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a b s t r a c t

Attribute reduction, as a technique for selecting qualified attributes which can satisfy the intended
constraint related to considered measure, has been widely explored. Notably, one and only one reduct
is derived through using one searching strategy in most cases. Nevertheless, only one reduct may be not
enough for us to evaluate its effectiveness. To fill such gap, an approach of crosswise computing reduct
is proposed for obtaining multiple reducts. The computation of reduct is realized through partitioning
the whole data into several groups, and crosswise selecting some groups to form different subsets of
data, then computing reducts over these different subsets of data. Moreover, to speed up the process of
crosswise computing reduct, an acceleration strategy is designed. The main thinking of our acceleration
strategy is to compute the reduct over different subsets of data on the basis of reduct over the whole
data. The experimental results over 16 data sets show the following superiorities of our strategy:
(1) our approach can decrease the elapsed time of crosswise computing reducts significantly; (2)
our approach can not only provide reduct with higher stability, but also maintain the classification
performance; (3) the attributes in reduct can provide more stable classification results.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Attribute reduction [1–6] has gained a substantial attention
ith respect to different applications [7–17]. This can be at-
ributed to the fact that attribute reduction helps us select at-
ributes with various semantic explanations which are resulted
rom different constraints in the corresponding definitions [18,
9]. Generally, the aim of attribute reduction is to obtain a
ualified attribute subset from the raw condition attributes which
atisfies appointed constraint, and such subset is referred to as
he reduct. It should be emphasized that the attributes in reduct
hould make contribution to preserving/increasing/decreasing the
alue of measure related to the appointed constraint, e.g., ap-
roximation quality (dependency degree) [20], classification ac-
uracy [21], conditional entropy [22–24] and so on.
Through reviewing the previous researches carefully, lots of

earching strategies [25–34] have been put forward to obtain
educts in terms of different constraints. Note that no matter
hich strategy is adopted, some essential issues related to at-
ribute reduction should be seriously considered.
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E-mail addresses: jzhjiangzehua@163.com (Z. Jiang),

iukeyu@stu.just.edu.cn (K. Liu), songjingjing108@163.com (J. Song),
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Y. Qian).
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1. How to evaluate the the performance related to stability of
reduct? For example, if one and only one reduct is derived
over the whole data, then it is difficult for us to determine
whether the reduct is stable or not. This is mainly because
the reduct is obtained without considering the variation of
data. From this point of view, computing multiple reducts
is required.

2. How to evaluate the stability of searching strategy from
the viewpoint of reduct? For instance, if one and only one
reduct is derived over the whole data through using one
searching strategy, then it is difficult for us to evaluate
the performance of the searching strategy. This is mainly
because such reduct cannot reveal the variation of reducts.
From this point of view, computing multiple reducts is
necessary.

To derive multiple reducts, a direct method is to iterate the
process of computing reduct over different sets of data. Accord-
ing to this thinking, the method of crosswise computing reduct
will be proposed. The main mechanism of crosswise computing
reducts is that deriving multiple reducts through using multiple
different subsets of data. Firstly, partition the whole data into K
different groups with the same size; secondly, select K -1 groups
to form the subset of data; finally, compute reducts over the sub-
sets of data. Immediately, repeat the process and then K reducts

will be obtained. The detailed process is shown in the following
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Fig. 1. The frameworks of traditional strategy and acceleration strategy.
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ig. 1(a). In Fig. 1(a), the whole data U is divided into 5 groups
ith the same size {U1,U2, . . . ,U5}. For each round, 4 groups
ompose the subset of data for computing reduct. Specifically, in
he first round, {U1,U2,U3,U4} is used for computing reduct; in
he second round, {U1,U2,U3,U5} is used for computing reduct;
. .; in the last round, {U2,U3,U4,U5} is used for computing
educt. Eventually, multiple reducts over different subsets of data
ill be derived. It follows that the performances of reducts can
e evaluated, and the variation of these reducts can be analyzed,
hen the performance of searching strategy can also be evaluated
hrough considering the variation of reducts.

Though multiple reducts can be obtained through crosswise
omputing reduct, it is time-consuming, especially the number of
is great or the volume of data is large. Take the case that K is

great as an example, given a data set with s condition attributes,
in the worst case, to find satisfactory reduct, all of the condition
attributes should be selected and added into reduct, then the
number of times to evaluate the candidate attributes will be
s·(s+1)

2 . Furthermore, if the data set is partitioned into K groups,
and K reducts are required, then the number of times to repeat
the process of deriving one reduct is K . In the worst case, to
find K satisfactory reducts, all of the candidate attributes should
be selected and added into reduct, then the number of times to
evaluate attributes will be K ·

s·(s+1)
2 . Obviously, time consumption

f crosswise computing multiple reducts is higher. How to speed
p the process of crosswise computing reduct deserves to be
oncerned.
To alleviate the problem, a novel acceleration approach will be

roposed in this paper. The main mechanism of our acceleration
trategy is that the reduct over the subset of data will be guided
y reduct over the whole data. Firstly, obtain the reduct over
he whole data; secondly, evaluate the condition attributes which
re in the complement of such subset instead of raw condition
ttributes; finally, derive the reduct over the subset of data which
atisfies the intended constraint. The detailed process is shown
n the above Fig. 1(b). In Fig. 1(b), the reduct over the whole
ata is computed beforehand, then the whole data is partitioned
nto 5 groups with the same size. For each round, 4 groups
ompose the subset of data for computing reduct. Note that the
educt over subset of data is computed on the basis of the reduct
ver the whole data. Obviously, the space of searching attributes
an be compressed. Therefore, it is highly possible that the time
onsumption of computing multiple reducts can be decreased.
Following the mentioned above, the main topics discussed in

his paper can be concluded. In most cases, one and only one
2

reduct is derived through using one searching strategy. Never-
theless, one reduct may involve some limitations: (1) one reduct
may be powerless in evaluating both the performance related
to stability of reduct and the stability of searching strategy;
(2) the time efficiency of computing multiple reducts may not
be satisfactory. To overcome these limitations, the method of
crosswise computing reduct for deriving multiple reducts will be
proposed. The cross computation of reduct is realized through
computing reducts over different subsets of data. Additionally, an
acceleration strategy is designed for accelerating the process of
crosswise computing reduct. Our acceleration strategy is designed
through considering that the computation of reducts over differ-
ent subsets of data may be guided by the reduct over the whole
data.

The rest of this paper is organized as follows. Basic notions
of attribute reduction will be illustrated in Section 2. Crosswise
computing reduct and our accelerator will be proposed in Sec-
tion 3. In Section 4, comparative experimental results over 16
data sets will be shown, as well as the corresponding analyses.
This paper will be ended with conclusions and future perspectives
in Section 5.

2. Preliminaries

In the field of rough set theory [8,35–37], a decision system
can be formally represented as DS = ⟨U, AT , d⟩, in which U is a
nonempty finite set of the samples such that U = {x1, x2, . . . , xn},
i.e., universe, AT is a set of the condition attributes, and d is the
decision attribute. ∀xi ∈ U , a(xi) denotes the value of xi over
condition attribute a ∈ AT , d(xi) denotes the value of xi over
decision attribute d.

Given a decision system, each attribute subset determines a
binary indiscernibility relation. For each A ⊆ AT , the binary
indiscernibility relation determined by A can be given by INDA =

{(xi, xj) ∈ U × U : a(xi) = a(xj), ∀a ∈ A}. Notably, in real-
orld applications, continuous data and even mixed data are
biquitous, and indiscernibility relation may fail to distinguish
amples with continuous values of attributes. In view of this,
he neighborhood relation is employed to determine whether
amples can be distinguished. For a given decision system, δ is
radius, then the neighborhood relation is expressed as NA =

(xi, xj) ∈ U × U : disA(xi, xj) ≤ δ}, where disA(xi, xj) indicates the
istance between samples xi and xj over A.
As one of the crucial topics in rough set theory [5,21,38–42],

ttribute reduction has been paid much attention to. With respect
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o different requirements, various definitions of attribute reduc-
ion [43,44] have been proposed. To extract the commonness
rom those definitions, Yao et al. [45] have proposed the following
eneral form of attribute reduction.

efinition 1. Given a decision system DS, ∀A ⊆ AT , ρ-constraint
is a given constraint based on the measure ρ, then A is referred
o as a ρ-reduct if and only if:

1. A satisfies ρ-constraint;
2. ∀A′

⊂ A, A′ does not satisfy ρ-constraint.

Generally, different measures may lead to different forms of
-constraint. For example, if the higher value of measure is ex-
ected (e.g., approximation quality and classification accuracy),
hen ρ-constraint can be set as ρA ≥ ρAT (ρA implies the eval-
uation of attribute subset A through using measure ρ); if the
lower value of measure is expected (e.g., conditional entropy and
decision error rate), then ρ-constraint can be set as ρA ≤ ρAT .

Obviously, the ρ-reduct can be regarded as the smallest at-
tribute subset which satisfies the given ρ-constraint: the first
condition guarantees the satisfaction of the ρ-constraint; the
second condition guarantees that there is no redundant attribute
in the reduct.

To obtain the reduct shown in Definition 1, searching strategy
is an important factor. In recent years, many researchers have
proposed numerous searching strategies [26,30,34,46,47] with
regard to different purposes. It should be noticed that the greedy
searching strategy [20] has been widely accepted because of its
lower time complexity. In such searching strategy, the signifi-
cance function plays a key role in selecting attributes. Two most
commonly used forms which are closely related to ρ-constraint
mentioned above are shown as follows.

Definition 2. Given a decision system DS, ∀A ⊆ AT , ∀a ∈

AT − A, two forms of the significance of the candidate attribute a
is defined as follows:

Sig(a, A) = ρA∪{a} − ρA; (1)

Sig(a, A) = ρA − ρA∪{a}. (2)

If the higher value of measure is required, then Eq. (1) is
suitable for computing the significance of candidate attribute a; if
the lower value of measure is required, then Eq. (2) is suitable for
computing the significance of candidate attribute a. Immediately,
the following greedy searching based algorithm to obtain reduct
is shown in the following.

Algorithm 1. Greedy Searching Strategy for Computing
Reduct.

Input: a decision system DS and a given measure ρ.
Output: a ρ-reduct A.
1. A = ∅;
2. Do

(1) ∀a ∈ AT − A, compute Sig(a, A);
(2) select the most significant attribute b where b ∈

AT − A;
(3) A = A ∪ {b};

Until ρ-constraint is satisfied;
3. Do

For each c ∈ A
(1) compute ρA−{c};
(2) If ρ-constraint is satisfied

A = A − {c};
End

Until A does not change or |A|= 1;
4. Return A.
3

For Algorithm 1, in the worst case, if no attribute is redundant,
then the number of times to evaluate attributes is |AT |·(|AT |+1)

2 ,
n which |AT | denotes the cardinality of AT . Therefore, the time
complexity of Algorithm 1 is O(|U |

2
· |AT |

2).

3. Acceleration strategy for computing multiple reducts

3.1. Cross computation of reduct

Algorithm 1 shows us the computation of reduct over the
whole data U in the decision system DS. Obviously, through using
Algorithm 1, one and only one reduct is derived. Nevertheless, as
discussed in Section 1, one reduct may involve some limitations:
(1) the performances related to stability of reduct cannot be
revealed through using one and only one reduct; (2) the stability
of searching strategy cannot be evaluated through using only
one reduct. From this point of view, a novel method for deriv-
ing multiple reducts is necessary. In the following, the method
of crosswise computing reduct will be proposed. The detailed
process of crosswise computing reducts are:

1. partition U into K different groups with the same size;
2. select K -1 groups to compose the subset of data;
3. compute the reduct over such subset of data by using

Algorithm 1;
4. repeat the above steps 2 and 3 over K different groups.

Following the above steps, the algorithm of crosswise comput-
ing reduct is shown in Algorithm 2.

