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Feature selection for mixed and incomplete data in terms of numerical and categorical features with
missing values has currently gained considerable attention. The development of the neighborhood
rough sets-based feature selection method is an important step in improving classification perfor-
mance, especially in incomplete data with mixed continuous numerical and categorical features. In
this paper, a novel feature selection method based on the neighborhood rough sets using Lebesgue and
entropy measures in incomplete neighborhood decision systems is proposed, and the method has the
capacity to handle mixed and incomplete datasets; further, it can simultaneously maintain the original
classification information. First, a Lebesgue measure based on the neighborhood tolerance class is
developed to study the positive region and dependency degree. To thoroughly analyze the uncertainty,
noise and incompleteness of incomplete neighborhood decision systems, some neighborhood tolerance
entropy-based uncertainty measures are presented based on Lebesgue and entropy measures. Then,
by combining an algebraic view with an information view in neighborhood rough sets, the neigh-
borhood tolerance dependency joint entropy is defined in incomplete neighborhood decision systems.
Moreover, all the corresponding properties are discussed, and the relationships among these measures
are established to meaningfully convey the knowledge essence and investigate the uncertainty of
incomplete neighborhood decision systems. Finally, for all high-dimensional datasets, the Fisher score
method is used to preliminarily eliminate irrelevant features to significantly reduce the computational
complexity, and a heuristic feature selection algorithm is designed to improve the classification
performance of mixed and incomplete datasets. Experiments under an instance and fifteen public
datasets demonstrate that the proposed feature selection method is effective in selecting the most
relevant features, achieving great classification ability for incomplete neighborhood decision systems.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

missing values, classify data, and extract useful information for
data applications [4,5]. Roughly speaking, there are three general

With the development of big data processing techniques, the
amount of data is growing exponentially, and a vast amount of
information is collected that may contain many noisy, redundant
or missing feature values. Therefore, it is necessary to preprocess
the massive data before using it [1,2]. Recently, feature selection
has attracted considerable attention of scholars in the fields of
pattern recognition, machine learning, and data mining [2,3].
As a significant preprocessing step, the main goal of feature
selection is to eliminate redundant and noisy features, handle
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strategies to categorize feature selection as follows: filter, wrap-
per and embedded methods [6,7]. The accuracy of the wrapper
and embedded methods are not as well as the filter methods [8-
10]. Hence, our feature selection method focuses on the filter
strategy, in which a heuristic search algorithm is employed to
select an optimal feature subset for incomplete datasets.

At present, the traditional rough set model as a popular tool
of feature selection can only handle categorical datasets but is
not suitable for solving the problem of incomplete and con-
tinuous numerical data encountered in mixed and incomplete
datasets [11]. The mixed and incomplete datasets refer to data
that have continuous numerical and categorical feature values,
and some missing values exist in the datasets [11]. As we know,
the continuous numerical data should be discretized; however,
the process of discretization in rough sets easily ignores the
differences among data and affects the data expression of the
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original feature sets to a certain degree [12]. To solve the prob-
lem of information loss in the process of data discretization for
the numerical datasets, many scholars introduced neighborhood
rough sets to study feature selection models [13], which do
not break the neighborhood structure and order structure of
datasets in real spaces [14]. Nevertheless, these methods some-
times cannot be enough to regularly find an optimal subset. Chen
et al. [15] proposed an attribute reduction algorithm based on
the fish swarm algorithm and neighborhood rough sets. To date,
most neighborhood rough sets-based reduction methods are used
for complete information systems, whereas few studies focus on
incomplete information systems, especially mixed and incom-
plete datasets. For instance, Jing et al. [16] developed a variable
precision tolerance neighborhood rough set model for incomplete
data. Zhao and Qin [17] presented a heuristic feature selection
algorithm based on neighborhood-tolerance conditional entropy
in an incomplete decision system. Meng and Shi [18] constructed
a positive region-based approach for attribute reduction based
on the tolerance relation in an incomplete decision system. In
addition, the extended neighborhood rough set model can well
address incomplete information systems containing continuous
numerical and categorical feature values [11]. Thus, inspired by
these contributions, this paper focuses on creating such a solution
for mixed and incomplete datasets, and it investigates a heuristic
feature selection algorithm based on the neighborhood tolerance
relation for incomplete neighborhood decision systems.

As a significant part of the uncertainty analysis based on gran-
ular computing, many uncertainty measure methods have been
studied in algebraic view or information view [19]. Hu et al. [14]
defined dependency degree based on the neighborhood relation
to reduce numerical and categorical features. Fan et al. [20]
enlarged the positive region by adding samples whose similar-
ity classes have the maximal intersection with some decision
classes in neighborhood rough sets. Li et al. [21] studied a pos-
itive region-based feature selection algorithm in neighborhood-
based decision-theoretic rough sets. In summary, these previ-
ously published works on feature selection are all based on
neighborhood rough sets from the algebraic view in complete
neighborhood systems. Although some of the abovementioned
algorithms can achieve feature subsets with criterion preserva-
tion, there are still some redundant features that can be further
deleted in a sense [1]. In addition, many feature selection al-
gorithms still have higher time-consuming when dealing with
high-dimensional datasets in a certain degree [22]. Until now,
information entropy as a type of significant uncertainty measure
is widely used in feature selection and its variants have been
researched extensively [1]. Note that many of feature selection
methods based on entropy in rough sets are not fully suitable
to measure neighborhood classes of a real-value dataset [23]. Liu
et al. [24] investigated neighborhood mutual information and its
application on hyper spectral band selection for classification.
Wang et al. [25] proposed a feature selection method using
conditional discrimination index in neighborhood rough sets.
However, the monotonicity of these uncertainty measures does
not always hold, and these literatures for feature selection based
on neighborhood rough sets just only studied from information
view in complete information systems.

