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To better deal with the partial occlusion issue and improve their efficiency of part-based and support vec-
tor machines (SVM) based trackers, we propose a novel part-based structural support correlation filter
tracking method, which absorbs the strong discriminative ability from SVM and the excellent property
of part-based tracking methods which is less sensitive to partial occlusion. Then, our proposed model
can learn the support correlation filter of each part jointly by a star structure model, which preserves
the spatial layout structure among parts and tolerates outliers of parts. In addition, our model introduces
inter-frame consistencies of local parts to mitigate the drift problem. Finally, our model can accurately
estimate the scale changes of object by the relative distance change among reliable parts. The extensive
empirical evaluations on three benchmark datasets: OTB2015, TempleColor128 and VOT2015 demon-
strate that the proposed method achieves comparable performance against several state-of-the-art track-
ers and runs in real time.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

Visual object tracking has been an important research topic in
the computer vision field and has a wide range of practical applica-
tions, e.g., intelligent surveillance, autonomous navigation of vehi-
cles, human computer interaction, action recognition. Although
great progress has been made in the past decades, it is still a chal-
lenging problem to design a robust visual tracking algorithm for
real scenes, due to some complex situations, e.g., partial occlusion,
illumination variation, pose changes, background clutter, complex
motion and object blur. Here, we mainly investigate the key prob-
lem of learning a robust tracking model under these conditions
mentioned above.

As is known, the discriminative models [1–5] have better per-
formance than the generative models [6–10] in visual tracking.
They seek to design a robust classifier to detect the target, and
establish an optimal mechanism to update the model at each
frame. For example, in order to realize the visual tracking, Avidan
[3] adopted the SVM as an off-line binary classifier to detect target
at each frame. Hare et al. [2] applied the SVM with structured out-
put to tracking the target because of its success in object detection.
Although these two methods obtain the good results in visual
tracking, the complex optimization still brings them the high com-
putational complexity, which would make them not meet real-
time applications, especially when considering the scale change
of target and increasing feature dimensions of target representa-
tion. Recently, correlation filter (CF) utilizing the circulant property
of dense sampling of base sample has attracted extensive attention
in visual tracking due to its significant computational efficiency
and robustness. Nevertheless, how to exploit the circulant property
to accelerate SVM-based trackers remains unaddressed. Later, in
view of the success of the max-margin CF (MMCF) [11] in the local-
ization and classification of image, Zuo et al. [12] developed the
novel discriminative tracking algorithms based on support correla-
tion filters that perform efficiently and accurately. Although
obtained competitive results both in accuracy and robustness, all
these methods are sensitive to the occlusion or partial occlusion.

To deal with the above issues, deformable part-based tracking
methods [13–17] become more popular partially because of their
favorable property of robustness against partial occlusion. Yao
et al. [17] employed an online structured output learning with
latent variables to learn the weight parameters for an object and
its parts, and distinguish the target object from the background
using the weight parameters consequently. But their method fails
to resolve the high computational complexity of the SVM. The
researchers in [14,15] brought the correlation filter into the part-
based tracking methods which improves the tracking efficiency
and robustness. However, their approaches ignore the spatial
relations among object parts. More recently, Liu et al. [16]
improved the performance of their tracker by introducing struc-
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tural constraints among parts into correlation filter. But they also
don’t consider the temporal consistency of motion model which
would help to alleviate the problem of drift away from object.

Considering the existing problems of the methods mentioned
above, in this paper, we build an efficient part-based support vec-
tor correlation filter tracking algorithm which is able to deal with
partial occlusion and deformation effectively. Our method adopts
the support vector correlation filer as the classifier of each part
which absorbs strong discriminative ablility from SVM and speed-
ups the SVM by the FFT in the Fourier domain. Then, our proposed
model can learn the support correlation filter of each part jointly
by a star structure model, which preserves the spatial layout
structure among parts and tolerates outliers of parts. To further
enhance the robustness of our model, we take into consideration
the temporal consistency of each part, and incorporate it into
our model to mitigate the issue of drift away from object. In addi-
tion, in order to adapt our tracker to scale changes of tracked tar-
get, we estimate the scale changes of object by the relative
distance changes of the reliable part pairs. Finally, different from
other multi-part trackers, we only estimate the position of the
whole object by the tracking results of all visible parts, where each
part is distinguished whether to be occluded by the PSR and
appearance similarity.
2. Related work

In this section, we only introduce the methods closely related to
this work: SVM-based trackers, correlation filter trackers and part-
based trackers in detail. For a survey of more tracking methods, we
refer the reader to [18–20].

SVM-based tracker: Babenko et al. [1] employed an online Mul-
tiple Instance Learning based appearance model to resolve the
sample ambiguity problem. Hare et al. [2] used the structure
SVM with kernels to track the whole target. Li et al. [21] utilized
the structure SVM to predict the object location in RGB-T tracking.
In [22], an explicit feature mapping function is used to approxi-
mate nonlinear kernels. However, the complex optimization of
SVM still brings them the high computational complexity, which
prevents them from using the higher dimensional features. In
2013, Henriques et al. [23] first applied the circulant property for
training of support vector regression efficiently to detect pedestri-
ans. Inspired by this work, Zuo et al. [12] adopted the circulant
property to design the support correlation filter tracker that per-
form efficiently and accurately, which lower the computational
complexity O n4

� �
of SVM based trackers to O n2 log nð Þ� �

for an
n� n image patch. Wang et al. [24] proposed a novel structured
SVM based tracking method which takes dense circular samples
into account in both training and detection processes.