Algorithm 2. Cross Computation of Reduct.

Input: a decision system DS, a given measure ρ and the
number of folds K .

Output: a set of ρ-reducts A.
1. Partition universe U into K disjoint groups U1,U2, . . . ,UK

ith the same size;
2. For g = 1 : K

(1) U ′
= U − Ug ;

(2) DS′
=< U ′, AT , d >;

(3) compute the reduct Ag over DS′ by using Algorithm
;

(4) add Ag into A;
End

3. Return a set of reducts A ={A1, A2, . . . , AK }.

For Algorithm 2, if g = 1 (i.e., U − U1 is used to compute
reduct), then the time complexity of computing A1 is O(|U − U1|

2
·

AT |
2); if g = 2 (i.e., U − U2 is used to compute reduct), then

he time complexity of computing A2 is O(|U − U2|
2
· |AT |

2); . . .;
f g = K (i.e., U − UK is used to compute reduct), then the time
omplexity of computing UK is O(|U − UK |

2
· |AT |

2). Therefore, the
ime complexity of Algorithm 2 is O

(
(|U − U1|

2
+|U − U2|

2
+· · ·+

U − UK |
2) · |AT |

2), i.e., O(
(K − 1) · |U |

2
· |AT |

2).
.2. Acceleration strategy for crosswise computing reduct

Algorithm 2 shows us the detailed process of crosswise com-
uting reduct. In Algorithm 2, for each iteration, the searching of
ttributes begins with an empty set and the candidate attributes
re evaluated based on the significance shown in Def. 2. Obvi-
usly, the process of computing one reduct over one subset of
ata is the same with what has been presented in Algorithm 1.
n other words, the computation of reducts over different subsets
f data is actually realized based on the same searching process.
Accordingly, some crucial issues related to crosswise compute

educt should be addressed. Firstly, the time consumption of
omputing reduct through using Algorithm 2 is high. This is
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ainly because the searching strategy which is used for com-
uting different reducts over different subsets of data is the
ame. Consequently, if the number of folds is great, then the
ime complexity of Algorithm 2 will be high, it follows that huge
lapsed time may be required, especially the volume of data
s large. Secondly, it is frequent that the reducts over different
ubsets of data may be quite different. Such case will result
n some undesirable results, e.g., the classification results over
esting samples may be quite different, and then it is difficult to
etermine which labels can be regarded as the final outputs of
he testing samples.

To fill these gaps, a novel searching strategy for speeding up
he process of crosswise computing reduct will be proposed. Our
earching strategy is designed based on the assumption that the
educt over the whole data may provide guidance for the compu-
ation of reduct over various subsets of data. Specifically, compute
he reduct over the whole data, and then compute the reduct over
ifferent subsets of data on the basis of reduct over the whole
ata. Obviously, when computing reducts over different subsets
f data, the searching space of attributes is the complement of
he reduct over the whole data (i.e., Araw). That is, to obtain the
educt over various subsets of data, in each iteration, we begin
he addition of attributes with the searching of AT − Araw instead
f raw attributes AT . The detailed process of our acceleration
trategy are shown as follows:

1. compute the reduct Araw over U by using Algorithm 1;
2. partition U into K different groups with the same size;
3. select K -1 groups to compose the subset of data;
4. for one subset of data, if Araw satisfies the conditions shown

in Def. 1, then Araw can also be regarded as the reduct
over such subset of data; otherwise, select some important
attributes from AT −Araw , and add them into Araw until the
conditions over such subset of data are satisfied;

5. repeat steps 3 and 4 over K different groups.

Following the main steps shown above, it is clear that our
cceleration strategy is quite different from Algorithm 2 in com-
uting multiple reducts. In the framework of our accelerator, for
ach iteration of computing reduct over one subset of data, only
he attributes in AT − Araw should be checked. In view of this,
he searching space of condition attributes can be reduced, it
ollows that the elapsed time of crosswise computing reduct may
e decreased.
Additionally, there may be higher similarity among reducts

hich are derived over different subsets of data. This is mainly
ecause the searchings of reducts over different subsets of data
re guided by the reduct over the whole data. It follows that more
ame attributes may exist among different reducts. Consequently,
omparing with Algorithm 2, our acceleration strategy may gen-
rate reducts with higher similarity. The detailed process of our
ccelerator is shown in the following Algorithm 3.

Algorithm 3. Acceleration Strategy for Crosswise Computing
Reduct.

Input: a decision system DS, a given measure ρ and the
number of fold K .

Output: a set of ρ-reducts A.
1. Compute Araw over U by using Algorithm 1;
2. Partition universe U into K disjoint groups U1,U2, . . . ,UK

with the same size;
3. For g = 1 : K

(1) Ag = Araw;
(2) If Ag is the ρ-reduct over U − Ug ;

go to (5);
Else
4

Table 1
An artificial data set.

a1 a2 a3 a4 a5 d

x1 0.3188 0.5785 0.3955 0.6797 0.3342 1
x2 0.4242 0.2373 0.3674 0.1366 0.6987 1
x3 0.5079 0.4588 0.9880 0.7212 0.1978 1
x4 0.0855 0.963 0.0377 0.1068 0.0305 1
x5 0.2625 0.5468 0.8852 0.6538 0.7441 1
x6 0.8010 0.5211 0.9133 0.4942 0.5000 1
x7 0.0292 0.2316 0.7962 0.7791 0.4799 2
x8 0.9289 0.4889 0.0987 0.7150 0.9047 2
x9 0.7303 0.6241 0.2619 0.9037 0.6099 2
x10 0.4886 0.6791 0.3354 0.8909 0.6177 2

go to (3);
End

(3) Do
(i) ∀a ∈ AT − Ag , compute Sig(a, Ag ) over U − Ug ;
(ii) select the most significant attribute b where b ∈

AT − Ag ;
(iii) Ag = Ag ∪ {b};
Until ρ-constraint is satisfied over U − Ug ;

(4) Do
For each c ∈ Ag

(1) compute ρAg−{c};
(2) If ρ-constraint is satisfied

Ag = Ag − {c};
End

Until Ag does not change or |Ag |= 1;
(5) add Ag into A;

End
4. Return a set of reducts A = {A1, A2, . . . , AK }.

The time complexity of Algorithm 3 is O
(

|U |
2

· |AT |
2

(|U − U1|
2

+ |U − U2|
2

+ · · · + |U − UK |
2) · |AT − Araw|

2 )
,

.e., O
(
|U |

2
· |AT |

2
+ (K − 1) · |U |

2
· |AT − Araw|

2). The reasons
are:

1. the time complexity of computing Araw is O(|U |
2

· |AT |
2),

because such process is the same to Algorithm 1;
2. if g = 1 (i.e., U−U1 is used to compute reduct), in the worst

case, Araw does not satisfy the requirements over U − U1,
and all of the candidate attributes in AT − Araw should
be evaluated and added into Araw , then the time complex-
ity of computing A1 is O(|U − U1|

2
· |AT − Araw|

2); simi-
larly, the time complexity of computing A2 is O(|U − U2|

2
·

|AT − Araw|
2); · · ·; the time complexity of computing AK is

O(|U − UK |
2
· |AT − Araw|

2).

Notably, for different subsets of data, if the reduct over uni-
erse U satisfies the conditions of attribute reduction over dif-
erent subsets of data, then the attributes in AT − Araw will not
e evaluated. In such case, the time complexity of Algorithm 3 is
(|U |

2
· |AT |

2). Obviously, the time complexity is lower than that
f Algorithm 2.
To understand the process of Algorithm 3 clearly, an example

ill be shown as follows.

xample 1. Given a decision system DS as shown in Table 1,
n which U = {x1, x2, . . . , x10}, AT = {a1, a2, . . . , a5}, d is the
ecision attribute.
Supposing that 5 reducts with respect to approximation qual-

ty over radius 0.2 are required. The detailed process of comput-
ng reduct through using Algorithm 3 is shown in the following.

1. Obtain the reduct over U , A = {a }.
raw 4
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Table 2
Data sets description.
ID Data sets Samples Attributes Decision classes Sources

1 Breast Tissue 106 9 6 [48]
2 Brain Tumor 90 5920 5 [49]
3 Cardiotocography 2126 21 10 [48]
4 Crowdsourced Mapping 10845 28 6 [48]
5 GCM 198 11370 14 [50]
6 Gesture Phase Segmentation 9901 18 2 [48]
7 Ionosphere 351 34 2 [48]
8 Letter Recognition 20000 16 26 [48]
9 Madelon 2600 500 2 [48]
10 Musk (Version 1) 476 166 2 [48]
11 Optical Recognition of Handwritten Digits 5620 64 9 [48]
12 Statlog (Image Segmentation) 2310 18 7 [48]
13 Steel Plates Faults 1941 33 2 [48]
14 Urban Land Cover 675 148 9 [48]
15 Wall-Following Robot Navigation 5456 24 4 [48]
16 Wireless Indoor Localization 2000 7 4 [48]
2. Partition universe U into 5 disjoint groups: U1 = {x1, x5},
U2 = {x6, x10},U3 = {x3, x7},U4 = {x2, x8},U5 = {x4, x9}.

3. (1) For the subset of data U −U1, ρAT = 0.5000, ρAraw =

0.5000. Obviously, ρAraw = ρAT , that is, Araw satisfies
constraint over U −U1. Therefore, the reduct A1 over
U − U1 is generated, A1 = Araw = {a4}.

(2) For the subset of data U −U2, ρAT = 0.3750, ρAraw =

0.2500. Obviously, ρAraw < ρAT , that is, Araw does
not satisfy constraint over U − U2. Let A2 = Araw ,
evaluate and select important attributes in AT −

A2 = {a1, a2, a3, a5}, until constraint over U − U2
is satisfied. Therefore, the reduct A2 over U − U2 is
generated, A2 = {a1, a4}.

(3) For the subset of data U −U3, ρAT = 0.6250, ρAraw =

0.6250. Obviously, ρAraw = ρAT , that is, Araw satisfies
constraint over U −U3. Therefore, the reduct A3 over
U − U3 is generated, A3 = Araw = {a4}.

(4) For the subset of data U −U4, ρAT = 0.3750, ρAraw =

0.2500. Obviously, ρAraw < ρAT , that is, Araw does
not satisfy constraint over U − U4. Let A4 = Araw ,
evaluate and select important attributes in AT −

A4 = {a1, a2, a3, a5}, until constraint over U − U4
is satisfied. Therefore, the reduct A4 over U − U4 is
generated, A4 = {a1, a4}.

(5) For the subset of data U − U5, ρAT = 0.6250, ρraw =

0.6250. Obviously, ρAraw = ρAT , that is, Araw satisfies
constraint over U −U5. Therefore, the reduct A5 over
U − U5 is generated, A5 = Araw = {a4}.

4. Derive the set of reducts {A1, A2, A3, A4, A5}.

4. Experimental analyses

4.1. Data sets

To demonstrate the effectiveness of proposed acceleration
strategy, i.e., Algorithm 3, 14 UCI and 2 gene data sets have been
employed to conduct the experiments. The detailed description of
these data sets is presented in Table 2. It should be emphasized
that all of these data sets have been normalized by column in our
experiments.

4.2. Measures used in experiments

In rough set theory, with respect to different requirements,
various constraints have been constructed through using different
measures with different explanations. In our experiments, four
different measures have been employed. The details of these
measures are displayed in the following.
5

• Approximation quality [20] is a measure to characterize the
approximation ability of condition attributes in terms of
decision attribute. Given a decision system DS and a radius
δ, ∀A ⊆ AT , the approximation quality of A with respect to
d is formulated as

γA =
|{xi ∈ U : NA(xi) ⊆ [xi]d}|

|U |
, (3)

in which NA(xi) = {xj ∈ U : disA(xi, xj) ≤ δ}, δ is a radius;
[xi]d indicates the set of samples which belong to the same
decision class with xi.

