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Algorithm 3 Discovering core structure.
INPUT: indices of cluster core samples O ,

co-association matrix M .
OUTPUT: core structure C∗

O .
1: extracting co-association matrix of cluster core M O

2: C∗
O ← HC-algorithm (M O )

After determining the cluster core and cluster halo, the processes of handling samples in these two parts are quite 
different. For the cluster core, one may hope to find a clear underlying structure. With this structure, the assignments of 
the samples in the cluster halo can be carried out. In what follows, our suggestions for handling these two types of samples 
are discussed.

4.2. Discovering the structure of a cluster core

The stability of a sample is determined by the co-association matrix. In order to reduce the amount of computation, the 
co-association matrix should be employed to discover the structure of a cluster core. We will use the rows and columns 
corresponding to the samples in the cluster core to form the co-association matrix for the cluster core. In addition, the 
co-association matrix reflects the relationship between each pair of samples, which is beneficial for discovering a consensus 
clustering. Any clustering algorithms based on the co-association matrix can be applied to discover an underlying structure 
of cluster core. Here, we use the hierarchical clustering (HC) algorithm [55].

For a data set with n samples, the HC algorithm begins with n clusters, in which each cluster corresponds to a sam-
ple. The HC algorithm iteratively merges two most similar clusters until the number of clusters reaches the expectation. 
The measurement of similarity between two clusters is important to the quality of clustering result. The frequently used 
similarity measurements between two clusters are maximum similarity, minimum similarity, and average similarity, which 
correspond to three HC algorithms called single-linkage, complete-linkage, and average-linkage, respectively. The three sim-
ilarity measurements are as follows:

dmax(ci, c j) = min
x∈ci ,y∈c j

sim(x, y);
dmin(ci, c j) = max

x∈ci ,y∈c j
sim(x, y);

dave(ci, c j) = 1

|ci ||c j|
∑
x∈ci

∑
x∈c j

sim(x, y).

In clustering ensemble, sample features are unknown. As a compromise, pij can be used in place of the similarity 
between two samples xi and x j . Then, in clustering ensemble, the similarity between two samples will be:

sim(x, y) = pxy .

The HC algorithm has two main advantages in finding the underlying structure of the cluster core. Firstly, the co-
association matrix can be treated as the similarity matrix in clustering ensemble problem. This means that the input of 
the HC algorithm is already available, which is the main computation of the algorithm. Secondly, the HC algorithm can 
determine the number of clusters by the largest jump during merging clusters. During the merging process based on the 
co-association matrix, when the process meets a pair of clusters with the lowest similarity, it terminates.

A sample in a cluster core has very high similarity with its neighbors and very low similarity with others. Thus, each 
element in the co-association matrix of the cluster core is close to 0 or 1. Since the underlying structure of cluster core 
is clear, the three HC algorithms will discover very similar structures. In this paper, we utilize the single link algorithm to 
discover a structure of cluster core.

4.3. Assigning samples in a cluster halo to the structure

The task of this step is to assign the samples in the cluster halo to the discovered core structure. The core structure is 
expressed as a clustering result on the core samples. In addition, we have obtained the pairwise similarity matrix. Then, a 
direct approach to assign halo samples may be based on the relations between the halo sample and the discovered clusters. 
One can assign a halo sample to its nearest cluster. It should be noted that some samples in the cluster halo are far away 
from all core clusters. Thus determining their assignments based on only core samples may be ineffective. Here, we propose 
a non-parametric iterative approach to assigning the halo samples to the discovered structure.

This approach describes a spreading process which uses the samples in the cluster halo to expand the size of cluster core 
to the whole data gradually. This approach is realized through a two-phase iterative method: the samples which are near 
a core cluster are found first, and then, the cluster core are augmented by these samples. The two phases are successively 
executed until all samples are assigned to the cluster core.















Table 2: The abilities of the compared methods in handling the eight synthetic data sets

data Voting WCT WTQ MCLA CSPA EAC HGPA CSM PTA PTGP SCCE NCUT CEs2-L CEs2-Q

Tetra © © © × © © © © © © © © © ©

Noisy © × × © © © × © × © © × © ©

Wingnut © × × × © © × © © × © × © ©

Flame × © × © × × × × © © © × © ©

Jain × × × × × × × × × © © © © ©

Target × × × × × × × × × × × × © ©

Chainlink © × × × © © © © © © © © © ©

Atom © © © © © © © × © © © © © ©

co-association matrix, PTA and PTGP first built a probability trajectory based similarity matrix.
Then, PTA utilizes dendrogram generate a final result, while PTGP utilizes Tcut graph partition
method. In SCCE, the spectral algorithm is used to solve the problem of clustering ensemble
based on the co-association matrix. NCUT is an image segmentation method and it has been
widely used in clustering ensemble algorithms [52, 6]. The abilities of the twelve clustering
ensemble algorithms in handling the eight synthetic data sets are shown in Table 2. In Table 2,
symbol© indicates that a clustering ensemble algorithm can correctly discover the group struc-
ture from the corresponding synthetic data, while symbol × indicates it can’t. From Table 2, it
is easy to find that none of the twelve compared algorithms can effectively handle all the eight
synthetic data sets. Table 2 shows that the SCCE algorithms only failed in handling Target data.
However, in the following section, SCCE shows a bad performance in handling the benchmark
data sets.

