ..., Ĉm) =

∧1≤i,j≤n(∨rij), where rij ∈ Rβ(Ĉ ) and ∨rij is the disjunc-
tion of all elements in rij .

Proposition 15. For a given β-FC Ĉ of U ,
Rβ(Ĉ ) = (rij)n×n is the granular matrix of Ĉ ,
fĈ (Ĉ1, Ĉ2, ..., Ĉm) = ∧1≤i,j≤n(∨rij) is the reduction

function. If gĈ (Ĉ1, Ĉ2, ..., Ĉm) = ∨lk=1(∧P̂k)(where
P̂k ⊆ Ĉ ) is the reduced disjunctive form induced from
fĈ by applying the multiplication and absorption laws,
which means each element in P̂k has no duplicates. Then
FNRed(Ĉ ) = {P̂1, ..., P̂l}.

Proof. For each k = 1, 2, ..., l, ∧P̂k ≤ ∨rij for all rij ∈
Rβ(Ĉ ), hence P̂k ∩ rij 6= ∅. Let P̂ ′

k = P̂k − {Ĉ} for any
Ĉ ∈ P̂k, then gĈ � ∨

k−1
t=1 (∧P̂t)∨(∧P̂ ′

k)∨(∨lt=k+1(∧P̂t)).
If for every rij ∈ Rβ(Ĉ ), we have P̂ ′

k∩rij 6= ∅, then ∧P̂ ′
k ≤

∨rij for every rij ∈ Rβ(Ĉ ). That is, gĈ ≥ ∨
k−1
t=1 (∧P̂t) ∨

(∧P̂ ′
k) ∨ (∨lt=k+1(∧P̂t), which is a contradiction. Therefore

there exists rij0 ∈ Rβ(Ĉ ) which satisfy P̂ ′
k ∩ rij0 6= ∅. Thus

P̂k is a reduct of Ĉ .
For each X ∈ FNRed(Ĉ ), it is clear that

X ∩ rij 6= ∅ for every rij ∈ Rβ(Ĉ ), then
fĈ ∧ (∧X) = (∧(∨rij)) ∧ (∧X) = ∧X, which implies
∧X ≤ fĈ = gĈ . Assuming that for every k = 1, 2, ..., l, there
is P̂k−X 6= ∅. Then, for all k, we have Ĉk ∈ P̂k−X. Since
there is a Boolean function Φ such that gĈ = (∨lk=1Ĉk)∧Φ,
it is obvious that ∧X ≤ ∨lk=1Ĉk. Thus there exists Ĉk0
such that ∧X ≤ Ĉk0 , that implies Ĉk0 ∈ X, which is a
contradiction. Therefore P̂k0 ⊆ X for some k0. As both X

and P̂k0 are reducts, it is apparently that X = P̂k0 . As a
result, FNRed(Ĉ ) = {P̂1, ..., P̂l}.

The following example is intended to present the procedure
of obtaining fuzzy N -reducts based on the granular matrix.

Example 4. Considering the set of objects U =
{x1, x2, x3, x4}, Ĉ = {Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6} is a β-FC for
β = 0.5, fuzzy blocks are listed as below.
Ĉ1 = 0.6

x1
+ 0.3

x2
+ 0.1

x3
+ 0.5

x4
,

Ĉ2 = 0.8
x1

+ 0.3
x2

+ 0.3
x3

+ 0.5
x4

,
Ĉ3 = 0.6

x1
+ 0.4

x2
+ 0.1

x3
+ 0.6

x4
,

Ĉ4 = 0.7
x1

+ 0.5
x2

+ 0.6
x3

+ 0.7
x4

,
Ĉ5 = 0.7

x1
+ 0.8

x2
+ 0.5

x3
+ 0.6

x4
,

Ĉ6 = 0.4
x1

+ 0.2
x2

+ 0.5
x3

+ 0.5
x4

.
Then the granular matrix is calculated as what follows:


{Ĉ1, Ĉ3} {Ĉ1, Ĉ2} {Ĉ1, Ĉ3} {Ĉ1, Ĉ2}
{Ĉ4, Ĉ5} {Ĉ4} {Ĉ5} {Ĉ5}
{Ĉ6} {Ĉ6} {Ĉ5, Ĉ6} {Ĉ6}
{Ĉ6} {Ĉ6} {Ĉ1, Ĉ3} {Ĉ1, Ĉ2, Ĉ6}


fĈ (Ĉ1, Ĉ2, ..., Ĉm) = (Ĉ1∨ Ĉ3)∧ (Ĉ1∨ Ĉ2)∧ (Ĉ4∨ Ĉ5)∧

Ĉ4 ∧ Ĉ5 ∧ Ĉ6 ∧ (Ĉ5 ∨ Ĉ6) ∧ (Ĉ1 ∨ Ĉ2 ∨ Ĉ6) = (Ĉ1 ∧ Ĉ4 ∧
Ĉ5 ∧ Ĉ6) ∨ (Ĉ2 ∧ Ĉ3 ∧ Ĉ4 ∧ Ĉ5 ∧ Ĉ6).