Approximation quality reflects the percentage of samples
which certainly belong to one decision class. The higher
the value of approximation quality, the higher the degree
of such belongingness. From this point of view, the ρ-
constraint can be set as γA ≥ γAT .

• Neighborhood discrimination index [23] is a measure to
characterize the discriminating ability of condition
attributes in terms of decision attribute. Given a decision
system DS and a radius δ, ∀A ⊆ AT , the neighborhood
discrimination index of A with respect to d is formulated
as

DIA = log
|NA|

|NA ∩ INDd|
, (4)

in which NA = {(xi, xj) ∈ U × U : disA(xi, xj) ≤ δ},
INDd = {(xi, xj) ∈ U × U : d(xi) = d(xj)}.

The smaller the value of neighborhood discrimination in-
dex, the stronger the discriminating ability. From this point
of view, the ρ-constraint can be set as DIA ≤ DIAT .

• Conditional entropy [24] is another commonly used mea-
sure to characterize the discriminating ability of condition
attributes in terms of decision attribute. Up to now, many
different definitions of conditional entropy [22,39,51,52]
have been proposed. A widely used form is shown as fol-
lows. Given a decision system DS and a radius δ, ∀A ⊆ AT ,
the conditional entropy of A with respect to d is formulated
as

ENTA = −
1

|U |

∑
xi∈U

|NA(xi) ∩ [xi]d| log
|NA(xi) ∩ [xi]d|

|NA(xi)|
. (5)

The lower the value of conditional entropy, the stronger
the discriminating ability. From this point of view, the ρ-
constraint can be set as ENTA ≤ ENTAT .

• Neighborhood decision error rate [21] is a measure to char-
acterize the classification performance of condition
attributes in terms of decision attribute. Given a decision
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Fig. 2. Results of elapsed time w.r.t. approximation quality and neighborhood discrimination index.
system DS, ∀A ⊆ AT , the neighborhood decision error rate
of A with respect to d is formulated as

NDERA =
|{xi ∈ U : NPreA(xi) ̸= d(xi)}|

|U |
, (6)

in which NPreA(xi) indicates the predicted label of xi by using
neighborhood classifier [20].

The smaller the value of neighborhood decision error rate,
the greater the classification performance. From this point of
view, the ρ-constraint can be set as NDERA ≤ NDERAT .

4.3. Experimental setup

In our experiments, neighborhood rough set [20,53] and four
measures (i.e., approximation quality, neighborhood discrimina-
tion index, conditional entropy, neighborhood decision error rate)
are employed. It should be noticed that the appointed radius is
essential in the process of constructing neighborhood rough set.
For example, if a very small value of radius used in neighborhood
relation, then the neighborhoods of samples may only contain
themselves, it follows that such neighborhood relation may be
not suitable for distinguishing samples. To alleviate this problem,
Hu et al. [20] have proposed the modified radius. Given a decision
6

system and radius δ, ∀xi ∈ U , A ⊆ AT , the modified radius with
respect to xi is computed as follows:

δ′(xi) = min
1≤j≤n,j̸=i

(disA(xi, xj)) + δ × ( max
1≤j≤n,j̸=i

(disA(xi, xj))

− min
1≤j≤n,j̸=i

(disA(xi, xj))), (7)

in which min1≤j≤n,j̸=i(disA(xi, xj)) implies the minimal value of
distance between xi and samples in U − {xi}; max1≤j≤n,j̸=i
(disA(xi, xj)) implies the maximal value of distance between xi and
samples in U − {xi}. Moreover, 20 different radii (i.e., 0.02, 0.04,
. . ., 0.4) are used in our experiments.

Moreover, to estimate the performances related to reducts,
each data set is partitioned into two parts randomly: 80% sam-
ples compose the training set for computing reduct, and the
remaining 20% samples compose the testing set for evaluating
the performances related to reduct. Furthermore, the training set
is randomly partitioned into 5 groups with the same size. For
each round, 4 groups compose the subset of training set, then
5 different subsets of training set can be derived for comput-
ing reducts. In the following, Algorithm 2 and Algorithm 3 are
used to compute reducts, respectively. The time consumption of
computing reducts is compared, then the detailed results and
analyses will be shown in Section 4.4; the stabilities of reducts are
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able 3
etailed explanations of different expressions.
Expression Measure Used algorithm

γ -Algorithm 2 Approximation quality Algorithm 2
γ -Algorithm 3 Approximation quality Algorithm 3
DI-Algorithm 2 Neighborhood discrimination index Algorithm 2
DI-Algorithm 3 Neighborhood discrimination index Algorithm 3
ENT-Algorithm 2 Conditional entropy Algorithm 2
ENT-Algorithm 3 Conditional entropy Algorithm 3
NDER-Algorithm 2 Neighborhood decision error rate Algorithm 2
NDER-Algorithm 3 Neighborhood decision error rate Algorithm 3

compared, then the detailed results and analyses will be shown
in Section 4.5; classification performances related to reducts over
CART and KNN classifiers are compared, then the detailed results
and analyses will be shown in Section 4.6; the stabilities of
classification results are compared, then the detailed results and
analyses will be shown in Section 4.7.

To facilitate the understanding of the experimental results,
ome explanations of used expressions in Sections 4.4–4.7 are
hown in Table 3.
In Table 3, the ‘‘Expression’’ denotes the results related to

orresponding reduct, and such reduct is computed through using
he ‘‘Used algorithm’’ based on the ‘‘Measure’’. For example, ‘‘γ -
Algorithm 2’’ denotes the results related to reduct, and such
reduct is computed through using Algorithm 2 based on the
measure of approximation quality.

4.4. Comparisons of elapsed time

In this experiment, the time consumption of computing
reducts over four measures through using Algorithm 2 and Algo-
rithm 3 will be compared. When Algorithm 2 is used to compute
reducts, the time consumption is the total elapsed time of com-
puting reducts over 5 different subsets of training set; when
Algorithm 3 is used to compute reducts, the time consumption
is the sum of the elapsed time for computing reduct over the
whole training set and that for computing reducts over 5 subsets
of training set. The detailed results are shown in Figs. 2 and 3.

With a careful investigation of Fig. 2, it is not difficult to
observe the following.

1. For both approximation quality and neighborhood dis-
crimination index, the time consumption of computing
reducts by using Algorithm 2 is greater than that of com-
puting reducts by using Algorithm 3. Take the results on
data set ‘‘Cardiotocography (ID: 3)’’ as an example, the

whole elapsed time of ‘‘γ -Algorithm 2’’ based on 20 radii

7

is 653.9318 s while that of ‘‘γ -Algorithm 3’’ based on
20 radii is 242.5206 s; the whole elapsed time of ‘‘DI-
Algorithm 2’’ is 276.9164 s while that of ‘‘DI-Algorithm
3’’ is 95.7227 s. To sum up, compared with Algorithm 2,
Algorithm 3 can decrease the time consumption of finding
reducts significantly. This is mainly because in Algorithm 3,
when computing reducts over 5 subsets of training set, the
searching of attributes begins with the selected attributes
in reduct which is derived through using the whole training
set, it follows that the searching space can be compressed,
and then Algorithm 3 will decrease the time consumption
of crosswise computing reducts.

2. No matter which algorithm is used to compute reducts, the
time consumption of computing reducts related to approx-
imation quality is higher than that of computing reducts
related to neighborhood discrimination ability. Take the re-
sults on data set ‘‘Cardiotocography (ID: 3)’’ as an example,
the whole elapsed time of ‘‘γ -Algorithm 2’’ based on 20
radii is 653.9318 s while that of ‘‘DI-Algorithm 2’’ based
on 20 radii is 276.9164 s; the whole elapsed time of ‘‘γ -
Algorithm 3’’ based on 20 radii is 242.5206 s while the
total elapsed time of ‘‘DI-Algorithm 3’’ based on 20 radii
is 95.7227 s.

With a deep investigation of Fig. 3, it is not difficult to observe
the following. For both conditional entropy and neighborhood
decision error rate, the elapsed time of computing reducts by
using Algorithm 2 is greater than that of computing reducts by
using Algorithm 3. Take the results on data set ‘‘Cardiotocography
(ID: 3)’’ as an example, the total elapsed time of ‘‘ENT-Algorithm
2’’ is 317.1203 s while the total elapsed time of ‘‘ENT-Algorithm
3’’ is 105.4412 s; the total elapsed time of ‘‘NDER-Algorithm 2’’ is
469.0137 s while the total elapsed time of ‘‘NDER-Algorithm 3’’
is 184.6828 s. To sum up, compared with Algorithm 2, Algorithm
3 can decrease the time consumption of finding reducts signifi-
cantly. This is mainly because in Algorithm 3, when computing
reducts over 5 subsets of training set, the searching of attributes
begins with the selected attributes in reduct which is derived
through using the whole training set, it follows that the searching
space can be compressed, and then Algorithm 3 can decrease the
time consumption of crosswise computing reducts.

4.5. Comparisons of stabilities of reducts

The stability of reduct [54] has been paid much attention to.
In this experiment, the stabilities of reducts derived by using
different algorithms will be compared. Given a decision system

DS, assuming that universe U is partitioned into K disjoint groups
Table 4
Results of stabilities of different reducts.
ID γ - γ - DI- DI- ENT- ENT- NDER- NDER-

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.7422 0.9486 0.6296 0.9012 0.5677 0.7975 0.4288 0.8165
2 0.1746 0.9465 0.1508 0.9283 0.0317 0.9638 0.0375 0.8417
3 0.4893 0.9420 0.9006 0.9948 0.9414 0.9979 0.6425 0.9257
4 0.7566 0.9703 0.7842 0.9896 0.4342 0.9979 0.7332 0.9742
5 0.0953 0.9040 0.4600 0.9900 0.4150 0.9900 0.0413 0.7967
6 0.9464 1.0000 0.9383 0.9884 0.9655 1.0000 0.8413 0.9802
7 0.5291 0.8624 0.8366 0.9798 0.2882 0.9273 0.9683 1.0000
8 0.9014 0.9687 0.9507 1.0000 0.7729 0.9745 0.8209 0.9768
9 0.8203 0.9819 0.7419 0.9419 0.4504 0.9889 0.4770 0.9418
10 0.2895 0.9063 0.3918 0.9168 0.3315 0.9739 0.4368 0.8293
11 0.5897 0.9697 0.7637 0.9670 0.8349 0.9728 0.1944 1.0000
12 0.6943 0.9790 0.8322 0.9929 0.9605 0.9880 0.7004 0.9505
13 0.9150 0.9624 0.8708 0.9752 0.8258 0.9665 0.8807 0.9829
14 0.2675 0.8696 0.5658 0.9553 0.2387 0.9475 0.1937 0.9495
15 0.6660 0.9414 0.7071 0.9821 0.8504 0.9767 0.7644 0.9454
16 0.8161 0.9526 0.7504 0.9543 0.7022 0.9753 0.8062 0.9391
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Fig. 3. Results of elapsed time w.r.t. conditional entropy and neighborhood decision error rate.
Table 5
p-values for stabilities of different reducts based on Algorithms 2 and 3.
ID γ -Algorithm 2 & DI-Algorithm 2 & ENT-Algorithm 2 & NDER-Algorithm 2 &

