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Clustering ensemble has drawn much attention in recent years due to its ability to generate a high quality

and robust partition result. Weighted clustering ensemble and selective clustering ensemble are two general

ways to further improve the performance of a clustering ensemble method. Existing weighted clustering en-

semble methods assign the same weight to each cluster in a partition of the ensemble. Since the qualities of

the clusters in a partition are different, the clusters should be weighted differently. To address this issue, this

article proposes a new measure to calculate the similarity between a cluster and a partition. Theoretically, this

measure is effective in handling two problems in measuring the quality of a cluster, which are defined as the

symmetric problem and the context meaning problem. In addition, some properties of the proposed measure

are analyzed. This measure can be easily expanded to a clustering performance measure that calculates the

similarity between two partitions. As a result of this measure, we propose a novel selective clustering ensem-

ble framework, which considers the differences between the objective of the ensemble selection stage and the

object of the ensemble integration stage in the selective clustering ensemble. To verify the performance of

the new measure, we compare the performance of the measure with the two existing measures in weighting

clusters. The experiments show that the proposed measure is more effective. To verify the performance of

the novel framework, four existing state-of-the-art selective clustering ensemble frameworks are employed

as references. The experiments show that the proposed framework is statistically better than the others on

17 UCI benchmark datasets, 8 document datasets, and the Olivetti Face Database.

CCS Concepts: • Theory of computation → Unsupervised learning and clustering; • Computing method-

ologies → Ensemble methods;
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1 INTRODUCTION

Clustering analysis plays an important role in machine learning. The goal of a clustering method

is to discover a group structure of an unsupervised dataset. Without prior-knowledge about a

dataset, different clustering methods generally generate different results. It is hard to judge which

one is the best. To address this issue, one can integrate multiple clustering results to achieve a high

quality and robust clustering result. This technique is called clustering ensemble. The integrated

clustering is expected to obtain higher quality and robustness than the result of a single clustering

algorithm. In the past decade, clustering ensemble has become a popular technique to deal with the

data clustering problem. Due to the good performance and flexible processes, clustering ensemble

has been applied in many areas in machine learning, such as document datasets learning (Xu et al.

2016), high dimensional data clustering (Fern and Brodley 2003; Jing et al. 2015; Li et al. 2013),

streaming data clustering (Khan et al. 2016; Yang and Chen 2011), noisy data analysis (Yu et al.

2015), and imbalanced data analysis (Chen et al. 2010).

In a clustering ensemble problem, there are two major issues: ensemble generation and ensem-

ble integration. As for the former, the generated multiple clustering results are often known as

base clusterings or base partitions. The literature has declared that diversity and accuracy of the

base partitions are important to the performance of the consensus clustering (Topchy et al. 2005).

Many ensemble generation methods, which satisfy the requirements, have been proposed (Fischer

and Buhmann 2003; Jing et al. 2015; Topchy et al. 2005; Wang et al. 2014; Yang et al. 2014). To

generate different base clustering results, commonly used strategies include multiple parameter

settings of one clustering algorithm, multiple clustering algorithms, and multiple data samplings

or projections. For the latter, the literature focuses on designing effective clustering ensemble al-

gorithms. A clustering ensemble algorithm generates a consensus clustering which is most similar

to the base clustering results without accessing the original dataset. To design such an algorithm,

many partition techniques haven been utilized, in which the set match techniques (Li et al. 2017;

Zhou and Tang 2006), the graph partition techniques (Acharya et al. 2014; Fern and Brodley 2004;

Huang et al. 2016; Strehl and Ghosh 2002; Zheng et al. 2014), and the clustering methods (Fred and

Jain 2005; Gionis et al. 2007; Huang et al. 2015; Qian et al. 2016; Wu et al. 2015; Yu et al. 2015) are

three widely used techniques. Obviously, a well-designed algorithm can generate a high quality

integrated result. In addition, the Weighted Clustering Ensemble (WCE) (Li and Ding 2008; Yang

and Chen 2011; Yousefnezhad and Zhang 2015) and Selective Clustering Ensemble (SCE) (Fern and

Brodley 2003) have been proposed to improve the performance of clustering ensemble.

As for WCE, many approaches employ a clustering performance measure to weight each par-

tition in the ensemble. The commonly used measures are Adjusted Rand Index (ARI) (Hubert and

Arabie 1985) and Normalized Mutual Information (NMI) (Strehl and Ghosh 2002). These measures

evaluate the similarity between two clustering results. Based on these measures, different weights

are assigned to the base partitions, while the clusters in a partition share the same weight. How-

ever, for a clustering result, the characteristics of different clusters may be different. Therefore, the

performance of the consensus clustering can be further improved if the quality of every cluster in

the base clustering results is taken into consideration. Because the cluster’s quality should reflect

the context meaning of the cluster in the entire data, it should be measured based on both the

cluster and the whole data points. Thus, the cluster’s quality can be measured through comparing
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it with a reference clustering partition. Generally, this comparison is derived by transforming the

cluster to a clustering form and applying a clustering similarity measure. Therefore, in the ex-

isting researches (Alizadeh et al. 2014; Law et al. 2004), this comparison between a cluster and a

partition is called their similarity. Two measures that calculates the similarity between a clus-

ter and a partition have been designed, which are Binary-NMI (BNMI) (Law et al. 2004) and

Alizadeh–Parvin–Moshki–Minaei criterion (APMM) (Alizadeh et al. 2014). However, it has been

shown in the literature that these two measures has their own problems (Yousefnezhad et al. 2018).

In this article, we describe the two problems that exist in the two measures, which are called the

symmetric problem and the context meaning problem. The two problems are caused in reconcil-

ing the information asymmetry between a cluster and a partition. To effectively solve these two

problems, in this article, a new similarity measure between a cluster and a partition is proposed.

We theoretically analyze the ability of the proposed measure in handling the two problems and in

weighting clusters. This measure not only can be applied to weighting of each cluster, but also can

be expanded to a similarity measure between two partitions. As a result of the proposed measure,

we also attain a novel SCE framework.

In machine learning, feature selection is an effective approach to improve the learning perfor-

mance (Blum and Langley 1997; Jain et al. 2000; Qian et al. 2010, 2015). Inspired by feature selection,

SCE is proposed to improve the clustering ensemble performance. Research about the SCE mainly

focuses on determination of the influence of diversity and quality to the performance of the en-

semble result. Due to the unknown truth label, the quality of the base partitions set could not be

evaluated directly. As a compromise, the quality of a set of partitions is represented by stability

(Kuncheva and Vetrov 2006), which is the average of all pairwise similarity values between parti-

tions. The diversity of an ensemble is often evaluated by the average dissimilarity between each

pair of base partitions. It is easy to see that the diversity and stability are two opposite evaluation

criteria. Prior researches about SCE explored whether diversity or stability is the determining fac-

tor to the selection of base clusterings. Recently, more researches tend to combine diversity and

stability in the selection of a subset of special base partitions. These researches propose a measure

that combines stability and diversity to guide the selection, or design a complex process that takes

into consideration of both quality and diversity. The difficult choice between diversity and stability

is mainly caused by the fact that the objective of ensemble selection and the objective of ensemble

integration are different. It is well known that similar base partitions limit the improvement of the

clustering ensemble performance; so, diversity is often employed as the selection criterion. How-

ever, since the ensemble integration is trying to generate a partition which is most similar with

the base partitions, stability may be useful in the process of generating such a clustering. Based

on the above discussion, this article introduces a novel SCE framework, which uses diversity to

select base partitions and uses stability to weight the selected partitions.

Briefly, the contributions of this article are as follows:

—A measure which evaluates the similarity between a cluster and a partition is proposed. This

measure is proved to be effectiveness in handling the symmetric problem and the context

meaning problem in existing measures. In addition, this measure has some good properties

in weighting clusters.

—A novel SCE framework is proposed. In this framework, diversity is used to select a subset

of base partitions and stability is used to weight the importance of the selected partitions.

This framework considers different objectives in different stages in the SCE process.

—Experiments are conducted to show the effectiveness of the proposed measure and the ef-

fectiveness of the proposed selective framework.
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The rest of this article is organized as follows: In Section 2, we introduce the notations used

in this article and the previous works about SCE. In Section 3, we describe existing similarity

measures between a cluster and a partition, and discuss two problems in these measures. In Sec-

tion 4, a novel measure that evaluates the similarity between a cluster and a partition is proposed,

and its advantages are theoretically analyzed. In Section 5, we propose a SCE framework. In Sec-

tion 6, experiments are conducted to show the effectiveness of the proposed measure in weighting

clusters. In addition, the performance of the novel selective framework is evaluated by experiments

in this section. Finally, this article is concluded in Section 7.

2 RELATED WORKS

Clustering ensemble technique solves a date clustering problem through combining multiple

clustering results. Let U = {x1,x2, . . . ,xn } indicate a dataset with n samples. After the ensem-

ble generation step, a set of base clustering results Π will be obtained, which can be expressed as

Π = {π 1,π 2, . . . ,π l }, where l is the ensemble size. Based on Π, a clustering ensemble method will

generate a clustering result π ∗, which is similar to each base partition. Without loss of general-

ity, let F be a clustering ensemble method. Then, a clustering ensemble problem can be solved by

π ∗ = F (Π).
SCE is an effectiveness technique to improve the ensemble performance and reduce the com-

putation cost of a clustering ensemble method. It improves the ensemble performance through

improving the quality of base partition set. Given a set of base partitions, a SCE method gener-

ates the consensus result based on a subset of partitions which conform to the demands for the

base clustering results. The researches about the SCE problem mainly try to explore an effective

guidance for the selection of base partitions. Diversity and stability are two important factors in

SCE. Given a set of base partitions Π = {π 1,π 2, . . . ,π l } and a clustering similarity measure sim,

the stability si and diversity di of partition π i are calculated by:

si =
1

l − 1

l∑
j=1, j�i

sim(π i ,π j ), (1)

di =
1

l − 1

l∑
j=1, j�i

(
1 − sim(π i ,π j )

)
. (2)

Primely, the researches compared the influence of diversity and stability of the base partitions

to the selective ensemble performance. In Fern and Brodley (2003), the author stated that low di-

versity limits the improvement of the performance, then high divers subset of partitions should

be selected. Kuncheva Kuncheva and Hadjitodorov (2004) further developed the work in Fern and

Brodley (2003) and suggested that the number of clusters in each base partition should be chosen

randomly and should be larger than the expected number. In Hadjitodorov et al. (2006), the rela-

tionships between the diversity level and the ensemble accuracy were analyzed, the results show

that a subset of partitions with median diversity obtains good performance. The diversity can be

calculated by many measures, each of which is effective in specific cases. However, choosing a

suitable measure is challenging. To handle this challenge, in Naldi et al. (2013), the author com-

bined relative measures to select diverse partitions. In Kuncheva and Vetrov (2006), a new measure

which combines the pairwise clustering similarity and the ensemble stability was proposed, and

this measure has positive correlation with the ensemble accuracy. Azimi and Fern (2009) deemed

that the selection of a subset partitions should based on diversity or stability is related to the char-

acteristics of the base clusterings. Based on a diversity measure, the base partitions set can be
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labeled as stable or non-stable. In Azimi and Fern (2009), the author suggested using stability to

select base partitions for a stable ensemble, and using diversity for a non-stable ensemble.