In neighborhood rough sets, many existing approaches to fea-
ture selection are usually only based on an algebraic view or in-
formation view. It is known that the conception of feature signifi-
cance based on an algebraic view only states the effect of features
contained on the classification subset [16,26-29], and this defi-
nition of feature significance based on an information view only
expounds the influence of features contained in the uncertain
subset of the classification in the domain [17,30]. Moreover, the
model is applied to some small-scale datasets in most cases [6,

28]. Thus, the two views can be combined to address some
issues in real-world applications. Wang et al. [27] researched
rough reduction and illustrated the definition of relative reduct
in both algebraic view and information view. Chen et al. [31]
presented four different uncertainty measurement methods in
neighborhood systems. To the best of our knowledge, this re-
search on the combination of algebraic view and information
view has not been reported in mixed and incomplete neighbor-
hood decision systems. In general, although these methods have
their own merits, they are still inefficient and not appropriate
for reducing large-scale and high-dimensional datasets, and their
extended algorithms only reduce the computation time to some
extent [27,32]. Therefore, this phenomenon inspires us to further
investigate incomplete neighborhood decision systems from the
two views and obtain the great uncertainty measures, and then
this paper will combine algebraic view with information view
and develop a heuristic feature selection algorithm for incomplete
neighborhood decision systems with mixed data.

Notably, thus far, a large number of existing feature selection
algorithms based on rough sets and their variations only con-
cern finite sets. When the traditional feature selection methods
deal with infinite sets, they usually produce higher cardinality
and lower accuracy [6]. Thus, these limitations may somewhat
limit their application. Halmos [33] introduced Lebesgue mea-
sure to investigate uncertainty measures. Xu et al. [34] used
Lebesgue integral for uncertainty measures over infinite interval
and proposed a computation method based on kernel function.
Sun et al. [6] proposed an attribute reduction method using
Lebesgue and entropy measures in neighborhood rough sets,
which has the ability of dealing with infinite sets whilst maintain-
ing the original classification information. Through the analysis
of these abovementioned references, we know that the Lebesgue
measure can efficiently measure infinite sets. On this basis, the
Lebesgue measure is introduced to process infinite sets in incom-
plete neighborhood decision systems with mixed data. Thus, it is
very important to investigate the Lebesgue measure-based uncer-
tainty measure in incomplete neighborhood decision systems and
develop a heuristic feature selection algorithm on infinite sets.
If this uncertainty measure continues, the Lebesgue measure can
be combined with neighborhood tolerance entropy-based uncer-
tainty measures to study the uncertainty in incomplete neigh-
borhood decision systems, an efficient feature selection method
using Lebesgue and entropy measures will be proposed, and then
a heuristic reduction algorithm can be developed to study the
uncertainty and deal with the redundant of mixed datasets in
incomplete neighborhood decision systems.

In this paper, to achieve feature selection method in incom-
plete neighborhood decision systems, our study focuses on three
parts and the research motivations are shown as follows:

(1) To solve the problem that most of the neighborhood rough
sets-based feature selection methods cannot deal with infinite
sets in incomplete information systems, by combining neigh-
borhood rough sets with Lebesgue measure, a new Lebesgue
measure-based neighborhood tolerance class is developed, based
on which, the concepts of neighborhood upper and lower approx-
imation sets, positive region and dependency degree are rede-
fined in incomplete neighborhood decision systems. Furthermore,
the corresponding properties are discussed.

(2) To better research the Lebesgue and entropy-based un-
certainty measures from algebraic view and information view in
incomplete neighborhood decision systems, neighborhood toler-
ance entropy is proposed, based on which, neighborhood toler-
ance joint entropy and neighborhood tolerance dependency joint
entropy are studied. Moreover, many corresponding properties
are deduced and the relationships among these measures are
discussed in incomplete neighborhood decision systems.
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(3) To handle mixed and incomplete datasets efficiently, based
on neighborhood rough sets, the definitions of a reduct, the
internal significance of an attribute, the necessary and unneces-
sary attribute, the core attribute and the external significance of
an attribute are developed in incomplete neighborhood decision
systems, and then a new heuristic feature selection algorithm
based on the neighborhood tolerance dependency joint entropy
for infinite sets is designed in incomplete neighborhood decision
systems.

The rest of the paper is constructed as follows. Some related
concepts are recalled in Section 2. Section 3 depicts the Lebesgue
measure-based dependency degree and neighborhood tolerance
entropy-based uncertainty measures. Section 4 proposes a feature
selection model based on neighborhood tolerance dependency
joint entropy and a comparison analysis with two representatives
reducts and reveals the design of a heuristic feature selection
algorithm. In Section 5, the experimental results are achieved on
seven UCI datasets and eight gene expression datasets. Finally,
Section 6 summarizes this study.

2. Previous knowledge
2.1. Information entropy measures

Given a decision system DS = (U, C, D), if there exist a € CUD
and x € U so that f(a, x) amounts to a missing value (a null
or unknown value, denoted as *), which means for at least one
attribute a € C U D, % € V,, then the decision system becomes
an incomplete decision system (IDS) [2,35]. Thus, an incomplete
decision system can be denoted as IDS = (U, CUD, V, f), simply
written as IDS = (U, C, D).

Given an incomplete decision system IDS = (U, C, D) with
B C C, a binary relation named as a tolerance relation on U is
expressed as

Tg = {(x,y) € U x U|Va € B, f(a, x)
=fla,y) v f(a,x)=x*Vf(a,y) =} (M)

For any object x, y € U with respect to B C C, the tolerance class
is denoted as

Tp(x) = {y € U|(x,y) € Ts}. (2)

Given an incomplete decision system IDS = (U, C, D) withB C
C, the classification induced by B is U/Tg = {T(x1), Tg(x2), ...,
Ts(xp)}, and then the information entropy of B is described [36]
as

Z | Ta(x,)] |TB(Xr)|, (3)
|U| U]

where |Tg(x; )| represents the cardinality of tolerance class of x,
with respect to B, Tg(x;,) € U/Tg, and r = 1,2,...,h. Let
U/D = {dy,d>,...,d;}; then, the joint entropy of B and D is
represented [35] as

|Tp(xr) N dj

1
TBerd|
H(BU D)
ZZ o %

whered; e U/Dandj =1, 2,..., I Thus, the conditional entropy
of D with respect to B is expressed [36] as

1
[Tg(x,) N d; | [Tg(xr) N dj]
HDIBy = ZZ U e ®)

r=1 j=1

. (4)

2.2. Neighborhood rough sets

Given an incomplete neighborhood decision system INDS =
(U,CUD,V,f, A,§), where U = {xq, X2, ..., Xn} iS a sample set
named universe, then C = Bc U By is a conditional attribute set
that describes the samples, in which B¢ is the set of categorical
attributes and By is the set of numerical attributes; D is a decision
attribute set; V = UgeqcupVa and V, is a value set of attribute a; if
there exists x € V,, it equals f(a, x) = * and f is a map function;
A — [0, 00) is a distance function, and § is a neighborhood
parameter with 0 < § < 1. Thus, an incomplete neighborhood
decision system can be abbreviated as INDS = (U, C, D, 8).