γ -Algorithm 3 DI-Algorithm 3 ENT-Algorithm 3 NDER-Algorithm 3

1 6.4485E−07 7.8213E−08 2.2901E−07 5.1888E−08
2 3.0253E−08 2.6924E−08 1.9255E−08 4.0500E−08
3 5.7186E−08 5.4889E−08 2.8009E−07 5.3578E−08
4 9.3626E−08 2.2680E−08 1.9544E−08 6.2771E−08
5 3.2448E−08 1.5926E−07 1.9881E−06 4.3589E−08
6 0.0045 0.0069 1.1052E−09 3.3124E−06
7 5.2960E−07 4.4242E−08 4.3982E−08 0.0806
8 9.8237E−08 6.3948E−09 3.9295E−08 2.9090E−08
9 0.0156 1.4057E−07 2.9550E−08 2.3050E−08
10 6.6063E−08 3.8587E−08 3.9954E−08 1.5480E−07
11 6.7478E−08 6.7288E−08 6.6909E−08 6.5039E−09
12 2.8636E−08 1.2086E−08 5.2024E−08 4.8004E−08
13 7.3740E−06 4.4443E−08 5.3422E−08 2.4153E−08
14 4.7371E−08 2.9227E−08 5.5799E−08 3.9893E−08
15 6.7193E−08 5.3578E−08 6.4490E−08 2.1186E−07
16 5.2094E−07 6.9673E−08 3.8998E−08 3.6586E−06
v
t
m

with the same size such that U1,U2, . . . ,UK , the stability of reduct
s formulated as

tareduct =
2

K · (K − 1)

K−1∑ K∑ |Ag ∩ Ag ′ |

|Ag ∪ Ag ′ |
, (8)
g=1 g ′=g+1

8

in which Ag is the reduct over U − Ug .
Obviously, Stareduct ∈[0,1] holds. Stareduct achieves the minimal

alue 0 if and only if Ag ∩ Ag ′ = ∅, and it indicates that
he obtained reduct is unstable completely; Stareduct achieves the
aximal value 1 if and only if Ag = Ag ′ , and it indicates that
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NDER- NDER- NDER-
All Algorithm 2 Algorithm 3

0.4977 (10.95) 0.5386 (11.85) 0.5153 (11.34)
) 0.6139 (11.05) 0.6256 (11.26) 0.6106 (10.99)
) 0.7428 (316.45) 0.7316 (311.65) 0.7389 (314.76)
5) 0.7432 (1612.00) 0.8636 (1873.20) 0.8677 (1881.95)

0.2638 (10.55) 0.2688 (10.75) 0.2865 (11.46)
1) 0.8556 (1694.95) 0.7465 (1478.79) 0.7674 (1520.13)

0.8169 (58.00) 0.8097 (57.49) 0.8120 (57.65)
5) 0.6980 (2792.05) 0.8280 (3312.18) 0.8316 (3326.41)
) 0.5708 (296.80) 0.5664 (294.55) 0.5685 (295.64)

0.7284 (69.20) 0.6961 (66.13) 0.7140 (67.83)
7) 0.1397 (157.00) 0.1206 (135.50) 0.1370 (154.00)
) 0.9235 (426.65) 0.9218 (425.85) 0.9234 (426.63)

2) 0.9724 (377.30) 0.9748 (378.24) 0.9744 (378.06)
) 0.7615 (102.80) 0.7373 (99.54) 0.7555 (101.99)
0) 0.9737 (1062.35) 0.9712 (1059.63) 0.9728 (1061.34)
) 0.9758 (390.30) 0.9733 (389.33) 0.9750 (389.98)

9

Table 6
Results of classification accuracies w.r.t. different reducts (CART classifier).
ID γ - γ - γ - DI- DI- DI- ENT- ENT- ENT-

All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3

1 0.4205 (9.25) 0.5277 (11.61) 0.5199 (11.35) 0.5364 (11.80) 0.5318 (11.70) 0.5295 (11.65) 0.2727 (6.00) 0.3023 (6.65) 0.2977 (6.55)
2 0.5333 (9.60) 0.5944 (10.70) 0.5539 (9.97) 0.5139 (9.25) 0.5494 (9.89) 0.5150 (9.27) 0.5667 (10.20) 0.5722 (10.30) 0.5922 (10.66
3 0.7683 (327.30) 0.7346 (312.96) 0.7604 (323.91) 0.7439 (316.90) 0.7336 (312.50) 0.7385 (314.58) 0.6362 (271.00) 0.6253 (266.38) 0.6279 (267.50
4 0.8650 (1876.15) 0.8063 (1748.95) 0.8066 1749.61 0.8657 (1877.65) 0.7638 (1656.67) 0.7721 (1674.68) 0.8614 (1868.40) 0.8086 (1753.96) 0.8177 (1773.6
5 0.1788 (7.15) 0.2213 (8.85) 0.2168 (8.67) 0.2075 (8.30) 0.2185 (8.74) 0.1925 (7.70) 0.1300 (5.20) 0.1320 (5.28) 0.1268 (5.07)
6 0.8742 (1731.70) 0.5218 (1033.59) 0.5227 (1035.53) 0.8533 (1690.45) 0.8017 (1588.17) 0.8026 (1589.95) 0.8763 (1736.00) 0.7936 (1572.18) 0.7939 (1572.7
7 0.8697 (61.75) 0.8694 (61.73) 0.8662 (61.50) 0.8444 (59.95) 0.8313 (59.02) 0.8380 (59.50) 0.8430 (59.85) 0.8537 (60.61) 0.8431 (59.86)
8 0.8577 (3430.80) 0.8141 (3256.34) 0.8195 (3277.91) 0.8570 (3427.90) 0.7884 (3153.77) 0.7904 (3161.76) 0.8566 (3426.30) 0.7794 (3117.50) 0.7793 (3117.1
9 0.6677 (347.20) 0.5268 (273.96) 0.5176 (269.16) 0.7618 (396.15) 0.5977 (310.79) 0.5974 (310.46) 0.6879 (357.70) 0.5225 (271.69) 0.5278 (274.48
10 0.7495 (71.20) 0.7171 (68.12) 0.7311 (69.45) 0.7147 (67.90) 0.7086 (67.32) 0.6978 (66.29) 0.7379 (70.10) 0.7197 (68.37) 0.7241 (68.79)
11 0.7744 (870.40) 0.8721 (980.20) 0.8721 (980.28) 0.8294 (932.25) 0.8746 (983.02) 0.8751 (983.60) 0.7508 (843.95) 0.8670 (974.53) 0.8700 (977.8
12 0.8475 (391.55) 0.8424 (389.17) 0.8494 (392.44) 0.9009 (416.20) 0.9018 (416.62) 0.9018 (416.64) 0.9153 (422.85) 0.9010 (416.27) 0.9028 (417.09
13 0.8932 (346.55) 0.8971 (348.08) 0.8972 (348.12) 0.9726 (377.35) 0.9687 (375.85) 0.9726 (377.37) 0.9434 (366.05) 0.9460 (367.06) 0.9475 (367.6
14 0.5096 (68.80) 0.5234 (70.66) 0.5106 (68.93) 0.7404 (99.95) 0.7356 (99.30) 0.7314 (98.74) 0.4574 (61.75) 0.4520 (61.02) 0.4634 (62.56
15 0.9665 (1054.45) 0.9634 (1051.06) 0.9667 (1054.64) 0.9575 (1044.65) 0.9514 (1037.95) 0.9531 (1039.81) 0.9633 (1050.95) 0.9605 (1047.91) 0.9612 (1048.7
16 0.9165 (366.60) 0.9153 (366.12) 0.9153 (366.11) 0.9600 (384.00) 0.9614 (384.58) 0.9608 (384.30) 0.9394 (375.75) 0.9355 (374.18) 0.9368 (374.73
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All Algorithm 2 Algorithm 3

0.4932 (10.85) 0.5218 (11.48) 0.5123 (11.27)
0.6167 (11.10) 0.6133 (11.04) 0.6211 (11.18)

) 0.7227 (307.85) 0.7226 (307.84) 0.7319 (311.77)
9) 0.7570 (1642.00) 0.9368 (2031.99) 0.9424 (2044.06)

0.1625 (6.50) 0.2023 (8.09) 0.1993 (7.97)
6) 0.8840 (1751.20) 0.7015 (1389.74) 0.7092 (1404.94)

0.8028 (57.00) 0.7954 (56.47) 0.7979 (56.65)
2) 0.7401 (2960.30) 0.9194 (3677.69) 0.9262 (3704.75)
) 0.5463 (284.05) 0.5579 (290.12) 0.5641 (293.31)

0.6879 (65.35) 0.6816 (64.75) 0.7087 (67.33)
6) 0.0996 (112.00) 0.1013 (113.81) 0.1066 (119.80)
) 0.9399 (434.25) 0.9395 (434.04) 0.9402 (434.36)
) 0.9445 (366.45) 0.9502 (368.66) 0.9486 (368.06)

0.7674 (103.60) 0.7524 (101.57) 0.7639 (103.13)
) 0.8779 (957.80) 0.8719 (951.28) 0.8683 (947.34)
) 0.9788 (391.50) 0.9762 (390.50) 0.9801 (392.06)

10
Table 7
Results of classification accuracies w.r.t. different reducts (KNN classifier).
ID γ - γ - γ - DI- DI- DI- ENT- ENT- ENT-

All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3

1 0.5045 (9.30) 0.4927 (10.84) 0.4818 (10.60) 0.5045 (11.10) 0.5073 (11.16) 0.5114 (11.25) 0.3136 (6.90) 0.3618 (7.96) 0.3536 (7.78)
2 0.5167 (9.30) 0.5572 (10.03) 0.5172 (9.31) 0.5806 (10.45) 0.6044 (10.88) 0.5906 (10.63) 0.5972 (10.75) 0.5750 (10.35) 0.6106 (10.99)
3 0.7642 (325.55) 0.7278 (310.04) 0.7570 (322.50) 0.7383 (314.50) 0.7261 (309.31) 0.7337 (312.56) 0.6469 (275.60) 0.6288 (267.88) 0.6322 (269.30
4 0.9524 (2065.80) 0.8695 (1885.89) 0.8680 (1882.74) 0.9500 (2060.50) 0.7834 (1699.16) 0.7894 (1712.16) 0.9514 (2063.65) 0.8605 (1866.41) 0.8702 (1887.4
5 0.1800 (7.20) 0.2140 (8.56) 0.1955 (7.82) 0.1313 (5.25) 0.1380 (5.52) 0.1308 (5.23) 0.0550 (2.20) 0.0735 (2.94) 0.0690 (2.76)
6 0.8995 (1782.00) 0.5333 (1056.44) 0.5337 (1057.31) 0.8922 (1767.45) 0.7353 (1456.72) 0.7362 (1458.36) 0.9001 (1783.00) 0.7906 (1566.11) 0.7905 (1565.9
7 0.8620 (61.20) 0.8349 (59.28) 0.8293 (58.88) 0.8331 (59.15) 0.8268 (58.70) 0.8349 (59.28) 0.8430 (59.85) 0.8400 (59.64) 0.8444 (59.95)
8 0.9537 (3814.60) 0.9133 (3653.21) 0.9194 (3677.45) 0.9549 (3819.50) 0.8400 (3360.04) 0.8427 (3370.67) 0.9534 (3813.40) 0.8567 (3426.72) 0.8562 (3424.7
9 0.6164 (320.55) 0.5237 (272.30) 0.5166 (268.63) 0.7338 (381.60) 0.6123 (318.39) 0.6113 (317.90) 0.6358 (330.60) 0.5177 (269.19) 0.5174 (269.07
10 0.7605 (72.25) 0.7217 (68.56) 0.7400 (70.30) 0.6921 (65.75) 0.7036 (66.84) 0.7005 (66.55) 0.7374 (70.05) 0.7227 (68.66) 0.7196 (68.36)
11 0.8448 (949.50) 0.9775 (1098.68) 0.9792 (1100.63) 0.8950 (1005.95) 0.9737 (1094.43) 0.9740 (1094.76) 0.8379 (941.80) 0.9720 (1092.48) 0.9732 (1093.8
12 0.8634 (398.90) 0.8489 (392.19) 0.8573 (396.09) 0.9222 (426.05) 0.9250 (427.33) 0.9230 (426.42) 0.9060 (418.55) 0.8984 (415.05) 0.9005 (416.02
13 0.8753 (339.60) 0.8814 (341.98) 0.8815 (342.02) 0.9661 (374.85) 0.9649 (374.37) 0.9676 (375.43) 0.9347 (362.65) 0.9384 (364.08) 0.9396 (364.56
14 0.4852 (65.50) 0.5134 (69.31) 0.4935 (66.62) 0.7215 (97.40) 0.7187 (97.02) 0.7201 (97.22) 0.4537 (61.25) 0.4476 (60.43) 0.4499 (60.74)
15 0.8649 (943.65) 0.8589 (937.02) 0.8564 (934.29) 0.8723 (951.70) 0.8649 (943.66) 0.8633 (941.84) 0.8575 (935.55) 0.8497 (927.04) 0.8487 (925.90
16 0.8733 (349.30) 0.8763 (350.51) 0.8769 (350.77) 0.9630 (385.20) 0.9643 (385.71) 0.9641 (385.62) 0.9433 (377.30) 0.9408 (376.31) 0.9438 (377.52
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-values for classification accuracies w.r.t. different reducts based on Algorithm
ID γ -Algorithm 2 & DI-Algorithm 2 &