It is clear that diversity and stability are two opposite estimations. Recently, Many methods com-

bine diversity and stability to select a subset of partitions. The most direct method is using a control

parameter to balance diversity and stability (Hong et al. 2009). To combine diversity and stability,

Fern and Lin (2008) proposed three selective clustering methods, which are called Joint Criterion,

Cluster and Select, and Convex Hull, respectively. The Joint Criterion method optimizes a single

aggregated objective function, which is a trade-off between diversity and stability. The Cluster and

Select method runs a clustering algorithm on the base partitions and selects the partition which

has the highest stability in each cluster. The Convex Hull method produces a stability–diversity

scatter diagram and selects the partitions which correspond to the convex hull. In Jia et al. (2011),

multiple referential partitions are generated through integrating multiple randomly selected base

partitions, and the clustering results which are similar to the referential partitions are selected.

In this process, multiple referential partitions guarantee the diversity, and the selected similar

partitions guarantee the stability. Based on a set of partitions, Rastin and Kanawati (2015) builds a

multiplex network, in which each community is obtained by diversity measure and the most stable

partition is selected. Akbari et al. (2015) proposed a method called Hierarchical Cluster Ensemble

Selection (HCES), which merges divers partitions into multiple groups by hierarchical algorithm

and selects the most stable partition from each group to form the ensemble members.

Although a large number of SCE methods have been proposed, few of them investigate the

influence of the characteristic of clusters to the ensemble performance. In this article, we propose

to evaluate the cluster’s quality and improve the ensemble performance through selecting and

weighting clusters.

3 EXISTING SIMILARITY MEASURES BETWEEN A CLUSTER AND A PARTITION
AND THEIR LIMITATIONS

A clustering result or a partition π i consists of multi non-intersect clusters, which is π i =

{ci
1, c

i
2, . . . , c

i
ki
}, where ki is the number of clusters in π i . There is no doubt that the qualities of

clusters in a clustering result are different. To measure the quality of a cluster, a similarity measure

between a cluster and a partition is needed. In this section, the existing measures for estimating the

similarity between a cluster and a partition are reviewed. There are two related pieces of research,

both of which extend the NMI. The two existing measures are BNMI and APMM. In addition,

two problems of the existing measures are defined. In the following of this article, we use | • | to
indicate the number of samples in •, which can be a cluster, a partition, or a set of clusters.

3.1 The BNMI

One challenge in measuring the similarity between a cluster and a partition is the asymmetric

information between them, i.e., the sample size of the cluster and that of the partition are different.

To handle this challenge, in Law et al. (2004), the authors treated the cluster c as a two group

partition πc = {c,U /c} and transforms the reference partition π into a two group partition πд =

{cд ,U /cд }, where cд is the set of samples in the clusters which correspond to πc in π . A cluster

is corresponding to another one if their common samples are more than half the number of the

samples in the measured cluster. Thus, cд can be defined by:

cд =

{
x |x ∈ cπ

i , |cπ
i ∩ c | >

1

2
|cπ

i |, i = 1, . . .kπ

}
.

Then, the similarity between a cluster c and a partition π can be calculated by NMI(πc ,πд ).
This measure is noted as BNMI because it can be treated as a binary type of NMI. The NMI is
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Fig. 1. Examples of a cluster and two partitions.

Fig. 2. Examples of a cluster and four partitions.

an normalized version of mutual information. The mutual information quantifies the information

shared between two partitions. The NMI between two partitions πb and πd is calculated by:

NMI(πb ,πd ) =

∑kb

i=1

∑kd

j=1 ni j log

(
nni j

|cb
i | |c

d
j |

)
√(∑kb

i=1 |cb
i | log

(
|cb

i |
n

)) (∑kd

j=1 |cd
j | log

(
|cd

j |
n

)) , (3)

where ni j is the number of shared samples of cb
i and cd

j .

The BNMI is calculated by:

BNMI(c,π ) = NMI(πc ,πд ). (4)

3.2 The APMM

To handle the asymmetric information challenge, in Alizadeh et al. (2014), the authors proposed

a measure called APMM. The APMM measures the similarity between a cluster c and its corre-

sponding sub-partition πp in π . Specifically, πp is the partition result of samples in c induced by

π , which can be defined by:

πp = {c ′|c ′ = cπ
i ∩ c, i = 1, . . . ,kπ }.

The APMM is defined as:

APMM(c,π ) = APMM(c,πp ) =
−2|c | log

(
n
|c |

)
|c | log

( |c |
n

)
+

∑kp

i=1 |c
p
i | log

(
|cp

i |
n

) . (5)

3.3 Two Problems in the Existing Measures

BNMI and APMM have their drawbacks in special situations. To preliminarily show their draw-

backs, we employ two set of examples which are shown in Figure 1 and Figure 2.
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In Figure 1, a cluster c1 and two partitions π 1 and π 2 are listed. Based on BNMI, the following

results will be obtained:

BNMI(c1,π
1) = BNMI(c1,π

2) = 1.

It is obvious that the two partitions π 1 and π 2 are different, especially the partition results of

the samples in cluster c1. However, the BNMI generates the same similarity values on these two

comparisons.

Figure 2 shows a cluster and four partitions. In Figure 2, it is obvious that the four partitions are

different. However, with Formula (5), we obtain the following results:

APMM(c2,π
3) = APMM(c2,π

4),

APMM(c2,π
5) = APMM(c2,π

6).

The problem in Figure 1 is called the symmetric problem and the problem in Figure 2 is called

the context meaning problem. To give the definitions of the two problems, we first introduce two

sub-partitions based on a cluster c and a partition π , which are corresponding partition CPπ
c and

extended partition EPπ
c .

Definition 3.1 (Corresponding Partition CPπ
c ). Given a cluster c and a partition π , the correspond-

ing partition CPπ
c is the partition result of samples in c induced by π , which is formulated as:

CPπ
c = {cpπ

i |cpπ
i = c

π
i ∩ c, cπ

i ∩ c � ∅, i = 1, . . . ,kπ },

where cπ
i is the ith cluster in partition π , and kπ is the number of clusters in π .

Definition 3.2 (Extended Partition EPπ
c ). Given a cluster c and a partition π , the extended partition

EPπ
c is the union of the clusters in π which have nonempty intersection with c . EPπ

c is:

EPπ
c = {epπ

i |epπ
i = c

π
i , c

π
i ∩ c � ∅, i = 1, . . . ,kπ },

where cπ
i is the ith cluster in partition π , and kπ is the number of clusters in π .

It is obvious that the cluster indices in CPπ
c and EPπ

c are the same. For the convenience of indi-

cating the clusters in CPπ
c and EPπ

c , we define the set of their cluster indices as Kπ
c , which is:

Kπ
c = {i |cπ

i ∩ c � ∅, i = 1, . . . ,kπ }.

Obviously, the set of samples in CPπ
c are the same as the set of samples in c , which is:

SCPπ
c = SC = {x |x ∈ c}.

The set of samples in EPπ
c is:

SEPπ
c = {x |x ∈ epπ

i , epπ
i ∈ Pπ

c , i ∈ Kπ
c }.

To clearly show the corresponding partition CPπ
c and the extended partition EPπ

c , we employ an

example with two partitions, which is shown in Figure 3. Without loss of generality, we assume that

the measured cluster is c = c1
1, which is the green area in Figure 3(a), and the measured partition

is the partition π in Figure 3(b). Based on c and π , Figure 3(b) shows the corresponding partition

CPπ
c and the extended partition EPπ

c .

With the above definitions, the symmetric problem and the context meaning problem can be

described as follows:

—Problem 1 (The Symmetric Problem). Given a cluster c and two partitions πb and πd , the

symmetric problem is that when CPb
c � CP

d
c and SEPb

c = SEPd
c = SC , a similarity measure

sim generates the result with sim(c,πb ) = sim(c,πd ).
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Fig. 3. Examples of two partitions.

The condition CPb
c � CPd

c indicates that the partitions πb and πd are different, then the

similarity values sim(c,πb ) and sim(c,πd ) should be different.

—Problem 2 (The Context Meaning Problem). Given a cluster c and two partitions πb and

πd , the context meaning problem is that when EPb
c � EPd

c and CPb
c = CP

d
c , a similarity mea-

sure sim generates the result with sim(c,πb ) = sim(c,πd ).
Similarly, EPb

c � EPd
c indicates that πb � πd . In this situation, an effective similarity mea-

sure should generates different similarity values, i.e., sim(c,πb ) � sim(c,πd ).

Based on the definition of BNMI and APMM, the following two facts can be obtained:

—Fact 1 BNMI has the symmetric problem.

Proof. Following from the definition of BNMI and that of the symmetric problem, one has:

SEPb
c = SC⇒ |epb

i ∩ c | = |epb
i |, i ∈ Kb

c .

Then, cb
д =

⋃
i ∈Kb

c
epb

i = c and πc = πb
д . With Formula (4), one has BNMI(c,πb ) =

NMI(πc ,π
b
д ) = 1.

In the same way, BNMI(c,πd ) = 1. That is BNMI(c,πb ) = BNMI(c,πd ) = 1, which means

the BNMI has the symmetric problem. �
—Fact 2 APMM has the context meaning problem.

Proof. Following from Definition 1 and the definition of APMM, one has:

CPb
c = CPd

c ⇒ πb
p = πd

p .

Then, APMM(c,πb ) = APMM(c,πd ), which means APMM has the context meaning prob-

lem. �

To mitigate the above two problems, we propose a novel measure to calculate the similarity

between a cluster and a partition.

4 A NEW SIMILARITY MEASURE BETWEEN A CLUSTER AND A PARTITION

From the discussions in Section 3.3, it is obvious that both the two cluster goodness measures

BNMI and APMM are extended types of the NMI measure. The NMI measure requires equal size of

the compared partitions. To satisfy this requirement, the BNMI measure transforms the compared

partition into a binary type, which causes the symmetric problem, while the APMM extracts the

sub-partition corresponding to the compared cluster from the partition, which causes the context

meaning problem. It can be concluded that the NMI may be unsuitable for measuring the similarity
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between a cluster and a partition. In this section, to calculate the similarity between a cluster and a

partition, we introduce a novel measure, which is based on matching degree evaluation. Following

that, we show the advantages of the measure in handling the symmetric problem and the context

meaning problem, and then we analyze some properties of the measure in weighting clusters.

4.1 The Measure Based on Set Matching Degree Evaluation

The new measure calculates the similarity between a cluster and a partition through evaluating

the set matching degree between them. We use SME to represent the measure in the following

of the article.