Correlation filter trackers: Bolme et al. [4] first introduced the
correlation filter into the visual tracking field because it can
achieve the appealing results in terms of accuracy, robustness
and speed. Afterwards, Henriques et al. [25] incorporated multi-
channel features into their kernelized correlation filters (KCF)
framework to improve the accuracy and robustness of the tracker.
However, they are only limited to estimate the target translation
and signify poor performance when the targets of sequences
involve significant scale variations. Thus, in order to adapt to the
scale changes of the tracked target, Montero et al. [26] use a similar
approach (scale ratios between matched relevant keypoints) as in
TLD [27,28] to estimate the size of tracked target. Danelljan et al.
[29] proposed a separable scale filter based on a scale pyramid rep-
resentation to estimate the scale variation of target. And Li et al.
[30] adopted a multiple scales searching strategy to surmount
the limitation that the conventional correlation filter (CF) trackers
cannot handle the scale variation of tracked target. Li et al. [31]
proposed a multi-view correlation tracker which fused several fea-
tures and selected the more discriminative features to do tracking
in order to avoid drifts. Although the traditional correlation filter
has obtained great success, unwanted boundary effects produced
by the Fast Fourier Transform (FFT) result in an inaccurate descrip-
tion of the image, which will severely degrade the discriminative
power of the learned model. To resolve this issue, Galoogahi
et al. [32] chose a larger searching size and then cropped the cen-
tral patch of the signal that is same as the size of the filter by the
binary matrix P in each Alternating Direction Method of Multipli-
ers (ADMM) iteration. Danelljan et al. [33] utilized a spatially reg-
ularized component to deal with the boundary effect caused by the
FFT, which achieves better tracking accuracy.

Part-based tracker: To deal with the occlusion, many part-
based trackers divided the entire target into separate parts
[34,14,15,13,16,35,21,36,37]. Liu et al. [15] adapted the correlation
filter as part classifiers. Li et al. [21] learned a dynamic graph
model according to the intrinsic relationship among image
patches. Akin et al. [35] proposed a deformable part-based correla-
tion filter tracking approach which depends on coupled interac-
tions between a global filter and several part filters. Lukežič et al.
[38] presented a new class of layered part-based trackers that
apply a geometrically constrained constellation of local correlation
filters for object localization. He et al. [36] proposed a robust
tracker based on key patch sparse representation (KPSR) to reduce
the disturbance of partial occlusion or unavoidable background
information. Sun et al. [37] proposed a shape preserved kernelized
correlation filter (SP-KCF) which can accommodate target shape
information for robust tracking.

3. Structural support correlation filter tracker

In this section, we present an efficient part-based support vec-
tor correlation filter tracking algorithm. Since the proposed
approach works in the framework of support correlation filter,
we first briefly review the theory of support correlation filter in
Section 3.1. Then, in Section 3.2, we deduce the support correlation
filter model in nonlinear space. Subsequently, in Section 3.3, we
give a detailed description of our proposed part-based structural
support correlation filter tracker. Next the detailed solving proce-
dures of our tracking approach are deduced in Section 3.4. Finally,
in Section 3.5, we introduce a valid method that estimates the scale
changes of object. Meanwhile, we also present a model update
strategy by using the feedback from tracking results to avoid the
model corruption.

In order to make our paper more readable, we first define some
generic notations that will be useful before deriving our model,
which is shown in Table 1.

3.1. Review of support correlation filter

Given a vectorized image patch x 2 RMN , Zuo et al. [12] learn a
support correlation filterw and a bias b to classify any circular shift
image xm;n of x by

ym;n ¼ sgn wTxm;n þ b
� �

; ð1Þ
Note that m 2 0;1; . . . ;M � 1f g and n 2 0;1; . . . ;N � 1f g. ym;n

denotes corresponding class label of one possible observation xm;n

of a target object and all circular shift image xm;n forms a circulant
matrix X. In general, X can be expressed as

X ¼ FHdiag x̂ð ÞF; ð2Þ
Then, classify all the samples of X by

y ¼ sgn F�1 x̂� � ŵð Þ þ be
� �

; ð3Þ



Table 1
Define some generic notations which will be used in our work.

Notation Explanation

M;N defined two given positive integers
R The set of real numbers
û The Fourier coefficients of u;8 u 2 RMN

û� The complex conjugate of the Fourier coefficients of u
F �ð Þ The Fourier transform

F�1 �ð Þ The inverse of F
F The base vectors of the discrete Fourier transform

FH The Hermitian transpose of F

� Indicated the element-wise multiplication of any two vectorsgmax �;0f g Calculated the maximum value between each elementof any vector and the zero
e defined an MN � 1 vector, each element of which is 1
E defined an MN �MN matrix, each element of which is 1
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Given the training sample set X that consists of all circular shift
image xm;n and its corresponding class label

y ¼ y0;0; . . . ; ym;n; . . . ; yM�1;N�1
� �T , they use the squared hinge loss

to define the SVM model [39] as follows:

min
w;b
kwk2 þ Cknk2

s:t: y � XwT þ be
� �

P e� n;
ð4Þ

where n ¼ n0;0; . . . ; nm;n; . . . ; nM�1;N�1
� �T is the vector of slack vari-

ables, C is a trade-off parameter.
Based on the circulant property of X, the SVM model can be

equivalently formulated as:

min
w;b
kwk2 þ Cknk2

s:t: y � F�1 x̂� � ŵð Þ þ be
� �

P e� n;
ð5Þ

In the SVM discriminative model, Zuo et al. [12] assign binary
class label by the confidence map of object position [40], where
the confidence map is defined as:

s pm;n;p
H

� � ¼ Cexp �gkpm;n � pHkk
� �

; ð6Þ

where pH denotes the centre position of the interested object
xH;pm;n represents the centre position of the circular shift image
xm;n;C is a normalization constant, g and k are the scale and shape
parameters respectively. With the confidence map, the class label y
can be obtained by

ym;n ¼
1 if s pm;n;pH

� �
P hu

�1 if s pm;n;pH
� �

6 hl
0 otherwise

;

8><>: ð7Þ

where hl and hu are lower and upper thresholds respectively.
In order to exploit the property of the circulant matrix to learn

the model (5), let n ¼ v þ e� y � F�1 ŵ � x̂�ð Þ þ be
� �

, and then it
can be rewritten as:

min
w;b;v
kwk2 þ Cky � F�1 x̂� � ŵð Þ þ be

� �� e� vk2

s:t: v � 0;
ð8Þ

where v is an auxiliary variable and � denotes that each element of
v is greater than or equal to zero.

