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Abstract
In recent years, cost-sensitive feature selection has drawnmuch attention. However, some issues still remain to be investigated.
Particularly, most existing work deals with single-typed data, while only a few studies deal with hybrid data; moreover, both
the test cost of a feature and the misclassification cost of an object are often assumed to be fixed, but in fact they are usually
variable with the error range of the data, or equivalently the data granularity. In view of these facts, a feature–granularity
selection approach is proposed to select the optimal feature subset and the optimal data granularity simultaneously tominimize
the total cost for processing hybrid data. In the approach, firstly an adaptive neighborhood model is constructed, in which the
neighborhood granules are generated adaptively according to the types of features. Then, multiple kinds of variable cost setting
are discussed according to reality, and finally, an optimal feature–granularity selection algorithm is designed. Experimental
results on sixteen UCI datasets show that a good trade-off among feature dimension reduction, data granularity selection and
total cost minimization could be achieved by the proposed algorithm. In particular, the influences of different cost settings to
the feature–granularity selection are also discussed thoroughly in the paper, which would provide some feasible schemes for
decision making.

Keywords Adaptive neighborhood · Feature–granularity selection · Hybrid data · Measurement errors · Variable costs

1 Introduction

Cost-sensitive learning is one of the key issues in datamining
and machine learning. It takes cost information into consid-
eration and thus is close to real applications (Chai et al. 2004;
Domingos 1999;Du et al. 2007;Greiner et al. 2002; Zhou and
Zhou 2016). Test cost andmisclassification cost are twomain
types of cost addressed in cost-sensitive learning (Turney
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2000). Test cost, also called feature cost or acquisition cost,
is the money, time or other resources consumed in collecting
a data item for an object. For example, it takes both money
and time to obtain the medical data of a patient. Misclassifi-
cation cost is the extra consumption caused by categorizing
an object into a class that it does not belong to.Different types
of misclassification often incur different costs. For instance,
the cost of misdiagnosing a patient as healthy may be much
larger than that of misdiagnosing a healthy person as sick.

Cost-sensitive feature selection, as a powerful mecha-
nism, is generated by introducing cost-sensitive learning into
the domain of feature selection. As is well known, feature
selection is an important data preprocessing technique in
data mining, machine learning and pattern recognition. For a
dataset, necessary and discriminative features could be cho-
sen, and at the same time irrelevant or redundant features
could be removed by using the feature selection technique
(Boussouf and Quafafou 2000; Dash and Liu 2003; Guyon
and Elisseeff 2003; Hu et al. 2010; Kannan and Ramaraj
2010; Liang et al. 2012). Consequently, the data dimension-
ality could be reduced effectively, and the subsequent data
processing will become more efficient. Cost-sensitive fea-
ture selection aims to select a suitable feature subset which
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can minimize one type of cost or the summation of several
types of cost and meanwhile keep the ability of original deci-
sion systemasmuch as possible.Generally speaking, through
considering cost information in the feature selection process,
cost-sensitive feature selection is more close to real applica-
tions than cost-insensitive feature selection.

Combined with the reality, there are two major challenges
in the study of cost-sensitive feature selection. One challenge
is that measurement errors are ubiquitous in the process of
data collecting. For a quantity, its measure error is the dif-
ference between the measured value and the true value. It
is notable that measurement errors are only considered for
numeric data but not nominal data. The reason is that there
are usually just several distinct feature values for a nominal
feature, i.e., the feature values could be regarded as being
roughly sorted into several categories. It is not significant to
take the measurement errors into account for nominal fea-
tures. For a numeric quantity, its measurement errors often
satisfy a normal (or near normal) distribution in real applica-
tions. Obviously, for a numeric or mixed dataset, the larger
the error range is, the bigger the data granularity is, and the
lower the data precision becomes. The other challenge is that
both the cost paid for testing a numeric feature and the cost
induced by amisclassification are often not fixed but variable
in practical applications. Concretely, fine-grained data items
are usually more costly to collect than the coarse-grained
ones; thus, for a numeric feature, the test cost is monotone
decreasing with the feature values’ granularity (note that, for
any nominal feature, the test cost is supposed to be constant
because measurement errors are not considered for nominal
features; namely, all nominal features are regarded to be fixed

granularity and fixed test cost). Meanwhile, for an object, the
misclassification cost is often monotone increasing with the
total test cost. Taking the same misdiagnosis of a particular
disease as an example, if high test costs have been paid, the
patient may be very angry and ask for high compensation,
so the misclassification cost is higher than that in the case of
low test costs while the total test cost is determined by the
selected features and the data granularity. Hence, it is mean-
ingful to obtain a trade-off among data granularity, feature
subset and variable costs.

To address the challenges discussed above, in this paper
a cost-sensitive feature–granularity selection (the selection
of feature subset and data granularity, namely, the feature
values’ granularity) approach is proposed for hybrid data.
Hybrid data exist widely in practical applications (Chen and
Yang 2014; Hu et al. 2010). It is notable that some other
researchers have also presented feature–granularity selec-
tion approaches in recent years, but they have not touched
cost factors (Ansorge and Schmidt 2015). The proposed
cost-sensitive feature–granularity selection approach aims at
finding an optimal feature–granularity pair (the pair of fea-
ture subset and data granularity) to minimize the total cost
(the summation of consumed test costs and misclassification
costs). The relationship between the above-mentioned chal-
lenges and the aim of the proposed approach is shown in
Fig. 1, which is meanwhile the derivation of the approach.

In the proposed feature–granularity selection approach,
for numeric features, their feature values’ measurement
errors are assumed to satisfy a normal distribution, and the
data granularity is evaluated by the confidence level of the
measurement errors. Accordingly, the error confidence level

Fig. 1 Derivation of the
proposed feature–granularity
selection approach
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is closely related to the data precision. In this context, an
adaptive neighborhood model is constructed, in which the
neighborhood granules of objects on a given feature sub-
set are adaptively computed according to the types of the
features. If a feature is numeric, the neighborhoods are con-
structed according to the error confidence level; while if the
feature is nominal, the neighborhoods are generated accord-
ing to the equivalence relations. The properties with respect
to the built model are discussed thoroughly. Then, several
types of variable cost setting are introduced according to
reality, in which the relationship among error confidence
level, test costs and misclassification costs is taken into con-
sideration. The calculation method of average total cost is
also developed for any given pair of feature subset and
confidence level. Furthermore, the influences of cost set-
ting changes to the feature–granularity selection results are
studied. Finally, an optimal feature–granularity selection
algorithm is designed, by which not only the optimal fea-
ture subset but also the optimal confidence level can be
selected to minimize the average total cost. Three pruning
techniques are employed in the algorithm to improve the
computational efficiency. Experiments are undertaken on six-
teen datasets from theUniversity ofCalifornia—Irvine (UCI)
Library (Blake and Merz 1998) with multiple different cost
settings. Experimental results demonstrate the effectiveness
of the feature–granularity selection algorithm. A satisfactory
trade-off among feature dimension reduction, data granu-
larity selection and total cost minimization can be obtained
by the algorithm. The algorithm outperforms multiple exist-
ing feature selection algorithms on minimizing the total cost
consumed in data processing. In particular, through in-depth
experimental analyses concerning the influences of different
cost settings, some feasible suggestions are given for decision
making.

The rest of the paper is organized as follows. The related
work is introduced in Sect. 2. Section 3 builds the adaptive
neighborhood model and discusses the notions and proper-
ties in the model. Section 4 first constructs several types of
variable cost setting, then develops the calculation method
of average total cost and finally investigates the influences
of cost setting changes. Section 5 proposes the optimal
feature–granularity selection algorithm. Experiment settings
and results are discussed in depth in Sect. 6. Finally, Sect. 7
concludes the paper and suggests further research ideas.

2 Related work

In recent years, cost-sensitive feature selection, as an effec-
tive incorporation of cost-sensitive learning and feature
selection, has drawn much attention due to its wide appli-
cation backgrounds. Some related literatures are reviewed in
this section.

Zhou et al. (2016) proposed a random forest-based fea-
ture selection algorithm that incorporates test costs into
the base decision tree construction process to produce low-
cost feature subsets. Iswandy and Koenig (2006) studied a
multi-objective extension of feature selection which consid-
ers test costs for optimizing sensor system design. Wang
et al. (2010) handled the issue of data over-fitting in test
cost-sensitive decision tree learning by combining feature
selection, smoothing and threshold pruning. Cao et al. (2013)
improved the classification performance of cost-sensitive
support vector machine by simultaneously optimizing the
pair of feature subset, intrinsic parameters and misclas-
sification cost parameters. Pendharkar (2013) proposed a
two-stage solution approach for solving the misclassifica-
tion cost minimization feature selection problem.Weiss et al.
(2013) developed a feature selection approach which takes
feature costs and misclassification costs into consideration
based on histogram comparisons and a genetic search strat-
egy. Bian et al. (2016) presented a cost-sensitive feature
selection approach that adds the test cost- and misclassifica-
tion cost-based evaluation function of afilter feature selection
using a chaos genetic algorithm. Zhang et al. (2008) put
forward an attribute selection strategy, which is a trade-off
method between attribute information and cost information
that includes test costs and misclassification costs with dif-
ferent units, for selecting splitting attributes in decision trees
induction. Zhang (2017) presented the first study of multi-
objective particle swarm optimization for test cost-sensitive
feature selection problems. Huang and Zhu (2017) defined
the cost distance among samples and developed a misclassi-
fication cost-based feature selection approach via manifold
learning. Zhao and Yu (2019) made use of the l2,1-norm to
propose an embedded feature selection algorithm based on
test costs and misclassification costs.