It is known that the Euclidean distance function can effectively
reflect the basic information of the unknown data [37]. Thus, it is
employed in this paper as

N
> (flaw, x)
k=1

where N is the cardinality of the subset B.

Given an incomplete neighborhood decision system INDS =
(U,C,D,é) with B C C and B = B¢ U By, the neighborhood
tolerance relation with respect to B is expressed [17] as

— flak, y))2. (6)

NT; ={(x,y) € U x U|f(a,x) = * V f(a,y) = * V ((a € Bc —
Ag(x,¥y) =0) A(a € By — Aqlx,y) < 8)),Va € B}.

For any x € U and B C C, the neighborhood tolerance class is
denoted [17] as

NT3(x) = {y € Ul(x, y) € NTg}. (8)

(7)

Given an incomplete neighborhood decision system INDS =
(U,C,D,§) with B C C and any x € X C U, the neighborhood
upper approximation set and the neighborhood lower approxi-
mation set of X with respect to B are described, respectively [17],
as

NT3(X) = {x € UINT2(x) N X # @, X C U}, (9)
NTy(X) = {x € UINTp(x) € X, X € U}. (10)

Let U/D = {dq,ds, ..., d;}; then, the positive region of D with
respect to B is represented [17] as

1
=) NTy(d), (11)
j=1

wheredj e U/Dand j =1, 2, ..., I Thus, the dependency degree
of D with respect to B is expressed [17] as

IPOSy(D)| 135 NTa(d))|
U] U]

POSg(D)

y8(D) =

(12)

3. Lebesgue measure and entropy-based uncertainty measures
in incomplete neighborhood decision systems

3.1. Lebesgue measure-based dependency degree

Aiming at the issue that most existing neighborhood rough set
models cannot analyze infinite sets, it is necessary to present a
new neighborhood rough set model combined with the Lebesgue
measure, such that it takes the neighborhood rough set model
and measure theory as the basic theories for infinite sets in
incomplete neighborhood decision systems with mixed data.

For any M-dimensional Euclidean space RM, let E be a point
set in RM, and for an open interval I; of each column covered by
E, U=, Ii D E holds. The sum of its volume is u = Y .~ |I;], and
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all of u constitute a set of numbers that are bounded from below.
The infimum is called the Lebesgue outer measure of E, which can
be represented as m*(E) [6], i.e.,

*

m*(E) = inf Z|I| (13)

EcUR; I i1

The Lebesgue inner measure can be denoted as m,(E) = |I| —
m*(I — E). If my(E) = m*(E); then, we can say E is measurable
and written as m(E). In this paper, m(X) is uniformly regarded as
the Lebesgue measure of a set X, i.e., |X].

Definition 1. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) exists with a non-empty infinite set U,
and any B C C, NTl;S is the neighborhood tolerance relation with
respect to B. Then, for any x, y € U, the Lebesgue measure-based
neighborhood tolerance class with respect to B is defined as

m(NT3(x)) = m({y € U|(x,y) € NT;}). (14)

Property 1. Suppose that an incomplete neighborhood decision sys-
tem INDS = (U, C, D, §) with a non-empty infinite set U, for any P,
Q C C, and x € U exists; then, the following properties hold

(1) m(U) = |U|.

(2) m(NT(x)) = m(NpepNT) ().

(3)1If Q € P, then m(NT)(x)) < m(NT}(x)).

Proof. (1) This proof is straightforward.

(2) Suppose that any p € P < C; it follows from Theo-

rem 1 in [17] that NTj(x) = NpepNT?(x). Thus, m(NTP(x)) =
(ﬂpEpNT (x)) can be easily obtained.

(3) Suppose that any Q € P and x € U; it follows 1mmed1ate1y
from (2) and Theorem 2 in [17] that NT5 (x) = ﬂpepNT (x) =
(MpeaNT) (%)) N (Mpep—oNT) (%)) = NT§(x) NNTE_o(x) € N30,
i.e., NTp(x) € NT} (x). Therefore, m(NT;(x)) < m(NTg(x)) holds.

Definition 2. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) exists with a non-empty infinite set
U, for any B C C, x,y € U; then, X C U, the neighborhood upper
approximation set and the neighborhood lower approximation
set of X with respect to B based on the Lebesgue measure are
defined, respectively, as

m(NT3(X)) = m({x € UINT3(x) N X # 0, X < U}), (15)

m(NT(X)) = m({x € UINT}(x) € X, X C U}). (16)

Definition 3. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) with a non-empty infinite set U, for
any B C C,and U/D = {d4, d>, ..., d, ...}, the positive region of
D with respect to B based on Lebesgue measure is defined as

m(POSg(D Z m(NTs(d; (17)

wheredjeU/Dand]=1,2,...,l,....

Proposition 1. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) exists with a non-empty infinite set U,
and any Q € P C C. Then, POSq(D) € POSp(D) and m(POSqy(D)) <
m(POSp(D)).

Proof. For any Q C P and x € U, it follows from Property 1 that

NT2(x) € NT§(x) and m(NT3(x)) < m(NT(x)). For any d; € U/D,

one has NT‘S(dJ c NT‘S(d) where j = 1,2,...,1,.... Hence,

it can be obtamed from Eq. (17) that POSq(D) < POSp(D) and
m(P0Sq (D)) < m(POSp(D)).