To clearly show how SME calculates the similarity between a cluster and a partition, we employ

the examples in Figure 3. Our goal is to measure the similarity between the cluster c and the

partition π , which is expressed as SME(c,π ). The proposed SME(c,π ) is composed of two parts,

which are the similarity between cluster c and the corresponding partition CPπ
c and the similarity

between CPπ
c and the extended partition EPπ

c .

Following the definition of CPπ
c , the CPπ

c can be treated as a partition result of c . The requirement

of CPπ
c is not breaking up the cluster c . Therefore, there should exist a main cluster in CPπ

c . The

quality of CPπ
c can be measured by the cardinality of the main cluster. Thus, the similarity between

c and CPπ
c is calculated by

sim(c,CPπ
c ) = max

i ∈K π
c

|cpi |
|c | , (6)

where cpi is the ith cluster in the corresponding partition CPπ
c .

The comparison between CPπ
c and EPπ

c should reflect the quality of treating CPπ
c as a cluster.

Through this comparison, the context meaning of CPπ
c will be taken into consideration. The sim-

ilarity between CPπ
c and EPπ

c is calculated by:

sim(CPπ
c ,EPπ

c ) =
∑

i ∈K π
c

|cpi |
|c |
|cpi |
|epi |
, (7)

In Formula (7),
|cpi |
|epi | calculates the fraction of discovered samples in a cluster, and

|cpi |
|c | weights the

influence of each cluster in CPπ
c .

Combining Formula (6) and Formula (7), the similarity between a cluster c and a partition π is

calculated by:

SME(c,π ) = max
i ∈K π

c

|cpi |
|c | ·

∑
i ∈K π

c

|cpi |
|c |
|cpi |
|epi |
. (8)

4.2 The Advantages of SME in Handling the Two Problems

To show the advantages of SME in handling the symmetric problem and the context meaning

problem, we first calculate the similarity values of the examples in Figure 1 and Figure 2 with

Formula (8). For the examples in Figure 1, the results are:

SME(c1,π
1) =

1

2
, SME(c1,π

2) =
3

4
.

The partition π 2, which contains an obvious main cluster, obtains a greater similarity value. These

results accord with our anticipate.

Property 1. If maxi ∈Kb
c

|cpb
i |
|c | � maxj ∈Kd

c

|cpd
j |
|c | , the SME has no symmetric problem.
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Proof. From the definition of the symmetric problem, we have SEPb
c = SEPd

c = SC. From this

condition, it follows that CPb
c = EPb

c and CPd
c = EPd

c . Then,∑
i ∈Kb

c

|cpb
i |
|c |
|cpb

i |
|epb

i |
= 1,

∑
i ∈Kd

c

|cpd
i |
|c |
|cpd

i |
|epd

i |
= 1.

Therefore,

SME(c,πb ) = max
i ∈Kb

c

|cpb
i |
|c | ,

and

SME(c,πd ) = max
j ∈Kd

c

|cpd
j |
|c | .

With the condition maxi ∈Kb
c

|cpb
i |
|c | � maxj ∈Kd

c

|cpd
j |
|c | , it holds true that SME(c,πb ) � SME(c,πd ),

which means that the SME is able to handle the symmetric problem in this situation. �

The results of the examples in Figure 2 are listed as follows:

SME(c2,π
3) =

1

2
, SME(c2,π

4) =
1

3
, SME(c2,π

5) =
2

3
, SME(c2,π

6) = 1.

These results show the ability of SME in mitigating the context meaning problem. Comparing

with the APMM values on these examples, it is easy to see that APMM generates two groups of

equal values on the four different partitions, while the SME reflects these differences. This advan-

tage comes from that SME takes into consideration the expended area.

Property 2. If the vectors

X1 =

⎡⎢⎢⎢⎢⎣

|cpb
1 |
|c | ,

|cpb
i |
|c | , . . .

|cpb
kb
|

|c |

⎤⎥⎥⎥⎥⎦
,

X2 =

⎡⎢⎢⎢⎢⎣

|cpb
1 |

|epb
1 |
,
|cpb

2 |
|epb

2 |
, . . .
|cpb

kb
|

|epb
kb
|

⎤⎥⎥⎥⎥⎦
,

Y1 =

⎡⎢⎢⎢⎢⎣

|cpd
1 |
|c | ,

|cpd
i |
|c | , . . .

|cpd
kd
|

|c |

⎤⎥⎥⎥⎥⎦
,

and

Y2 =

⎡⎢⎢⎢⎢⎣

|cpd
1 |

|epd
1 |
,
|cpd

2 |
|epd

2 |
, . . .
|cpd

kd
|

|epd
kd
|

⎤⎥⎥⎥⎥⎦
satisfy X1X

�
2 � Y1Y

�
2 ; the SME has no context meaning problem.

Proof. From the definition of the context meaning problem, one has CPb
c = CPd

c . Then,

max
i ∈Kb

c

|cpb
i |
|c | = max

j ∈Kd
c

|cpd
j |
|c | .
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With CPb
c = CPd

c , it can be obtained that the indices set of the clusters in πb and πd are the

same, i.e., Kb
c = Kd

c . For convenience, we let K = Kb
c = Kd

c . Then,

|cpb
i |
|c | =

|cpd
i |
|c | =

|cpi |
|c | ,

where i ∈ K .

We let Z = [
|cp1 |
|c | ,

|cpi |
|c | , . . .

|cpk |
|c | ]. Then, X1 = Y1 = Z . Thus,

SME(c,πb ) = max
i ∈K

|cpb
i |
|c | · ZX

�
2 ,

SME(c,πd ) = max
i ∈K

|cpd
j |
|c | · ZY

�
2 .

With the condition X1X
�
2 � Y1Y

�
2 , SME(c,πb ) � SME(c,πd ) will hold, which means that the

SME is able to handle the context meaning problem in this situation. �

4.3 Analysis of SME

In this section, several intuitive tendencies in comparing a cluster and a partition are discussed,

and the corresponding performances of SME are analyzed.

The estimation of similarity between a cluster and a partition can be treated as measuring the

preserved consistency of the partition when treat the corresponding samples in the measured

cluster as a group. Without correction for chance, the preserved consistency should be larger than

zero. From this consideration, the region of the estimation should be (0, 1].

Property 3. The range of SME is (0, 1], and SME(c,π ) = 1 if and only if the cluster c is a cluster

in the partition π .

Proof. Following from the definition of CPπ
c and EPπ

c , it is easy to obtain that |cpi | > 0 and

|epi | > 0. Then, maxi ∈K π
c

|cpi |
|c | > 0, and

∑
i ∈K π

c

|cpi |
|c |

|cpi |
|epi | > 0. With Formula (8), SME > 0 will hold.

From Formula (8), it can be seen that the two parts of SME are no greater than 1. Then, SME will

obtain value 1 if and only if both of the two parts of SME get value 1. Considering the former part of

SME, maxi ∈K π
c

|cpi |
|c | = 1 will hold if and only if |cpi | = |c |, which means CPπ

c = c . In this situation,

the later part of SME will be 1 if and only if |CPπ
c | = |EPπ

c |. Then, it can be concluded that SME

takes on value 1 only when CPπ
c = EPπ

c = c , which means that the measured cluster corresponds

to a cluster in the measured partition. �

In the following, we discuss the influence of the size of the expanded group and the size of the

measured cluster to the similarity value.

Intuitively, for a partition, if the size of the expanded partition is similar to that of the measured

cluster, this partition tend to be similar to the cluster. SME defers to this tendency.

Property 4. For a cluster c and two partitions πb and πd , if CPb
c = CPd

c and |epb
i | < |epd

i |, i ∈ K ,

where K = Kb
c = Kd

c , then SME(c,πb ) > SME (c,πd ).

Proof. The condition CPb
c = CPd

c indicates that cpb
i = cpd

i , where i ∈ K . Then,

max
i ∈K

|cpb
i |
|c | = max

j ∈K

|cpd
j |
|c | ,
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and

|cpb
i |
|c | =

|cpd
i |
|c | ,

where i ∈ K .

With the condition |epb
i | < |epd

i |, one has

|cpb
i |

|epb
i |
>
|cpd

i |
|epd

i |
,

where i ∈ K .

Based on the above results and Formula (8), SME(c,πb ) > SME(c,πd ) holds. �

In Property 4, CPb
c = CPd

c and |epb
i | < |epd

i | indicate that the partition πb has smaller extend

partition than partition πd in the same situation. The result SME(c,πb ) > SME(c,πd ) indicates

that the partition which has smaller extend area has higher SME value.

As for the size of the measured cluster, if the expand partitions of two clusters are the same, the

cluster which contains more samples should obtain greater similarity value than the other cluster.

That is to say, a bigger cluster should obtain higher similarity value when the other situations are

the same.

Property 5. For a partition π and two clusters cb and cd , if EPπ
b
= EPπ

d
and

|cb |
|cd | =

|cpb
i |

|cpd
i |
> 1,

i ∈ K , where K = Kb
c = Kd

c , then SME(c,πb ) > SME(c,πd ).

Proof. Following from the condition that
|cb |
|cd | =

|cpb
i |

|cpd
i |
> 1, one has

max
i ∈K

|cpb
i |
|cb |

= max
j ∈K

|cpd
j |
|cd |
,

and

|cpb
i |
|cb |

=
|cpd

i |
|cd |
,

where i ∈ K .

Based on the condition EPπ
b
= EPπ

d
and

|cpb
i |

|cpd
i |
> 1, one has

|cpb
i |

|epb
i |
>
|cpd

i |
|epd

i |
,

where i ∈ K .

With the above results and Formula (8), SME(c,πb ) > SME(c,πd ) holds. �

From the above discussions, the proposed SME conforms to the intuitive demands for the mea-

sure between a cluster and a partition. Therefore, the proposed SME may be suitable for weighting

the quality of the clusters in a set of partitions.

4.4 Using SME to Measure the Similarity Between Two Partitions

Another advantage of SME is that it is easy to be extended to measuring the similarity be-

tween two partitions, which is notated as SMEP . Suppose the two partitions to be measured are

πb = {cb
1 , c

b
2 , . . . , c

b
kb
} and πd = {cd

1 , c
d
2 , . . . , c

d
kd
}. Referring to the partition πd , the quality of all

the clusters in πb can be measured by SME. The quality of partition πb can be reflected by the

average quality of its clusters. In the same way, the quality of partition πd can be measured. The
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similarity between the two partitions can be quantized by their average quality. Thus, based on

SME, the similarity between the partitions πb and πd can be calculated as follows:

SMEP(πb ,πd ) =
1

2

�	



1

kb

kb∑
i=1

SME(cb
i ,π

d ) +
1

kd

kd∑
j=1

SME(cd
j ,π

b )��

.