3.2. Support correlation filter in nonlinear space

To make the support correlation filter (SCF) model to be
extended to learn the nonlinear decision function, we now derive
a ‘‘dual version” for the SCF model. In this derivation we partially
follow Vapnik [41]. We start with re-expressing the SVM model
in (4) as:

min
w;b;v;a

kwk2 þ aT eþ v � y � XwT þ be
� �

� n
� �

þ Cknk2

s:t: v � 0;
ð9Þ

Here a is the Lagrange multiplier (it also represents the solution of
SCF in the dual space). We let q ¼ y þ y � v, where v � 0, and then
the model (9) can be rewritten as:

min
w;b;q;a;n

kwk2 þ aT q� XwT þ be
� �

� y � n
� �

þ Cknk2: ð10Þ

Solving the model (10) with respect to w, we can obtain w ¼ 1
2a

TX.
Then Substituting this into (10), we obtain

min
n;b;q;a

� 1
4
aTXXTaþ aT q� beð Þ � aT y � nð Þ þ Cknk2: ð11Þ

Calculating (11) with respect to n, we obtain n ¼ 1
2C y

Ta. Then Substi-
tuting this into (11), we get

min
b;q;a
� 1
4
aTXXTaþ aT q� beð Þ � 1

4C
aTa; ð12Þ

Thus, the closed form solution to our sub-problem on a can be
formulated as

a ¼ 1
4

XXT þ 1
C
E

� 	�1
q� beð Þ: ð13Þ

Given a non-linear mapping function u xð Þ, we define
K x;x0ð Þ ¼ u xð Þ;u x0ð Þh i, which can be used by some kernel function
(e.g., Gaussian RBF and polynomial) with permutation invariant.
Based on the circulant property of X;XXT can be represented as

XXT ¼ FHdiag x̂ � x̂�ð ÞF; ð14Þ

Then, introducing non-linear feature mappingu xð Þ into the formula
(14), it can be revised as

FHdiagðuðx̂Þ �uðx̂�ÞÞF ¼ FHk̂xxF ¼ K; ð15Þ

where k̂xx is the Fourier transform of K x;xð Þ and K is a circulant ker-
nel matrix.

Thus, the solution to the sub-problem of the kernelized support
correlation filter on a can be formulated as

a ¼ 1
4

Kþ 1
C
E

� 	�1
q� beð Þ: ð16Þ
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3.3. Formulation of structural support correlation filter

The support correlation filter model mentioned above is only to
learn a holistic appearance model, which is not robust for partial
occlusion. In order to tackle this issue, we introduce part-based
tracking strategy to the support correlation filter model. Given a
target object, it is divided into L non-overlapping parts with
M � N pixels. Then, we can learn the dual optimization variable
al of support correlation filter wl of each part via (17)

min
b;ql ;al

XL
l¼1
� 1
4
aT
l XlX

T
l al þ aT

l ql � bleð Þ � 1
4C

aT
l al; ð17Þ

Here ql ¼ y þ y � vl, where vl is an auxiliary variable corresponding
to the lth part. The bl corresponds to the bias of the lth part in the
model and the Xl consists of all circular shift image xm;n of the lth
part, where l ¼ 1; . . . ; L.

Intuitively, the motion model of each local part should be close
to each other to cover the entire target. Therefore, they should
select the similar circle shifts to make them have similar motion
[16]. In order to characterize the similar motion among local parts
and tolerate slight discrepancy among them, we introduce a cus-
tomized Laplacian regularization term in the model (17), that is

min
b;ql ;al

XL
l¼1

� 1
4a

T
l XlX

T
l al þ aT

l ql � bleð Þ � 1
4C a

T
l al þ d

2

X
i;j

kai � ajk2xi;j

8 i; j 2 L and i– j;

ð18Þ
where d is the weight parameter of the Laplacian regularization
term. xi;j denotes a penalty parameter whether two parts i and j
have similar motion. Ifxi;j is larger, the motion of two parts is more
consistent, vice versa.

However, this fully connected structure makes it intractable to
solve the model in (18) because we only alternately solve one of
ai; i ¼ 1; . . . ; L at a time when solving the model (18) and don’t
simultaneously solve all the ai; i ¼ 1; . . . ; L each time. Thus, under
the situation of hardly lowering the performance of the model in
(18), we simplify the connected structure of the model in (18) by
a star model. In the star model, each local part is connected by
an edge with a dummy part xr which can be represented by the
mean image of all the local parts, i.e. there are no direct relation
between any two parts. Thus, this requires a minor adaptation of
the model in (18), that is

min
b;ql ;al

XL
l¼1
� 1
4
aT
l XlX

T
l al þ aT

l ql � bleð Þ � 1
4C

aT
l al þ d

2

XL
l¼1
kal � ark2xl;r ;