Thus FNRed(Ĉ ) = {{Ĉ1, Ĉ4, Ĉ5, Ĉ6}, {Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6}}.

As shown in Example 4, although elements of the granular
matrix are fuzzy set families that appear to be complex, in
the following calculation based on the granularity matrix, all
fuzzy sets are only used as Boolean variables (or symbols). In
other words, the following calculation is irrelevant to fuzzy.

It is worth noting that some fuzzy N -reducts maybe more
concise than others. The reduct with the minimum β-FC
element number is refered to as the optimum reduct. However,
finding all reducts or the optimum reduct is NP-hard. Usually,
only one reduct (even it is not the optimum reduct) rather than
all reducts is needed in practice. Thus, a heuristic algorithm
is designed to obtain a reduct (satisfactory solution).
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Proposition 16. [28] For a given β-FC Ĉ of U , Ñβ
x =

∩C̃β
x = ∩M̃d

β

x .

From Proposition 16, it is known that keeping ∆β(Ĉ ) =

{M̃d
β

x : x ∈ U} invariant can ensure that Θβ(Ĉ ) dose not
change. As a result, the lower and upper approximations are
the same as the previous ones. Thus, keeping ∆β(Ĉ ) invariant
can also help to obtain fuzzy N -reducts, which usually includs
the optimum one. To simplify this procedure, another fuzzy
granular reduction algorithm based on a new granular matrix
is introduced.

Definition 14. (M-granular matrix) For a given β-FC Ĉ of
U , Θβ(Ĉ ) = {Ñβ

x : x ∈ U} is the fuzzy β-neighborhood
family. Mβ(Ĉ ) = (r′ij)n×n is called the M-granular matrix

of Ĉ , where r′ij = {Ĉ ∈ M̃d
β

xi
|Ĉ(xj) = Ñβ

xi
(xj)}.

Proposition 17. If Ĉ ∈ r′ij ∈ Mβ(Ĉ ), then (1) Ĉ(xi) ≥ β;
(2) For any Ĉ ′ ∈ Ĉ , if Ĉ ′(xi) ≥ β, then Ĉ ′(xj) ≥ Ĉ(xj).

Proof. It is evident from Proposition 12.

Proposition 18. Suppose β1, β2 ∈ [0, 1], β1 > β2, Ĉ is a
β-FC of U for both β1 and β2, Mβ1(Ĉ ) = (r1ij)n×n and
Mβ2(Ĉ ) = (r2ij)n×n are the M-granular matrices of Ĉ for
β1 and β2, respectively. If Ñβ2

xi
(xj) ≥ β1, then r1ij = r2ij;

otherwise, r1ij 6= r2ij .

Proof. It is evident from Proposition 14.

Proposition 19. For a given β-FC Ĉ of U , Mβ(Ĉ ) =
(r′ij)n×n is the M-granular matrix of Ĉ , then

(1) If P̂ is a minimal subset of Ĉ such that P̂ ∩ r′ij 6= ∅
for each 1 ≤ i, j ≤ n, then P̂ is a fuzzy N -reduct of Ĉ ;

(2) If Ĉ ∈ FNI(Ĉ ), then there is r′ij ∈ Mβ(Ĉ ) such that
r′ij = {Ĉ}.

Proof. (1) Suppose r′ij ∈ Mβ(Ĉ ), rij ∈ Rβ(Ĉ ) and P̂ is
a minimal subset of Ĉ which satisfy P̂ ∩ r′ij 6= ∅ for each
1 ≤ i, j ≤ n. From Definitions 12 and 14, we know r′ij ⊆ rij .
Since P̂ ∩ r′ij 6= ∅, we get P̂ ∩ rij 6= ∅. Thus P̂ is a
minimal subset of Ĉ which satisfies P̂ ∩ rij 6= ∅ for each
1 ≤ i, j ≤ n. From Proposition 13, it is easy to know P̂ is a
fuzzy N -reduct of Ĉ .