Table 1

An incomplete neighborhood decision system with mixed data.
U a a; as a4 D
X1 0.15 1 1 0.2 1
X2 0.7 0 0 * 1
X3 0.2 * * 0.5 1
X4 0.3 0 0 0.7 2
X5 0.8 0 0 0.8 0
X6 0.85 0 * * 0

Definition 4. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) exists with a non-empty infinite set U,
forany B C C,and U/D = {d4, d, ..., d, .. .}; then, a dependency
degree of D with respect to B based on the Lebesgue measure is
defined as

m(POSg(D))  D_jmq M(NT5(d;))

ys(D) = mU) m(ﬁ , (18)

wheredieU/Dandj=1,2,...,1,...

Remark 1. The above described ideas can also be interpreted
as an ability to classify objects. More precisely, if y3(D) = 1,
then all elements of the universe can be classified to elementary
categories of U/D by the conditional attribute subset B. If y5(D) #
1, only those elements of the universe that belong to the positive
region can be classified into categories of the decision attribute
D through employing B. In particular, if y3(D) = 0, then none of
the elements of the universe can be classified by B with respect
to elementary categories of D.

Example 1. Consider an incomplete neighborhood decision sys-
tem INDS = (U,C,D, ), where U = {x1, X2, X3, X4, X5, X¢}, C =
By U B¢ = {a1, a4} U {ay, a3}, D = {d} with the value {0, 1, 2},
and § = 0.15, the incomplete neighborhood decision system with
mixed data is shown in Table 1.

In Table 1, on the neighborhood tolerance relation, the uni-
verse U is divided into three equivalence classes by D, i.e., U/D =
{dq, d3, d3}. The neighborhood tolerance class with respect to D
can be obtained by d; = {1, x2, X3}, do = {x4}, and d3 = {xs, X¢}.

Let C = {ay, a3, as, a4}; then, according to Eq. (8), the neigh-
borhood tolerance classes with respect to C are computed by

NTi(x1) = {x1}, NTa(x2) = {x2,%5,%}, NTa(x3) = {xs},
NTB(X4) {x4}, NT{S(XS)— {x2, x5, X6}, and NT&(XG) {x2, x5, X6}

Thus, the positive region and the dependency degree of D with
respect to C are calculated, respectively, as

POSc(D) = {x1. %5, xa} and yc(D) = "EGE = 3 = .

Proposition 2. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) with a non-empty infinite set U and any
Q C P CC, yo(D) < yp(D) holds.

Proof. For any Q € P C C, it follows from Proposition 1 that
m(P0OSq(D)) < m(POSp(D)). Hence, from Definition 4, yo(D) <
yp(D) can be obtained.

3.2. Lebesgue measure and neighborhood tolerance entropy-based
uncertainty measures

In recent years, to evaluate the real-value datasets on the
neighborhood tolerance relation, the definition of the neighbor-
hood has been introduced into information entropy to extend
Shannon entropy [12,31]. However, the neighborhood tolerance
relation-based measures and their variations are only based on
finite sets in most cases, which limits their practical applications
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to a certain extent. Fortunately, the Lebesgue measure can ef-
ficiently measure the uncertainty of infinite sets [6]. Therefore,
the Lebesgue measure is introduced to solve the problem of
uncertainty measures on infinite sets in incomplete neighborhood
decision systems with mixed data.

Definition 5. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) with any B C C exists, and NTg(xi) is
a neighborhood tolerance class of x; € U. Then, the neighborhood
tolerance entropy of B is defined as

U] 5
1 INTg (x;)]
NTE,(B) = T log, IBTI (19)
i=1

Definition 6. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) with a non-empty infinite set U, for
any B C C exists and NTg(xi) is a neighborhood tolerance class of
x; € U. Then, the neighborhood tolerance entropy of B based on
the Lebesgue measure is defined as

o0

S(y.
> / logzwdx. (20)
xjeU

NTE;(B) = — > U]

m(U)

Proposition 3. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) with a non-empty infinite set U, for any
Q C P C C, NTE;(Q) < NTEs(P) holds.

Proof. Suppose that for any Q € P € C and x; € U, from
Property 1, m(NTS(x,-)) < m(NT}(x;)) holds. Then, — &> Z‘”‘ log,
m(NT (Xx)) 1 Z\u\ NT (x,))

can be easﬂy obtamed

Proposition 3 shows that in an incomplete neighborhood deci-
sion system, the neighborhood tolerance entropy increases mono-
tonically with the increase of the features. Obviously, NTEs(B) >
0, because of m(NTg(x)) < m(U) coming into existence. In fact,
NTE;(B) = 0 if and only if m(NT§(x)) = m(U) for any x € U.

. Hence, NTE;(Q) < NTE;(P)

Definition 7. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) with a non-empty infinite set U, for
any B C C, NTg(x,-) is a neighborhood tolerance class of x; € U,
and NTp(x;) is the neighborhood tolerance class of x; formed by D,
with U/D = {dy,d,, ..., d,, ...}, where NT3(x;) € U/D because
* € Vp does not usually exist. Then, the neighborhood tolerance
joint entropy of B and D based on the Lebesgue measure is defined
as

[o¢]

1

m(U)

m(NTg(xl) N dj)
l - b J7
Z/xieu &)

j=1
wheredjeU/Dandj=1,2,...,1, ...

NTE;(BUD) = — Jdx,  (21)

Proposition 4. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) with a non-empty infinite set U, for any
Q C P C C, NTE;(Q UD) < NTE;(P U D) holds.

Proof. For any Q € P C C and x; € U, according to Property 1,
one has NT}(x;) € NTg(x;) and m(NTJ(x;)) < m(NTg(x;)). Since the
values of D are usually complete in an incomplete neighborhood
decision system, the neighborhood tolerance class NT‘S(x,) is equal
to the equ1valence class [x;]4 in rough sets. Then, NT? p(x) S U/D =
{dq,d,, ..., ..}, and {x;} C NT‘S(x,) Nd; < NT‘S(x,) Nd; cU
holds. It follows that 1= |[x]d| < m(NT‘s(x,) Nnd) < m(NT5 (x)N

m(NT (x;)Nd;) (NTQ(xx)ﬁdj)

d;) < m(U). Obviously, W < mU) = m(0) =

5
m(NTS (x;)Nd;) m(NT2 (x;)Nd;)

1. Thus, log, oi; < log % < log, —2g— <
o (NTS (x)Nd;)

0. Hence, it is clear that 0 < _m(U SV log %) <

u m(NTS(x-)md-J .
m(u) Z' I 1o 0g, W) < W log, m(U). Namely, it can be

easily proved that NTE;(Q U D) < NTE; (P U D).
Proposition 5. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) exists with a non-empty infinite set U,

forany BC Cand x; € U, d; e U/D = {dy,d;, ..., d,, ...}, where
j=1,2,...,1,...; then, one has NTE;(B U D) > NTEs(B).