ð19Þ
Here ar denotes dual optimization variable of support correlation
filter wr of the dummy part xr . Because the target moves smoothly
between consecutive two frames, we can use the motion consis-
tency among parts in t � 1ð Þth frame to describe the motion relation
among parts at the current frame. So, we define xl;r to decrease
exponentially with the hyper-distance of support correlation filters
wl and wr of the lth part xl and the dummy part xr in t � 1ð Þth
frame, i.e.,

xl;r ¼ exp �1
2
kwt�1

l �wt�1
r k2

j2

 !
; ð20Þ

where j is a smooth factor.
In practice, according to the observation, we found that the

appearance of tracked object changes smoothly over time. Thus
the selected training samples should be similar in consecutive
frames. That is to say, the corresponding at�1

l of each local part in
t � 1ð Þth frame should be close to that in tth frame, which is called
temporal consistency. Therefore, we may introduce temporal con-
strain term into the model (19) and revise it as follows

min
b;ql ;al

XL
l¼1
�1
4
aT
l XlX

T
l al þ aT

l ql � bleð Þ � 1
4C

aT
l al

� 	
þ d
2

XL
l¼1
kal

� ark2xl;r þ b
2

XL
l¼1
kat

l � at�1
l k2; ð21Þ

where b is the controlling factor of the temporal constrain term.
Given non-linear mapping function u xð Þ and the derivation of

formulas (14) and (15), our model in (21) can be extended to learn
a kernelized structured support correlation filter model, i.e.

min
bl ;ql ;al

XL
l¼1
�1
4
aT
l Klal þ aT

l ql � bleð Þ � 1
4C

aT
l al

� 	
þ d
2

XL
l¼1
kal

� ark2xl;r þ b
2

XL
l¼1
kat

l � at�1
l k2: ð22Þ

where Kl is a circulant kernel matrix corresponding to the lth part.
According to the above points, our models in (21) and (22) can

learn the support correlation filter parameters of all local parts
jointly and distinguish the parts from the background. Our model
is also resistant to partial occlusion. Besides, it has high efficiency
and robustness.

3.4. Optimization

In this subsection, we utilize the Alternating Direction Method
of Multipliers (ADMM) method [42] to solve the optimization
problem in (21). When keeping other variables fixed, the ADMM
method can iteratively update one of the variables bl;ql;al;ar by
minimizing (21), which can guarantee the convergence of our pro-
posed model. Consequently, updating steps corresponding to all
the variables are as follows:

Step 1: updatear (with others fixed): ar can be updated by solv-
ing the following optimization problem

ar ¼ argmin
ar

d
2

XL
l¼1
kal � ark2xl;r ; ð23Þ

and its solution is

ar ¼ 1PL
l¼1xl;r

XL
l¼1

xl;ral: ð24Þ

Step 2: updateql (with others fixed): before computing ql, we
firstly need to calculate the variable vl. Combining the models
(8) and (9), the subproblem on vl becomes

vl ¼ argmin
vl

kvl � y � XlwT
l þ ble

� �� 1
� �k2:

s:t: vl � 0
ð25Þ

Then, vl has the following closed form solution:

vl ¼ gmax y � XlwT
l þ ble

� �� e;0

 �

: ð26Þ
In view of wl ¼ 1

2a
T
rX, the formula (26) can be modified as

vl ¼ gmax y � 1
2
XlX

T
l al þ ble

� 	
� e;0

� 

; ð27Þ

When xl is mapped to the kernel feature space, the amended ver-
sion of the formula (27) is as follows

vl ¼ gmax y � 1
2
Klal þ ble

� 	
� e;0

� 

; ð28Þ
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Known vl from the aforementioned formulas (27) or (28), we can
calculate ql by

ql ¼ y þ y � vl: ð29Þ
Step 3: updatebl (with others fixed): we exploit the method of

solving the parameter b in [12] to calculate the bl, i.e.

bl ¼ �ql: ð30Þ
where �ql is the mean of ql.

Step 4: updateal (with others fixed): The minimization problem
(21) with respect to alf gLl¼1 can be decomposed into L mutually
independent subproblems. The lth subproblem to update al can
be equivalently re-expressed as

al ¼ argmin
al
� 1

4a
T
l XlX

T
l al þ aT

l ql � bleð Þ

� 1
4C a

T
l al þ d

2 kal � ark2xl;r

þ b
2 kat

l � at�1
l k2;

ð31Þ

Then, for each al, the closed form solution of the formula (31) is
shown as follows

al ¼ 1
2XlX

T
l þ 1

2C E� dxl;rE� bE
� ��1

ql � bleð Þ � dxl;rar � bat�1
l

� �
:

ð32Þ
The detailed ADMM algorithm that solves our model (21) is

given in Algorithm 1, where the convergence is reached when
the change of solution al is below a pre-defined threshold (e.g.
s ¼ 10�3 in our work) or the number of iteration is greater than
the maximum iterations Iter.

Algorithm 1. Solving the optimization problem defined by the
model (21)
Input: Training data: Xl and y. Initialization of parameters
d; b;C

Output: al; blf gLl¼1
1: Initialize num 1;at

l
1ð Þ ¼ XT

l y
XlX

T
l þ1

CE
;at

l
0ð Þ ¼ 0; btl ¼ �y, where

�y is the mean of y.

2: while num 6 Iter or jat
l
ið Þ � at

l
i�1ð Þj > s do

3: Update ar via (24)
4: forl ¼ 1 to L do
5: Update ql via (27) and (29)
6: Update bl via (30)
7: calculate at

l via (32)
8: end for
9: num numþ 1
10: end while

As shown in Algorithm 1, its major computing cost is that we
need to calculate the matrix inverse and multiplication in spatial
domain when updating at

l via (32). However, in view of the circu-
lant structure property of Xl;at

l can be calculated very efficiently in
the Fourier domain. Thus, the formula (32) can be rewritten as the
version (33) in the Fourier domain.