γ -Algorithm 3 DI-Algorithm 3

1 0.0461 0.9100
2 7.4262E−04 0.5225
3 0.2393 0.5397
4 0.5509 0.4468
5 0.5229 0.0047
6 0.8666 0.8998
7 0.7753 0.6217
8 0.4988 0.7227
9 0.5471 0.7738
10 0.1593 0.3609
11 0.3719 0.6357
12 0.9348 0.6087
13 0.8680 0.6912
14 0.6847 0.4647
15 0.9568 0.6553
16 0.8903 0.9460

Table 9
p-values for classification accuracies w.r.t. different reducts based on Algorithm
ID γ -Algorithm 2 & DI-Algorithm 2 &

γ -Algorithm 3 DI-Algorithm 3

1 0.1314 1.0000
2 0.0029 0.7126
3 0.4249 0.6927
4 0.8814 0.5336
5 0.5665 0.8681
6 0.9513 0.9442
7 0.5136 0.4225
8 0.3368 0.6807
9 0.5194 0.6319
10 0.3103 0.8922
11 0.7149 0.8710
12 0.4614 0.5487
13 0.8664 0.7548
14 0.8709 0.8496
15 0.3506 0.5700
16 0.8907 0.6446

Table 10
Joint distribution of classification results.

PreAg (xi) = d(xi) PreAg (xi) ̸= d(xi)

PreAg′ (xi) = d(xi) e f
PreAg′ (xi) ̸= d(xi) m n

the obtained reduct is stable completely. Following Eq. (8), one
stability of reduct can be derived based on one radius. For 20 radii,
20 stabilities of reducts will be derived, then the average value of
them is shown in Table 4.

In Table 4, for any two compared values, the greater value is in
old. Through observing Table 4, it is not difficult to know that for
our measures, the average values of stabilities of reducts derived
y using Algorithm 3 are greater than that of reducts derived by
sing Algorithm 2. Take the results on data set ‘‘Cardiotocography
ID: 3)’’ as an example, the value of ‘‘γ -Algorithm 2’’ is 0.4893
hile the value of ‘‘γ -Algorithm 3’’ is 0.9420; the value of ‘‘DI-
lgorithm 2’’ is 0.9006 while the value of ‘‘DI-Algorithm 3’’ is
.9948; the value of ‘‘ENT-Algorithm 2’’ is 0.9414 while the value
f ‘‘ENT-Algorithm 3’’ is 0.9979; the value of ‘‘NDER-Algorithm
’’ is 0.6425 while the value of ‘‘NDER-Algorithm 3’’ is 0.9257.
mmediately, some conclusions can be derived. (1) Our Algorithm
can generate reducts with higher stabilities. This is mainly

ecause in Algorithm 3, the searching of attributes does not begin
ith an empty set, but begins with the selected attributes in
educt which is derived by using the whole training samples.
ollowing the mechanism, some same attributes will exist among
ifferent reducts over different subsets of training samples, and
11
d 3 (CART classifier).
ENT-Algorithm 2 & NDER-Algorithm 2 &
ENT-Algorithm 3 NDER-Algorithm 3

0.3799 0.0073
0.4218 0.4005
0.8707 0.5426
0.7149 0.5699
0.4525 0.1253
0.9218 0.5030
0.0552 0.8025
0.8816 0.6348
0.5334 0.9026
0.5515 0.3503
0.2035 6.8030E−09
0.9883 0.7249
0.9774 0.9380
0.8603 9.0868E−04
0.8286 0.4320
0.5959 0.9888

d 3 (KNN classifier).
ENT-Algorithm 2 & NDER-Algorithm 2 &
ENT-Algorithm 3 NDER-Algorithm 3

0.2946 0.1860
0.1931 1.0000
0.9136 0.6650
0.6949 0.2446
0.2597 0.5976
0.9888 0.9238
0.5239 0.8025
0.8496 0.6155
0.4903 0.4713
0.4816 0.3368
0.6749 6.8030E−09
0.9883 0.9353
0.7232 0.9380
0.9245 0.0809
0.7970 0.2557
0.9674 0.4012

then the stabilities of reducts derived by using Algorithm 3 can
be improved. (2) Our Algorithm 3 is more suitable for obtaining
reduct. Such conclusion can be attributed to the fact that our
Algorithm 3 can generate reduct with better adaptability. The
reduct with higher stability is universal, and then the reduct may
be still the reduct for a little finer and coarser level of information
granulation which may be caused by slight variation of data. (3)
The stable reduct may provide more stable classification results,
then it is helpful for us to determine which labels can be regarded
as the final outputs of the testing samples.

In addition, to further analyze the results of stabilities of
different reducts from the viewpoint of statistics, the Wilcoxon
signed rank test [55] is employed. The significance level is set as
0.05. For each algorithm, one stability of reduct can be derived
based on one radius through using Eq. (8). For two compared
algorithms, 20 stabilities of reducts can be derived respectively,
because 20 radii are employed in our experiments. Then compare
the difference between these two sets of stabilities of reducts
through using Wilcoxon signed rank test to derive p-value. If
the returned p-value is lower than 0.05, then the two algorithms
perform significantly different from the perspective of stabilities
of reducts; otherwise, they perform equally well. The detailed
results are shown in Table 5.

In Table 5, the p-values greater than 0.05 are in italic. Through
observing Table 5, it is obvious that for four measures, most of the
p-values are lower than 0.05. Such result implies that Algorithm
2 and Algorithm 3 perform significantly different. In other words,
Algorithm 2 and Algorithm 3 do not perform equally well from

the perspective of stabilities of reducts.
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Table 11
Results of stabilities over classification results w.r.t. different reducts (CART classifier).
ID γ - γ - DI- DI- ENT- ENT- NDER- NDER-

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.7977 0.8527 0.7032 0.7159 0.6927 0.7277 0.7064 0.7559
2 0.7606 0.8844 0.6906 0.8156 0.7056 0.8367 0.7350 0.8394
3 0.7548 0.8303 0.8212 0.8377 0.7695 0.7826 0.8082 0.8394
4 0.8566 0.8689 0.8497 0.8718 0.8125 0.8646 0.8765 0.8863
5 0.8458 0.8870 0.8390 0.8988 0.8508 0.8963 0.7833 0.8425
6 0.7895 0.7972 0.8303 0.8408 0.8242 0.8261 0.7961 0.8272
7 0.8956 0.9172 0.9137 0.9373 0.8501 0.8713 0.9448 0.9549
8 0.8471 0.8660 0.8676 0.8800 0.8156 0.8511 0.8561 0.8687
9 0.6057 0.6497 0.7192 0.7498 0.5215 0.6025 0.6715 0.7451
10 0.6824 0.7291 0.7341 0.7988 0.7155 0.7797 0.7262 0.7654
11 0.8613 0.8783 0.8862 0.8997 0.8651 0.8861 0.8338 0.8772
12 0.8981 0.9143 0.9071 0.9184 0.9151 0.9192 0.9254 0.9343
13 0.9918 0.9919 0.9636 0.9732 0.9467 0.9565 0.9906 0.9950
14 0.7613 0.8359 0.8016 0.8308 0.6699 0.7756 0.7860 0.8561
15 0.9557 0.9690 0.9492 0.9597 0.9593 0.9680 0.9665 0.9789
16 0.9649 0.9678 0.9686 0.9745 0.9420 0.9581 0.9778 0.9820
Table 12
Results of stabilities over classification results w.r.t. different reducts (KNN classifier).
ID γ - γ - DI- DI- ENT- ENT- NDER- NDER-

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.7914 0.8455 0.7423 0.7677 0.6282 0.6886 0.7086 0.7700
2 0.7517 0.9400 0.7683 0.8683 0.7544 0.8917 0.7283 0.9028
3 0.7633 0.8795 0.8496 0.8888 0.8373 0.8579 0.8191 0.8781
4 0.9401 0.9515 0.8957 0.9269 0.8811 0.9551 0.9541 0.9758
5 0.8358 0.9320 0.8673 0.9403 0.8915 0.9430 0.7733 0.8425
6 0.8591 0.8712 0.8842 0.8992 0.9012 0.9079 0.8572 0.8883
7 0.8066 0.8565 0.8232 0.8621 0.8477 0.9404 0.7769 0.7908
8 0.9326 0.9503 0.9240 0.9432 0.8868 0.9269 0.9392 0.9599
9 0.6861 0.7820 0.7560 0.8115 0.5404 0.7638 0.6398 0.7777
10 0.7207 0.8362 0.7263 0.8335 0.7463 0.8297 0.7324 0.8216
11 0.9770 0.9876 0.9791 0.9858 0.9799 0.9866 0.9116 0.9093
12 0.9231 0.9439 0.9619 0.9700 0.9522 0.9574 0.9635 0.9723
13 0.9874 0.9875 0.9712 0.9816 0.9543 0.9691 0.9786 0.9885
14 0.7758 0.8798 0.8576 0.9181 0.6883 0.8524 0.8187 0.9130
15 0.8809 0.9208 0.8936 0.9366 0.9017 0.9232 0.8992 0.9256
16 0.9732 0.9808 0.9744 0.9845 0.9467 0.9750 0.9831 0.9906
W
t

4.6. Comparisons of classification performances

In this experiment, the classification performances related
o reducts will be compared, then CART and KNN classifiers
re employed to classify the testing samples through using cor-
esponding reducts. Additionally, the parameter used in CART
lassifier is default in Matlab; the parameter used in KNN clas-
ifier is 3, that is, 3NN classifier is employed. In the following, for
ach radius, one classification accuracy can be derived through
sing one reduct over one classifier, and 5 classification accura-
ies can be derived through using 5 reducts over one classifier,
hen compute the average value of them. It follows that 20
verage values of classification accuracies can be derived, because
0 radii are employed to compute reducts. Then compute the
verage value of these 20 average values of classification accu-
acies. The derived result is shown in Tables 6 and 7. It should be
mphasized that the number of testing samples which are clas-
ified correctly is computed by using the same way. Whichever
lgorithm is used to compute reduct, the computation of classifi-
ation accuracy and the number of correctly classified samples
re the same. The detailed results are shown in Tables 6 and
. Notably, ‘‘γ -All’’, ‘‘DI-All’’, ‘‘ENT-All’’ and ‘‘NDER-All’’ denote
he classification accuracies related to reducts over the whole
raining set which are derived through using approximation qual-
ty, neighborhood discrimination index, conditional entropy and
eighborhood decision error rate respectively.
In Tables 6 and 7, the value in parentheses is the number

f testing samples which are classified correctly, and for the
ompared values, the greater value is in bold. With a deep inves-
igation of Tables 6 and 7, it is not difficult to derive the following
12
results: (1) in most cases, the classification accuracies related to
reducts over different subsets of training samples are similar with
that related to reducts over all of the training samples; (2) for four
measures, the classification accuracies related to reducts derived
by using Algorithm 3 are similar with that related to reducts
derived by using Algorithm 2 in most cases. Take the results on
data set ‘‘Breast Tissue (ID: 1)’’ as an example, for CART classifier,
the values over ‘‘γ -All’’, ‘‘γ -Algorithm 2’’ and ‘‘γ -Algorithm 3’’ are
0.4205, 0.5277 and 0.5199, respectively; the values over ‘‘DI-All’’,
‘‘DI-Algorithm 2’’ and ‘‘DI-Algorithm 3’’ are 0.5364, 0.5318 and
0.5295, respectively; the values over ‘‘ENT-All’’, ‘‘ENT-Algorithm
2’’ and ‘‘ENT-Algorithm 3’’ are 0.2727, 0.3023 and 0.2977, re-
spectively; the values over ‘‘NDER-All’’, ‘‘NDER-Algorithm 2’’ and
‘‘NDER-Algorithm 3’’ are 0.4977, 0.5386 and 0.5153, respectively.