Particularly, there is a series of research work about cost-
sensitive feature selection in rough set domain, in which
feature selection is also termed attribute reduction. Min et
al. defined the minimal test cost attribute reduction problem
in Min et al. (2011) and studied the feature selection with
test cost constraint in Min et al. (2014). Liao et al. (2017)
designed a fast forward test cost-sensitive attribute reduc-
tion algorithm for numerical data by using the properties of
inconsistent neighborhoods in neighborhood rough set mod-
els. Yao and Zhao (2008) addressed the attribute reduction
problem regarding different classification properties, such as
decisionmonotonicity, coverage, decision cost whichmainly
includes misclassification costs, and so on. Jia et al. (2013)
proposed a heuristic algorithm, a genetic algorithm and a
simulated annealing algorithm to solve the minimum deci-
sion cost attribute reduction problem. Liao et al. (2014)
designed a backtracking algorithm and a heuristic algorithm
to solve the attribute reduction involving both decision cost
and test costs. Shu and Shen (2016) presented amulti-criteria
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Table 1 Some quantile values
of standard normal distribution

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.997

z p 0.1257 0.2533 0.3853 0.5244 0.6745 0.8416 1.0364 1.2816 1.6449 3.0

evaluation function to address the test cost- and misclassi-
fication cost-based feature selection problem for data with
missing values. Zhao et al. (2013) studied the test cost-
and misclassification cost-sensitive feature selection prob-
lem for numeric data with normal distribution measurement
errors. Liao et al. (2018) proposed a multi-granularity fea-
ture selection approach which takes measurement errors as
well as variable test costs and misclassification costs into
consideration. Yu and Zhao (2018) presented a test cost- and
misclassification cost-based feature selection approach, in
which the importance of each feature is evaluated by both
rough sets and Laplacian score.

In general, although cost-sensitive feature selection has
been studied from different perspectives, the issue of fea-
ture selection with measurement errors and variable costs
for hybrid data remains to be investigated and it is the main
topic which this paper concerns.

3 Adaptive neighborhoodmodel for hybrid
data

In this section, an adaptive neighborhood model is built for
hybrid data. The section starts from reviewing some pre-
liminaries about confidence level and confidence interval.
Then, measurement errors are introduced into hybrid deci-
sion systems, especially in terms of error confidence level.
Finally, adaptive neighborhoods and corresponding cover-
ings are developed.

3.1 Some preliminaries about confidence interval
and confidence level

Confidence interval, confidence level and confidence limit
are three commonly used concepts in statistics (Fisher 1922).
Confidence interval is a kind of interval estimation for a pop-
ulation parameter, and the confidence level determines how
frequently an observed interval contains a specific parame-
ter value. The left endpoint and right endpoint of confidence
interval are called the lower confidence limit and upper con-
fidence limit, respectively. For a normal distribution, the
confidence interval and the confidence level follow a so-
called 3-sigma rule, which refers to that 99.7% of the data
lie within 3 standard deviations of the mean.

For a normal distribution, the confidence interval can be
computed through the quantile function of the confidence

level (Fisher 1922). Concretely, for a standard normal distri-
bution, the quantile function is

z p = √
2erf−1(2p − 1), p ∈ (0, 1), (1)

where p is a confidence level and erf−1(2p−1) is the inverse
error function. Given a normal distribution with mean μ and
variance σ 2, the quantile function is

F−1(p) = μ + σ z p, p ∈ (0, 1). (2)

According to Eqs. (1–2), the confidence interval [μ −
σ z p, μ + σ z p] can be obtained. Assuming that x is a nor-
mal random variable with mean μ and variance σ 2, it will lie
inside [μ − σ z p, μ + σ z p] with probability 2p − 1 and lie
outside the interval with probability 2(1 − p). Some typical
quantile values of standard normal distribution are listed in
Table 1.

3.2 Error-related hybrid decision systems

Decision system is a fundamental concept in data mining and
machine learning. Traditional decision system was defined
as follows:

Definition 1 (Yao 2004) A decision system (DS) S is the 5-
tuple:

S=(U ,C, D, V ={Va |a ∈ C ∪ D}, I ={Ia |a ∈ C∪D}),

where U is a finite nonempty set of objects called the uni-
verse, C is the set of conditional attributes (also called
features), D is the set of decision attributes with only dis-
crete values, Va is the set of values for each a ∈ C ∪ D and
Ia : U → Va is an information function for each a ∈ C ∪ D.

Hybrid data exist in many real-world applications, but
the hybrid characteristic cannot be found from Definition 1.
To deal with hybrid datasets, the hybrid decision system is
defined as follows:

Definition 2 A hybrid decision system (HDS) S is the 5-
tuple:

S = (U ,C = Co

⋃
Cu, D, V , I ),

whereU , D, V , I have the same meanings as in Definition 1
andC is a hybrid feature set which is composed of a nominal
feature subset Co and a numeric feature subset Cu , where
Co ∩ Cu = ∅.
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Table 2 Ahybrid decision system,which is a sub-table ofCredit dataset

a1 a2 a3 a4 D

x1 a 0.6755 0.1593 u +
x2 b 0.4323 0.1755 y +
x3 b 0.0564 0.7857 l +
x4 a 0.2932 0.1071 y −
x5 b 0.4123 0.0477 u −
x6 a 0.1229 0.4166 u −

An example of hybrid decision system is shown in Table 2,
which is a sub-table of Credit dataset from the UCI library.
Obviously, U = {x1, x2, . . . , x6},Co = {a1, a4},Cu =
{a2, a3}. The feature values for numeric features a2, a3 have
been normalized, and the decision values “+” and “−” rep-
resent positive and negative instances of people who are and
are not granted credit, respectively.

As discussed earlier, errors exist widely in real applica-
tions. For a quantity, the wider its error interval is, the bigger
its granularity is. In this paper, the feature values’ measure-
ment errors are taken into account for numeric features. If
the error ranges are the same for all numeric features, an
error range-related hybrid decision system can be defined as
follows:

Definition 3 An error range-related hybrid decision system
(ERHDS) S is the 6-tuple:

S = (U ,C = Co

⋃
Cu, D, V , I , e),

where U ,C,Co,Cu, D, V , I have the same meanings as in
Definition 2 and e > 0 is the error range for any numeric
feature a ∈ Cu .

However, because of the diversity among different fea-
tures, their error ranges are not necessarily the same. To
address this situation, the error confidence level is used to
measure the data granularity for different features uniformly.
An error confidence level-related hybrid decision system is
defined as follows:

Definition 4 An error confidence level-related hybrid deci-
sion system (ECLHDS) S is the 6-tuple:

S = (U ,C = Co

⋃
Cu, D, V , I , p), (3)

where U ,C,Co,Cu, D, V , I have the same meanings as in
Definition 2 and p ∈ (0, 1) is the error confidence level for
any numeric feature a ∈ Cu .

Naturally, when the error range or the error confidence level
is not taken into consideration, namely, e = 0 in Definition
3 or p = 0 in Definition 4, the ERHDS or the ECLHDS

degenerates to a HDS. Hence, both ERHDS and ECLHDS
are a generalization of the HDS. This paper focuses on the
ECLHDS but not the ERHDS because the former is more
close to the real applications.

For a quantity, assuming that its measurement errors fol-
low a normal distribution with mean 0 and variance σ 2,
then the error intervals can be written as [−σ z p, σ z p], p ∈
(0, 0.997] according to Eq. (2). The reason why 0.997 rather
than 1 is chosen as the maximal confidence level is that the
error interval is (−∞,∞)when p = 1,which is not practical
in real applications. Let e(a, p) denote the upper error bound
with respect to (w.r.t.) a numeric feature a and a confidence
level p, then one has that

e(a, p) = σaz p, p ∈ (0, 0.997]. (4)

Obviously,

max(e(a, p)) = e(a, 0.997) = 3σa . (5)

Let

σa = ka · max|a(xi ) − a(x)|, 1 ≤ i ≤ |U |, (6)

where a(x) = 1
|U |

∑|U |
i=1 a(xi ) and the constants ka > 0

could be applied to adjust the maximal upper error bounds
according to users’ preference. Then, for each numeric fea-
ture a and feature values’ error confidence level p, the upper
error bound can be computed according to Eqs. (4) and (6),
and it is adaptive to the feature and the confidence level
instead of being totally set by the users.