Proof. It follows immediately from Definitions 6 and 7 that

NTE5(B U D) — NTE;(B)
“w s L, e
_ ]i: / o m(%‘i(;"))dx)
- i/u o PR — o, B
= i/u NTI\SI(T):() ))d]))dx

Since nB(x,)ﬁ [xl]D C nB(xl) C U, where [x;]p € U/D, then
|nB(x,)ﬂ[x1]D| < |nB(x,)| < |U| in nelghborhood class. Simi-

larly, under the neighborhood tolerance class, |NT (x)Ndj| <

INT3(x;)| < |U|. It follows that m(NT}(x;) N d;) < m(NT3(x )) <
m(U). Thus, % 1. Therefore, NTE;(BU D) — NTEs(B) > 0

holds, i.e., NTES(B U D) > NTEs(B).

From Proposition 5, the value of the neighborhood tolerance
joint entropy is larger than that of the neighborhood tolerance en-
tropy of a feature subset. Thus, it can be concluded that the neigh-
borhood tolerance joint entropy has a stronger distinguishing
capacity when adding new features.

Definition 8. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) exists with a non-empty infinite set
U, for any B C C, and NTg(xi) and NTp(x;) are two neighborhood
tolerance classes of x; € U formed by B and D, respectively, with
U/D ={dy,d;, ...,d, ...}, and m(POSg(D)) is the positive region
of D with respect to B based on the Lebesgue measure. Then,
the neighborhood tolerance dependency joint entropy of D and
B based on the Lebesgue measure is defined as

8 )
POSB(D Z log, m(NTj (x; )ﬂd,))d&

NTDE(B, D) = (0}
xjeU

wheredjeU/Dandj=1,2,...,1,...

Property 2. Suppose that an incomplete neighborhood decision sys-
tem INDS = (U, C, D, §) exists with a non-empty infinite set U,
and for any B C C, the dependency degree of D in respect to B is
yg(D), and the neighborhood tolerance joint entropy of B and D is
NTEs(B U D). Then, NTDE(B, D) = yy(D) - NTEs(BU D) > 0.

Proof. Suppose that for any B C C, NTg(xi) is the neighborhood
tolerance class of x; € U,and d; € U/D = {dy,dy,...,d;, ...},
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where j = 1,2,...,1,....
tion 8, that

It follows immediately from Defini-

NTDE(B, D) = — m(POSg(D))

1
m(U)?

m(NTg(x,) n d})
Z/xieu logz(im(u) )dx

j=1

ad NT2(x;) N d;
- |POSB Z / 7| () fl)dx
| _ xjeU |U|

_ |POSg(D)| |NT5 (x:) N dj]
= : ———)dx)
U] |U | < x,eU U]

= y(D) - NTE5(B U D

From Property 1, one has m(U) = |U|. Then, it is known from
Proposition 5 that m(NTg(xj)ﬂdj) < m(U). Thus, it is obvious that

1og2(%) < 0 and m(POSg(D)) > 0. Hence, NTDE(B, D) > 0
holds.

Note that Wang et al. [27] stated that all definitions and
calculations in rough sets based on the upper and lower approxi-
mation sets are denoted from algebraic view of rough set theory,
and the concepts of information entropy and its extensions are
described from an information view in rough sets. It can be seen
from Definition 8 and Property 2 that y5(D) is the dependency
degree of D with respect to B in the algebraic view, and NTEs(B U
D) is the neighborhood tolerance joint entropy of B and D in
the information view. Therefore, Definition 8 can analyze and
measure the uncertainty of incomplete neighborhood decision
systems from both an algebraic view and an information view
based on Lebesgue and entropy measures.

4. Feature selection method in incomplete neighborhood de-
cision systems

4.1. Feature selection based on neighborhood tolerance dependency
joint entropy

Proposition 6. Suppose that an incomplete neighborhood decision
system INDS = (U, C, D, §) exists with a non-empty infinite set
U, forany Q € P € C,and U/D = {dq,d, ...,d, ...}, where
deU/Dandj=1,2,...,1,.... NTDE(Q, D) < NTDE(P, D).

Proof. let any Q € P < C and x; € U. It follows from
Proposition 2 that yo(D) < yp(D). According to Proposition 4,

NTEs(Q UD) < NTEs(PUD) obviously holds. Then, — U) Z 1 log,
m(NT$ (x;)nd;) u (NT3(x;)Nd))

(nqu)} m(U Z' | Tog,( %) can be obtained.
For any x; € U when NT(S(X,) NT3(x:), (D) = yp(D) and

NT§ (xi) N dj = NTR(x;) N dj. Thus, NTDE(Q, D) = NTDE(P, D) can
be obtained. Therefore, NTDE(Q, D) < NTDE(P, D) holds.

Remark 2. The monotonicity is one of the most important prop-
erties of uncertainty measures for feature selection. From Propo-
sition 6, the neighborhood tolerance dependency joint entropy
increases monotonically with the number of elements in the
attribute subset. Moreover, the monotonic increase of the neigh-
borhood tolerance dependency joint entropy contributes to the
selection of the greedy method for feature selection in incomplete
neighborhood decision systems.

Definition 9. Suppose there is an incomplete neighborhood deci-
sion system INDS = (U, C, D, §) exists with a non-empty infinite
set U and B C C; if NTDE(B, D) = NTDE(C, D), and for any a € B,
there exists NTDE(B, D) > NTDE(B — {a}, D). One can say B is a
reduct of C with respect to D.

Definition 10. Suppose that an incomplete neighborhood deci-
sion system INDS = (U, C, D, §) exists with a non-empty infinite
set U, for any B C C and a € B; then, the internal significance of
the attribute a in B with respect to D is defined as

Sig""®(a, B, D) = NTDE(B, D) — NTDE(B — {a}, D). (23)

Definition 11. Suppose there is an incomplete neighborhood
decision system INDS = (U, C,D,§) exists with a non-empty
infinite set U and B C C; if Sig"™"(a, B, D) > 0 for any a € B, then
the attribute a in B is necessary; otherwise, the a is unnecessary.
If each a in B is necessary, then B is independent.