ât
l ¼

q̂l � blê� dxl;râr � bât�1
l

1
2 x̂l � x̂�l þ 1

2C ê� dxl;r ê� bê
; ð33Þ

where �� denotes the element-wise division.
When the sample xl is mapped to the kernel feature space, the

updating step with respect to al needs a minor modification, that is
al ¼ 1
2Kl þ 1

2C E� dxl;rE� bE
� ��1 ql � bleð Þ � dxl;rar � bat�1

l

� �
;

ð34Þ
Meanwhile, the corresponding version of the formula (34) in the
Fourier domain is as follows

ât
l ¼

q̂l � blê� dxl;râr � bât�1
l

1
2 k̂

xx þ 1
2C ê� dxl;r ê� bê

: ð35Þ

where �� denotes the element-wise division.
To solve the optimization problem defined by (22), we only

need to use the formulas (28) and (34) to replace the formulas
(27) and (32) in the updating steps.

Finally, known âl, the al can be obtained by al ¼ F�1 âlð Þ. More-
over, to speed up the Algorithm 1, it can be implemented in matrix
form without the ‘‘for” loop.

3.5. Tracking

At the tracking stage of nonlinear feature space, when obtaining
the coefficient vector ât�1

l and bias bl of each local part in the pre-
vious frame, we can estimate the response map of each local patch
zl at the current frame by the following formula

ftl ¼ F�1 k̂xz
l � ât�1

l

� �
þ ble; ð36Þ

where k̂xz
l denotes the Fourier transform of K x; zð Þ for the lth part.

The position pt
l of the lth part can be determined by the maximum

value of ftl , e.g. the position pt
l of each part can be expressed as

pt
l ¼ pt�1

l þ Dt
l ; ð37Þ

Here Dt
l denotes the translation of the lth part at time t.

Then we can estimate the final position pt
g of object by the

translation Dt
l of all the parts, that is

pt
g ¼ pt�1

g þ
XL
l¼1

plD
t
l ; ð38Þ

where pl is the weight parameter of corresponding part.
Because different parts of the target may suffer different

appearance changes, illumination variation or occlusion in differ-
ent frames, intuitively, if we assign the same weight to each part,
the falsely tracker part may be overemphasized which will lead
to drift problem. In order to handle this issue, we should adaptively
give each part a different weight according to its reliability. In our
work, we exploit the peak-to-sidelobe ratio (PSR) to define the
weight of each part because the higher PSR usually means more
reliable part, where the PSR is defined as

/l ¼
max f lð Þ � ll

rl
; ð39Þ

where ll and rl are the mean and the standard deviation of f l
respectively.

In addition, for tracking problem, the appearance similarity
between two consecutive frames is helpful for distinguishing
whether the part is reliable or not. Taking this observation into
consideration, we define the appearance similarity d to determine
whether the part is reliable, i.e.

dl ¼ exp �kx
t
l � xt�1

l k2
c2

 !
; ð40Þ

where c is a hyperparameter, and x is the vector representation of
object appearance features, where the appearance features use
the color histogram features. Combining two indicators above, we



Fig. 1. Visualization of the PSR and appearance similarity of the part denoted by the yellow bounding box in the frame #83 and #141. (a) The target is occluded in the frame
#83. The PSR ¼ 5:01191 and the appearance similarity d ¼ 0:11002 of the part denoted by the yellow bounding box. (b) The target occurred the deformation in the frame
#141. The PSR ¼ 5:1559 and the appearance similarity d ¼ 0:27286 of the part denoted by the yellow bounding box. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

6 Z. Ji et al. / J. Vis. Commun. Image R. 64 (2019) 102602
distinguish whether the lth part is occluded or has a large pose
change. If /l and dl are less than the pre-defined threshold, this part
is unreliable. As shown in Fig. 1(a), when the part that denoted by
the yellow bounding box is occluded, its PSR and appearance simi-
larity both become smaller. According to our two criteria, this part
is unreliable. But in the Fig. 1(b), the target occurs the deformation.
If using our two criteria, this part is reliable and if only using the
PSR, then this part is unreliable. In fact, for the deformed part, we
need to update its model to avoid drift.

To avoid erroneous estimations further, we use the PSR value
and the appearance similarity dl from the reliable parts to calculate
the corresponding weight pj, i.e.

pj ¼ 1�-ð Þ /jPJ
j¼1/j

þ- dj

RJ
j¼1dj

; ð41Þ

where J denotes the number of all reliable parts, - is a fusion
parameter. In our work, - is set as 0.4. By now, the formula (38)
can be modified as

pt
g ¼ pt�1

g þ
XJ

j¼1
pjD

t
j ; ð42Þ

Here if J ¼ 0, this means that all parts are unreliable. At this time,
we use the translation of target in the previous frame to approxi-
mate that of target in the current frame because the motion of tar-
get hardly keep steady between two consecutive frames in most
cases.

Update scheme: During tracking, the object appearance may
change because of a number of challenging factors such as illumi-
nation change and pose change. Hence it is necessary to update
part classifiers over time. Our tracking model is made up of the
learned target appearance xl and the transformed classifier coeffi-
cients al. For each patch, our model parameters are updated by

xt
l ¼ 1� qlð Þxt�1

l þ qlxl

at
l ¼ 1� qlð Þat�1

l þ qlal;
ð43Þ

where ql is a learning rate parameter. The al is calculated by simple
linear interpolation. The xl is updated by taking the current appear-
ance into account.

However, if using a fixed learning rate q in the updating pro-
cess, the whole model will be contaminated in the remaining
frames once the tracker loses the object. Thus, to avoid producing
errors, It is apparent that the model of the occluded part should not
be updated and other parts should adaptively adjust their learning
rate based on the corresponding reliable weight. Therefore the
learning rate of each part is updated by the following scheme

ql ¼
pl. if /l > � or dl > e
0 otherwise

�
; ð44Þ

where . is a fixed learning rate, � and e are two predefined
thresholds.

Thus, contrary to traditional correlation filter based trackers,
due to exploiting the adaptive updating strategy, our method can
still maintain the tracking accuracy by using the results of the pre-
vious frame even when all part are occluded at one frame.