3.3 Adaptive neighborhoods and the coverings

Neighborhood granule is a key notion for dealing with
numeric or hybrid data (Hu et al. 2008). A type of adap-
tive neighborhood is defined based on the error confidence
level-related hybrid decision system as follows:

Definition 5 Let S = (U ,C = Co
⋃

Cu, D, V , I , p) be an
ECLHDS, a ∈ C and x ∈ U . The adaptive neighborhood of
x w.r.t. feature a and error confidence level p is denoted as
n(a,p)(x), and
if a ∈ Co,

n(a,p)(x) = {x ′ ∈ U |a(x ′) = a(x)}; (7)

if a ∈ Cu ,

n(a,p)(x) = {x ′ ∈ U ||a(x ′) − a(x)| ≤ 2e(a, p)}. (8)

From Definition 5, it is known that the neighborhoods are
computed adaptively according to the types of the features. In
particular, if a ∈ Co, the neighborhoods do not change with
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Fig. 2 An exemplary
three-dimensional
neighborhood, in which a1, a2
are numeric features and a3 is a
nominal feature

the confidence level. Note that, given a feature a ∈ Cu , the
error interval is [−e(a, p), e(a, p)], while the neighborhood
interval of x w.r.t. a is [a(x) − 2e(a, p), a(x) + 2e(a, p)].
The reason why 2e(a, p) rather than e(a, p) is chosen as the
maximal distance in Eq. (8) is analyzed as follows. Suppose
that the true value of x ∈ U is a′(x) for a ∈ Cu , then a′(x)−
e(a, p) ≤ a(x) ≤ a′(x)+e(a, p). In extreme cases, a′(x)−
e(a, p) and a′(x) + e(a, p) can be the measured values of
the same object. At this time, |(a′(x) − e(a, p)) − (a′(x) +
e(a, p))| = 2e(a, p). Hence, for feature a ∈ Cu , the objects
with measured value differing from a(x) by no more than
2e(a, p) should be drawn into the neighborhood n(a,p)(x)
together.

Naturally, for an attribute subset B ⊆ C and a confidence
level p, the neighborhood of sample x induced by B is the
intersection of the basic neighborhoods induced by each sin-
gle attribute in B, i.e.,

n(B,p)(x) =
⋂

a∈B
n(a,p)(x). (9)

An exemplary three-dimensional neighborhood is shown in
Fig. 2, where a1, a2 are numeric features, and a3 is a nominal
feature.

It is easy to obtain the following proposition:

Proposition 1 Let S = (U ,C = Co
⋃

Cu, D, V , I , p) be
an ECLHDS, B ⊆ C. Then, for any object in U, its neigh-
borhood based on B and p satisfies

(1) reflexivity: ∀x ∈ U , x ∈ n(B,p)(x);
(2) symmetry: ∀xi , x j ∈ U, if x j ∈ n(B,p)(xi ), xi ∈

n(B,p)(x j ).

For each sample in an ECLHDS, the size of its neigh-
borhood is influenced by the given feature subset and error
confidence level. In the following two propositions, the
monotonicity of neighborhoods is discussed in terms of the
two factors, respectively.

Proposition 2 Let S = (U ,C = Co
⋃

Cu, D, V , I , p) be
an ECLHDS and B1 ⊆ B2 ⊆ C. For any x ∈ U, one has
that

n(B1,p)(x) ⊇ n(B2,p)(x). (10)

Proof Because B1 ⊆ B2, there aremore features in B2 than in
B1. It is easy to know that n(B1,p)(x) ⊇ n(B2,p)(x) according
to Definition 5 and Eq. (9). ��
Proposition 3 Let S = (U ,C = Co

⋃
Cu, D, V , I , p) be

an ECLHDS, B ⊆ C and p1 ≤ p2. For any x ∈ U, one has
that

n(B,p1)(x) ⊆ n(B,p2)(x). (11)

Proof ∀a ∈ B, if a ∈ Co; the neighborhoods do not change
with the confidence level according toEq. (7), son(a,p1)(x) =
n(a,p2)(x); if a ∈ Cu , ∀x ′ ∈ n(a,p1)(x), |a(x ′) − a(x)| ≤
2e(a, p1) ≤ 2e(a, p2) in that p1 ≤ p2, so x ′ ∈ n(a,p2)(x),
n(a,p1)(x) ⊆ n(a,p2)(x). According to Eq. (9), one has that
n(B,p1)(x) ⊆ n(B,p2)(x). ��
From Propositions 2–3, it is known that in an ECLHDS, the
neighborhoods shrink with the addition of features, while
they expand with the increase in error confidence level.

Covering, as a common concept in set theory (Liu and
Sai 2009), is discussed in the new environment. Let S =
(U ,C = Co

⋃
Cu, D, V , I , p) be an ECLHDS, B ⊆ C .

It is easy to know that ∀x ∈ U , x ∈ n(B,p)(x), so U ⊆
{n(B,p)(x)|x ∈ U }. Hence, {n(B,p)(x)|x ∈ U } is a covering
of U . It is denoted as Cov(B, p) for brevity, i.e.,

Cov(B, p) = {n(B,p)(x)|x ∈ U }. (12)

Obviously, there are |U | elements in Cov(B, p), and each
element is an object subset ofU . An order relation is defined
for coverings as follows:

Definition 6 Suppose that Cov1,Cov2 are two coverings on
the same universe. If for any K ∈ Cov1, there exists L ∈
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Table 3 Some neighborhoods with error confidence level p = 0.6

U n({a1},0.6)(x) n({a2},0.6)(x) n({a3},0.6)(x) n({a4},0.6)(x) n({a1,a2},0.6)(x) n({a1,a2,a3},0.6)(x) n(C,0.6)(x)

x1 {x1, x4, x6} {x1} {x1, x2, x4, x5} {x1, x5, x6} {x1} {x1} {x1}
x2 {x2, x3, x5} {x2, x5} {x1, x2, x4} {x2, x4} {x2, x5} {x2} {x2}
x3 {x2, x3, x5} {x3, x6} {x3} {x3} {x3} {x3} {x3}
x4 {x1, x4, x6} {x4} {x1, x2, x4, x5} {x2, x4} {x4} {x4} {x4}
x5 {x2, x3, x5} {x2, x5} {x1, x4, x5} {x1, x5, x6} {x2, x5} {x5} {x5}
x6 {x1, x4, x6} {x3, x6} {x6} {x1, x5, x6} {x6} {x6} {x6}

Table 4 Some neighborhoods with error confidence level p = 0.9

U n({a1},0.9)(x) n({a2},0.9)(x) n({a3},0.9)(x) n({a4},0.9)(x) n({a1,a2},0.9)(x) n({a1,a2,a3},0.9)(x) n(C,0.9)(x)

x1 {x1, x4, x6} {x1} {x1, x2, x4, x5} {x1, x5, x6} {x1} {x1} {x1}
x2 {x2, x3, x5} {x2, x4, x5} {x1, x2, x4, x5, x6} {x2, x4} {x2, x5} {x2, x5} {x2}
x3 {x2, x3, x5} {x3, x6} {x3} {x3} {x3} {x3} {x3}
x4 {x1, x4, x6} {x2, x4, x5, x6} {x1, x2, x4, x5} {x2, x4} {x4, x6} {x4} {x4}
x5 {x2, x3, x5} {x2, x4, x5} {x1, x2, x4, x5} {x1, x5, x6} {x2, x5} {x2, x5} {x5}
x6 {x1, x4, x6} {x3, x4, x6} {x2, x6} {x1, x5, x6} {x4, x6} {x6} {x6}

Cov2 satisfying K ⊆ L; we say that Cov1 is finer than Cov2
or equivalently Cov2 is coarser than Cov1 which is denoted
as Cov1 � Cov2 or equivalently Cov2 � Cov1.

According to Propositions 2–3, two propositions about the
relations of different coverings are obtained as follows:

Proposition 4 Let S = (U ,C = Co
⋃

Cu, D, V , I , p) be
an ECLHDS and B1 ⊆ B2 ⊆ C. One has that

Cov(B1, p) � Cov(B2, p). (13)

Proof ∀n(B2,p)(x) ∈ Cov(B2, p),∃n(B1,p)(x) ∈ Cov(B1, p)
s.t. n(B1,p)(x) ⊇ n(B2,p)(x) according to Proposition 2, so
Cov(B1, p) � Cov(B2, p). ��
Proposition 5 Let S = (U ,C = Co

⋃
Cu, D, V , I , p) be

an ECLHDS, B ⊆ C and p1 ≤ p2. One has that

Cov(B, p1) � Cov(B, p2). (14)

The proof of Proposition 5 is similar to that of Proposition 4
and is omitted for brevity. It is known from Propositions 4–5
that, in an ECLHDS, the coverings get finer with the addition
of features or the decrease in confidence level.