As a result of SME, in what follows, we propose a novel SCE framework. This framework com-

bines diversity and stability. As an improvement, the proposed framework meets the different

demands in the selecting step and integrating step in the SCE process.

5 A NEW SELECTIVE CLUSTERING ENSEMBLE FRAMEWORK

It has been commonly agreed that both diversity and stability of the base partitions are important

to the performance of a clustering ensemble algorithm. Then, both the factors should be utilized

in the process of a SCE algorithm. The main challenge of using both diversity and stability in a

single selective algorithm is that these two factors are conflicting. To handle this challenge, most of

the existing algorithms are very complicated. In this section, we propose a novel SCE framework

which responds to this challenge in a simple way.

The requirement of both diversity and stability comes from the fact that diverse base partitions

are important in improving the ensemble performance, while the final objective is to discover a

stable partition. To meet this requirement, the utilization of diversity and stability can be sepa-

rated in different stages in the processes of SCE. Generally, a SCE problem is solved in two stages,

which are ensemble selection and ensemble integration. Meanwhile, the fundamental objectives

of these two stages are quite different. In the ensemble selection stage, the objective is to select

diverse base partitions. Thus, in this stage, the diversity should play the most important role. In the

ensemble stage, the objective is to discover a partition which shares the most information with the

base partitions. That is, the discovered partition can be treated as a stable partition from the view

of the base partitions. Therefore, the stability is important in this stage. Based on the above con-

siderations, the proposed framework utilizes diversity to select diverse base partitions and utilizes

stability to weight the selected partitions. We call this framework DS for short. The DS framework

takes three factors as input – a similarity measure Sim measuring the diversity of each partition

by Formula (2), a threshold ts selecting a set of base partitions, and a clustering ensemble method

F generating a consensus partition π ∗ = F (Π).
In what follows, we embed the SME into the DS framework to form the DSME method. In

Section 3.2, the SME is extended to SMEP, which can be utilized to measure the similarity between

two partitions. Then, SMEP can be employed as the similarity measure in the DS framework to

select a subset of base partitions.

It should be noted that the weights for base partitions treat the clusters in a partition result

equally. However, due to the complex data distribution, the qualities of different clusters in a parti-

tion could be different. The measure which quantifies the similarity between two partitions cannot

reflect this difference. The advantage of utilizing SME in the weighting process is that each single

cluster in the base partitions can be weighted. These weights offer the confidence that two samples

are in the same cluster at the cluster level. With a set of cluster weights, a weighted refined cluster

matrix (WRA) and a weighted co-association matrix (WCO) can be obtained, which will improve

the performance of clustering ensemble methods based on these matrices. The refined cluster ma-

trix (RA(n×h)) is a binary matrix, i.e., RA ∈ {0, 1}(n×h) . The RA-matrix indicates every cluster in the

base partitions. Each column in a RA-matrix corresponds to a cluster, in which the entries will be

1 if the corresponding samples belong to the cluster and the entries will be 0 otherwise. With a

set of cluster weights, the weighted RA-matrix wRA is easy to obtain. The co-association matrix
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(CO(n×n)) reflects the relation between all pairs of samples, in which each element is the frequency

that two samples appear in the same cluster. The weighted co-association matrixwCO(n×n) can be

obtained based on wRA. With the weights of clusters, the effectiveness of a clustering ensemble

method based on the RA or CO could be improved through introducing the wRA or wCO.

The detailed process of the DSME is shown in Algorithm 1. The time complexity of DSME con-

tains three parts, which are selecting base partitions, weighting base partitions, and combining

base partitions. The time complexity of selecting base partitions and weighting base partitions are

O (h2), where h is the total number of clusters in the ensemble, i.e., h = k1 + k2 + · · · + kl . Com-

bining base partitions has the same time complexity as the utilized clustering ensemble method F ,

which is noted asO (TF ). The time complexity of a clustering ensemble method based on RA-matrix

is at least O (nh). The time complexity of a clustering ensemble method based on CO-matrix is at

least O (n2). Then the total time complexity of DSME is O (2h2 +TF ).

ALGORITHM 1: DSME

INPUT: Base partitions Π = {π 1,π 2, . . . ,π l },
a selection threshold ts ,

a consensus function F
OUTPUT: A consensus clustering π∗

1: l ′ = 1, Π′ = ∅
2: for i = 1 to l do

3: Di =
1

l−1

∑l
j=1, j�i (1 − SMEP (π i ,π j ))

4: if Di > ts then

5: π l ′ ← π i , Π′ = Π′ ∪ π j , l ′ = l ′ + 1

6: end if

7: end for

8: The selected partitions Π′ = {π 1′ ,π 2′ , . . . π l ′ }
9: h′ = h1′ + h2′ + · · · + hl ′

10: for i = 1 to h′ do

11: Si = Sp (πi ) = 1
l ′−1

∑l ′
j=1, j�i SME (ci ,π

j )

12: end for

13: for i = 1 to h′ do

14: wi =
Si∑l ′

i=1 Si

15: end for

16: W = {w1,w2, . . . ,wl ′ }
17: π∗ = F (Π′,W )

6 EXPERIMENTAL ANALYSIS

In this section, we verify the effectiveness of SME in weighting clusters, the rationality of using

SMEP to measure the similarity between two partitions, and the ensemble performance of DSME.

6.1 Datasets

To conduct the experimental analyses, we use 2 groups of datasets, which are 17 real datasets and

8 document datasets. The details of these datasets are outlined in Table 2. In Table 2, n is the data

size, a is the number of attributes of a dataset, k is the truth number of clusters in a dataset. The 17

real datasets come from the UCI Machine Learning Repository (UCI, http://archive.ics.uci.edu/ml/).

It has been widely accepted that a large variety of used datasets validate better obtained results.

Thus, to effectively validate the obtained results, the datasets were chosen in such a way that they
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Table 1. The Twenty-five Benchmark Datasets

Number Datasets n

Number of

attributes (a)

Number of

clusters (k)

1 Iris 150 4 3

2 Wine 178 13 3

3 Seeds 210 7 3

4 Glass 214 9 7

5 Protein Localization Sites 272 7 3

6 Ecoli 336 7 8

7 LIBRAS Movement Database 360 91 15

8 User Knowledge Modeling 403 5 4

9 Vote 435 16 2

10 Wisconsin Diagnostic Breast Cancer 569 30 2

11 Synthetic Control Chart Time Series 600 60 6

12 Student 600 5 3

13 Australian Credit Approval 690 14 2

14 Cardiotocography 2126 40 10

15 Wave form Database Generator 5000 21 3

16 Parkinsons Telemonitoring 5875 21 42

17 Statlog Landsat Satellite 6435 36 6

18 Tr12 313 5804 8

19 Tr11 414 6428 9

20 Tr45 690 8261 10

21 Tr41 878 7454 10

22 Tr31 927 10128 7

23 Wap 1560 8460 20

24 Hitech 2301 126321 6

25 Fbis 2463 2000 17

have high diversity in the number of samples, attributes, and true clusters. The samples of these

datasets range from 150 to 6435. The attribute number of these data ranges from 4 to 91. The

cluster number of these data range from 2 to 41. The 8 benchmark document datasets come with

the CLUTO clustering toolkit (Steinbach et al. 2000). These documents datasets are represented

using the TF-IDF vector-space model. These datasets are sparse and have much more attributes

than the 17 UCI datasets.

6.2 Evaluation Indices

To evaluate the performance of an ensemble result, we employ three widely used indices, which are

Accuracy (AC) (Yang 1999), ARI and Normalized Mutual Information (NMI). These three indices

are external indices, which evaluate the performance of an ensemble result through estimating

the similarity between the result with a reference partition. In the experiments, we treat the truth

partition of each datasets as the reference partition. These three indices can be calculated based on

the overlap matrix between two partitions. Suppose the two partitions are πb and πd , the overlap

matrix is shown in Table 2. Here, we only consider a special case, that is, kb = kd = k . In Table 1,

ni j is the number of common samples of cluster cb
i from partition πb and cluster cd

j from partition
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Table 2. The Overlap Matrix Between

πb and πd

πb\πd cd
1 cd

2 · · · cd
k

Sums

cb
1 n11 n12 · · · n1k n1∗
cb

2 n21 n22 · · · n2k n2∗
...

...
...

. . .
...

...

cb
k

nk1 nk2 · · · nkk nk∗
Sums n∗1 n∗2 · · · n∗k n

πd , ni∗ is the number of samples in cluster cb
i from clustering πb , and n∗j is the number of samples

in cluster cd
j from clustering πd .

The AC index is a set based measure, which matches the clusters in the compared partitions and

calculates the fraction of the common samples. Based on Table 2, the AC is calculated by:

AC(πb ,πd ) =
k∑

i=1

max{ni j : j ≤ k }
n

. (9)

The ARI is an form of Rand Index (RI) corrected for chance (Hubert and Arabie 1985). The RI

calculates the fraction that two partitions have the same decision on sample pairs. The ARI is

calculated by:

ARI(πb ,πd ) =
t0 − t3

1
2 (t1 + r2) − t3

, (10)

where

t0 =
k∑

i=1

k∑
j=1

(
ni j

2

)
, t1 =

k∑
i=1

(
ni∗
2

)
, t2 =

k∑
j=1

(
n∗j
2

)
, t3 =

2t1t2
n(n − 1)

.

The NMI is calculated by Formula (3).

6.3 Performance Analysis of SME in Weighting Clusters

To demonstrate the effectiveness of SME in weighting clusters, we compare SME with other two

state-of-the-art cluster quality evaluation measures BNMI and APMM, which are introduced in

Section 3.1 and Section 3.2. In this experiment, four clustering ensemble algorithms are utilized

to integrate the weighted base partitions, which are WCT (Iam-On et al. 2011), WTQ (Iam-On

et al. 2011), CSPA (Strehl and Ghosh 2002), and EAC (Fred and Jain 2005). The time complexity of

the four methods are O (nh + hm2) (WCT), O (nh + h2m2) (WTQ), O (n2lk ) (CSPA), O (n2l ) (EAC),

where m represents the average number of neighbors connecting to one cluster. The first two

algorithms are based on the RA-matrix, while the remaining two algorithms are based on the CO-

matrix. As introduced in Section 5, the four algorithms are easy to be expanded to a weighted

type. Through comparing the ensemble performance, we evaluate the effectiveness of the three

measures in weighting clusters.

To eliminate the influence caused by the quality of base partitions, for each dataset, we generate

50 sets of base partitions, and report the average index values of AC, ARI, and NMI, respectively.

All the base partitions are generated by k-means algorithm. In detail, the Euclidean distance is used

for the UCI real datasets and the cosine similarity is used for the document datasets. As for the

number of clusters in the base partitions, literature (Kuncheva and Hadjitodorov 2004) suggests
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that the base partitions should contain more clusters than the expectation. Then, for the the UCI

real datasets, the number of clusters is randomly selected from [2,
√
n], where n is the number of

samples in the corresponding datasets. As for the document datasets, we follow the setting by Xu

et al. (2016), and set the number of clusters in each base partition equal to the excepted number of

clusters in the final ensemble result.