Definition 12. Suppose there is an incomplete neighborhood
decision system INDS = (U, C,D,§) exists with a non-empty
infinite set U and B C C; if NTDE(C, D) > NTDE(C —{a}, D) for
any a € C, ie., Sig""'(a, C,D) > 0, then the a is called a core
attribute of C relative to D.

Definition 13. Suppose that an incomplete neighborhood deci-
sion system INDS = (U, C, D, §) exists with a non-empty infinite
set U, for any B C C and b € C —B; then, the external significance
of attribute b with respect to D is defined as

Sig®“®’ (b, B, D) = NTDE(B U {b}, D) — NTDE(B, D). (24)

Remark 3. From Definition 13, the significance measure
Sig®u®"(p, B, D) indicates the significance of attribute b, which is
added to B with respect to D in an incomplete neighborhood
decision system, and it provides a powerful reference for decision
making. The larger the value of Sig®*" is, the more important
the attribute is in incomplete neighborhood decision systems;
otherwise, the lower its significance is. Therefore, when the
significance of each attribute is calculated, the attribute of sig-
nificance with 0 is removed, and the reduced subset of attributes
can be obtained finally.

Property 3. Suppose that an incomplete neighborhood decision sys-
tem INDS = (U, C, D, §) exists with a non-empty infinite set U
and any B C C; then, the following properties can be immediately
obtained

(1) 0 < Sigi"™e"(a, C,D) < 1 forany a € C.

(2) 0 < Sig®“*"(b, B,D) < 1 forany b € C —B.

(3) When B = C, Sig®"**"(, C, D) = 0.

(4) Any b € C—B is not necessary if and only if Sig®“*' (b, B, D) =
0.

Note that in an INDS = (U, C, D, 8) with a non-empty infinite
set U and B C C, for any a € B, when Sig"™(a, B, D) is calculated,
NTDE(B—{a}, D) is only calculated because NTDE(B, D) is a constant.
Similarly, for any b € C — B, when calculating Sig®“’(b, B, D),
NTDE(B U {b}, D) only needs to be calculated.

Example 2. Consider the incomplete neighborhood decision sys-
tem INDS = (U,C,D,$) in Table 1, where U = {xq, X2, X3, X4,
Xs,Xs}, C = By U B¢ = {ay, a4} U {ay, as}, D = {d} with the value
{0, 1,2} and 6 = 0.15.

From Definitions 7, 8 and 10, the following formulas can be
computed by

NT2(x1) Ndy = {1}, NT (x1) N dy = @, NT (%) Nd3 = @

NTE(x2) N dy = {x2}, NT¥(%2) Ndy = @, NT2(x2) N d3 = {xs, X6}

NT2(x3) Ndy = {x3}, NT (x3) N dy = @, NT2(x3) Nd3 = @

NT2(x4) Ndy = @, NT(x4) Ndy = {Xa}, NTO(x4) Nd3 = @
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NTi(xs) N dy = {x2}, NT(x5) N dy = @, NTE(x5) N d3 = {x5, X6};

NT(x6) Nd1 = {x2}, NT¥(x6) N dy = @, NT3(x6) N d3 = {5, Xs}.

Then, from Eq. (21), the neighborhood tolerance joint entropy
of D with respect to C is calculated by

3 6
1 m(NT2(x;) N d;)
NTE;(CUD) = —— 1 = 2.252.
5( 6 JZ;IX; 08 — v m(U)

It follows immediately from Definition 8 that

1 2 NT3(x) N d;
= —5gM(POSK(D)) ) D " log mNT5() 1 &) B(g) b)

j=1 i=1

NTDE(C, D)

= 1.126.

In the same way, for all attributes in C, the internal signifi-
cance of attributes is calculated by Sig"'(a;,C,D) =
NTDE(C,D) — NITDE(C — {ai},D) = 0.806. Similarly,
Sigi"er(a,, C, D) = 0, Sig""™" (a3, C, D) = 0 and Sig™"(a,, C, D) =
0.806.

4.2. Comparison analysis with two representative reducts

As we know, Wang et al. [27] stated that the relative reduct of
a decision system from an information view must be its relative
reduct from an algebraic view, and then heuristic reduction al-
gorithms may be developed in decision systems. Sun et al. [26]
concluded that the definition of the conditional rough entropy
reduct from the information view can include that of the positive
region reduct from the algebraic view in incomplete decision
systems. On the basis of the ideas in [26,27], the definition of
the reduct based on neighborhood tolerance dependency joint
entropy in an incomplete neighborhood decision system can be
extended from an algebraic view and information view in neigh-
borhood rough sets. For convenience, the reduct in Definition 9
is named as a neighborhood tolerance reduct. Meng and Shi [18]
proposed a positive region-based reduct in incomplete decision
systems, and the positive region reduct as a representative reduct
is called a reduct in the algebraic view of neighborhood rough
sets. Zhao and Qin [17] designed a feature selection algorithm
based on conditional entropy under the neighborhood tolerance
relation for incomplete data, which is a representative reduct
from the information view in neighborhood rough sets.

Given an incomplete neighborhood decision system INDS =
(U, C, D, §) with a non-empty infinite set U, for any B C C and

= {d}, a positive region reduct of the incomplete neighborhood
decision system is proposed [18] as follows. For any a € B,
if |POSg(D)| = |POSc(D)| and [POSg—_(q)(D)| < |POSg(D)|, B is a
relative reduct of the incomplete neighborhood decision system,
where POSg(D) = U{B(X)s|X € U/Tg} is the positive region of D
with respect to B.

Proposition 7. Suppose there is an incomplete neighborhood de-
cision system INDS = (U, C, D, §) with non-empty infinite set U
and any B C C; if B is a neighborhood tolerance reduct of C with
respect to D in the incomplete neighborhood decision system; then,
B is a positive region reduct of C with respect to D in the incomplete
neighborhood decision system.