5.3. Experiment on benchmark data sets
Ten numerical benchmark data sets from UCI and six text benchmark data sets are used in

this comparison experiment. Table 3 shows the detailed information about these data sets.
To verify the performance of CEs2, we compare the two CEs2 algorithms (CEs2-L and CEs2-

Q) with the twelve clustering ensemble algorithms which have been introduced in Section 5.2.
In this experiment, the ensemble size is still set as L = 50 and the number of clusters in each

base partition is set as k = min{
√

n, 50}. To eliminate the randomness caused by the uncertainty
of ensembles, each comparison is conducted on 50 ensembles and the average estimation index
values are reported.

To evaluate the performance of a clustering result, we utilize two widely used clustering es-
timation indexes, which are the clustering accuracy [65] and the normalized mutual information
[9]. The two indexes are external criteria that measure the performance of a clustering algorithm
through computing the similarity between its result and a referential clustering result. In the
following experiments, the ground truth is utilized as the referential clustering. Then, we only
introduced the two indices in the environment that the compared partitions have the same number
of clusters, which is the true number k in each data set.

The clustering accuracy (AC) matches corresponding clusters in the compared results and
reports the fraction of their common samples. Based on the overlap matrix between a clustering
result C

′

and ground truth C, which is shown in Table 4, the AC is calculated by:

AC =

k∑
i=1

max{ni j : j = 1, 2, . . . , k}
n

, (17)
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Table 3: Description of the sixteen data sets

Number Data sets N D K
1 Breast Tissue 106 9 6
2 Glass 214 9 6
3 Protein Localization Sites 272 7 3
4 Ecoli 336 7 8
5 LIBRAS Movement 360 91 15
6 User Knowledge Modeling 403 5 4
7 Cardiotocography 2126 40 10
8 Image Segmentation 2310 19 7
9 Parkinsons Telemonitoring 5875 21 42
10 Statlog Landsat Satellite 6435 36 6
11 tr23 204 5832 6
12 tr45 690 8261 10
13 tr41 878 7454 10
14 tr31 927 10128 7
15 wap 1560 8460 20
16 re1 1657 3758 25

where ni j is the number of common samples of cluster Ci in C and cluster C′j in C′.
The normalized mutual information (NMI) computes the information shared between two

partitions, which is defined as follows:

NMI(πb, πd) =

∑k
i=1

∑k
j=1 ni j log

(
nni j

ni·n· j

)
√(∑k

i=1 ni· log
(

ni·
n

)) (∑k
j=1 n· j log

( n· j
n

)) . (18)

Both indexes are bounded between 0 and 1, in which a higher value indicates a better perfor-
mance.

The values of AC and NMI in the comparison experiments are reported in Table 5 and Table
6, respectively. In Table 5 and Table 6, the last row shows the average ranks of each algorithm on

Table 4: Overlap matrix between C
′

and C

C\C′ C′1 C′2 · · · C′k Sums
C1 n11 n12 · · · n1k n1·

C2 n21 n22 · · · n2k n2·
...

...
...

. . .
...

...

CK nk1 nk2 · · · nkk nk·

Sums n·1 n·2 · · · n·k n
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Figure 18: Nemenyi test based on Table 5

the sixteen data sets. For each data set, the highest value of index is double underlined, while the
second highest value is marked with underline. It is easy to see from Table 5 that the proposed
CEs2 algorithms obtain the highest AC values for fourteen data sets. For twelve data sets, the two
versions of CEs2 algorithms win the first two places. For many data set, the two CEs2 algorithms
can markedly improve the AC value on many data sets. Table 6 shows that the CEs2 algorithms
get higher NMI values than the other eight algorithms on eleven data sets. From the last row
in Table 5 and Table 6, it is obvious that the two CEs2 algorithms obtain the top two ranks.
The average ranks of the two CEs2 algorithms are around 2, which indicates that the two CEs2

algorithms consistently outperform the other algorithms on most of the data sets.
To further analyze the results reported in Table 5 and Table 6, we utilize the Friedman test to

detect whether the compared algorithms are significantly different. To conduct this test, we use
the Matlab function ’friedman’. Based on Table 5 and Table 6, the p-values that the test returns
are 1.3026 × 10−18 and 2.1224 × 10−16, respectively. Both the p-values are sufficiently small,
which suggest that at least one pair of algorithms is significantly different. To visually show the
differences of the compared algorithms, we apply Nemenyi post-hoc test [66]. The critical value
of the Nemenyi test is calculated by:

Ne = qα

√
A(A + 1)

6D
, (19)

where A is the number of algorithms, D is the number of data sets and qα = 4.7427 when the
confidence level α = 0.05. If the average rank of an algorithm is Ne different than that of
another algorithm, it can be deemed that these two algorithms are significantly different. In this
experiment, with Formula (19), we obtain Ne = 7.0145. Figure 18 and Figure 19 show the results
of the Nemenyi test. In Figure 18 and Figure 19, the horizontal axis corresponds to the fourteen
algorithms and the vertical axis corresponds to the value of average ranks. For each algorithm,
its average rank is shown by a red point and its confidence interval is shown by a blue line whose
length is 7.0145. The black dotted line shows the up confidence level of CEs2-L, which obtains
a high rank in the two CEs2 algorithms. From Figure 18 and Figure 19, it is easy to see that the
two CEs2 algorithms obtain much higher average ranks than the other algorithms. Concretely,
CEs2-L and CEs2-Q are significantly different than CSPA, EAC, SCCE, and NCUT.