The results of the three indices are shown in Tables 3–5, respectively. In Tables 3–5, the max-

imum value in each comparison is underlined. To statistically analyze the experimental results,

we conduct independent two-sample t-test with 90% confidence level. For each comparison, we

test the top two maximum index values. If the top two maximum values are significantly different

from each other, we assign a bullet behind the maximum value, which indicates the corresponding

method is statistically better. In the last line of Tables 3—5, we report the times that a method is

better and statistically better than the other methods. It can be seen from these tables that the four

employed clustering ensemble algorithms based on SME obtain the most marks from the three

evaluation indices. For each index and each weighted ensemble method, SME obtains much more

higher values and bullets than both the BNMI and the APMM on the twenty-five datasets. The

results indicate that the SME is statistically and significantly better than the BNMI and the APMM

in weighting base clusters. With these results, it can be concluded that SME is more effective in

measuring the similarity between a cluster and a partition.

6.4 Correlation Analysis of SMEP in Measuring Partitions

To demonstrate the rationality of SMEP in measuring the similarity between two partitions, we test

the correlation between SMEP, ARI, and NMI. To conduct this test, we construct three variables

from a set of partitions based on the three indices, and calculate the correlation values between

each pair of variables by Pearson correlation coefficient (Reshef et al. 2011).

The base partitions are generated based on the twenty-five datasets. For each dataset, 50 parti-

tions are generated. Totally, we obtain L = 1250 base partitions. With this partition set, a variable

X = {x1,x2, . . . ,x (L
2)
} can be constructed based on SMEP, where xi is the similarity value of the

ith pair of partitions. Based on another index, a variable Y = {y1,y2, . . . ,y( L
2 ) } will be constructed.

The Pearson correlation coefficient ρ (X ,Y ) between variables X and Y is calculated by

ρ (X ,Y ) =
cov(X ,Y )

σXσY
=

E[(X − μX ) (Y − μY )]

σXσY
, (11)

where cov is the covariance of X and Y , and σX and σY are the standard deviations of X and Y ,

respectively.

The correlation analysis results are shown in Figure 4. In Figure 4, each axis indicates the value of

similarity between two partitions measured by the corresponding index, and each point is index

value between two partitions. From Figure 4, it is obvious that the SMEP is strongly associated

with ARI and NMI. The Pearson correlation value is 0.9104 between SMEP and ARI, and is 0.8323

between SMEP and NMI. The correlation value between the widely used measures ARI and NMI

is 0.8606. This correlation analysis result show that SMEP has very similar performance to ARI

and NMI. It can be concluded that SMEP can be utilized to measure the similarity between two

partitions.

6.5 Performance Analysis of DSME in Integrating Clusterings

In order to verify the performance of DSME, we compare DSME with four representative SCE

methods, which are adaptive cluster ensemble selection method (AD) (Azimi and Fern 2009),

joint method (JO) (Fern and Lin 2008), cluster and select (CAE) (Fern and Lin 2008), and bag-

ging based method (BA) (Jia et al. 2011). Concerning computational time complexity, the proposed
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Table 3. Index AC from the Compared Weighted Methods

WCT WTQ

Data BNMI APMM SME BNMI APMM SME

1 0.8093±0.1149 0.7740±0.1539 0.8247±0.1219 0.7440±0.1480 0.8140±0.1324 0.8127±0.1367

2 0.8876±0.1574 0.9287±0.1130 0.9646±0.0026 • 0.9247±0.1154 0.9191±0.1304 0.9663±0.0000 •
3 0.7905±0.1279 0.7405±0.1546 0.8119±0.1431 0.8386±0.1073 0.8062±0.1369 0.8148±0.1201

4 0.5089±0.0352 0.5061±0.0404 0.5047±0.0404 0.4771±0.0214 0.5182±0.0346 0.5224±0.0357

5 0.9132±0.0777 0.8754±0.1168 0.9368±0.0022 • 0.8868±0.1062 0.8610±0.1250 0.9096±0.0949

6 0.5063±0.0608 0.5485±0.0578 0.6060±0.0699 • 0.5387±0.0887 0.5685±0.0939 0.5842±0.1060

7 0.4250±0.0263 0.4167±0.0260 0.4319±0.0183 • 0.4114±0.0235 0.3933±0.0259 0.4147±0.0240

8 0.5360±0.0535 0.5340±0.0221 0.5362±0.0452 0.5164±0.0496 0.5067±0.0584 0.5459±0.0492 •
9 0.8632±0.0093 0.8600±0.0059 0.8616±0.0055 0.8528±0.0158 0.8437±0.0122 0.8497±0.0097

10 0.9339±0.0050 0.9237±0.0077 0.9336±0.0065 0.9329±0.0048 0.9213±0.0351 0.9336±0.0068

11 0.6587±0.0904 0.6853±0.1128 0.6672±0.0588 0.7055±0.1139 0.6998±0.1015 0.7062±0.0809

12 0.5373±0.1123 0.5585±0.0970 0.6138±0.1494 • 0.5412±0.1274 0.5620±0.1415 0.5907±0.1065

13 0.7625±0.1115 0.7658±0.1237 0.8084±0.0767 • 0.7146±0.1670 0.7546±0.1202 0.7561±0.1076

14 0.6854±0.1276 0.7193±0.0740 0.7030±0.1145 0.6720±0.0701 0.7165±0.0788 0.7254±0.0941

15 0.5479±0.1687 0.6453±0.1139 0.6663±0.1085 0.3874±0.0019 0.3961±0.0087 0.4435±0.1326 •
16 0.4208±0.0191 0.4095±0.0176 0.4213±0.0232 0.3972±0.0253 • 0.3923±0.0098 0.3405±0.0149

17 0.4208±0.0191 • 0.4095±0.0176 0.4113±0.0232 0.3972±0.0253 0.3923±0.0098 0.3995±0.0149

18 0.6054±0.0515 0.6169±0.0467 0.6217±0.0416 0.6019±0.0640 0.5920±0.0391 0.6351±0.0179 •
19 0.5684±0.0488 0.5756±0.0389 0.5903±0.0831 0.5440±0.0369 0.5580±0.0548 0.5928±0.0844 •
20 0.5541±0.0496 0.5407±0.0567 0.5871±0.0410 • 0.5249±0.0406 0.5049±0.0548 0.5419±0.0420 •
21 0.5401±0.0580 0.5574±0.0380 0.5866±0.0302 • 0.5825±0.0345 0.5694±0.0490 0.5682±0.0521

22 0.5239±0.0491 0.4752±0.0649 0.5570±0.0357 • 0.4874±0.0717 0.4912±0.0604 0.5282±0.0435 •
23 0.4445±0.0379 0.4785±0.0543 0.4806±0.0447 0.4358±0.0422 0.4286±0.0496 0.4605±0.0254 •
24 0.5111±0.0240 0.4970±0.0235 0.5121±0.0332 0.4932±0.0259 0.4814±0.0202 0.4962±0.0353

25 0.5135±0.0245 0.5623±0.0262 • 0.5400±0.0225 0.4831±0.0273 0.4978±0.0372 0.5005±0.0301

w-sw 4-1 3-1 18-9 4-1 1-0 20-8

CSPA EAC

Data BNMI APMM SME BNMI APMM SME

1 0.7640±0.1349 0.7967±0.1117 0.8227±0.1079 0.8573±0.0140 0.8553±0.0108 0.8680±0.0136 •
2 0.9197±0.1287 0.7663±0.1921 0.9264±0.1159 0.9596±0.0075 0.9652±0.0055 0.9657±0.0047

3 0.8181±0.0995 0.8152±0.1284 0.8005±0.1070 0.8986±0.0122 0.8986±0.0074 0.9033±0.0154

4 0.4874±0.0292 0.4930±0.0307 0.4706±0.0203 0.5285±0.0014 0.5355±0.0067 0.5350±0.0070

5 0.8081±0.1438 0.8456±0.1610 0.9382±0.0040 • 0.9342±0.0031 0.9338±0.0084 0.9364±0.0057 •
6 0.5146±0.0470 0.5432±0.0797 0.5399±0.0616 0.5658±0.0492 0.5583±0.0585 0.5935±0.0474 •
7 0.3731±0.0419 0.3783±0.0464 0.4167±0.0176 • 0.4297±0.0095 0.4303±0.0034 0.4344±0.0065 •
8 0.4603±0.0560 0.4253±0.0205 0.4643±0.0537 0.5447±0.0517 0.5280±0.0470 0.5449±0.0311

9 0.8508±0.0140 0.8595±0.0131 0.8607±0.0068 0.8274±0.0125 0.8315±0.0307 0.8322±0.0308

10 0.7868±0.1819 0.8403±0.0656 0.8323±0.1003 0.8949±0.0327 0.8895±0.0295 0.8996±0.0308

11 0.6417±0.0704 0.7028±0.0554 0.7070±0.0936 0.7165±0.0616 0.7352±0.0747 0.7535±0.0791

12 0.6432±0.1596 0.5857±0.1199 0.6613±0.0463 • 0.4507±0.0809 0.4823±0.1219 0.5133±0.1228

13 0.7016±0.1068 0.6484±0.1088 0.6675±0.1230 0.8433±0.0147 0.8201±0.0471 0.8383±0.0220

14 0.6111±0.0560 0.6206±0.0977 0.6622±0.1140 • 0.8646±0.0803 0.8534±0.0669 0.8862±0.0479 •
15 0.5406±0.0799 0.4954±0.1027 0.5346±0.0711 0.6682±0.0857 0.5866±0.1402 0.6852±0.0683

16 0.3704±0.0240 0.3730±0.0214 0.3828±0.0152 • 0.4211±0.0093 0.4112±0.0096 0.4276±0.0128 •
17 0.3704±0.0240 0.3730±0.0214 0.3728±0.0152 0.4211±0.0093 0.4112±0.0096 0.4276±0.0128 •
18 0.6160±0.0704 0.5815±0.0765 0.6409±0.0134 • 0.6288±0.0147 0.6409±0.0142 • 0.6358±0.0126

19 0.5372±0.0664 0.4889±0.0607 0.5418±0.0620 0.6075±0.0375 0.6027±0.0231 0.6118±0.0236

20 0.4874±0.0452 0.5433±0.0487 0.5729±0.0340 • 0.6035±0.0287 0.6158±0.0069 0.6154±0.0063

21 0.5649±0.0371 0.5282±0.0617 0.5732±0.0230 • 0.5757±0.0485 0.5523±0.0354 0.5859±0.0414

22 0.5357±0.0495 0.4710±0.0585 0.5258±0.0309 0.5498±0.0258 0.5753±0.0229 0.5768±0.0240

23 0.4068±0.0377 0.3961±0.0346 0.4488±0.0305 • 0.4491±0.0119 • 0.4460±0.0149 0.4461±0.0089