Scaling: To adapt the scale change of object, most of correlation
filter based trackers [43,29,30] utilize a discriminative filter or a
search pool that is based on pyramidal structure to estimate the
object size. Despite obtaining outstanding results, these methods
do not accurately estimate the current object size. So, to tackle this
issue, we adopt the ration of the relative distance among local
parts as in [35] to estimate the object size accurately because it’s
positively correlated with the scale of the target. In addition, to
improve the accuracy of estimating object size further, in our work,
we only use the change rate of relative distance among reliable
local parts to estimate the object size. Therefore, the object scale
St is calculated by

St ¼ St�1

J J � 1ð Þ
XJ

i¼1

XJ

j¼1

kpt
i � pt

jk2

kpt�1
i � pt�1

j k2
i– jð Þ: ð45Þ

where pt
i represents the position of part i in the tth frame. Because

at least two reliable parts can make the formula (45) feasible, we
keep the scale size of the preview frame unchange when only one
part is available. In addition, the scale of the target does not change
dramatically between two consecutive frames. To estimate the scale
of target more robustly, we utilize the moving average to calculate
the scale of target at the current frame.

So far, the theoretical part of the algorithm has been completely
introduced above. For better comprehending our proposed
method, it is summarized in Algorithm 2.
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Algorithm 2. Scale structural support kernel correlation filter
tracking algorithm (ScaleSSKCF)

Input: Image frames Itf gT1, initial object position p1
g

Output: Target position of each frame pt
g

n oT

2

1: repeat
2: Calculate the position pt�1

l of each part based on the last

target position pt�1
g .

3: Crop an image patch xl from It at the patch position pt�1
l

of the t � 1 time and extract the corresponding feature
representation.
4: Calculate the filter coefficient al and bias bl of each patch
by the Algorithm 1.
5: Detection the position pt

l of each patch via (36).
6: Distinguish whether the lth part is reliable by /l and dl.
7: Compute the target position pt

g at the current time via
(42).
8: Estimate the scale of the target via (45).
9: Update learned target appearance xl and the transformed
classifier coefficients al with the formulas (43) and (44).

10: until end of video sequence.
4. Experiments

In the experimental part, we use the several benchmark data-
sets: TempleColor128,1 OTB20152 and VOT20153 and their related
evaluation protocols [44–46] to evaluate the proposed ScaleSSKCF
algorithms. First, we introduce the experimental setup. Next, we
evaluate two variants of our proposed method, i.e., OWSC (our algo-
rithm without structural constraint) and OWTC (our algorithm with-
out temporal consistent), to analyze the effect of structural constrain
term and temporal constrain term in our proposed method. Finally,
our proposed algorithm is compared with some the most related
state-of-the-art methods.

4.1. Experimental setup

Our proposed approach is implemented in native MATLAB
2014a on a 3.6GHZ Intel i7 Core4 PC with 4G RAM. The average
running speed is around 40 frames per second. The optimization
takes 5 iterations in the first frame and 2 or 3 iterations for each
online update. In our method, the feature extraction takes up
48% of the total consuming time. But the optimization is only 3%.

Parameters: Our tracker involves a few model parameters, i.e.,
trade-off parameter C, scale parameter g and shape parameter k of
confidence maps, the weight parameter d of the Laplacian regula-
tion term, the controlling factor b of the temporal constrain term,
and lower and upper thresholds hl; huð Þ in (7). In addition, other
parameters include the smooth factor j in (20) and hyperparame-
ter in (40). For online tracking, the model is updated by linear
interpolation with the adaption rate . in (44). In our experiments,
the detailed parameters setting is shown in Table 2, where padding
means the magnification of the image region samples relative to
the target bounding box. The number of local parts L is adaptively
determined by the aspect ratio of object ON

OM
, where ON and OM sep-
1 The sequences together with the ground-truth and matlab evaluation toolkit is
available at: http://www.dabi.temple.edu/hbling/data/TColor-128/TColor-128.html.

2 The sequences together with the ground-truth and matlab code is available at:
http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html.

3 http://www.votchallenge.net/vot2015/dataset.html.
arately denote the width and height of object. If 0:6 < ON
OM

< 1:6, the

target is divided into 2� 2 local parts, i.e., L ¼ 4; if ON
OM

6 0:6, the tar-

get is partitioned into 3� 1 local parts, i.e., L ¼ 3; if ON
OM

P 1:6, we

sample 1� 3 local parts on the target. The detailed partitioning
method is shown in Fig. 2. Note that, any other part sampling
methods can also be adopted.

Datasets and evaluation metrics: To assess the performance of
the proposed tracker, extensive experiments are carried on several
public benchmark datasets such as TempleColor128 [46], OTB-
2015 [47] and VOT2015 [45]. In the TempleColor128 and OTB-
2015 datasets, we adopt two metrics used in [46] including dis-
tance precision (DP) and overlap precision (OP). The DP is the rel-
ative number of frames in the sequence where the center location
error is smaller than a certain threshold. As in [44], the DP values at
a threshold of 20 pixels are reported in our work. The OP is defined
as the percentage of frames where the bounding box overlap sur-
passes a certain threshold. We report the results at a threshold of
0.5, which correspond to the PASCAL evaluation criterion [48].
Except for the DP and OP metrics, the precision and success plots
[44] have also been adopted to measure the overall tracking perfor-
mance. For the precision and success plots, we respectively use the
DP value of each tracker and the area under curve (AUC) score of
each success plot to rank the tracking algorithms. In VOT2015
sequences, we utilize evaluation criterion proposed in [45].

4.2. Key component validation

Here, on the TempleColor128 dataset [46], we discuss the
impact of structural constraint term and temporal consistent term
in our algorithm. Based on the algorithm analysis in Section 3, the
performance of our algorithm should decrease to some extent
without structural constraint term and temporal consistent term,
which is shown in Table 3. The OWSC and OWTC respectively
denote the absence of structural constraint term and temporal con-
sistent term in our model. Overall, the performance of the pro-
posed algorithm is best among these three methods (e.g. OWSC,
OWTC and ScaleSSKCF (ours)). Seen from the comparison, the per-
formance of OWSC is worst, which means that the structural con-
straint term of our tracking model plays the most important role in
the performance of our algorithm.