Similar to Section 4.5, to further analyze the results of classifi-
cation accuracies related to different reducts from the viewpoint
of statistics, the Wilcoxon signed rank test is employed. The
significance level is set as 0.05. For two compared algorithms,
20 average values of classification accuracies will be derived
respectively, because 20 radii are used to derive reducts. Then
compare the difference between these two sets of classification
accuracies through using Wilcoxon signed rank test to derive p-
value. If the p-value is lower than 0.05, then the two algorithms
perform significantly different from the perspective of classifi-
cation performance related to reduct; otherwise, they perform
equally well. The detailed results are shown in Tables 8 and 9.

In Tables 8 and 9, the p-values greater than 0.05 are in italic.
ith a careful investigation of Tables 8 and 9, it is not difficult

o conclude that for four measures, most of the returned p-

values are higher than 0.05. Such result implies that Algorithm
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Table 13
p-values for stabilities over classification results w.r.t. different reducts based on Algorithms 2 and 3 (CART
classifier).
ID γ -Algorithm 2 & DI-Algorithm 2 & ENT-Algorithm 2 & NDER-Algorithm 2 &

γ -Algorithm 3 DI-Algorithm 3 ENT-Algorithm 3 NDER-Algorithm 3

1 0.0341 0.7526 0.1892 0.0137
2 3.8342E−05 2.8842E−07 4.7584E−07 1.5548E−05
3 1.9916E−04 0.0423 0.2433 0.0051
4 0.0228 0.0123 7.5402E−06 0.0026
5 0.0050 1.3501E−06 0.0006 2.7089E−04
6 0.0133 0.2571 0.8334 0.0475
7 0.0845 0.0811 0.0029 0.8025
8 0.0467 0.0192 0.0033 3.0554E−04
9 0.2686 0.0503 4.5334E−07 0.0032
10 0.0015 1.8430E−04 5.4754E−06 0.0090
11 0.0035 1.2435E−05 3.3711E−04 6.8030E−09
12 0.2303 1.1763E−03 0.4539 0.1015
13 0.7438 0.4607 0.7016 0.3184
14 0.0001 2.1979E−04 7.7797E−07 1.9001E−07
15 0.3718 0.0041 0.1365 0.0370
16 0.6592 0.2275 0.1458 0.7371
Table 14
p-values for stabilities over classification results w.r.t. different reducts based on Algorithms 2 and 3 (KNN
classifier).
ID γ -Algorithm 2 & DI-Algorithm 2 & ENT-Algorithm 2 & NDER-Algorithm 2 &

γ -Algorithm 3 DI-Algorithm 3 ENT-Algorithm 3 NDER-Algorithm 3

1 0.0378 0.3616 0.0091 0.0031
2 6.4368E−08 3.7874E−05 6.6634E−07 7.5413E−08
3 1.2493E−05 0.0057 0.1581 6.8403E−04
4 0.1396 1.2718E−04 3.0341E−04 3.7499E−04
5 1.7895E−06 1.4411E−04 7.3345E−05 1.6538E−06
6 0.3283 0.0020 0.7899 0.0180
7 0.0233 0.1453 1.3931E−07 0.8025
8 0.0033 0.0111 0.1041 0.0151
9 0.0452 0.0179 6.7574E−08 1.8366E−06
10 8.7520E−05 2.5621E−06 1.3150E−07 0.0011
11 1.0337E−05 6.8505E−07 3.4668E−05 3.5924E−06
12 0.0810 0.0158 0.3549 7.2576E−05
13 0.6886 0.4186 0.8275 0.5231
14 2.2741E−05 2.3327E−06 2.1720E−07 1.5154E−07
15 2.8673E−06 1.9152E−07 2.5667E−05 2.0981E−04
16 0.4253 0.0290 0.0945 0.4671
Table 15
Detailed explanations of different expressions.
Expression Measure Used algorithm

γ -CV-Algorithm 2 Approximation quality Algorithm 2
γ -CV-Algorithm 3 Approximation quality Algorithm 3
DI-CV-Algorithm 2 Neighborhood discrimination index Algorithm 2
DI-CV-Algorithm 3 Neighborhood discrimination index Algorithm 3
ENT-CV-Algorithm 2 Conditional entropy Algorithm 2
ENT-CV-Algorithm 3 Conditional entropy Algorithm 3
NDER-CV-Algorithm 2 Neighborhood decision error rate Algorithm 2
NDER-CV-Algorithm 3 Neighborhood decision error rate Algorithm 3

2 and Algorithm 3 perform equally well from the perspective of
classification performances related to reducts.

4.7. Comparisons of stabilities of classification results

Following the stability of reduct discussed in Section 4.5, the
tabilities of classification results [54] will be further explored
n this section. As exhibited in Table 10, the joint distribution of
lassification results for computing such comparative evaluation
s designed.

In Table 10, ‘‘PreAg (xi)’’ denotes the predicted label of xi over
Ag . ‘‘e, f ,m, n’’ denote the number of samples which satisfy the
corresponding conditions, respectively. Given a decision system
DS, assuming that universe U is partitioned into K disjoint groups
U ,U , . . . ,U , the stability of classification result is formulated
1 2 K

13
as

Staclassification =
2

K · (K − 1)

K−1∑
g=1

K∑
g ′=g+1

e + n
e + f + m + n

. (9)

Following Eq. (9), one stability of classification result can be
derived over one classifier based on one radius. For 20 radii,
20 stabilities of classification results can be derived over one
classifier, then the average value of them is shown in Tables 11
and 12.

In Tables 11 and 12, for any two compared values, the greater
value is in bold. With a deep investigation of Tables 11 and 12, it
is not difficult to derive the following results: for four measures,
the stabilities of classification results related to reducts which
are derived by using Algorithm 3 are higher than that related to
reducts derived by using Algorithm 2. Take the results on data
set ‘‘Cardiotocography (ID: 3)’’ as an example, for CART classifier,
the value over ‘‘γ -Algorithm 2’’ is 0.7548 while the value over
‘‘γ -Algorithm 3’’ is 0.8303; the value over ‘‘DI-Algorithm 2’’ is
0.8212 while the value over ‘‘DI-Algorithm 3’’ is 0.8377; the value
over ‘‘ENT-Algorithm 2’’ is 0.7695 while the value over ‘‘ENT-
Algorithm 3’’ is 0.7826; the value over ‘‘NDER-Algorithm 2’’ is
0.8082 while the value over ‘‘NDER-Algorithm 3’’ is 0.8394. Such
results imply that Algorithm 3 can generate reducts with more
stable classification results. This is mainly because the stabilities
of reducts can be improved by using Algorithm 3, it follows that

such reducts provide more stable classification results.
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Table 16
Results of time consumption of computing different reducts based on cross-validation.
ID γ -CV- γ -CV- DI-CV- DI-CV- ENT-CV- ENT-CV- NDER-CV- NDER-CV-

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.5391 0.0872 0.2524 0.0500 1.3383 0.2093 0.2094 0.0763
2 3.0574 0.6310 1.6449 0.3888 3.0706 0.5155 2.9483 1.0331
3 13.2292 2.7365 5.0260 0.9983 5.7041 1.1783 7.9143 1.8768
4 278.6294 48.9546 89.1961 16.2685 146.5335 23.7283 12.8118 3.1157
5 22.7400 5.2907 5.6875 1.0347 9.4233 1.5687 15.5793 5.5459
6 29.2240 5.1506 11.3624 2.0151 22.9309 3.6336 14.8601 2.6141
7 0.2175 0.0655 0.0660 0.0158 0.1470 0.0377 0.0615 0.0148
8 357.7228 67.3920 32.8784 6.3782 64.4396 11.2307 89.8733 19.3233
9 103.1420 12.9710 78.3460 9.6356 136.8171 16.9710 9.1409 1.1243
10 1.8820 0.7645 1.0006 0.3854 1.6681 0.5427 0.8784 0.5350
11 93.2912 14.5389 19.0712 2.9877 61.3743 9.7366 4.3882 1.7825
12 6.7916 1.5099 3.8411 0.8183 4.8288 1.0226 8.6085 2.0928
13 2.0756 0.2865 2.5672 0.3485 5.2878 0.6833 0.8334 0.1360
14 3.8198 1.0512 3.0712 0.5888 3.6378 0.7542 5.6348 1.1476
15 14.8402 2.3928 6.3219 1.0332 14.7640 2.1385 2.6316 0.4515
16 0.4608 0.0922 0.2528 0.0468 0.7095 0.1346 0.2831 0.0618
Table 17
Results of stabilities of different reducts based on cross-validation.
ID γ -CV- γ -CV- DI-CV- DI-CV- ENT-CV- ENT-CV- NDER-CV- NDER-CV-

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.8501 0.9784 0.7263 0.8825 0.9369 1.0000 0.4826 0.8557
2 0.0719 0.9370 0.1660 0.9348 0.1772 0.9080 0.0643 0.8559
3 0.5898 0.9513 0.8456 0.9817 0.8642 0.9791 0.6904 0.9418
4 0.8648 0.9996 0.7914 0.9509 0.8844 1.0000 1.0000 1.0000
5 0.0985 0.9733 , 6̇010 0.9947 0.5357 0.9940 0.1040 0.8459
6 0.9789 0.9934 0.9612 0.9854 1.0000 1.0000 0.9100 0.9965
7 0.4566 0.8609 0.6513 0.9753 0.3512 0.9406 0.8390 0.9880
8 0.9551 1.0000 0.9522 0.9982 0.9530 1.0000 0.8180 1.0000
9 0.2191 1.0000 0.2950 1.0000 0.4403 1.0000 0.5700 0.9980
10 0.2410 0.8497 0.2621 0.9482 0.3043 0.9643 0.1442 0.8368
11 0.2920 1.0000 0.5406 1.0000 0.5344 1.0000 0.3080 0.9423
12 0.7270 0.9754 0.8854 0.9919 0.9628 0.9943 0.6179 0.9555
13 0.8724 1.0000 0.7873 1.0000 0.7898 1.0000 0.8226 0.9987
14 0.2804 0.8981 0.5164 0.9570 0.2345 0.9555 0.2120 0.9443
15 0.9781 1.0000 0.9193 0.9805 0.9780 1.0000 0.6955 1.0000
16 0.9585 1.0000 0.9579 1.0000 0.9687 1.0000 0.9237 0.9922
To further analyze the results of stabilities over classification
esults of different reducts from the viewpoint of statistics, the
ilcoxon signed rank test is employed. The significance level

s set as 0.05. Similar to the computation of p-value elaborated
n Section 4.5, the p-value related to stabilities of classification
esults can be derived. If the returned p-value is lower than 0.05,
hen these two algorithms perform significantly different from
he perspective of stabilities over classification results of differ-
nt reducts; otherwise, they perform equally well. The detailed
esults are shown in Tables 13 and 14.