An example is given to illustrate the computation of neigh-
borhoods and coverings as follows:

Example 1 A hybrid decision system is given in Table 2,
where U = {x1, x2, . . . , x6},Co = {a1, a4}, and Cu =
{a2, a3}. Let k2 = 0.2, k3 = 0.15 in Eq. (6), and let p1 =
0.6, p2 = 0.9. The upper error bounds for the two numeric
features are computed according to Eqs. (4) and (6), which

are e(a2, 0.6) = 0.0578, e(a3, 0.6) = 0.0636, e(a2, 0.9) =
0.113 and e(a3, 0.9) = 0.1243. Then, the neighborhoods
w.r.t. single features are computed according to Definition 5.
Accordingly, the neighborhoods w.r.t. multiple features can
be obtained by using Eq. (9). Some representative results are
shown in Tables 3 and 4.

From Tables 3 and 4, it is easy to know that the neigh-
borhoods for a nominal feature do not change with the data
granularity. Besides, the coverings on U can be obtained for
the given feature subsets and error confidence levels. For
example, Cov({a2}, 0.6) = {{x1}, {x4}, {x2, x5}, {x3, x6}},
Cov({a2}, 0.9) = {{x1}, {x3, x6}, {x2, x4, x5}, {x3, x4, x6},
{x2, x4, x5, x6}}, Cov({a1, a2}, 0.6) = {{x1}, {x3}, {x4},
{x6}, {x2, x5}}, Cov({a1, a2}, 0.9) = {{x1}, {x3}, {x2, x5},
{x4, x6}}, and so on. It can be found that Cov({a1, a2}, 0.6) �
Cov({a1, a2}, 0.9) � Cov({a2}, 0.9); meanwhile, except
Cov({a2}, 0.9), other three coverings are all the partitions
of the universe U .

4 Variable cost-based feature–granularity
selection problem for hybrid data

In this section, the optimal feature–granularity selection
problem is discussed for hybrid datawithmeasurement errors
and variable costs. At the beginning, several kinds of variable
cost setting are designed according to reality, in which the
relationship among data granularity, test costs and misclas-
sification costs is taken into account. In particular, the data
granularity is evaluated by the confidence level of the feature
values’ measurement errors for numeric features. Then, the
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computation method of total misclassification cost and aver-
age total cost is introduced for any given feature subset and
error confidence level. Finally, a formal problem statement
of the optimal feature–granularity selection is presented, and
the influences of cost setting changes to the selection results
are investigated.

4.1 Variable cost settings

Asdiscussed earlier, except that the test costs for nominal fea-
tures could be seen as constant, both the test costs for numeric
features and themisclassification costs are often not fixed but
variable in many real applications. On the one hand, collect-
ing fine-grained data is usually more costly than collecting
coarse-grained data. So for a numeric feature, the test cost is
monotone decreasing with the data granularity, namely, the
confidence level of the feature values’ measurement errors.
On the other hand, for an object, the misclassification cost
often increases monotonically with the total test cost. In
consideration of these facts, the test cost functions and the
misclassification cost functions are designed inwhat follows.

Let S = (U ,C = Co
⋃

Cu, D, V , I , p) be an ECLHDS,
p ∈ (0, 0.997], a ∈ C . And let tc and TC denote the test
cost function and a constant test cost value, respectively. If
a ∈ Co, no matter how the confidence level p changes, the
test cost for feature a is immutable, which is denoted as

tc(a, p) = TCo(a), (15)

where TCo(a) > 0. If a ∈ Cu , the test cost for feature a
is monotone decreasing with the increase in p. A linear test
cost function can be given as follows:

tc(a, p) = TCu(a) · (1 − λa p), (16)

where TCu(a) > 0 is the highest test cost for numeric fea-
ture a, namely, the test cost paid for obtaining the highest
data precision for a, and λa ∈ [0, 1] is the test cost adjusting
factor. Other forms of test cost function can also be devel-
oped for numeric features according to reality. For example,
a piecewise constant function of test cost is given as follows:

tc(a, p) = TCu
i (a), p ∈ [pi−1, pi ](i = 1, 2, . . . ,m), (17)

where m is the number of segments, p0 > 0, pm = 0.997,
and TCu

1(a) > TCu
2(a) > · · · > TCu

m(a) > 0. The test cost
functions in Eqs. (16) and (17) are bothmonotone decreasing
with the confidence level. The difference between them is that
the former is strictly monotone decreasing while the latter is
not.

In this paper, it is supposed that the test costs among differ-
ent features are independent of one another, and each object

in the universe has the same total test cost. Then, given a
feature subset B ⊆ C , the total test cost for each object is

tc(B, p) =
∑

a∈B
tc(a, p). (18)

Let mc and MC denote the misclassification cost func-
tion and a constant misclassification cost value, respectively.
Given decision classes k and l, let (k, l) denote the mis-
classified class pair, namely, misclassifying from class k
to class l, and let mc(B, p)(k,l) denote the corresponding
misclassification cost based on the feature–granularity pair
(B, p). Obviously, if k = l,mc(B, p)(k,l) = 0. If k �= l,
mc(B, p)(k,l) is monotone increasing with tc(B, p). Analo-
gously to test costs, more than one type of misclassification
cost function can be presented according to reality. For
instance, the misclassification cost can be given in a form
of linear function

mc(B, p)(k,l) = γ(k,l) · tc(B, p), k �= l, (19)

where γ(k,l) > 0 is the misclassification cost adjusting factor
or in a form of piecewise constant function

mc(B, p)(k,l) = MC(k,l)
j , tc(B, p)

∈ [TC j−1,TC j ]( j = 1, 2, . . . , n, k �= l),

(20)

where n is the number of segments and 0 < MC(k,l)
1 <

MC(k,l)
2 < · · · < MC(k,l)

n .
Continuing with Example 1, the following example is

given to illustrate the construction of multiple variable cost
settings:

Example 2 According to Example 1, it is known that the
hybrid decision system is given in Table 2, where U =
{x1, x2, . . . , x6},Co = {a1, a4}, and Cu = {a2, a3}. Let
the confidence level be p = 0.9. Suppose that the con-
stant test cost for nominal feature a1 is TCo(a1) = 62, then
tc(a1, 0.9) = 62. As to the numeric feature a2, the test cost
is discussed in two cases as follows:

(1) In the form of linear function:
Assuming that TCu(a2) = 108 and λa2 = 0.3, one has
that tc(a2, 0.9) = 108× (1− 0.3× 0.9) = 78.84; then,
tc({a1, a2}, 0.9) = 62 + 78.84 = 140.84.

(2) In the form of piecewise constant function: Assuming
that

tc(a2, p) =

⎧
⎪⎨

⎪⎩

120, p ∈ (0, 0.3]
100, p ∈ (0.3, 0.7]
80, p ∈ (0.7, 0.997]

,
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one has that tc(a2, 0.9) = 80, then tc({a1, a2}, 0.9) =
62 + 80 = 142.

Similarly, there are also multiple types of misclassi-
fication cost function, but here only the linear form is
discussed for brevity. According to the application context
of Credit dataset, it is assumed that γ(+,−) = 10, γ(−,+) =
100. Then, the misclassification costs based on the piece-
wise constant-form test costs are mc({a2}, 0.9)(+,−) =
80 × 10 = 800, mc({a2}, 0.9)(−,+) = 80 × 100 =
8000, mc({a1, a2}, 0.9)(+,−) = 142 × 10 = 1420 and
mc({a1, a2}, 0.9)(−,+) = 142 × 100 = 14200.

For an ECLHDS, multiple variable cost settings can be
generated by using the above-mentioned cost functions. Note
that, in order to save space, only linear functions and piece-
wise constant functions are discussed above for test costs and
misclassification costs. There are also other forms of function
for the two kinds of cost in real applications.

4.2 Computationmethod of average total cost

Aspointed out earlier, total costminimization is the optimiza-
tion objective of the feature–granularity selection approach.
In order to achieve this goal, one needs to know how to
compute the total cost. In this subsection, the computation
method of average total cost is introduced. As mentioned in
Sect. 4.1, for each object in the universe, the total test cost
is supposed to be the same and it is equal to tc(B, p) for the
given feature–granularity pair (B, p), so the average total
cost is composed of the total test cost for each object and the
average misclassification cost for all objects. To obtain the
average misclassification cost, it needs to compute the total
misclassification cost at first.

Let S = (U ,C = Co
⋃

Cu, d, V , I , p) be an ECLHDS,
x ∈ U and B ⊆ C , and let mc(x, B, p) denote the mis-
classification cost of x based on B and p. The process of
computing the total misclassification cost and then the aver-
age total cost is presented as follows. In the process, the
objects are categorized by following a rule that minimizes
the total misclassification cost.

(1) Classify each object x ∈ U and compute its misclassifi-
cation cost mc(x, B, p). There are two cases according
to the neighborhood n(B,p)(x).