4.3. Evaluation on OTB2015 dataset

Here, we provide a comparison of our method with 7 state-of-
the-art and the most related methods from the literature: SRDCF
[33], RPT [14], SKSCF [12], samf [30], Staple [49], lct2 [50] and DPCF
[35] on the OTB2015 dataset. But a few most related methods (e.g.,
SCF [16] and RPAC [15]) are not included in our comparative exper-
iments because their source codes are not open to the public and
they didn’t do the corresponding experiments on this dataset in
their paper.

4.3.1. State-of-the-art comparison
The quantitative comparison among these selected methods is

reported in Table 4, using mean overlap precision (OP) and mean
distance precision (DP) over all 100 video sequences of OTB2015.
Seen from the Table 4, our method achieves the best result by
72% on the mean OP metric. However, the SRDCF obtains the best
result on the mean DP. The main reason is that the SRDCF intro-
duces the spatial regulation term to deal with the boundary effect
caused by the FFT, which makes it learn a more discriminative
model. The performance of our method is almost the same as its
but our speed is about 20 times faster (For a more fair comparison
of speed, please refer to the results in VOT2015). Although the per-
formance of DPCF is slightly superior to our method on the mean

http://www.dabi.temple.edu/hbling/data/TColor-128/TColor-128.html
http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
http://www.votchallenge.net/vot2015/dataset.html


Table 2
Parameters setting of our proposed method (ScaleSSKCF).

Parameters Padding g hl; huð Þ C k d b j � e . Bins of HOG Cell size Orientations

Value 1.8 0:1 �
ffiffiffiffiffiffiffiffi
MN
p

0:4;0:9ð Þ 104 2 0.05 5 3 5.5 0.2 0.015 31 4� 4 9

Fig. 2. Visualization of the target’s partition based on the target’s aspect ratio.

Table 4
Comparison with state-of-the-art trackers on the 100 sequences of OTB2015. The top
two results are highlighted by bold and different colors: red and blue color.
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DP, the score of its OP is obviously lower than the one of our
method, that’s because the DPCF limits the scale changing range
of the target between 0.75 and 1.25 and can’t estimate it accurately
when the target occurs the large-scale change.

Fig. 3 gives precision and success plots over all 100 sequences in
OTB2015. The success plot shows the ratios of successful frames at
the thresholds varied from 0 to 1. While the precision plot
describes the ratios of frames in which the center location error
(CLE) is smaller than a arbitrary threshold ranging from 0 to 50 pix-
els. The trackers of each sub-figure in Fig. 3 are ranked by their area
under the curve (AUC) scores, displayed in the legend. In the suc-
cess plots of OPE, our method shows comparable results as the
SRDCF and significantly outperforms other several correlation filter
trackers. For the precision plots, our method is slightly inferior to
the DPCF by 0.2%, that may be because the DPCF combines the
tracking results of global correlation filter model, and our method
also inferior to the Staple by 0.8%, the main reason of which is that
the color histogrammodel of Staple is more robust to the deforma-
tion of target.
4.3.2. Attribute based comparison
The sequences in OTB2015 are annotated with 11 different

attributes to describe the different challenges in the tracking prob-
lem, including illumination variation (IV), scale variation (SV),
occlusion (OCC), deformation (DEF), motion blur (MB), fast motion
(FM), in plane rotation (IPR), out-of-plane rotation (OPR), out-of-
view (OV), background clutters (BC), and low resolution (LR). These
attributes are useful for analyzing the performance of trackers in
different aspects. The Tables 5 and 6 respectively shows the perfor-
mance of ours and 7 state-of-the-art methods in terms of AUC (suc-
cess metrics) and DP (precision metrics) with respect to each
attribute. In Table 5, our method has gained 7 the best and 2 the
second best out of 11 subcategories for AUC score. In case of defor-
mation, compared with other methods, our method achieves the
second best results (The DP score on the center location error is
73.4% and the AUC score on the overlap rate is 54.6%), which is
Table 3
Comparing the results of OWSC, OWTC and ScaleSSKCF based on mean
distance precision (DP) and mean overlap precision (OP). The entries in red
denote the best results.
inferior to the ones of Staple because the color histogram model
used in the Staple is more robust to the deformation of target. As
are shown in Tables 5 and 6, for the sequences involving the fast
motion, the performance of our method and other part-based
trackers become bad because the searching area of part-based
tracking method shrinks, leading to drift problem. However, the
SRDCF can obtain the best results because it can learn a strong
model that adapts the fast motion of target on the larger samples.
For scale variation, our method achieves the better results than
other methods except the SRDCF. Note that the DPCF adopts the
scale estimation technique similar to ours but its performance is
significantly inferior to ours (e.g., our AUC score on the overlap rate
exceeds it by 5%). That is because the DPCF limits the scale changes
in a small range (from 0.75 to 1.25), which let it not adapt to the
large scale change of the target. For the occlusion factor, our
tracker obtains the best AUC score of 58.5% on the overlap rate.
The main reason is that our method eliminates the effect of the
occlusion when updating the discriminative model. For the low
resolution sequences, our method obtains the best results which
may be attribute to the temporal consistent term in our model.
Fig. 4 shows a qualitative comparison of our approach with 7 exist-
ing methods on 11 challenging example videos. Both the SRDCF
and ScaleSSKCF perform well in the presence of heavy occlusion
(e.g., Human6), which can be attributed to the fact that SRDCF
learns a discriminative model on larger image region and our
method removes the effects of heavy occlusion when updating
our tracking model. The lct2 can effectively re-detect target in
the case of tracking failure, e.g., the sequence with the heavy occlu-
sion (Shaking), but it cannot perform well in scale variation and
illumination changes (e.g., Car1, Car4 and Car24). When the tracked
target of the sequence is occluded by similar color barrier (e.g.,
Box), the Staple performs very bad because the color histogram
model used by it does not distinguish them. Compared with these
method, our method can estimate the object size more accurately
when occurring the large scale variation (e.g., Car1, Car4, Car24,
CarScale and Human5). For the sequences (e.g., Skating1) including
the deformation, our approach significantly outperforms other sev-
eral methods because it adopts some tricks (e.g., structural con-
straint term and temporal consistency term) to make our
discriminative model more robust for target deformation.