(2) Suppose Ĉ ∈ FNI(Ĉ ), then there is rij ∈ Rβ(Ĉ )

such that rij = {Ĉ} by Proposition 13. That means Ĉ is
the only block such that Ĉ(xi) ≥ β and Ĉ(xj) = Ñβ

xi
(xj).

Suppose Ĉ ′ ⊆ Ĉ and Ĉ ′(xi) ≥ β, then Ĉ ′ = Ĉ. In other
words, Ĉ ∈ M̃d

β

xi
. Thus, {Ĉ} = r′ij ∈Mβ(Ĉ ).

Definition 15. (M-reduction function) For a given β-FC Ĉ
of U , where Ĉ = {Ĉ1, Ĉ2, ..., Ĉm}, U = {x1, x2, ..., xn},
Mβ(Ĉ ) = (r′ij)n×n is the M-granular matrix of Ĉ .
A M-reduction function f ′

Ĉ
for Ĉ is a Boolean func-

tion of m Boolean variables Ĉ1, Ĉ2, ..., Ĉm corresponding

to β-FC elements Ĉ1, Ĉ2, ..., Ĉm, respectively. We define
f ′

Ĉ
(Ĉ1, Ĉ2, ..., Ĉm) = ∧1≤i,j≤n(∨r′ij), where r′ij ∈ Mβ(Ĉ )

and ∨r′ij is the disjunction of all elements in r′ij .

Proposition 20. For a given β-FC Ĉ of U ,
Mβ(Ĉ ) = (r′ij)n×n is the M-granular matrix of Ĉ

and f ′
Ĉ

(Ĉ1, Ĉ2, ..., Ĉm) = ∧1≤i,j≤n(∨r′ij) is the M-

reduction function. If g′
Ĉ

= ∨tk=1(∧P̂ ′
k)(where P̂ ′

k ⊆ Ĉ )
is the reduced disjunctive form induced from f ′

Ĉ
by

applying the multiplication and absorption laws, which
means each element in P̂ ′

k has no duplicates, then
PRed(Ĉ ) = {P̂ ′

1, ..., P̂
′
t} ⊆ FNRed(Ĉ ).

Proof. Suppose rij ∈ Rβ(Ĉ ) and r′ij ∈ Mβ(Ĉ ), then we
know that r′ij ⊆ rij . It is not difficult to be proved by
Proposition 15.

This is a simple example of obtaining fuzzy N -reducts
based on M-granular matrix.

Example 5. Considering the set of objects U =
{x1, x2, x3, x4}. Assuming Ĉ is a β-FC for β = 0.5 in
Example 4, ∆0.5(Ĉ ) is calculated as what follows:

(M̃d
0.5

x1
)Ĉ = {Ĉ1}, (M̃d

0.5

x2
)Ĉ = {Ĉ4, Ĉ5}, (M̃d

0.5

x3
)Ĉ =

{Ĉ6}, (M̃d
0.5

x4
)Ĉ = {Ĉ1, Ĉ6}.

Based on ∆0.5(Ĉ ), we can easily obtain the M-granular
matrix: 

{Ĉ1} {Ĉ1} {Ĉ1} {Ĉ1}

{Ĉ4, Ĉ5} {Ĉ4} {Ĉ5} {Ĉ5}

{Ĉ6} {Ĉ6} {Ĉ6} {Ĉ6}

{Ĉ6} {Ĉ6} {Ĉ1} {Ĉ1, Ĉ6}


By the computed M-granular matrix, we can get that:
f ′

Ĉ
(Ĉ1, Ĉ2, ..., Ĉm) = Ĉ1 ∧ (Ĉ4 ∨ Ĉ5) ∧ Ĉ4 ∧ Ĉ5 ∧ Ĉ6 ∧

(Ĉ1 ∨ Ĉ6) = Ĉ1 ∧ Ĉ4 ∧ Ĉ5 ∧ Ĉ6.
Thus, {Ĉ1, Ĉ4, Ĉ5, Ĉ6} is a fuzzy N -reduct of Ĉ .

Compared with the result of Example 4, it is faster to get
fuzzyN -reducts with theM-granular matrix, and all the fuzzy
N -reducts can only be computed by the original granular
matrix. In addition, the optimum reduct is usually obtained
from the results of theM-granular matrix, and the appropriate
algorithm can be chosen as needed.

V. A HEURISTIC FUZZY GRANULAR REDUCTION
ALGORITHM BASED ON GRANULAR MATRIX

Based on the above discussion, we design a heuristic
algorithm to obtain a fuzzy N -reduct of a β-FC, as shown in
Algorithm 1.