Proof. Let U = {x1,X2,...,Xm,...} and U/D = {dy,d,,...,
d;, ...}. Suppose that for any B C C, from Definition 9, if
NTDE(B,D) = NTDE(C,D) and for any a € B, there exists
NTDE(B, D) > NTDE(B—{a}, D), and B is a neighborhood tolerance
reduct of C relative to D in the incomplete neighborhood decision

system. When NTDE(B, D) = NTDE(C, D) it can be obtained from
Ploposmon 6 that NT3(x) = NT{(x), ys(D) = yc(D) and
NT)(x) N d; = NT‘s(x,) N d;, where x;, € U, d; € U/D and
j=1,2,...,1,....By Eq. (10), one has that NTB(d) = NTc(d;).
Thus, it is obv10us that POSg(D) = POS¢(D) with a non-empty
infinite set U, i.e., |POSg(D)| = |POS¢(D)|. For any a € B, B— {a} €
B and from Property 15 in [18], B— {a}(D)s < B(D)s can be
obtained. Therefore, POSg_;q;(D) < POSg(D) holds. Because for
any a € B, there is NTDE(B,D) > NTDE(B — {a}, D), one has

— {a}(D)s < B(D)s. From Proposition 1, POSg_(qj(D) € POSg(D)

holds. Obviously, |POSg_q)(D)| < |POSg(D)| for any a € B. Hence, B
is a positive region reduct of C with respect to D in the incomplete
neighborhood decision system.

It is noted that the inverse relation of Proposition 7 is gen-
erally unavailable. Proposition 7 shows that the definition of the
neighborhood tolerance reduct in the information view contains
that of the positive region reduct in the algebraic view for the
incomplete neighborhood decision system.

Given an incomplete neighborhood decision system INDS =
(U, C,D, §) with a non-empty infinite set U, any B € C and
D = {d}, for any a € B, a reduct of the incomplete neighbor-
hood decision system called a neighborhood conditional entropy
reduct is proposed [17] as follows: If NTE(D|B) = NTE(D|C)
and NTE(D|B — {a}) < NTE(D|B), B is a neighborhood toler-
ance conditional entropy reduct of C with respect to D in the
incomplete nelghborhood decision system, where NTE(D|B) =

\Ul Z NTB("’ — M&)ONTo%i) ) qenotes the neighborhood tol-
erance condltlonal entropy of B and D, NTy(x;) and NTp(x;) are
the neighborhood tolerance classes of x; with respect to B and
D, respectively, and NTp(x;) € U/D.

Proposition 8. Suppose there is an incomplete neighborhood deci-
sion system INDS = (U, C, D, §) exists with a non-empty infinite set
U and B C C; B is a neighborhood tolerance reduct of C with respect
to D in the incomplete neighborhood decision system if and only if
B is a neighborhood conditional entropy reduct of C with respect to
D in the incomplete neighborhood decision system.

Proof. = Let U = {x1,X2,...,Xm, ...}, and U/D = {dy, d,, ...,
dy, ...}. Suppose that for any B C C, it follows from Definition 9
that if NTDE(B,D) = NTDE(C,D) and for any a € B, there
exists NTDE(B, D) > NTDE(B — {a}, D); then, B is a neighborhood
tolerance reduct of C relative to D. Similar to the proof of Propo-
sition 7, when NTDE(B, D) = NTDE(C, D), for any x; € U, d; € U/D
and j = 1,2,...,1,..., NT}(x;) = NT:(x;) and NTi(x;) N d; =
NTg(xi) N d;. It follows that NTE(D|B) = NTE(D|C) with a non-
empty infinite set U. Because any B — {a} C B, from Theorem 6
in [23], we have NTE(D|B — {a}) < NTE(D|B). For any a € B, there
exists NTDE(B, D) > NTDE(B — {a}, D); then, NTE(D|B — {a}) <
NTE(D|B) holds. Thus, B is the neighborhood conditional entropy
reduct of C with respect to D in the incomplete neighborhood
decision system.

< Suppose that for the non-empty infinite set U, for any
B C C and a € B, if NTE(D|B) = NTE(D|C) and NTE(D|B — {a}) <
NTE(D|B), then B is a neighborhood conditional entropy reduct
of C relative to D. Similar to the proof of Proposition 7, from
Definitions 2, 3 and 4, when NT}(x) = NT{(x), ys(D) = yc(D) and
NT)(x;) N dj = NT2(x;) N dj, where for any x; € U, d; € U/D and
j=1,2,...,1,....Therefore, it can be obtained from Definition 8
that NTDE(B, D) = NTDE(C, D). Since any B — {a} C B, from
Proposition 6, NTDE(B, D) > NTDE (B—{a}, D) holds. For any a € B,
there exists NTE(D|B —{a}) < NTE(D|B) with a non-empty infinite
set U; then, NTDE(B, D) > NTDE(B — {a}, D) holds. Therefore, B is
the neighborhood tolerance reduct of C with respect to D in the
incomplete neighborhood decision system.
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Remark 4. Proposition 8 demonstrates that in an incomplete
neighborhood decision system, the neighborhood tolerance
reduct is equivalent to the neighborhood conditional entropy
reduct in the information view. According to Propositions 7
and 8, it can be concluded that the definition of neighborhood
tolerance reduct contains two representative reducts proposed
in the algebraic view and information view, respectively. There-
fore, the definition of the neighborhood tolerance reduct rep-
resents a mathematical quantitative measure to evaluate the
knowledge uncertainty of different attribute sets in incomplete
neighborhood decision systems.

4.3. Feature selection algorithm

To facilitate understanding the feature selection method more
clearly, the process of data classification for feature selection is
shown in Fig. 1, where the Fisher score method [6] is introduced
for preliminary dimension reduction of the high-dimensional
datasets. To support efficient feature selection, a feature selection
algorithm based on the neighborhood tolerance dependency joint
entropy (FSNTDJE) is designed as Algorithm 1.

Algorithm 1. FSNTDJE

Input: An incomplete neighborhood decision system
INDS =< U, C, D, § >, and neighborhood parameter §.
Output: An optimal attribute subset B.

(1) Initialize B= ¥ and R = .

) Calculate NTDE(C, D).

JFORi=1to |C| do

) Calculate Sig™er(c;, C, D).