4.3.3. Robustness evaluation to initialization
We adopt two robustness metrics: spatial robustness (SRE) and

temporal robustness (TRE) provided by [44] to evaluate the robust-
ness to initializations. The SRE criteria initializes the tracker with
perturbed boxes, which the TRE criteria starts the tracker at the
frame corresponding to each segmentation point (each sequence
is divided into the 20 segmentation points). The Fig. 5 shows the
TRE and SRE success plots of ours method compared with other
related trackers. In the success plots of TRE, the performance of



Fig. 3. Precision and success plots over all 100 sequences in OTB2015. The area under the curve (AUC) scores of each tracker are reported in the legends.

Table 5
Success metrics (%) of the trackers for 11 attributes. The top two results are highlighted by red and
blue.

Table 6
Precision metrics (%) of the trackers for 11 attributes. The top two results are highlighted by red and
blue.
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our method is second only to that of the SRDCF but is significantly
superior to the rest of trackers, especially DPCF and RPT. For the
SRE criteria, our method also is slightly inferior to the Staple by
only 0.4%. This evaluation demonstrates our method is relatively
robust to different spatial and temporal initializations.
4.4. Evaluation on TempleColor 128 dataset

Here, we evaluate our method on the TempleColor128 dataset.
The Fig. 6 shows a comparison with 7 state-of-the-art and the most
related methods from the literature: Staple [49], SRDCF [33], DPCF
[35], lct2 [50], SKSCF [12], RPT [14] and samf [30]. The performance
of our method is only ranked the fourth in thesemethods. The main
reason is that TempleColor128 dataset contains about a half
sequences with the fast motion [46] and our method is not suitable
for dealing with these sequences because the valid searching region
becomes smaller when the target is divided into the patches. For
the SRDCF, it can learn the filter from the larger searching region
because of the spatial regularization term, which makes it against
the fastmotion. However, its speed is only about 2 frame per second
and it cannot meet the realtime applications. The DPCF integrates
the results of local and global correlation filter by the minimum
spanning tree model. Although its performance is slightly superior
to our method, the complex model brings down its speed.
4.5. Evaluation on VOT2015

Finally, we compare our method with other 9 related trackers
(CCOT [51], deepSRDCF, Staple [49], SRDCF [33], DPT [38], samf
[30], DPCF [35], SKSCF [12] and lct2 [50]) on VOT2015 consisting



Fig. 4. Qualitative comparison of our approach with 7 state-of the-art trackers (denoted in different colors) on the several typically challenging sequences (from left to right
and top to down are Box, Car1, Car4, Car24, CarScale, Couple, Skating1, Shaking, Human5, Human6 and Freeman1 respectively). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. An evaluation of the temporal and spatial robustness to initializations on the OTB2015 dataset. The area under the curve (AUC) scores of each tracker are reported in
the legends.
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of 60 challenging videos. Here, we evaluate the performance of the
trackers by three metrics (accuracy (overlap with ground truth),
robustness (failure rate) and excepted average overlap (EAOP))
provided in [45]. In VOT2015, a tracker is restarted in the case of
a failure. In more detail, we refer the readers to [45]. The Table 7
gives their comparison results on VOT2015 according to three met-
rics mentioned above. Among the compared methods, our method
is only ranked the fourth. Note that the results of CCOT and
deepSRDCF directly come from the VOT2016 competition. The
CCOT and deepSRDCF both use the more discriminative deep con-
volution features. According to the conclusions in [52], the better
features can dramatically improve the tracking performance than
the tracker its. Thus, it is not fair to directly compare our method
and them.



Fig. 6. Precision and success plots over all 128 sequences in TempleColor128 dataset. For the success plots, the area under the curve (AUC) scores of each tracker are reported
in the legends. And the precision obtained at threshold 20 is shown in the legends of the precision plots.

Table 7
Comparison results on the VOT2015 dataset. The top two results are highlighted by
red and blue.
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As is known, except the accuracy and robustness, the tracking
speed is also very crucial in many real tracking application. There-
fore, we visualize the expected overlap score with respect to the
tracking speed measured in EFO units in Fig. 7, where we exclude
the CCOT and deepSRDCF for fairness. Seen from the Fig. 7, our
method achieves the better balance between the performance
and speed.
5. Conclusions

In this paper, we proposed a scale-adaptive structural support
kernel correlation filter tracking model, which is called ScaleSSKCF.
Our method combines part-based tracking strategy into support
correlation filter tracker by the structural constraint term of the
proposed model, which remains the strong discriminability of the
Fig. 7. Expected average overlap scores with respect to the tracking speed in EFO units. T
EFO units.
support correlation filter (SCF) and also preserves the spatial struc-
ture of the target. To reduce the issues of drifting away from the
object, we consider the temporal consistency of each part in our
model. In addition, we also introduce the occlusion detection and
scale estimation into the proposed tracking method, which makes
our tracker less sensitive to some complex factors (e.g., partial
occlusion and scale variation). Results on three benchmark data-
sets show that our tracker performs favorably against several
state-of-the art tracking methods in terms of accuracy, robustness
and speed.
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