A) If ∀x ′ ∈ n(B,p)(x), d(x ′) = d(x) (namely, the neigh-
borhood n(B,p)(x) is consistent), the object x can be
categorized into the right class, so mc(x, B, p) = 0.

B) If ∃x ′ ∈ n(B,p)(x), d(x ′) �= d(x) (namely, the neigh-
borhood n(B,p)(x) is not consistent), since the objects in
a neighborhood granule are indistinguishable, they are
supposed to have the same decision value in the clas-
sification. Then, n(B,p)(x) is categorized into the class

which can minimize the total misclassification cost of
the objects in it. Accordingly, the misclassification cost
of x , namely, mc(x, B, p), can be obtained.

(2) Calculate the total misclassification cost (TMC) and the
average misclassification cost (AMC) for all objects in
U , which are

TMC(U , B, p) =
∑

x∈U
mc(x, B, p), (21)

AMC(U , B, p) = TMC(U , B, p)

|U | . (22)

(3) Calculate the average total cost for all objects in U . As
mentioned above, the total test cost for each object is
supposed to be the same and is equal to tc(B, p), so the
average total cost (ATC) is

ATC(U , B, p) = tc(B, p) + AMC(U , B, p). (23)

Let MR denote the corresponding misclassification rate, one
has that

MR(U , B, p) = |{xi |mc(xi , B, p) > 0}|
|U | . (24)

Based on Example 1 and Example 2, the process of com-
puting the average total cost is displayed in what follows.

Example 3 Let p = 0.9, the average total costs are computed
for B1 = {a2} and B2 = {a1, a2}, respectively. First, it is
known from Table 4 that n(B1,p)(x1) = {x1}, n(B1,p)(x2) =
n(B1,p)(x5) = {x2, x4, x5}, n(B1,p)(x3) = {x3, x6}, n(B1,p)

(x4) = {x2, x4, x5, x6}, n(B1,p)(x6) = {x3, x4, x6}. Now
the misclassification costs are computed for the six objects
according to their neighborhoods. Since n(B1,p)(x1) is con-
sistent, mc(x1, B1, p) = 0. For x2 and x5, if their neigh-
borhood {x2, x4, x5} is categorized into class “+,” x4 and
x5 will be misclassified, and the misclassification cost for
{x2, x4, x5} is 8000 × 2; conversely, if {x2, x4, x5} is cat-
egorized into class “−,” x2 will be misclassified and the
misclassification cost for {x2, x4, x5} is 800. Thus, class
“−” is chosen for the neighborhood granule {x2, x4, x5}
to obtain a lesser misclassification cost. In this case, x2 is
classified incorrectly, mc(x2, B1, p) = 800; x5 is classi-
fied correctly, mc(x5, B1, p) = 0. Similarly, x3, x4 and
x6 are also categorized into class “−,” and one has that
mc(x3, B1, p) = 800, mc(x4, B1, p) = mc(x6, B1, p) = 0.
Then, according to Eqs. (21)-(24) and Example 2, one has
that TMC(U , B1, p) = 0 + 800 + 800 + 0 + 0 + 0 =
1600,AMC(U , B1, p) = 1600

6 ≈ 266.67,ATC(U , B1, p)
= tc(B1, p) + AMC(U , B1, p) = 80 + 266.67 = 346.67
and MR(U , B1, p) = 1

3 .
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Next, it is known from Table 4 that n(B2,p)(x1) =
{x1}, n(B2,p)(x2) = n(B2,p)(x5) = {x2, x5}, n(B2,p)(x3) =
{x3}, n(B2,p)(x4) = n(B2,p)(x6) = {x4, x6}. Analogously, it
could be obtained that mc(x1, B2, p) = mc(x3, B2, p) =
mc(x4, B2, p) = mc(x5, B2, p) = mc(x6, B2, p) = 0
and mc(x2, B2, p) = 1420. Then, according to Eqs. (21)–
(24) and Example 2, one has that TMC(U , B2, p) = 0 +
1420 + 0 + 0 + 0 + 0 = 1420,AMC(U , B2, p) = 1420

6 ≈
236.67,ATC(U , B2, p) = tc(B2, p) + AMC(U , B2, p) =
142 + 236.67 = 378.67 and MR(U , B2, p) = 1

6 .

It is found From Example 3 that, with the addition of
attributes, the total test cost often increases while the mis-
classification rate and the averagemisclassification cost often
decrease. Besides, in fact a computation method of average
total cost was introduced in Zhao and Zhu (2014), in which
TMC(U , B, p) = ∑

X∈Cov(B,p) mc(X , B, p), i.e., the total
misclassification cost is equal to the sum of the misclassifi-
cation costs of each neighborhood granule in the covering.
If using the existing method, the obtained TMC(U , B2, p)
and ATC(U , B2, p) are the same as the above ones; however,
TMC(U , B1, p) = 800 × 4 = 3200 and ATC(U , B1, p) =
80 + 3200

6 ≈ 613.33, both of which are more than those
obtained by the proposed method. The reason of the excess
is that Cov(B1, p) is not a partition of the universe; the mis-
classification costs of x2 and x3 are repetitively computed in
the previous method because both of x2 and x3 belong to two
neighborhood granules. In comparison, the proposedmethod
of computing average total costs is appropriate for any kind
of coverings, while the method in Zhao and Zhu (2014) is
only suitable for the partition case. Hence, the proposed com-
putation method is more general.

4.3 Influences of cost setting changes to the optimal
feature–granularity selection

As discussed earlier, this paper aims to find a pair of optimal
feature subset and optimal data granularity to minimize the
total cost. In real applications, both test costs and misclas-
sification costs could be given in multiple different forms.
And the data granularity for the hybrid data is measured
with the error confidence level of the feature values of the
numerical features. Based on these considerations, the opti-
mal feature–granularity selection problem could be defined
in the following optimization form:

Problem 1 The optimal feature–granularity selection prob-
lem.
Input: an ECLHDS S = (U ,C = Co

⋃
Cu, D, V , I , p); the

test cost function for each feature and the misclassification
cost function for each misclassified class pair;
Output: the optimal feature subset R∗ and the optimal confi-
dence level p∗;
Optimization objective: min(ATC(U , R, p)).

From Problem 1, it is found that the optimal feature-
granularity selection problem could also be seen as a cost-
sensitive variable granularity–feature selection problem.

Generally speaking, for a given setting of test costs
and misclassification costs, people cannot know which data
granularity and feature subset will be optimal by intuition.
However, it can be found that there are some interesting rules
about the relation of costs, feature selection and the mis-
classification rate formulated in Eq. (24). It is notable that,
for simplicity, sometimes the test cost for each feature and
the misclassification cost for each misclassified class pair
are called as individual test cost and individual misclassifi-
cation cost, respectively. On the one hand, if the test cost
functions remain unchanged while the individual misclas-
sification costs increase, the misclassification costs play a
larger role in feature–granularity selection than before. Usu-
ally, to avoid a substantial increase in total misclassification
cost, more necessary features are chosen. Hence, the total
test cost and the average total cost often become large, while
the misclassification rate gets small. On the other hand, if
the misclassification cost functions stay the same while the
individual test costs increase, the test costs play a larger role
than before. Generally, to restrict the enlargement of total
test cost, less features are selected. Therefore, the misclas-
sification rate and the average misclassification cost usually
become large, which poses the increase in average total cost.
An illustrative example is given as follows, in which the pro-
cess of computing neighborhoods, total test costs and average
misclassification costs is omitted for brevity.

Example 4 AnECLHDS is constituted by the hybrid decision
system shown in Table 2 and the error confidence level p =
0.9. Let B ⊆ C .

(1) Let test cost functions be fixed. For instance, let
TCo(a1) = 50,TCu(a2) = 70,TCu(a3) = 80,TCo(a4)
= 60, λa2 = 0.2 and λa3 = 0.3, then it can
be obtained that TC(a1, 0.9) = 50, tc(a2, 0.9) =
57.4, tc(a3, 0.9) = 58.4 and tc(a4, 0.9) = 60 accord-
ing to Eqs. (15)–(16). As shown below, two different
misclassification cost functions are used, respectively,

(A) If tc(B, P) < 100, let mc(B, p)(+,−) = 200,mc
(B, p)(−,+) = 2000; and if tc(B, P) ≥ 100, let
mc(B, p)(+,−) = 2 · tc(B, P),mc(B, p)(−,+) = 20 ·
tc(B, P). Through computation and comparison, one
has that minB⊆C (ATC(U , B, 0.9)) = ATC(U , {a2},
0.9) ≈ 124.07, and the corresponding misclassification
rate MR = 1

3 .
(B) If tc(B, P) < 100, let mc(B, p)(+,−) = 500,mc

(B, p)(−,+) = 5000; and if tc(B, P) ≥ 100, let
mc(B, p)(+,−) = 5 · tc(B, P),mc(B, p)(−,+) = 50 ·
tc(B, P). Through computation and comparison, one
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has that minB⊆C (ATC(U , B, 0.9)) = ATC(U , {a1, a2,
a4}, 0.9) ≈ 167.4,MR = 0.
It is known from the results that, with the increase
in individual misclassification costs, the number of
selected features and the minimal average total cost
often grow; meanwhile, the corresponding misclassifi-
cation rate often drops.