24 0.5003±0.0197 • 0.4901±0.0220 0.4850±0.0207 0.5252±0.0242 0.5276±0.0172 0.5363±0.0173 •
25 0.4712±0.0453 0.4981±0.0182 0.4934±0.0176 0.5657±0.0237 0.5841±0.0088 0.5843±0.0132

w-sw 5-1 4-1 16-9 2-1 2-1 21-8
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Table 4. Index ARI from the Compared Weighted Methods

WCT WTQ

Data BNMI APMM SME BNMI APMM SME

1 0.6415±0.0864 0.6256±0.1317 0.6646±0.1192 0.5922±0.1086 0.6596±0.1220 0.6597±0.1247

2 0.8007±0.1916 0.8513±0.1362 0.8914±0.0077 • 0.8417±0.1386 0.8372±0.1456 0.8965±0.0001 •
3 0.5928±0.1394 0.5649±0.1559 0.6446±0.1546 • 0.6491±0.1141 0.6220±0.1296 0.6212±0.1315

4 0.2475±0.0252 0.2480±0.0285 0.2416±0.0338 0.2162±0.0151 0.2434±0.0248 0.2455±0.0224

5 0.7885±0.1150 0.7175±0.1876 0.8174±0.0070 • 0.7494±0.1555 0.7184±0.1804 0.7821±0.1465

6 0.3769±0.0541 0.3963±0.0657 0.4526±0.1260 • 0.4493±0.1103 0.4326±0.1101 0.4642±0.1419

7 0.3108±0.0341 0.3047±0.0384 0.3171±0.0229 0.3103±0.0278 0.2903±0.0298 0.3128±0.0321

8 0.2760±0.0733 0.2814±0.0531 0.2856±0.0383 0.2793±0.0629 0.2471±0.0664 0.3051±0.0340 •
9 0.5266±0.0267 0.5172±0.0167 0.5177±0.0290 0.4963±0.0466 0.4719±0.0340 0.4883±0.0270

10 0.7516±0.0176 • 0.7165±0.0261 0.7401±0.0226 0.7472±0.0170 0.7110±0.1096 0.7499±0.0240

11 0.6088±0.0795 0.6281±0.0599 0.5757±0.0638 0.6275±0.1001 0.6356±0.0883 0.6601±0.0523 •
12 0.2585±0.1609 0.2184±0.0915 0.3241±0.1974 0.2656±0.1802 0.2722±0.1558 0.2888±0.1026

13 0.3240±0.1879 0.3428±0.2052 0.4029±0.1550 • 0.2944±0.2364 0.3156±0.1743 0.3068±0.2000

14 0.6938±0.1550 0.7069±0.1152 0.6990±0.1196 0.6550±0.0782 0.6735±0.1012 0.6624±0.1357

15 0.3084±0.0691 0.3323±0.0632 0.3411±0.0895 0.2556±0.0005 0.2616±0.0074 0.2721±0.0375

15 0.3523±0.0108 0.3440±0.0233 0.3632±0.0152 • 0.3395±0.0167 0.3297±0.0136 0.3476±0.0168 •
17 0.3523±0.0108 0.3440±0.0233 0.3532±0.0152 0.3395±0.0167 0.3297±0.0136 0.3376±0.0168

18 0.4113±0.0475 0.4214±0.0359 0.4326±0.0242 • 0.3958±0.0461 0.3759±0.0534 0.4316±0.0362 •
19 0.4779±0.0513 0.4714±0.0358 0.5115±0.0936 • 0.4304±0.0519 0.4755±0.0955 0.5172±0.1071 •
20 0.3856±0.0542 0.3911±0.0525 0.4288±0.0421 • 0.3617±0.0483 0.3572±0.0548 0.3819±0.0431 •
21 0.3749±0.0668 0.3926±0.0562 0.4354±0.0276 • 0.4199±0.0492 0.4160±0.0539 0.4083±0.0689

22 0.3837±0.0837 0.3154±0.1002 0.4563±0.0684 • 0.3367±0.1130 0.3340±0.0958 0.3920±0.0758 •
22 0.3391±0.0575 0.3832±0.1042 0.3665±0.0993 0.3053±0.1115 0.3258±0.1013 0.3123±0.0507

24 0.2910±0.0220 0.2806±0.0212 0.2936±0.0269 0.2705±0.0285 0.2620±0.0270 0.2554±0.0331

25 0.3807±0.0302 0.4196±0.0227 • 0.3926±0.0287 0.3506±0.0213 0.3611±0.0268 0.3606±0.0301

w-sw 2-1 5-1 18-11 5-0 4-0 16-8

WCT WTQ

Data BNMI APMM SME BNMI APMM SME

1 0.5867±0.1110 0.5898±0.1476 0.6484±0.0802 • 0.6706±0.0218 0.6671±0.0162 0.6876±0.0223 •
2 0.8375±0.1435 0.6408±0.2293 0.8430±0.1495 0.8765±0.0219 0.8931±0.0165 0.8948±0.0143

3 0.5984±0.1299 0.5818±0.1624 0.5745±0.1407 0.7318±0.0277 0.7311±0.0152 0.7424±0.0339

4 0.2339±0.0218 0.2395±0.0239 0.2187±0.0196 0.2584±0.0016 0.2646±0.0058 0.2640±0.0062

5 0.6403±0.1995 0.7055±0.1784 0.8232±0.0101 • 0.8135±0.0120 0.8119±0.0229 0.8203±0.0170 •
6 0.3375±0.0525 0.3837±0.1011 0.3681±0.0807 0.4129±0.0265 0.4081±0.0351 0.4775±0.0529 •
7 0.2217±0.0547 0.2222±0.0638 0.2927±0.0283 • 0.3185±0.0084 0.3166±0.0074 0.3220±0.0101 •
8 0.1756±0.0776 0.1433±0.0498 0.1688±0.1085 0.2667±0.0424 0.2689±0.0489 0.2702±0.0463

9 0.4909±0.0377 0.5158±0.0359 0.5182±0.0199 0.4276±0.0333 0.4417±0.0822 0.4437±0.0830

10 0.4510±0.3061 0.4808±0.1783 0.4758±0.2536 0.6240±0.1014 0.6063±0.0897 0.6390±0.0954

11 0.6036±0.0895 0.6229±0.0765 0.5983±0.0801 0.6591±0.0315 0.6534±0.0322 0.6672±0.0391

12 0.3090±0.2567 0.2957±0.1664 0.2947±0.1643 0.1570±0.0042 0.2151±0.1195 0.2500±0.1434

13 0.2059±0.1671 0.1312±0.1466 0.1687±0.1603 0.4715±0.0400 0.4177±0.1043 0.4587±0.0574

14 0.5042±0.0436 0.5559±0.1604 0.5664±0.1479 0.8463±0.0851 0.8324±0.0687 0.8599±0.0536

15 0.2329±0.0639 0.2347±0.0721 0.2300±0.0856 0.3645±0.0679 0.3247±0.0620 0.3764±0.0491

16 0.2025±0.0485 0.2139±0.0613 0.2202±0.0463 0.3605±0.0057 0.3566±0.0075 0.3685±0.0086 •
17 0.2025±0.0485 0.2139±0.0613 0.2102±0.0463 0.3605±0.0057 0.3566±0.0075 0.3665±0.0086 •
18 0.4057±0.0593 0.3912±0.0840 0.4411±0.0270 • 0.4368±0.0175 0.4414±0.0212 0.4434±0.0187

19 0.4291±0.0642 0.3628±0.0731 0.4450±0.0903 0.5193±0.0344 0.5094±0.0283 0.5254±0.0220

20 0.3594±0.0447 0.3926±0.0561 0.4181±0.0430 • 0.4411±0.0391 0.4625±0.0090 0.4591±0.0120

21 0.4101±0.0475 0.3678±0.0753 0.4190±0.0283 0.4326±0.0454 0.4011±0.0337 0.4357±0.0422

22 0.4034±0.0867 • 0.2935±0.0915 0.3857±0.0506 0.4270±0.0502 0.4732±0.0418 0.4771±0.0451

23 0.3188±0.0744 0.2868±0.0579 0.3546±0.0666 • 0.3101±0.0230 • 0.3071±0.0186 0.2949±0.0080

24 0.2753±0.0230 0.2717±0.0250 0.2685±0.0245 0.2956±0.0191 0.2983±0.0095 0.2974±0.0180

25 0.3334±0.0462 0.3520±0.0248 0.3538±0.0213 0.4081±0.0215 0.4245±0.0117 0.4280±0.0122

w-sw 6-1 6-0 13-6 2-1 3-0 20-6
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Table 5. Index NMI from the Compared Weighted Methods

WCT WTQ

Data BNMI APMM SME BNMI APMM SME

1 0.7425±0.0382 0.7316±0.0623 0.7419±0.0768 0.7188±0.0469 0.7525±0.0595 0.7524±0.0633

2 0.8060±0.1175 0.8394±0.0768 0.8646±0.0143 0.8390±0.0852 0.8293±0.0834 0.8754±0.0041 •
3 0.6391±0.0730 0.6234±0.0768 0.6657±0.0776 • 0.6689±0.0580 0.6566±0.0687 0.6512±0.0650

4 0.3906±0.0296 0.4085±0.0331 • 0.3936±0.0399 0.3701±0.0183 0.3998±0.0247 0.4050±0.0251

5 0.7304±0.0670 0.6772±0.1203 0.7483±0.0074 • 0.7091±0.0924 0.6936±0.1073 0.7279±0.0981

6 0.5783±0.0332 0.5835±0.0273 0.6024±0.0446 • 0.5871±0.0299 0.5844±0.0295 0.6010±0.0512

7 0.5974±0.0284 0.5883±0.0302 0.6043±0.0203 0.5973±0.0214 0.5817±0.0246 0.6064±0.0215 •
8 0.3626±0.0800 0.3689±0.0687 0.3753±0.0465 0.3556±0.0673 0.3395±0.0680 0.3925±0.0386 •
9 0.4410±0.0197 0.4399±0.0266 0.4562±0.0150 • 0.4601±0.0328 • 0.4350±0.0235 0.4502±0.0239

10 0.6363±0.0207 • 0.5972±0.0287 0.6225±0.0256 0.6512±0.0224 0.6316±0.0811 0.6533±0.0331

11 0.7750±0.0449 0.7716±0.0327 0.7581±0.0424 0.7867±0.0552 0.7922±0.0522 0.8071±0.0318 •
12 0.4037±0.1594 0.3692±0.0858 0.4545±0.1741 0.4088±0.1680 0.4262±0.1525 0.4328±0.1041

13 0.2729±0.1528 0.2896±0.1749 0.3408±0.1248 • 0.2437±0.1932 0.2589±0.1443 0.2543±0.1571

14 0.8437±0.0682 0.8616±0.0437 0.8591±0.0520 0.8272±0.0385 0.8515±0.0363 0.8497±0.0574