6. Conclusion

Clustering ensemble is an effective approach to solve data clustering problem. Many cluster-
ing ensemble algorithms have been proposed during the past decade, most of which treat each
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1
0.6283
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0.5151

0.5198
0.6028

0.5590
0.4976

0.5009
0.4816

0.4943
0.2406

0.4349
0.7113

0.6943

2
0.4220

0.4530
0.4196

0.4383
0.4432

0.4213
0.4290

0.4292
0.4776

0.4731
0.3570

0.3353
0.4995

0.4923

3
0.7489

0.8066
0.8443

0.8706
0.7581

0.7428
0.5151

0.7233
0.8149

0.8729
0.5160

0.4518
0.8965

0.8899

4
0.4638

0.5016
0.5186

0.5208
0.4808

0.4862
0.4552

0.5101
0.5638

0.4976
0.3987

0.2957
0.5326

0.5530

5
0.4432

0.4129
0.4040

0.4188
0.4531

0.4208
0.4496

0.4440
0.4407

0.4247
0.2794

0.3519
0.6328

0.6367

6
0.5444

0.4965
0.5306

0.5063
0.5437

0.5264
0.3900

0.5329
0.4603

0.5661
0.3279

0.5395
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0.5603

7
0.6199

0.6151
0.6377

0.6466
0.6248

0.6170
0.4650

0.6710
0.9905

0.9540
0.2761

0.8267
1.0000

0.9882

8
0.7061

0.5434
0.5759

0.5645
0.7041

0.6999
0.3535

0.6579
0.6463

0.6607
0.1457

0.6382
0.7292

0.7302

9
0.4857

0.5129
0.5068

0.5156
0.4885

0.4601
0.4899

0.3677
0.5107

0.5442
0.3306

0.4904
0.5458

0.5567

10
0.6119

0.5722
0.6283

0.5511
0.6160

0.5852
0.3116

0.4065
0.7380

0.6549
0.2438

0.5654
0.7508

0.7437

11
0.4359

0.5005
0.5213

0.5092
0.4373

0.4375
0.4137

0.4467
0.4512

0.4556
0.4074

0.4402
0.5306

0.5193

12
0.5406

0.5863
0.5604

0.5841
0.5403

0.5428
0.5356

0.5125
0.5305

0.5467
0.5251

0.4478
0.6110

0.6236

13
0.5306

0.5278
0.5370

0.5204
0.5353

0.4398
0.5200

0.5551
0.5755

0.5798
0.5521

0.5044
0.5800

0.5888

14
0.5038

0.4831
0.4742

0.4862
0.5077

0.3154
0.4780

0.5190
0.5106

0.5064
0.5101

0.4983
0.5483

0.5351

15
0.4267

0.4437
0.4827

0.4873
0.4809

0.4600
0.4429

0.4574
0.4314

0.4157
0.4035

0.4262
0.5306

0.5342

16
0.3965

0.3804
0.3772

0.3960
0.4008

0.3649
0.3509

0.3546
0.3983

0.3999
0.3739

0.3649
0.4187

0.4208

ave
rank

8
8.1875

7.5
7.0625

6.6875
9.5

11.1875
8.3125

6.3125
5.6875

12.3125
10.875

1.6875
1.6875
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Figure 19: Nemenyi test based on Table 6

data samples equally. However, given a set of clustering results, the frequencies that samples
changing between clusters are different, which means the contributions of different samples to
the detection of the underlying structure should be different. In this paper, we have introduced
sample’s stability to reflect this difference, and have proposed a methodology to calculate this
stability. Based on the sample’s stability, we have proposed a novel clustering ensemble algo-
rithm (CEs2). This algorithm takes different processes to handle the samples in cluster core and
the samples in cluster halo, which are divided based on the sample’s stability. To verify the ratio-
nality of the sample’s stability, we have applied it on the case of image segmentation. The results
visually show that recognizing the unstable regions, the segmentation results are very encourag-
ing. Experimental analysis on eight synthetic data sets shows how CEs2 works, and experimental
analysis on ten UCI data sets and six document data sets demonstrate the superior performance
of CEs2. In addition, the sample’s stability could be effective for measuring the quality of a set
of base clustering results. Therefore, stability can also be utilized to select clustering results,
which is known as the selective clustering ensemble. In general, a selective clustering ensemble
algorithm only integrates the selected clustering results. However, the discarded clustering re-
sults may offer useful information. It could be interesting to design a method that differentiates
between selected clustering results and unselected clustering results.
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