(2) Let misclassification cost functions be the same as those
in (1-B), while the individual test costs be double of
those in (1), namely tc(a1, 0.9) = 100, tc(a2, 0.9) =
114.8, tc(a3, 0.9) = 116.8, tc(a4, 0.9) = 120 by set-
ting TCo(a1) = 100,TCu(a2) = 140,TCu(a3) =
160,TCo(a4) = 120. Through computation and com-
parison, it can be obtained that minB⊆C (ATC(U , B,

0.9)) = ATC(U , {a2}, 0.9) ≈ 306.13,MR = 1
3 . Com-

pared with the results in (1-B), it is known that with the
increase in individual test costs, the number of selected
features often decreases,while theminimal average total
cost and the corresponding misclassification rate often
enlarge.

(3) In (1)–(2), the individual misclassification costs are
set to be variable. Here the constant case is inves-
tigated further. For example, let mc(B, p)(+,−) =
500,mc(B, p)(−,+) = 5000. If the individual test
costs in (1) are adopted, the results are the same as
those in (1-B), and if the individual test costs in (2)
are adopted, one has that minB⊆C (ATC(U , B, 0.9)) =
ATC(U , {a2}, 0.9) ≈ 281.47,MR = 1

3 . The results val-
idate the observations in (2) again.

Note that although Example 4 only displays the influences
of cost setting changes for the confidence level p = 0.9 to
save the space, the obtained rules are also valid for other
confidence levels. Hence, the rules are suitable for the opti-
mal feature–granularity selection. In addition, the rules are
applicable not only for the binary classification (as shown in
Example 4), but also for the multiple classification, which is
verified in Sect. 6.2.

5 Algorithm design

In this section, an algorithm is proposed to solve the opti-
mal feature–granularity selection problem, so the algorithm
is called the optimal feature–granularity selection (OFGS)
algorithm. The algorithm is composed of Algorithm 1 and
Algorithm 2, in which Algorithm 2 is invoked by Algorithm
1. Note that D = {d} in the input of Algorithm 1, namely,
the OFGS algorithm deals with the hybrid decision systems
which have only one decision attribute. This kind of deci-
sion systems is widespread in applications. If there is more
than one decision attribute in a decision system, one could

construct multiple new decision systems, with each having
exactly one decision attribute.

Algorithm 1 The optimal feature–granularity selection
(OFGS) algorithm.
Input: An ECLHDS S = (U ,C = Co ∪ Cu , D = {d}, V , I , p); the
confidence level’s minimal value p0 and the step size s; the test cost
function for each feature and the misclassification cost function for
each misclassified class pair.
Output: The globally optimal feature subset R∗ and optimal confidence
level p∗ with minimal average total cost gmtc. The three variables are
all global variables.

1: gmtc = +∞; //gmtc is the globally minimal average total cost
2: for (p = p0; p ≤ 0.997; p = p + s) do
3: for (i = 1; i ≤ |C |; i + +) do
4: Compute tc(ai , p) according to the test cost function of feature

ai ;
5: end for
6: cmtc = +∞; //cmtc is currently minimal average total cost
7: B = ∅; //B is currently selected feature subset
8: cttc = 0; //cttc is current total test cost
9: backtracking(cttc, B, 1); //The output of the backtracking is R

and cmtc
10: if (cmtc < gmtc) then
11: gmtc = cmtc; //Update the globally minimal average total

cost
12: p∗ = p; //Update the optimal confidence level
13: R∗ = R; //Update the globally optimal feature subset
14: end if
15: end for

In the optimal feature–granularity selection algorithm, the
error confidence level p is tried from the minimal value
p0 > 0 to the maximal value 0.997 with a step size s > 0,
which is shown in line 2 of Algorithm 1. The users can
choose p0 and s according to their preference. For each tried
confidence level, theminimal average total cost and the corre-
sponding feature subset are obtained by running Algorithm
2 which is essentially a backtracking algorithm. Then, the
obtained average total costs are compared among different
confidence levels to choose the minimal one. Naturally, the
corresponding confidence level is the optimal data granular-
ity, and the optimal feature subset is obtained accordingly. In
the process, the individual test costs and the individual mis-
classification costs are computed according to Sect. 4.1, and
the totalmisclassification costs and the average total costs are
computed according to Sect. 4.2. In particular, three pruning
techniques are used in Algorithm 2 to improve the efficiency.
Firstly, as shown in line 1, the backtracking algorithm begins
with current level test index lower bound l rather than 1. As
the backtracking algorithm goes on, the lower bound raises.
Then, as shown in lines 2–4 and lines 7–9, the other two prun-
ing techniques are used to discard the feature subsets whose
test costs are too large.
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Algorithm 2 The backtracking algorithm.
Input: The current total test cost cttc, currently selected tests B, and
current level test index lower bound l.
Output: The currently optimal feature subset R and minimal average
total cost cmtc, both of which are global variables.
Method: Backtracking
1: for (i = l; i ≤ |C |; i + +) do
2: if (tc(ai , p) ≥ cmtc) then
3: continue; //Prune for too large test cost
4: end if
5: B = R ∪ {ai };
6: tc(B, p) = cttc + tc(ai , p); //Compute the temporary total test

cost
7: if (tc(B, p) ≥ cmtc) then
8: continue; //Prune for too large total test cost
9: end if
10: for ( j = 1; j ≤ |Vd |; j + +) do
11: for (k = 1; k ≤ |Vd |; k + +) do
12: Compute mc(B, p)( j,k) according to the misclassification

cost function for misclassified class pair ( j, k);
13: end for
14: end for
15: Compute the total misclassification cost T MC(U , B, p) and the

average total cost ATC(U , B, p);
16: if (ATC(U , B, p) < cmtc) then
17: cttc = tc(B, p); //Update the current total test cost
18: cmtc = ATC(U , B, p); //Update the currently minimal

average total cost
19: R = B; //Update the currently optimal feature subset
20: end if
21: backtracking(cttc, B, i + 1); //Next level backtracking
22: end for

6 Experiments

In this section, the following questions are investigated by
experimentation.

(1) Why is an error confidence level rather than an error
range employed to measure the data granularity?

(2) Is the optimal feature–granularity selection algorithm
effective?

(3) How do the feature–granularity selection results change
with different cost settings?

(4) Is there an optimal value or a rational value range for the
data granularity?

6.1 Data generation

The experiments are conducted on sixteen datasets from
the UCI library. The basic information of these datasets is
shown in Table 5, where “Nominal” and “Numeric” repre-
sent the numbers of nominal features and numeric features,
respectively. For brevity, in the following context CAD-
diagnosis, Cylinder-bands, Diabetic-retinopathy, Heart and
Mice-protein are abbreviated as CAD, Cylinder, Diabetic,
Heart and Mice, respectively. The data items of numeric fea-
tures are normalized into [0, 1], and those of nominal features
remain unchanged. If an object has multiple missing values,
it will be deleted from the dataset; otherwise, themissing val-
ues of a nominal feature are set to be random feature values
of the feature, and those of a numeric feature are directly set
to be 0.5.

Since there are not test costs and misclassification costs
in these UCI datasets, the experiments start from generating
the two types of cost for the datasets according to Sect. 4.1.
First, there are twocases for generating the parameters for test
cost functions. One is regarding datasets Bridges, Diabetes,
Heart and Wine, each having less than 15 features. For these
datasets, the constant test costs TCo(a) (shown in Eq. (15))

Table 5 Data information Dataset Domain Samples Features Nominal Numeric Classes

Bridges Engineering 108 11 7 4 7

CAD-diagnosis Clinic 303 58 24 34 2

Credit Finance 690 15 9 6 2

Cylinder-bands Physics 430 36 16 20 2

Diabetes Clinic 768 8 0 8 2

Diabetic-retinopathy Clinic 1151 19 3 16 2

German Finance 1000 20 13 7 2

Heart Clinic 303 13 8 5 5

Hepatitis Clinic 155 19 13 6 2

Image Graphics 2310 18 0 18 7

Ionosphere Physics 351 34 0 34 2

Mice-protein Biology 1080 80 3 77 8

Sonar Physics 208 60 0 60 2

Wdbc Clinic 569 30 0 30 2

Wine Agriculture 178 13 0 13 3

Wpbc Clinic 198 33 0 33 2
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Table 6 Some results of average error bounds for numeric features,
where p is the error confidence level

p 0.2 0.4 0.6 0.8 0.997

Bridges 0.0025 0.0052 0.0084 0.0128 0.03

CAD 0.003 0.0062 0.0099 0.0151 0.0353

Credit 0.0038 0.0078 0.0125 0.019 0.0445

Cylinder 0.0029 0.006 0.0096 0.0146 0.0342

Diabetic 0.0035 0.0073 0.0117 0.0177 0.0415

Diabetes 0.0031 0.0063 0.0102 0.0155 0.0362

German 0.0032 0.0066 0.0106 0.0161 0.0377

Heart 0.0028 0.0058 0.0093 0.0142 0.0333

for nominal features, as well as the highest test costs TCu(a)