15 0.3950±0.0319 0.4084±0.0326 0.4096±0.0508 0.3720±0.0007 0.3755±0.0041 0.3767±0.0133

16 0.6953±0.0056 0.6914±0.0106 0.7062±0.0082 • 0.6923±0.0073 0.6885±0.0060 0.7094±0.0058 •
17 0.6953±0.0056 0.6914±0.0106 0.6962±0.0082 0.6923±0.0073 • 0.6885±0.0060 0.6894±0.0058

18 0.5860±0.0291 0.5886±0.0256 0.5941±0.0177 0.5934±0.0325 0.5641±0.0253 0.6031±0.0198 •
19 0.6260±0.0212 0.6137±0.0234 0.6271±0.0324 0.6048±0.0259 0.6196±0.0181 0.6388±0.0392 •
20 0.5254±0.0251 0.5286±0.0186 0.5435±0.0194 • 0.5021±0.0292 0.4982±0.0347 0.5439±0.0237 •
21 0.5457±0.0409 0.5532±0.0270 0.5755±0.0240 • 0.5831±0.0275 0.5747±0.0249 0.5782±0.0338

22 0.3930±0.0354 0.3891±0.0241 0.4226±0.0232 • 0.4042±0.0327 0.4028±0.0226 0.4104±0.0204

23 0.5827±0.0133 0.5841±0.0144 0.5876±0.0148 0.5708±0.0184 0.5764±0.0201 0.5793±0.0145

24 0.3398±0.0087 0.3406±0.0062 0.3426±0.0095 0.3500±0.0069 0.3494±0.0078 0.3470±0.0085

25 0.5812±0.0089 0.5888±0.0088 0.5857±0.0119 0.5704±0.0128 0.5734±0.0161 0.5773±0.0154

w-sw 3-1 3-1 19-9 5-2 3-0 17-8

WCT WTQ

Data BNMI APMM SME BNMI APMM SME

1 0.6919±0.0783 0.6924±0.1225 0.7348±0.0449 • 0.7582±0.0112 0.7563±0.0083 0.7670±0.0117 •
2 0.8286±0.0789 0.7076±0.1292 0.8376±0.0917 0.8446±0.0289 0.8590±0.0217 0.8603±0.0178

3 0.6343±0.0774 0.6202±0.1000 0.6094±0.1015 0.7184±0.0180 0.7140±0.0069 0.7218±0.0173

4 0.3944±0.0181 0.3903±0.0211 0.3823±0.0197 0.3995±0.0023 0.4148±0.0147 0.4140±0.0153

5 0.6363±0.1296 0.6739±0.1115 0.7516±0.0114 • 0.7463±0.0099 0.7399±0.0223 0.7481±0.0149

6 0.5486±0.0375 0.5566±0.0483 0.5511±0.0428 0.6096±0.0113 0.6089±0.0163 0.6392±0.0247 •
7 0.5390±0.0310 0.5430±0.0430 0.5819±0.0199 • 0.6092±0.0078 0.6068±0.0064 0.6111±0.0087

8 0.2733±0.0684 0.2641±0.0444 0.2731±0.0770 0.3449±0.0550 0.3576±0.0597 0.3452±0.0559

9 0.3952±0.0106 0.4192±0.0249 • 0.4021±0.0192 0.4030±0.0179 0.4061±0.0496 0.4254±0.0487 •
10 0.4379±0.2004 0.4539±0.1451 0.4455±0.1600 0.5236±0.0769 0.5001±0.0584 0.5325±0.0611

11 0.7725±0.0571 0.7797±0.0488 0.7572±0.0467 0.8091±0.0155 • 0.7861±0.0048 0.7987±0.0174

12 0.4597±0.2167 0.4429±0.1559 0.4485±0.0726 0.3006±0.0045 0.3501±0.1012 0.3789±0.1196

13 0.1972±0.1301 0.1463±0.1199 0.1832±0.1225 0.3973±0.0400 0.3468±0.0885 0.3787±0.0607

14 0.7731±0.0194 0.7830±0.0699 0.8074±0.0765 0.9392±0.0350 0.9341±0.0290 0.9459±0.0217

15 0.3352±0.0690 0.3283±0.0541 0.3264±0.0707 0.4249±0.0333 0.4092±0.0335 0.4327±0.0282

16 0.6396±0.0188 0.6385±0.0240 0.6480±0.0165 • 0.7044±0.0032 0.6989±0.0032 0.7133±0.0038 •
17 0.6396±0.0188 0.6385±0.0240 0.6380±0.0165 0.7044±0.0032 0.6989±0.0032 0.7033±0.0038

18 0.5768±0.0448 0.5673±0.0451 0.6005±0.0125 • 0.6060±0.0130 0.6030±0.0141 0.6062±0.0129

19 0.6027±0.0221 0.5688±0.0382 0.6044±0.0349 0.6331±0.0169 0.6183±0.0226 0.6342±0.0097

20 0.5101±0.0258 0.5151±0.0323 0.5510±0.0066 • 0.5622±0.0132 0.5623±0.0076 0.5611±0.0082

21 0.5582±0.0293 0.5260±0.0440 0.5666±0.0167 • 0.5807±0.0282 0.5507±0.0215 0.5753±0.0254

22 0.4038±0.0206 0.3906±0.0354 0.4074±0.0158 0.4139±0.0099 0.4122±0.0068 0.4137±0.0101

23 0.5486±0.0137 0.5413±0.0207 0.5676±0.0147 • 0.5909±0.0059 • 0.5861±0.0050 0.5834±0.0016

24 0.3358±0.0084 0.3344±0.0106 0.3305±0.0063 0.3444±0.0098 0.3432±0.0084 0.3435±0.0058

25 0.5544±0.0226 0.5678±0.0119 0.5704±0.0104 0.5975±0.0069 0.5972±0.0072 0.6069±0.0063 •
w-sw 8-0 4-1 13-8 7-2 3-0 15-5
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Fig. 4. Correlation analysis between SMEP, NMI and ARI.

Table 6. Index AC from the Five Selective Methods

Data sets AD JO CAE BA DSME

1 0.8587±0.0013 0.8600±0.0000 0.8560±0.0045 0.8620±0.0062 0.8613±0.0183

2 0.9607±0.0019 0.9640±0.0010 0.9517±0.0026 0.9573±0.0010 0.9663±0.0014 •
3 0.8943±0.0028 0.8967±0.0041 0.8981±0.0030 0.9057±0.0030 0.9062±0.0050

4 0.4304±0.0023 0.4322±0.0018 0.4313±0.0034 0.4248±0.0031 0.4481±0.0019 •
5 0.9294±0.0030 0.9287±0.0032 0.9353±0.0014 0.9353±0.0024 0.9370±0.0006 •
6 0.5530±0.0144 0.5616±0.0118 0.5932±0.0091 0.5813±0.0228 0.6095±0.0297 •
7 0.4356±0.0028 0.4322±0.0022 0.4117±0.0050 0.4217±0.0029 0.4347±0.0043

8 0.5511±0.0182 0.5462±0.0094 0.5315±0.0102 0.5360±0.0139 0.5653±0.0083 •
9 0.8163±0.0217 0.8448±0.0055 0.8278±0.0060 0.8138±0.0221 0.8634±0.0020 •
10 0.8961±0.0314 0.8740±0.0118 0.8861±0.0086 0.8815±0.0116 0.9207±0.0065 •
11 0.7135±0.0179 0.7325±0.0205 0.7090±0.0217 0.6867±0.0137 0.7430±0.0263 •
12 0.4972±0.0270 0.4972±0.0270 0.4813±0.0304 0.5443±0.0378 0.6642±0.0233 •
13 0.7341±0.0302 0.8062±0.0305 0.8071±0.0304 0.8126±0.0046 0.8196±0.0254 •
14 0.8702±0.0212 0.8696±0.0211 0.8529±0.0223 0.8677±0.0131 0.9513±0.0189 •
15 0.5934±0.0393 0.6091±0.0294 0.6606±0.0278 0.5814±0.0318 0.7200±0.0067 •
16 0.4236±0.0019 0.4169±0.0022 0.4156±0.0026 0.4226±0.0033 0.4295±0.0038 •
17 0.7110±0.0078 0.7069±0.0076 0.7199±0.0053 0.7131±0.0068 0.8075±0.0029 •
18 0.6236±0.0068 0.6256±0.0047 0.6227±0.0060 0.6259±0.0041 0.6403±0.0124 •
19 0.5659±0.0140 0.5853±0.0161 0.6109±0.0125 0.5993±0.0148 0.6345±0.0068 •
20 0.5943±0.0117 0.5978±0.0120 0.5923±0.0111 0.5916±0.0119 0.6093±0.0077 •
21 0.5984±0.0091 0.6025±0.0112 0.6091±0.0123 0.5974±0.0094 0.6163±0.0096 •
22 0.5186±0.0108 0.5371±0.0132 0.5554±0.0096 0.5294±0.0128 0.5828±0.0120 •
23 0.5374±0.0043 0.5385±0.0054 0.5349±0.0060 0.5382±0.0057 0.5370±0.0088

24 0.4556±0.0044 0.4429±0.0073 0.4601±0.0078 0.4325±0.0080 0.4651±0.0113 •
25 0.5456±0.0059 0.5453±0.0058 0.5495±0.0072 0.5580±0.0047 0.5851±0.0038 •

method DSME is O (2h2 +TF ), compared to AD (O(l2 +TF )), JO (O (l2 +TF )), CAE (TC +TF ), BA

(O (bl2 +TF )), where b is the bagging times in the BA method, TC is the time complexity of the

employed clustering method in CAE, andTF is the time complexity of the employed clustering en-

semble method in the five compared methods. To be fair, we employ the average-link hierarchical

clustering algorithm (Johnson 1967) based on the CO-matrix as the integrating method in all the

five algorithms. The hierarchical clustering algorithm highly depends on the CO-matrix and it is

helpful in reflecting the performance of the selected partitions.
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Table 7. Index ARI from the Five Selective Methods

Datasets AD JO CAE BA DSME

1 0.6717±0.0019 0.6737±0.0000 0.6686±0.0071 0.6790±0.0105 0.6942±0.0297 •
2 0.8807±0.0053 0.8908±0.0025 0.8536±0.0075 0.8698±0.0029 0.8967±0.0042 •
3 0.7224±0.0058 0.7276±0.0089 0.7306±0.0067 0.7461±0.0065 0.7481±0.0111

4 0.1630±0.0019 0.1621±0.0018 0.1633±0.0043 0.1636±0.0009 0.1818±0.0028 •
5 0.8180±0.0083 0.8053±0.0090 0.8256±0.0052 0.8003±0.0068 0.8261±0.0062

6 0.4080±0.0082 0.4069±0.0115 0.4262±0.0083 0.4356±0.0220 0.5039±0.0294 •
7 0.3185±0.0017 • 0.3142±0.0026 0.2906±0.0059 0.3113±0.0060 0.3117±0.0090