In Tables 13 and 14, the p-values greater than 0.05 are in italic.
ith a careful investigation of Tables 13 and 14, it is not difficult

o observe that for four measures, most of the returned p-values
are lower than 0.05. Such result indicates that Algorithm 2 and
Algorithm 3 do not perform equally well from the perspective of
stabilities of classification results related to reducts.

4.8. The application of crosswise computing reduct on cross-
validation

In this section, we will introduce Algorithm 2 and Algorithm
3 into the framework of cross-validation [56–59]. In our ex-
periments, 5-fold cross-validation is employed. Specifically, the
universe is partitioned into 5 groups randomly. For each round, 4
groups compose the training set for crosswise computing reduct,
and the rest of 1 group is regarded as testing set for testing
the classification performance of reduct. Similar to Sections 4.4–
4.7, the time consumption of computing different reducts, the
stabilities of different reducts, the classification accuracies related
14
to different reducts and the stabilities of classification results
related to different reducts will be compared.

To facilitate the understanding of the experimental results,
some explanations of used expressions in this section are shown
in Table 15.

In Table 15, the ‘‘Expression’’ denotes the results related to
corresponding reduct, and such reduct is computed through us-
ing the ‘‘Used algorithm’’ and the ‘‘Measure’’ based on cross-
validation. For example, ‘‘γ -Algorithm 2’’ denotes the results
related to reduct, and such reduct is computed through using
Algorithm 2 and the measure of approximation quality based on
cross-validation.

Similar to Section 4.4, the time consumption of computing
reducts by using Algorithm 2 and Algorithm 3 will be compared.
The details about time consumption of computing reduct are
shown in Table 16.

In Table 16, for the compared two values, the greater value is
in bold. With a careful investigation of Table 16, it is not difficult
to observe that the elapsed time of computing reducts by using
Algorithm 2 based on cross-validation is less than that by using
Algorithm 3. Take the results on data sets ‘‘Breast Tissue (ID: 1)’’
as an example, the value over ‘‘γ -CV-Algorithm 2’’ is 0.5391 while
the value over ‘‘γ -CV-Algorithm 3’’ is 0.0872; the value of ‘‘DI-CV-
Algorithm 2’’ is 0.2524 while the value over ‘‘DI-CV-Algorithm 3’’
is 0.0500; the value over ‘‘ENT-CV-Algorithm 2’’ is 1.3383 while
the value over ‘‘ENT-CV-Algorithm 3’’ is 0.2093; the value over
‘‘NDER-CV-Algorithm 2’’ is 0.2094 while the value over ‘‘NDER-
CV-Algorithm 3’’ is 0.0763. Such result implies that our Algorithm
3 can also improve the time efficiency of computing reducts in the
framework of cross-validation.
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NDER-CV- NDER-CV- NDER-CV-
All Algorithm 2 Algorithm 3

0.5693 (12.08) 0.5850 (12.29) 0.5962 (12.52)
0.6594 (11.87) 0.6277 (11.30) 0.6223 (11.20)

) 0.7293 (310.08) 0.7131 (303.08) 0.7206 (306.25)
2) 0.7333 (1572.60) 0.7250 (1590.60) 0.7333 (1590.60)

0.2526 (9.99) 0.2565 (10.26) 0.2688 (10.75)
0) 0.8566 (1696.32) 0.8355 (1654.31) 0.8399 (1662.91)

0.8226 (57.75) 0.8469 (59.28) 0.8534 (59.74)
0) 0.6975 (2789.80) 0.6852 (2740.63) 0.6893 (2757.10)
) 0.5736 (298.26) 0.5621 (292.31) 0.5582 (290.27)

0.7055 (67.17) 0.7115 (67.59) 0.7295 (69.31)
) 0.1248 (140.28) 0.1179 (132.50) 0.1325 (148.88)
) 0.9344 (431.67) 0.9361 (432.48) 0.9385 (433.57)
) 0.7945 (308.41) 0.7735 (300.10) 0.7871 (305.38)

0.7721 (104.24) 0.7658 (103.38) 0.7739 (104.48)
0) 0.8641 (942.89) 0.8576 (935.60) 0.8655 (944.28)
) 0.9211 (368.45) 0.9118 (364.73) 0.9190 (367.60)

15
Table 18
Results of classification accuracies w.r.t. different reducts based on cross-validation (CART classifier).
ID γ -CV- γ -CV- γ -CV- DI-CV- DI-CV- DI-CV- ENT-CV- ENT-CV- ENT-CV-

All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3

1 0.6349 (13.47) 0.6590 (13.84) 0.6749 (14.17) 0.6462 (13.71) 0.6362 (13.36) 0.6527 (13.71) 0.6321 (13.41) 0.6751 (14.18) 0.6880 (14.45)
2 0.6033 (10.86) 0.5346 (9.62) 0.5388 (9.70) 0.6622 (11.92) 0.5591 (10.06) 0.5697 (10.25) 0.6417 (11.55) 0.5514 (9.93) 0.5907 (10.63)
3 0.7666 (325.98) 0.7634 (324.46) 0.7713 (327.82) 0.7299 (310.36) 0.7211 (306.45) 0.7264 (308.71) 0.6218 (264.38) 0.6126 (260.34) 0.6171 (262.28
4 0.8737 (1894.98) 0.8625 (1870.73) 0.8620 (1869.71) 0.8702 (1887.57) 0.8636 (1873.13) 0.8650 (1876.13) 0.8713 (1889.75) 0.8591 (1863.49) 0.8576 (1860.2
5 0.2316 (9.15) 0.2199 (8.80) 0.2081 (8.32) 0.1895 (7.52) 0.1901 (7.60) 0.1855 (7.42) 0.1496 (5.85) 0.1463 (5.91) 0.1380 (5.52)
6 0.8755 (1733.59) 0.8569 (1696.72) 0.8570 (1696.92) 0.8621 (1707.20) 0.8468 (1676.63) 0.8470 (1677.07) 0.8780 (1738.60) 0.8592 (1701.20) 0.8592 (1701.2
7 0.8348 (58.60) 0.8838 (61.86) 0.8909 (62.36) 0.8318 (58.39) 0.8535 (59.75) 0.8548 (59.83) 0.8305 (58.30) 0.8507 (59.55) 0.8473 (59.31)
8 0.8542 (3416.71) 0.8417 (3366.79) 0.8427 (3370.91) 0.8553 (3421.06) 0.8415 (3366.00) 0.8412 (3364.83) 0.8542 (3416.62) 0.8411 (3364.31) 0.8412 (3364.6
9 0.6388 (332.19) 0.6250 (324.99) 0.6382 (331.85) 0.7747 (402.85) 0.7651 (397.85) 0.7721 (401.51) 0.7005 (364.24) 0.6806 (353.91) 0.6797 (353.45
10 0.7162 (68.18) 0.7139 (67.82) 0.7241 (68.79) 0.6950 (66.17) 0.7232 (68.71) 0.7379 (70.10) 0.6915 (65.84) 0.7188 (68.29) 0.7145 (67.88)
11 0.7958 (894.52) 0.7835 (880.70) 0.7923 (890.57) 0.8354 (938.97) 0.8160 (917.18) 0.8233 (925.40) 0.7719 (867.67) 0.7571 (851.03) 0.7635 (858.15
12 0.8638 (399.09) 0.8616 (398.04) 0.8698 (401.86) 0.9043 (417.78) 0.9051 (418.14) 0.9045 (417.88) 0.8938 (412.92) 0.8976 (414.69) 0.8993 (415.48
13 0.9967 (386.91) 0.9948 (385.97) 0.9962 (386.53) 0.9507 (369.08) 0.9352 (362.86) 0.9469 (367.39) 0.9297 (360.91) 0.9162 (355.49) 0.9275 (359.87
14 0.4879 (65.86) 0.5136 (69.34) 0.5196 (70.14) 0.7633 (103.04) 0.7701 (103.96) 0.7765 (104.83) 0.4601 (62.12) 0.4795 (64.73) 0.4765 (64.33)
15 0.9928 (1083.34) 0.9919 (1082.20) 0.9921 (1082.40) 0.9927 (1083.26) 0.9917 (1081.94) 0.9919 (1082.13) 0.9928 (1083.37) 0.9917 (1081.95) 0.9921 (1082.4
16 0.9683 (387.33) 0.9634 (385.38) 0.9633 (385.32) 0.9683 (387.30) 0.9636 (385.44) 0.9635 (385.41) 0.9677 (387.08) 0.9613 (384.52) 0.9602 (384.09
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NDER-CV- NDER-CV- NDER-CV-
All Algorithm 2 Algorithm 3

0.5511 (11.70) 0.5523 (11.60) 0.5528 (11.61)
0.6694 (12.05) 0.6098 (10.98) 0.6349 (11.43)

) 0.7136 (303.43) 0.7088 (301.26) 0.7303 (310.37)
6) 0.7436 (1612.80) 0.7503 (1627.48) 0.7503 (1627.48)

0.1855 (7.34) 0.1764 (7.05) 0.1846 (7.38)
0) 0.8867 (1755.90) 0.8711 (1724.80) 0.8741 (1730.63)

0.8263 (58.01) 0.8449 (59.14) 0.8516 (59.61)
9) 0.7373 (2949.15) 0.7283 (2913.21) 0.7355 (2942.09)
) 0.5455 (283.65) 0.5566 (289.42) 0.5551 (288.65)

0.6952 (66.18) 0.7034 (66.83) 0.7214 (68.54)
) 0.1129 (126.93) 0.1055 (118.53) 0.1119 (125.80)
) 0.9429 (435.61) 0.9473 (437.64) 0.9482 (438.08)
) 0.7680 (298.14) 0.7369 (285.93) 0.7628 (295.97)

0.7881 (106.40) 0.7756 (104.70) 0.7792 (105.19)
) 0.8436 (920.54) 0.8376 (913.80) 0.8431 (919.84)
) 0.8846 (353.84) 0.8768 (350.74) 0.8884 (355.36)

16
Table 19
Results of classification accuracies w.r.t. different reducts based on cross-validation (KNN classifier).
ID γ -CV- γ -CV- γ -CV- DI-CV- DI-CV- DI-CV- ENT-CV- ENT-CV- ENT-CV-

All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3 All Algorithm 2 Algorithm 3