(in Eq. (16)) and the piecewise constant test costs TCu
i (a)

(in Eq. (17)) for numeric features, are all set to be uniformly
distributed random integers lying within [20, 100]. The other
is corresponding to other twelve datasets, each having no
less than 15 features. For these datasets, TCo(a),TCu(a)

and TCu
i (a) are all set to be lying within [20, 200]. Note

that, in the two cases, TCu
m(a) > TCu

n(a) if m < n, and
the test cost adjusting factors λa (in Eq. (16)) are set to be
randomdecimals lyingwithin [0, 1]. Then, as for the parame-
ters for misclassification cost functions, the adjusting factors

γ(m,n) (in Eq. (19)) and the piecewise constant misclassi-

fication costs MC(k,l)
j (in Eq. (20)) are, respectively, set to

be integers locating in [10, 200] and [500, 25, 000], where
MC(k,l)

m < MC(k,l)
n if m < n. It is notable that, in order to

be close to reality, the misclassification cost parameters are
set carefully. For example, people are described by a set of
attributes as good or bad credit risks in German dataset. It
is worse to classify a customer as good when he/she is bad
than to classify a customer as bad when he/she is good, so
the misclassification cost of the former is higher. Finally, the
error bound adjusting factors ka (in Eq. (6)) are uniformly set
to be 0.05 for convenience. If they are not the same among
different numeric features, it can be found that the results are
similar by experimentation.

6.2 Experimental results and the analyses

This subsection studies the performance of the feature-
granularity selection algorithm and the influence of different
cost settings to the selection results from multiple perspec-
tives.
1. Error confidence level versus error range

For the datasets, the average error bounds of numeric
features are computed based on different error confidence

Table 7 An exemplary
feature–granularity selection
result of Heart dataset with
(p0, s) = (0.1, 0.1) and a
l–p-type cost setting, where p0
and s are the minimal value and
the step size of error confidence
level, respectively

p AEB TTC AMC ATC Feature subset Feature types

0.1 0.0014 156.1648 0 156.1648 {4,8,11,12} [u,u,o,o]

0.2 0.0028 95.0792 31.3531 126.4323 {8,10} [u,u]

0.3 0.0043 93.9695 52.8053 146.7748 {4,8} [u,u]

0.4 0.0058 98.8584 24.7525 123.6108 {8,10,12} [u,u,o]

0.5 0.0075 97.6492 14.8515 112.5007 {4,8,12} [u,u,o]

0.6 0.0093 92.8841 14.8515 107.7356 {4,8,10} [u,u,u]

0.7 0.0115 97.4039 9.901 107.3049 {1,8,10} [u,u,u]

0.8 0.0142 88.8788 14.8515 103.7302 {4,8,10,12} [u,u,u,o]

0.9 0.0183 89.2034 8.2508 97.4542 {1,4,8,10} [u,u,u,u]

0.997 0.0333 92.4953 18.1518 110.6471 {1,4,8,10,12} [u,u,u,u,o]

Table 8 An exemplary
feature–granularity selection
result of Heart with
(p0, s) = (0.1, 0.1) and a
p–l-type cost setting

p AEB TTC AMC ATC Feature subset Feature types

0.1 0.0014 139.2904 4.5875 143.8779 {5,8,13} [u,u,o]

0.2 0.0028 139.2904 18.3498 157.6403 {5,8,13} [u,u,o]

0.3 0.0043 154.4463 15.2475 169.6938 {5,8,12,13} [u,u,o,o]

0.4 0.0058 154.4463 15.2475 169.6938 {5,8,12,13} [u,u,o,o]

0.5 0.0075 133.4027 21.9472 155.3499 {5,8,10} [u,u,u]

0.6 0.0093 187.6527 0 187.6527 {3,5,8,10,12} [o,u,u,u,o]

0.7 0.0115 166.6138 5.4785 172.0924 {3,5,8,10,12} [o,u,u,u,o]

0.8 0.0142 184.4388 6.0726 190.5114 {3,5,8,10,12,13} [o,u,u,u,o,o]

0.9 0.0183 145.5749 52.6403 198.2152 {3,5,8,10,12} [o,u,u,u,o]

0.997 0.0333 48.5888 188.1188 236.7076 {8,13} [u,o]
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Table 9 An exemplary
feature–granularity selection
result of Heart with
(p0, s) = (0.08, 0.13) and a
l–l-type cost setting

p AEB TTC AMC ATC Feature subset Feature types

0.08 0.0011 116.7197 22.9703 139.69 {1,5,9} [u,u,o]

0.21 0.003 109.3174 35.9736 145.291 {1,5,9} [u,u,o]

0.34 0.0049 101.915 46.6667 148.5817 {1,5,9} [u,u,o]

0.47 0.007 129.4989 8.5149 138.0137 {1,4,5} [u,u,u]

0.6 0.0093 124.7225 8.1848 132.9074 {1,5,9,10} [u,u,o,u]

0.73 0.0122 115.6243 3.7954 119.4197 {1,4,5,9} [u,u,u,o]

0.86 0.0164 127.5937 25.1485 152.7422 {1,4,5,9,10} [u,u,u,o,u]

0.99 0.0286 143.6598 56.6337 200.2935 {1,4,5,9,10,11} [u,u,u,o,u,o]
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Fig. 3 Total test costs and average total costs: a Bridges, b CAD, c Credit

levels according to Eqs. (4) and (6). Some results are listed
in Table 6, from which it is known that the average error
bounds are monotonically increasing with the increase in

confidence level. More importantly, the error bounds with
the same confidence level usually vary between different
datasets, so the error confidence level, rather than the error
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Fig. 4 Total test costs and average total costs: a Cylinder, b Diabetes, c Diabetic

range or the error interval, is chosen to evaluate the data
granularity.
2. Some representative results of optimal feature–granularity
selection

For each dataset, the optimal feature–granularity selec-
tion algorithm is run with four different types of cost setting.
Concretely, let l and p denote the linear function and
the piecewise constant function, respectively, then l–l-type
means that both test costs and misclassification costs are lin-
ear functions. The other three types l–p, p–l and p–p are
done in the same manner. For each dataset and each type of
cost setting, the algorithm is run with multiple different cost
parameter values whose generating methods are introduced
in Sect. 6.1. It is found from the experiments that the exper-
imental results have no distinct difference between different

types of cost setting. Three representative results of Heart are
shown in Tables 7, 8 and 9, where AEB denotes the average
error bound for all numeric features, TTC denotes the total
test cost for each object, AMC and ATC, respectively, denote
the average misclassification cost and the average total cost
for all objects, the boldface numbers in the fifth columns of
the tables are the minimal average total costs, and the inte-
gers in the sixth columns are the indexes of selected features,
with “o” and “u” in the seventh columns, denoting that the
corresponding feature is nominal and numeric, respectively.
In the experiments, for numeric feature a, the piecewise con-
stant test cost is TCu

i (a) (TCu
m(a) > TCu

n(a) ifm < n) when
p ∈ [0.2i − 0.2, 0.2i), i = 1, 2, . . . , 5, namely, the test cost
is set to be a 5-segment function. The piecewise constant
misclassification cost functions are set in a similar way.
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Fig. 5 Total test costs and average total costs: a German, b Hepatitis, c Image

The following observations could be made from the three
tables:
(1) With the increase in error confidence level, the error
bound increases, but there are not certain change rules for
TTC, AMC and ATC. In most cases, the three types of cost
change between two adjacent confidence levels. Even if the
individual test costs and/or the individual misclassification
costs are in the form of piecewise constant function (e.g.,
Tables 7, 8, 9), only a part of TTC, AMC and/or ATCmay be
equal. So people cannot knowwhich confidence level is opti-
mal in advance. By using the feature–granularity selection
algorithm, the minimal average total cost can be obtained.
Consequently, the optimal feature subset and optimal confi-
dence level can be known. This validates the effectiveness

of the proposed algorithm. A good trade-off among feature
dimension reduction, data granularity selection and total cost
minimization can be achieved by the algorithm.
(2) Although there are some differences between the three
tables, in general the number of selected features (i.e., the
dimension of selected feature subset) increases gradually as
the error confidence level becomes large. In particular, if
the number of selected features gets small suddenly in the
process, the average misclassification cost will become sig-
nificantly high, especially for p = 0.997 whose quantile is
much larger than those of p ≤ 0.9 (see Table 1). The reason
is that, usually more features are needed to avoid the increase
in misclassification rate which arises from large error range.
If there are not enough features to discriminate the incon-
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Fig. 6 Total test costs and average total costs: a Ionosphere, bMice, c Sonar

sistent objects in the neighborhood granules effectively, the
total misclassification cost will be large.