8 0.2987±0.0204 0.3031±0.0173 0.3117±0.0191 0.3111±0.0151 0.3208±0.0050 •
9 0.4131±0.0458 0.4747±0.0146 0.4293±0.0154 0.4075±0.0453 0.5261±0.0057 •
10 0.6593±0.0742 0.5583±0.0363 0.5949±0.0263 0.5822±0.0354 0.7082±0.0218 •
11 0.6283±0.0116 0.6369±0.0142 0.6291±0.0111 0.6235±0.0073 0.6493±0.0169 •
12 0.1838±0.0226 0.1838±0.0226 0.1935±0.0322 0.2851±0.0495 0.2745±0.0427

13 0.2542±0.0474 0.4111±0.0449 0.4131±0.0444 0.4395±0.0122 0.4332±0.0446

14 0.8480±0.0213 0.8467±0.0211 0.8311±0.0225 0.8406±0.0116 0.9397±0.0234 •
15 0.3351±0.0154 0.3293±0.0179 0.3488±0.0245 0.3128±0.0166 0.3960±0.0070 •
16 0.3608±0.0014 0.3555±0.0011 0.3580±0.0029 0.3598±0.0028 0.3684±0.0038 •
17 0.5722±0.0072 0.5663±0.0070 0.5876±0.0055 0.5748±0.0093 0.6715±0.0060 •
18 0.4315±0.0089 0.4337±0.0087 0.4285±0.0079 0.4285±0.0051 0.4730±0.0113 •
19 0.4818±0.0119 0.4993±0.0141 0.5214±0.0119 0.5084±0.0140 0.5459±0.0059 •
20 0.4308±0.0144 0.4390±0.0155 0.4300±0.0145 0.4270±0.0151 0.4548±0.0077 •
21 0.4530±0.0094 0.4538±0.0134 0.4618±0.0134 0.4518±0.0095 0.4689±0.0115 •
22 0.3818±0.0136 0.4127±0.0198 0.4395±0.0160 0.4043±0.0199 0.4864±0.0169 •
23 0.3013±0.0053 0.2999±0.0049 0.2962±0.0050 0.2996±0.0053 0.3179±0.0045 •
24 0.2974±0.0093 0.2862±0.0115 0.3065±0.0064 0.2777±0.0082 0.3634±0.0205 •
25 0.3908±0.0055 0.3940±0.0054 0.3986±0.0079 0.4066±0.0049 0.4267±0.0043 •

Similar to Section 6.3, 50 sets of base partitions are generated for each dataset to eliminate influ-

ence caused by the uncertainty of the base partitions, and the ensemble performance is quantified

by the indices AC, ARI, and NMI. For a single experiment, each method selects 25 base partitions

from the ensemble. The values of the three indices from the five SCE methods are shown in Table 6

to Table 8.

In Table 6 to Table 8, the maximum value for each dataset is underlined. If the maximum value is

significantly different from the others based on t-test, a bullet is assigned behind it. From Table 6

to Table 8, it is easy to see that DSME obtains in the most time the highest value of the three

evaluation indices for clustering the twenty-five datasets. Concretely, DSME obtains average 21

times the highest value, which is much more than the sum of the other methods. In addition, DSME

is significantly better than the other four methods on average 20 datasets. The results indicate that

DSME is statistically better than the other four methods on the view of the three indices.

In what follows, we explore the effect of the number of selected partitions on ensemble perfor-

mance in terms of AC. In this experiment, the number of selected partitions is gradually increased,

which is set as [5, 10, 15, . . . , 45]. The other experiment settings are the same as previous. The re-

sults are shown in Figure 5. It is obvious in Figure 5 that the curve of DSME is mostly lies above

the other methods on the twenty-five datasets. In particular, the peak of AC vales on each dataset

is obtained by DSME. The experiments show that the DSME is an effective method to handle the

SCE problem.
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Table 8. Index NMI from the Five Selective Methods

Datasets AD JO CAE BA DSME

1 0.7586±0.0010 0.7596±0.0000 0.7571±0.0036 0.7627±0.0056 0.7689±0.0139 •
2 0.8541±0.0043 0.8651±0.0018 0.8177±0.0075 0.8346±0.0041 0.8656±0.0051

3 0.7132±0.0019 0.7158±0.0051 0.7174±0.0047 0.7143±0.0030 0.7244±0.0079 •
4 0.3251±0.0031 0.3233±0.0030 0.3171±0.0049 0.3249±0.0022 0.3469±0.0036 •
5 0.7430±0.0089 0.7290±0.0096 0.7498±0.0044 0.7358±0.0065 0.7566±0.0025 •
6 0.6046±0.0040 0.5998±0.0053 0.6083±0.0031 0.6099±0.0076 0.6333±0.0091 •
7 0.6081±0.0015 • 0.6041±0.0030 0.5807±0.0056 0.6018±0.0046 0.5950±0.0063

8 0.3897±0.0255 0.4008±0.0173 0.4172±0.0207 0.4210±0.0160 • 0.4117±0.0065

9 0.3586±0.0369 0.3777±0.0086 0.3870±0.0074 0.3574±0.0404 0.4366±0.0098 •
10 0.5811±0.0607 0.4780±0.0195 0.4871±0.0161 0.4914±0.0208 0.6161±0.0224 •
11 0.7738±0.0121 0.7760±0.0126 0.7735±0.0092 0.7794±0.0083 0.7929±0.0124 •
12 0.3256±0.0207 0.3256±0.0207 0.3310±0.0263 0.4081±0.0409 0.4539±0.0322 •
13 0.2164±0.0417 0.3458±0.0376 0.3447±0.0371 0.3737±0.0112 0.3715±0.0355

14 0.9393±0.0088 0.9386±0.0087 0.9329±0.0094 0.9377±0.0053 0.9772±0.0088 •
15 0.4104±0.0079 0.4090±0.0093 0.4168±0.0120 0.3957±0.0091 0.4378±0.0032 •
16 0.7015±0.0008 0.6983±0.0008 0.7000±0.0018 0.7023±0.0012 0.7062±0.0018 •
17 0.6412±0.0040 0.6349±0.0054 0.6500±0.0039 0.6454±0.0051 0.6884±0.0027 •
18 0.6025±0.0063 0.6032±0.0064 0.6013±0.0055 0.5992±0.0035 0.6215±0.0089 •
19 0.6214±0.0083 0.6272±0.0091 0.6310±0.0087 0.6320±0.0091 0.6443±0.0044 •
20 0.5582±0.0046 0.5635±0.0056 0.5576±0.0049 0.5572±0.0051 0.5661±0.0058 •
21 0.5936±0.0061 0.5941±0.0070 0.5978±0.0075 0.5919±0.0078 0.5992±0.0053

22 0.4057±0.0017 0.4084±0.0029 0.4265±0.0023 0.4149±0.0041 0.4569±0.0103 •
23 0.3542±0.0019 0.3567±0.0023 0.3512±0.0021 0.3551±0.0023 0.3622±0.0039 •
24 0.5818±0.0023 0.5792±0.0030 0.5825±0.0014 0.5773±0.0018 0.5815±0.0033

25 0.5917±0.0023 0.5927±0.0030 0.5967±0.0035 0.5942±0.0033 0.6015±0.0030 •

To visually show the performance of DSME, we run the five SCE algorithms on the Olivetti

Face Database (Samaria and Harter 1994). This face dataset contains 400 figures of forty persons.

For each person, there are ten figures. We employ the Density Peaks (DP) algorithm (Frey and

Dueck 2007) to generate the base partitions. Because the DP algorithm will generate stable partition

result when the distance matrix and the cluster number are fixed. To obtain diverse base partition

results, we set the cluster numbers increase progressively from 20 to 70. The distance matrix of

the Olivetti dataset is obtained from Frey and Dueck (2007). The number of selected partitions is

also set as 25 in this experiment. The five SCE algorithms and the DP algorithm totally generate

three different clustering results. The DP, JO, CAE, and BA generate the same result. The AD

and the DSME generate the other two different results. Table 9 shows the three indices values

of the three clustering results. It is easy to see from Table 9 that the DSME obtains the highest

value of the three indices. The major differences between the three results come from 50 samples.

Figure 6 to Figure 8 show the three results on the 50 particular samples. Comparing Figure 6 and

Figure 8, it can be found that the figures of two persons in the red cluster in Figure 6 can be

recognized by the DSME. From Figure 7 and Figure 8, it is obvious that the two persons in the

blue cluster in Figure 7 can be separated by the DSME. Therefore, it can be concluded that the

DSME generates more effective clustering result on the Olivetti Face Database than the other five

methods.
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Fig. 5. Effect of the number of selections on performance in terms of AC.

Fig. 6. The clustering result of the 50 particular Olivetti Face figures induced by the DP, JO, CAE, and BA.

7 CONCLUSION

Clustering ensemble, which integrates multiple diverse base clustering results, is an effective ap-

proach to improve the quality and the robustness of a single clustering algorithm in discovering

the inherent grouping structure of a dataset. The WCE and SCE are two approaches to further im-

prove the performance of a clustering ensemble method. The performance of these two approaches
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Table 9. Indices from the DP Algorithm

and the Five Selective Ensemble Methods for the

Olivetti Face Database

AC ARI NMI

AD 0.7975 0.5344 0.8577

DP, JO, CAE, BA 0.8000 0.5499 0.8580

DSME 0.8100 0.5699 0.8641

Fig. 7. The clustering result of the 50 particular Olivetti Face figures induced by the AD.

Fig. 8. The clustering result of the 50 particular Olivetti Face figures induced by the DSME.

are greatly affected by the employed similarity measure of two partitions. Due to the fact that the

qualities of the clusters in a partition are different, the weighted method and selective method can

be further improved through employing a measure that calculates the similarity between a cluster

and a partition. The existing measures have two main problems, one is the symmetric problem and

the other is the context meaning problem. In this article, we proposed a new measure SME. We

proved that the SME is able to handle these two problems effectively in theory. Some properties

of the SME make it effective in measuring the quality of each cluster in the ensemble. Moreover,

we expanded SME to a similarity measure between two partitions, which is called SMEP.

Due to the different demands in the stages of SCE process, most of the existing SCE methods are

complicated. To solve the SCE problem in a simple way, we proposed a novel framework DS, which

considers the difference between the demand in the ensemble selection stage and the demand in

the ensemble integration stage. We then exploited the advantages of SME and embedded it into

DS, which forms DSME.

To verify the performances of SME and DSME, respectively, we compared SME with two sim-

ilarity measures between a cluster and a partition, and compared DSME with four existing SCE

methods which combine diversity and stability. The results show that SME is more effective in

weighting the clusters in the ensemble, and DSME is more effective in discovering the grouping

structure of a dataset. In future, it is interesting to expand SME to an index corrected for chance.

Another interesting problem is the determination of the selection size.
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