1 0.7026 (14.93) 0.6961 (14.62) 0.7049 (14.80) 0.6725 (14.29) 0.6514 (13.68) 0.6718 (14.11) 0.7003 (14.88) 0.7096 (14.90) 0.7131 (14.98)
2 0.5911 (10.64) 0.5390 (9.70) 0.5031 (9.06) 0.6550 (11.79) 0.5823 (10.48) 0.5858 (10.54) 0.6589 (11.86) 0.5560 (10.01) 0.6009 (10.82)
3 0.7561 (321.50) 0.7446 (316.44) 0.7565 (321.51) 0.7352 (312.59) 0.7336 (311.80) 0.7435 (315.98) 0.6205 (263.84) 0.6023 (255.99) 0.6038 (256.60
4 0.9495 (2059.42) 0.9429 (2045.23) 0.9437 (2046.83) 0.9423 (2043.87) 0.9434 (2046.16) 0.9455 (2050.70) 0.9469 (2053.77) 0.9397 (2038.12) 0.9401 (2039.0
5 0.2344 (9.27) 0.1995 (7.98) 0.1856 (7.42) 0.1346 (5.33) 0.1317 (5.27) 0.1309 (5.23) 0.1113 (4.39) 0.0806 (3.22) 0.0655 (2.62)
6 0.9017 (1785.54) 0.8896 (1761.33) 0.8897 (1761.56) 0.8936 (1769.46) 0.8829 (1748.14) 0.8831 (1748.53) 0.9024 (1787.00) 0.8901 (1762.40) 0.8901 (1762.4
7 0.8058 (56.58) 0.7949 (55.64) 0.7989 (55.93) 0.8399 (58.96) 0.8663 (60.64) 0.8698 (60.89) 0.8563 (60.11) 0.8830 (61.81) 0.8725 (61.07)
8 0.9520 (3807.82) 0.9496 (3798.53) 0.9517 (3806.85) 0.9532 (3812.94) 0.9498 (3799.34) 0.9495 (3798.08) 0.9524 (3809.47) 0.9487 (3794.74) 0.9494 (3797.5
9 0.5924 (308.07) 0.5892 (306.41) 0.5928 (308.24) 0.7492 (389.57) 0.7541 (392.15) 0.7570 (393.65) 0.6412 (333.42) 0.6348 (330.08) 0.6310 (328.14
10 0.7335 (69.83) 0.7167 (68.09) 0.7380 (70.11) 0.6890 (65.59) 0.7331 (69.65) 0.7288 (69.23) 0.7073 (67.34) 0.7382 (70.13) 0.7398 (70.28)
11 0.8622 (969.14) 0.8516 (957.17) 0.8597 (966.32) 0.8946 (1005.53) 0.8854 (995.18) 0.8936 (1004.42) 0.8554 (961.46) 0.8420 (946.39) 0.8531 (958.86
12 0.8580 (396.41) 0.8638 (399.09) 0.8723 (403.01) 0.9148 (422.65) 0.9253 (427.51) 0.9252 (427.43) 0.9063 (418.70) 0.9060 (418.58) 0.9080 (419.49
13 0.9953 (386.39) 0.9938 (385.61) 0.9955 (386.26) 0.9484 (368.17) 0.9314 (361.37) 0.9420 (365.50) 0.9280 (360.24) 0.9140 (354.64) 0.9259 (359.23
14 0.4884 (65.93) 0.5152 (69.55) 0.5113 (69.03) 0.7802 (105.33) 0.7779 (105.02) 0.7835 (105.77) 0.4495 (60.68) 0.4679 (63.17) 0.4683 (63.21)
15 0.8730 (952.64) 0.8548 (932.55) 0.8549 (932.66) 0.8715 (951.02) 0.8532 (930.88) 0.8530 (930.64) 0.8732 (952.80) 0.8549 (932.74) 0.8549 (932.67
16 0.9853 (394.13) 0.9784 (391.36) 0.9790 (391.58) 0.9852 (394.08) 0.9785 (391.40) 0.9788 (391.53) 0.9849 (393.97) 0.9760 (390.39) 0.9752 (390.09
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esults of stabilities of classification results w.r.t. different reducts based on cro
ID γ -CV- γ -CV- DI-CV- DI-CV-

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.8086 0.8158 0.7996 0.8138
2 0.7200 0.8538 0.8028 0.8822
3 0.7793 0.8289 0.8174 0.8417
4 0.8743 0.8824 0.8759 0.8834
5 0.8189 0.8811 0.8452 0.8773
6 0.8436 0.8450 0.8299 0.8313
7 0.8944 0.9241 0.8838 0.9174
8 0.8660 0.8702 0.8681 0.8704
9 0.5963 0.6507 0.7417 0.7628
10 0.6685 0.7309 0.6875 0.7709
11 0.7540 0.8480 0.8149 0.8700
12 0.9058 0.9200 0.9119 0.9198
13 0.9931 0.9973 0.9292 0.9531
14 0.7386 0.8095 0.8180 0.8560
15 0.9936 0.9941 0.9930 0.9939
16 0.9760 0.9770 0.9763 0.9771

Table 21
Results of stabilities of classification results w.r.t. different reducts based on cro
ID γ -CV- γ -CV- DI-CV- DI-CV-

Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

1 0.8494 0.8549 0.8361 0.8540
2 0.7430 0.8856 0.8289 0.9026
3 0.7939 0.8738 0.8410 0.8875
4 0.9644 0.9781 0.9577 0.9734
5 0.8146 0.9283 0.8714 0.9240
6 0.9294 0.9300 0.9260 0.9269
7 0.8395 0.8806 0.8802 0.9250
8 0.9624 0.9668 0.9634 0.9673
9 0.5634 0.7958 0.7133 0.8594
10 0.7119 0.8351 0.7008 0.8561
11 0.8345 0.9493 0.8850 0.9595
12 0.9224 0.9416 0.9560 0.9638
13 0.9923 0.9980 0.9398 0.9762
14 0.7499 0.8544 0.8486 0.9102
15 0.9321 0.9360 0.9205 0.9316
16 0.9919 0.9934 0.9919 0.9934

Similar to Section 4.5, the stabilities of reducts which are
erived by using Algorithm 2 and Algorithm 3 based on cross-
alidation are compared. The details are shown in Table 17.
In Table 17, for the compared values, the greater value is in

old. With a careful investigation of Table 17, it is not difficult to
bserve that the stabilities of reducts derived by using Algorithm
based on cross-validation are higher than that derived by using
lgorithm 2 based on cross-validation. Take the results on data
et ‘‘Cardiotocography (ID: 3)’’ as an example, the value over ‘‘γ -
CV-Algorithm 2’’ is 0.5898 while the value over ‘‘γ -Algorithm
’’ is 0.9513; the value over ‘‘DI-Algorithm 2’’ is 0.8456 while
he value over ‘‘DI-Algorithm 3’’ is 0.9817; the value over ‘‘ENT-
lgorithm 2’’ is 0.8642 while the value over ‘‘ENT-Algorithm 3’’ is
.9791; the value over ‘‘NDER-Algorithm 2’’ is 0.6904 while the
alue over ‘‘NDER-Algorithm 3’’ is 0.9418. Such result implies that
lgorithm 3 can also generate reducts with higher stabilities in
he framework of cross-validation.

Similar to Section 4.6, the classification accuracies related to
ifferent reducts based on cross-validation are compared. CART
nd KNN classifiers are employed to classify the testing samples.
he details about classification accuracies related to different
educts are shown in Tables 18 and 19. Notably, ‘‘γ -CV-All’’,
‘DI-CV-All’’, ‘‘ENT-CV-All’’ and ‘‘NDER-CV-All’’ denote the classi-
ication accuracies related to reducts over the whole training set
hich are derived through using approximation quality, neigh-
orhood discrimination index, conditional entropy and neighbor-
ood decision error rate based on cross-validation, respectively.
In Tables 18 and 19, the value in parentheses is the number of

esting samples which are classified correctly, and for compared
17
lidation (CART classifier).
ENT-CV- ENT-CV- NDER-CV- NDER-CV-
Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

0.8094 0.7633 0.7632 0.8400
0.7749 0.8006 0.7466 0.8306
0.7736 0.7821 0.8159 0.8362
0.8733 0.8836 0.8868 0.8853
0.8523 0.8863 0.8009 0.8530
0.8480 0.8470 0.8309 0.8390
0.8296 0.8851 0.9081 0.9449
0.8656 0.8631 0.8547 0.8963
0.6778 0.6870 0.7258 0.8098
0.7002 0.7537 0.6770 0.7796
0.7526 0.8333 0.8440 0.9266
0.9084 0.9271 0.9262 0.9487
0.9126 0.9312 0.9325 0.9649
0.6796 0.7811 0.7946 0.8631
0.9935 0.9956 0.9180 0.9436
0.9755 0.9766 0.9693 0.9737

lidation (KNN classifier).
ENT-CV- ENT-CV- NDER-CV- NDER-CV-
Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3

0.8508 0.8565 0.7379 0.8182
0.7966 0.9134 0.7792 0.9037
0.8325 0.8573 0.8169 0.8753
0.9635 0.9773 0.9257 0.9257
0.8701 0.9248 0.7808 0.8606
0.9302 0.9302 0.9189 0.9276
0.8526 0.9392 0.8856 0.9076
0.9621 0.9669 0.9134 0.9518
0.6235 0.8094 0.6872 0.7851
0.7418 0.8551 0.6844 0.8246
0.8501 0.9445 0.9170 0.8985
0.9518 0.9560 0.9533 0.9698
0.9309 0.9665 0.9467 0.9835
0.6930 0.8525 0.8193 0.9143
0.9321 0.9361 0.9096 0.9470
0.9913 0.9932 0.9776 0.9901

values, the greater value is in bold. With a careful investigation of
Tables 18 and 19, it is not difficult to derive the following results:
(1) the classification accuracies related to reducts over different
subsets of training samples based on cross-validation are similar
with that related to reducts over all of the training samples based
on cross-validation; (2) the classification accuracies related to
reducts derived by using Algorithm 3 based on cross-validation
are similar with that related to reducts derived by using Algo-
rithm 2 based on cross-validation. Take the results on data set
‘‘Breast Tissue (ID: 1)’’ as an example, for CART classifier, the val-
ues over ‘‘γ -CV-All’’, ‘‘γ -CV-Algorithm 2’’ and ‘‘γ -CV-Algorithm
3’’ are 0.6349, 0.6590 and 0.6749, respectively; the values over
‘‘DI-CV-All’’, ‘‘DI-CV-Algorithm 2’’ and ‘‘DI-CV-Algorithm 3’’ are
0.6462, 0.6362 and 0.6527, respectively; the values over ‘‘ENT-
CV-All’’, ‘‘ENT-CV-Algorithm 2’’ and ‘‘ENT-CV-Algorithm 3’’ are
0.6321, 0.6751 and 0.6880, respectively; the values over ‘‘NDER-
CV-All’’, ‘‘NDER-CV-Algorithm 2’’ and ‘‘NDER-CV-Algorithm 3’’ are
0.5693, 0.5850 and 0.5962, respectively.

Similar to Section 4.7, the stabilities of classification results
related to reducts which are derived through using Algorithm
2 and Algorithm 3 based on cross-validation are compared. The
details are shown in Tables 20 and 21.

In Tables 20 and 21, the greater value is in bold. With a careful
investigation of Tables 20 and 21, it is not difficult to observe that
the stabilities of classification results related to reducts which are
derived by using Algorithm 3 based on cross-validation are higher
than that related to reducts which are derived by Algorithm 2
based on cross-validation. Take the results on data set ‘‘Brain
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umor (ID: 2)’’ as an example, for CART classifier, the value over
‘γ -Algorithm 2’’ is 0.7200 while the value over ‘‘γ -Algorithm
’’ is 0.8538; the value over ‘‘DI-Algorithm 2’’ is 0.8028 while
he value over ‘‘DI-Algorithm 3’’ is 0.8822; the value over ‘‘ENT-
lgorithm 2’’ is 0.7749 while the value over ‘‘ENT-Algorithm 3’’ is
.8006; the value over ‘‘NDER-Algorithm 2’’ is 0.7466 while the
alue over ‘‘NDER-Algorithm 3’’ is 0.8306. Such result implies that
lgorithm 3 can generate reducts with more stable classification
esults.

. Conclusions and future perspectives

In this paper, to acquire multiple reducts for evaluating the
erformances related to stabilities of reducts and searching strat-
gy, the method of crosswise computing reduct is proposed.
ifferent from the previous approach which derives one and
nly one reduct over the whole data, the mechanism of our
roposed strategy is to partition the whole data into several dif-
erent groups, and then computing reducts over those crosswise
elected groups. Moreover, to speed up the process of crosswise
omputing reduct, an acceleration strategy is designed. Different
rom the naive approach which repeats the greedy searching over
ach subset of data, our proposed acceleration strategy is realized
hrough considering that the reduct over the whole data may
rovide guidance for the computation of reducts over different
ubsets of data. Furthermore, the experimental results over 16
ata sets have demonstrated superiorities of our acceleration
trategy: (1) the elapsed time can be decreased significantly; (2)
he stability of reduct can be improved; (3) the generated reduct
an provide more stable classification results without poorer
lassification performance.
The following topics deserve our further researches.

1. The proposed acceleration strategy is only used in general
process of computing reduct, such a strategy will be fur-
ther explored for alleviating over-fitting in the process of
computing reduct.

2. The proposed acceleration strategy only speeds up the
process of searching attributes without considering the
perspectives of samples and attributes in data. Therefore,
the acceleration strategy which considers both samples and
attributes will be further addressed.
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