Example 6. The M-granular matrix in Example 5 is listed
below:
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
{Ĉ1} {Ĉ1} {Ĉ1} {Ĉ1}

{Ĉ4, Ĉ5} {Ĉ4} {Ĉ5} {Ĉ5}

{Ĉ6} {Ĉ6} {Ĉ6} {Ĉ6}

{Ĉ6} {Ĉ6} {Ĉ1} {Ĉ1, Ĉ6}


By the heuristic algorithm, the collection of all singleton

sets in theM-granular matrix is {Ĉ1, Ĉ4, Ĉ5, Ĉ6}, so FNI =
{Ĉ1, Ĉ4, Ĉ5, Ĉ6}. Next we delete the elements which contain
any object of FNI , then the matrix becomes empty. Thus,
{Ĉ1, Ĉ4, Ĉ5, Ĉ6} is a reduct of Ĉ .

Algorithm 1 A heuristic algorithm

Require: a β-FC Ĉ , where U = {x1, x2, . . . , xn}, Ĉ =
{C1, C2, . . . , Cm}.

Ensure: a reduct Reduct.
1: set FNI ← ∅;
2: for i← 1 to n do
3: compute M̃d

β
(i);

4: end for
5: set Mβ ← ∅;
6: for i← 1 to n, j ← 1 to n do
7: Mβ(i, j) = {C : C(j) = min{C(j) : C ∈
M̃d

β
(i)}};

8: if |Mβ(i, j)| = 1 and Mβ(i, j) ∩ FNI = ∅ then;
9: FNI = FNI ∪Mβ(i, j);

10: Mβ(i, j) = ∅;
11: end if
12: end for
13: set Reduct← FNI;
14: while Mβ 6= ∅ do
15: find C which appears the most frequently in Mβ

16: Reduct← C;
17: for i← 1 to n, j ← 1 to n do
18: if C ∈Mβ(i, j) then
19: Mβ(i, j) = ∅;
20: end if
21: end for
22: end while
23: return Reduct

VI. EXPERIMENTS

In this section, an experiment based on six real data sets is
carried out to test the effectiveness of the proposed heuristic
algorithm. The experiment mainly focuses on the following
two questions:

(1) How many redundant elements are there in the existing
popular granular structure, i.e. the set of fuzzy neighborhoods?

(2) What are the effects of parameters on the proposed
reduction algorithm?

In this section, the algorithms are completed by Matlab
R2018a(9.4) and run on a PC with Windows10 and Intel(R)
Core(TM) i5-7300HQ CPU @ 2.50GHz 2.50GHz and 8.00
GB memory.

A. Preprocessing of Selected Data Sets

Six data sets were collected from University of California,
Irvine (UCI) Machine Learning Repository, with the number
of samples ranging from 155 to 748. The detailed overview of
the selected data sets is given in Table I . All six data sets are
firstly normalized to [0, 1] before experiments, and denoted as
(U,A), where U represents the sample set and A the feature
(attribute) set. Missing values are denoted as −1. Then the
following formula is adopted to compute the fuzzy granule
set (the fuzzy covering) {Bai |i = 1, 2, ..., |U |} induced by the
attribute a.

Bai (xj) =

{
ε−|a(xi)−a(xj)|

ε |a(xi)− a(xj)| 6 ε
0 |a(xi)− a(xj)| > ε

where ε stands for the parameter of the neighborhood
radium.

TABLE I: Data description.

Datasets Samples Features Classes
Hepatitis 155 19 2
Heart 270 13 2
Bands 365 19 2
User Knowledge Modeling 403 5 4
Forest Fire 517 7 251
Blood Transfusion Service Center 748 4 2

TABLE II: Redundancy Rate of Hepatitis

β
ε 0.1 0.2 0.3 0.4 0.5

0.5 0.8849 0.8910 0.8971 0.9002 0.9093
0.6 0.8859 0.8913 0.8913 0.8958 0.9002
0.7 0.8849 0.8893 0.8917 0.8913 0.8971
0.8 0.8835 0.8859 0.8893 0.8920 0.8910
0.9 0.8822 0.8835 0.8849 0.8859 0.8849
1.0 0.8764 0.8764 0.8764 0.8764 0.8764

B. Experimental Setup

In this experiment, a formula RR =
∑n

i=1 |Redi|
m∗n is used

to show the Redundancy Rate (or RR for short) of the fuzzy
covering system induced by a data set, where m represents the
number of objects, n the number of conditional features and
|Redi| the cardinality of reduced covering induced by the ith
feature. Based on the context above, it is evident that there are
two parameters β (β is the parameter for fuzzy β-FCs) and ε
in our experiment which may have an impact on Redundancy
Rate. Thus, the varying range of β is set from 0.5 to 1 and ε
from 0.1 to 0.5 with a step of 0.1 to see how they affect the
reduction algorithm.