To visualize the cost changes, the total test costs and the
average total costs, which are obtained under some l–l-type
cost settings for other fifteen datasets, are plotted in Figs. 3,
4, 5, 6, 7. Combining the five figures with Tables 7, 8 and 9,
it is found that there is not a universally optimal value or a
rational value range for the error confidence level, namely,
the data granularity. In fact, with the increase in confidence
level, the average total cost may grow, drop or even stay the
same. Its change depends on the decision system and the cost
setting, and there is not a certain rule for the change. By using
the proposed algorithm, the minimal average total cost and
the optimal feature–granularity pair can be obtained, which
verifies the effectiveness of the algorithm.

3. Comparisons withmultiple existing feature selection algo-
rithms

As mentioned in Sect. 4.3, the proposed feature–
granularity selection approach is essentially a cost-sensitive
variable granularity–feature selection approach. To fur-
ther investigate its performance, the corresponding optimal
feature-granularity selection (OFGS) algorithm is compared
with eight existing feature selection algorithms, including
a mutual information-based (MI) algorithm (Doquire and
Verleysen 2011), a manifold learning-based (ML) algorithm
(Huang and Zhu 2017), a random forest-based (RF) algo-
rithm (Zhou et al. 2016), a particle swarmoptimization-based
(PSO) algorithm (Zhang 2017), a histogram comparison-
based (HC) algorithm (Weiss et al. 2013), a rough set-based
(RS) algorithm (Zhao et al. 2013), a rough set and Lapla-
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Fig. 7 Total test costs and average total costs: a Wdbc, b Wine, c Wpbc

cian score-based (RSLS) algorithm (Yu and Zhao 2018)
and a l2,1-norm-based (LN) algorithm (Zhao and Yu 2019).
It is notable that originally the cost settings are different
between these algorithms; even the first algorithm does
not take cost information into consideration. Moreover, all
the existing algorithms consider only features but not the
data granularity. To facilitate the comparisons, in the eight
previous algorithms the cost settings are supposed to be
the same as those discussed in Sect. 4.1, except that the
individual test costs do not change with the error confi-
dence level because the date granularity is not considered
in these algorithms. For each dataset, the nine compared
algorithms are run with multiple groups of cost param-
eter values whose generating methods are introduced in
Sect. 6.1. Meanwhile, the calculation method presented in

Sect. 4.2 is used to compute the average total costs. A
group of representative experimental results is shown in
Fig. 8.

From the figure, it can be found that the OFGS algo-
rithm significantly outperforms the eight previous feature
selection algorithms on minimizing average total costs. The
reason is that, as mentioned above, the existing algorithms
take into account only features but not the data granularity.
Consequently, the individual test costs do not reduce with
the increase in the error confidence level, which results in
relative large values of total test cost, average misclassifica-
tion cost and average total cost, while the OFGS algorithm
selects not only the optimal feature subset but also the opti-
mal data granularity to minimize the average total cost. As
discussed in Sect. 5, the OFGS algorithm invokes a back-
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Fig. 8 Representative results of comparisons between the proposed OGFS algorithm and eight existing feature selection algorithms

tracking algorithm (namely Algorithm 2) to find the locally
minimal average total cost and the corresponding feature sub-
set at each tried confidence level. Then, the locally minimal
average total costs are compared among different confidence
levels to choose the globally minimal average total cost
and the optimal feature–granularity pair. Hence, the aver-
age total cost obtained by the OFGS algorithm is often much
lower than those obtained by the eight existing algorithms.
For the same reason, it can be deduced that even if the
cost settings are set to be identical between the previous
algorithms and the OFGS algorithm, namely, the individ-
ual test costs are supposed to be changing with the data
granularity in the existing algorithms, the algorithms still
cannot perform better than the OFGS algorithm on min-
imizing average total costs because the latter can always
achieve the optimal results through invoking the backtrack-
ing algorithm. However, it is worth mentioning that the

OFGS algorithm has no advantage in the computational effi-
ciency.
4. Influences of different cost settings to the feature-
granularity selection

The influences of cost setting changes to the feature-
granularity selection are discussed in Sect. 4.3. Here, the
influences are further investigated by experimentation. The
feature–granularity selection algorithm is run with four dif-
ferent cost settings, which include an original cost setting as
a reference, double individual test costs and fixed individual
misclassification costs, fixed test costs and double misclassi-
fication costs, fixed test costs and quadruplemisclassification
costs. Five evaluationmetrics are used, which are the number
of selected features, the total test cost, the misclassification
rate, the average misclassification cost and the average total
cost. The representative results of Heart dataset are depicted
in Fig. 9 and Tables 10, 11.
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Fig. 9 Comparisons between different cost settings: a number of selected features, b total test cost, c average total cost

Table 10 Misclassification rates of Heart with respect to different cost settings and different confidence levels, where TCs and MCs are the
abbreviations of test costs and misclassification costs, respectively

Confidence levels 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.997

Original costs 0 0 0.0132 0.0132 0.0132 0.0099 0 0.0033 0.0099 0.0165

Double TCs 0.4323 0.0231 0.4323 0.0132 0.0132 0.0099 0.0198 0.0033 0.0099 0.4323

Double MCs 0 0 0.0033 0.0033 0.0033 0 0 0.0033 0 0

Quadruple MCs 0 0 0 0 0 0 0 0 0 0

The following observations could be made from the
results:
(1) With the increase in individual test costs, except that the
number of selected features usually remains unchanged or
gets smaller, other four kinds of quantity often become large;

especially, all the average total costs increase. In particular,
when the number of selected features drops, the total test
cost may decrease, but both the misclassification rate and the
average misclassification cost increase significantly. These
observations are in line with real-world applications. Take

123



Feature–granularity selection with variable costs for hybrid data

Table 11 Average misclassification costs of Heart with respect to different cost settings and different confidence levels

Confidence levels 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.997

Original costs 0 0 33.0033 30.363 27.9868 22.7723 0 7.4587 19.604 47.8548

Double TCs 220.495 50.132 220.495 30.495 28.1188 22.7723 40.198 7.4587 19.604 216.1716

Double MCs 0 0 20.066 18.7459 17.5578 0 0 14.9175 0 0

Quadruple MCs 0 0 0 0 0 0 0 0 0 0

the medical diagnosis as an example. If the cost of each kind
of test increases while a person only has a certain amount
of money, he/she may have to give up some necessary tests,
which results in an increasing possibility of misdiagnosis.
(2)With the increase in individualmisclassification costs, the
number of selected features, the total test cost and the average
total cost increase or stay the same, while the misclassifica-
tion rate and the average misclassification cost usually drop
even to zero. Particularly, when the individual misclassifica-
tion costs are the quadruples of the original ones, namely,
they are high enough, all of misclassification rates and aver-
age misclassification costs are equal to zero. The reason is
that now each misclassification will induce a large cost. To
reduce the total misclassification cost, more necessary fea-
tures are needed. Hence, the misclassification rate is low and
even reaches zero. Interestingly, in some practical applica-
tions, minimizing the misclassification rate or equivalently
minimizing the total misclassification cost is more attractive
thanminimizing the total cost. It can be found from the above
experimental analysis that, if allowed, setting high individ-
ual misclassification costs is a feasible solution for this kind
of optimization objective. This finding is useful for decision
making.

In summary, the effectiveness of the proposed opti-
mal feature–granularity selection algorithm is demonstrated
through experiments on multiple data sets from multiple
perspectives. A good trade-off among feature dimension
reduction, data granularity selection and total cost mini-
mization can be achieved by the algorithm. In addition,
the in-depth experimental analysis provides some feasible
schemes for decision making. It is notable that although
most of the individual test costs for numeric features and
the individual misclassification costs are, respectively, given
in a single form (either linear functions or piecewise con-
stant functions) in the above experiments for simplicity,
one could also set the cost functions in a mixed form
or design other types of cost functions according to real-
ity. The observations are similar; namely, the proposed
algorithm is an effective solution to obtain the minimal
total cost and the optimal feature–granularity pair in any
case.

7 Conclusions

In this paper, a feature–granularity selection approach was
proposed to find the optimal feature subset and the optimal
data granularity simultaneously for hybrid data in terms of
measurement errors and variable costs. First, an adaptive
neighborhood model was constructed, in which the neigh-
borhood granules are adaptive to the types of features. Then,
multiple types of variable cost settingwere developed accord-
ing to reality, and the influences of cost setting changes to the
feature–granularity selection were analyzed. Finally, an opti-
mal feature–granularity selection algorithm was designed.
Experimental results have validated the effectiveness of the
proposed algorithm. By the algorithm, an optimal pair of
feature subset and data granularity can be selected to mini-
mize the total cost for processing hybrid data. Particularly,
the influences of different cost settings were further investi-
gated in the experiments, which could offer some desirable
schemes for decision making. In the future, we will develop
a parallel method to solve the feature–granularity selection
problem for massive hybrid data.
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