C. Analysis of The Results

The Redundancy Rate of six different real data sets are
summarized in TABLE II-VII, of which the changes in pa-
rameters β and ε are respectively reflected from two different
dimensions. The results show that the Redundancy Rate of all
selected data ranges from 67.91% to 99.63%, suggesting that
the proposed heuristic algorithm can reduce a large number
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TABLE III: Redundancy Rate of Heart

β
ε 0.1 0.2 0.3 0.4 0.5

0.5 0.8946 0.8966 0.8980 0.9026 0.9123
0.6 0.8952 0.8969 0.8957 0.8989 0.9026
0.7 0.8940 0.8954 0.8966 0.8957 0.8980
0.8 0.8946 0.8952 0.8954 0.8969 0.8966
0.9 0.8937 0.8946 0.8940 0.8952 0.8946
1.0 0.8917 0.8917 0.8917 0.8917 0.8917

TABLE IV: Redundancy Rate of Bands

β
ε 0.1 0.2 0.3 0.4 0.5

0.5 0.9070 0.9097 0.9118 0.9167 0.9226
0.6 0.9071 0.9092 0.9086 0.9118 0.9167
0.7 0.9056 0.9080 0.9080 0.9086 0.9118
0.8 0.9038 0.9070 0.9080 0.9090 0.9097
0.9 0.9022 0.9038 0.9056 0.9070 0.9070
1.0 0.8963 0.9963 0.9963 0.9963 0.9963

TABLE V: Redundancy Rate of User Knowledge Modeling

β
ε 0.1 0.2 0.3 0.4 0.5

0.5 0.6985 0.7169 0.7174 0.7224 0.7388
0.6 0.6975 0.7065 0.7264 0.7149 0.7224
0.7 0.6955 0.7035 0.7144 0.7264 0.7174
0.8 0.6910 0.6980 0.7035 0.7070 0.7169
0.9 0.6846 0.6910 0.6955 0.6980 0.6985
1.0 0.6791 0.6791 0.6791 0.6791 0.6791

TABLE VI: Redundancy Rate of Forest Fire

β
ε 0.1 0.2 0.3 0.4 0.5

0.5 0.6993 0.7176 0.7181 0.7231 0.7395
0.6 0.6983 0.7072 0.7270 0.7156 0.7231
0.7 0.6963 0.7042 0.7151 0.7270 0.7181
0.8 0.6918 0.6988 0.7042 0.7077 0.7176
0.9 0.6854 0.6918 0.6963 0.6988 0.6993
1.0 0.6799 0.6799 0.6799 0.6799 0.6799

TABLE VII: Redundancy Rate of Blood Transfusion Service
Center

β
ε 0.1 0.2 0.3 0.4 0.5

0.5 0.9425 0.9432 0.9432 0.9449 0.9475
0.6 0.9428 0.9432 0.9435 0.9428 0.9449
0.7 0.9425 0.9425 0.9432 0.9435 0.9432
0.8 0.9415 0.9428 0.9425 0.9432 0.9432
0.9 0.9415 0.9415 0.9425 0.9428 0.9425
1.0 0.9415 0.9415 0.9415 0.9415 0.9415

of redundant granules. At the same time, the Redundancy
Rate value of a data remain unchanged despite the changing
parameters. Thus, Redundancy Rate is mainly determined by
the data set instead of parameters, indicating that Redundancy
Rate is an objective index to evaluate the granulation method.

VII. CONCLUSION

Granule structure is a theoretical framework for granular
intelligence. To obtain a more concise granule structure,
the concept of granular matrix is proposed, which lays the

foundation for more efficient machine learning algorithms.
A fuzzy neighborhood reduction theory is also proposed in
this paper. In addition, to obtain all the granular reducts of
a fuzzy β-covering, a novel reduction algorithm is proposed
for the first time based on the granular matrix. Since fuzzy
covering reduction is NP-hard, a heuristic greedy algorithm is
constructed to obtain a reduct. Since a proper and reduced
granule structure is the foundation of granular reasoning
and granular intelligence, the establishment and reduction of
granule structure serve as the key to a more effective and
efficient intelligence method. Based on the granular matrix,
a more concise granule structure (i.e. fuzzy β-covering) can
be used to design the feature selection algorithm. To this end,
further studies will be carried out on this topic in the future.
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