) IF Sigi"™"(¢;, C,D) > 0

) then B = BU {c;}.

) ENDIF

) ENDFOR

)LetR=C —B.

0) WHILE NTDE(B, D) # NTDE(C, D)

1) FORj=1to|R| do

2) Calculate NTDE(B U {a;}, D).

(13) Select g; to make it satisfy

max{a; € RINTDE(B U {q;}, D)}, and if multiple attributes satisfy
the maximum, then the front should be selected.

14) ENDFOR

15)Let B=BU {gj} and R=R —
6) ENDWHILE

7) FOR k =1 to |B| do

8) Select by € B.

9) Compute NTDE(B — {by}, D).
0)

1)

2)

3)

4)

(2

3
(4
(5
(6
(7
(8
€
(1
(1
(1

{a;}, and calculate NTDE(B, D).

IF NTDE(B — {by}, D) > NTDE(B, D)
then B = B — {by}.
EDNIF
ENDFOR
RETURN An optimal attribute subset B.

In the FSNTDJE algorithm, the computation of neighborhood
tolerance classes is frequent in incomplete neighborhood deci-
sion systems. The process of computing neighborhood tolerance
classes exerts a great influence on the time complexity of feature
selection. It should be noted that the main calculation of FSNT-
DJE involves two important aspects: obtaining the neighborhood
tolerance classes and calculating the neighborhood tolerance de-
pendency joint entropy. First, in order to further reduce the com-
putational time complexity of neighborhood tolerance classes,
the bucket sorting algorithm [38] is employed. Then, the time
complexity of neighborhood tolerance classes is O(mn), where
m is the number of samples, and n is the number of features.

At the same time, the computational time complexity of the
neighborhood tolerance dependency joint entropy is O(n). Since
O(n) < O(mn), the complexity of reaching the neighborhood
tolerance dependency joint entropy is O(mn). Thus, in the worst
case, the time complexity of FSNTDJE is O(n®m), since there are
two loops at Steps 3-8 and 10-16. In the process of dimension
reduction, suppose that the number of selected features is ng,
and in the calculation of neighborhood tolerance classes, we only
need to consider the candidate features without traversing the
whole feature subset. Hence, the time complexity of calculating
neighborhood tolerance classes is O(ngm). For the FSNTDJE al-
gorithm, the times of the outer loop and the inner loop are m
and n — ng, respectively. The total time complexity of FSNTDJE is
O(ngm(n—ng)n). It is known that ng < n in most cases. Therefore,
the time complexity of FSNTDJE is nearly O(mn). Moreover, the
FSNTDJE algorithm achieves better performance than some of the
existing algorithms for feature selection [18,26,38-43] in terms
of the computational complexity for decision systems. Moreover,
the space complexity of FSNTDJE is O(mn).

5. Experimental results and analysis
5.1. Experiment preparation

The primary task of a feature selection method often includes
two aspects: one is to choose a small number of features, and
the other is to retain high classification accuracy. To demon-
strate the classification performance of our feature selection
method proposed in Section 4.3, the comprehensive results of
all contrasted algorithms are obtained and analyzed on fifteen
public datasets (seven UCI datasets and eight DNA microar-
ray gene expression datasets). The seven selected UCI datasets
with low-dimensions include Nursery, Credit, Mushroom, Wpbc,
Soybean, Annealing and Ozone level, downloaded from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/index.
php). The eight high-dimensional DNA microarray gene expres-
sion datasets include Colon, DLBCL, Brain, Leukemia, Breast, Lung,
MLL and Prostate, downloaded from the Cancer Program Datasets
(http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi). No-
tably, a gene expression dataset can be described by a neighbor-
hood decision system, where an object corresponds to a sample,
a conditional attribute represents a gene, and a decision attribute
expresses a subclass of cancer. It should be noted that the Credit
and Wpbc datasets in UCI and the eight gene expression datasets
are usually complete; therefore, to create incomplete neighbor-
hood decision systems, for convenience, we randomly change
some known values of features into missing values. All of the
datasets are described in detail in Table 2, where the two datasets
contain mixed features, the three datasets include categorical
features, and the remaining ten datasets have numerical features.

The experiments are performed on a personal computer run-
ning Windows 10 with an Intel(R) i5 CPU at 3.20 GHz with 4.0
GB memory. All the simulation experiments are implemented in
MATLAB 20164, and the four classifiers, including Naive Bayes,
C4.5, KNN and CART, are selected to illustrate classification re-
sults in WEKA 3.8. The following experimental comparisons for
classification on the selected features are implemented using 10-
fold cross-validation with all test datasets, where every dataset
is first randomly divided into ten portions, which are the same
size; then, one data subset is used as the testing dataset and the
other nine data subsets are used as the training datasets; each
of the ten data subsets is employed exactly once as the testing
dataset. Cross-validation is repeated ten times, and the average
of the ten test results is the obtained number of selected features
and classification accuracy |3,6,40,44].
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Fig. 1. Process flow of the feature selection method for data classification.

Table 2
The description of the fifteen public datasets.

No. Datasets Samples Features Classes
Total Numerical Categorical
features  features
1 Nursery 12 960 8 0 8 5
2 Credit 690 15 6 9 2
3 Mushroom 8124 22 0 22 2
4  Wpbc 198 34 34 0 2
5 Soybean 307 35 0 53 19
6 Annealing 798 38 6 32 6
7 Ozone level 2534 73 73 0 2
8 Colon 62 2000 2000 0 2
9 DLBCL 77 5469 5469 0 2
10 Brain 90 5920 5920 0 5
11 Leukemia 72 7129 7129 0 2
12 Breast 84 9216 9216 0 5
13 Lung 181 12533 12533 0 2
14  MLL 72 12582 12582 0 3
15 Prostate 136 12 600 12 600 0 2

5.2. Effect of different neighborhood parameter values

The second portion of our experiments pays more attention
to the classification accuracy and the reduction rate under the
different neighborhood parameters. The classification accuracy
versus the reduction rate on a feature subset for the different
neighborhood parameters is performed to obtain an appropri-
ate neighborhood parameter value. To explain the classification
accuracy and the reduction performance with the values of dif-
ferent neighborhood parameters, a reduction rate needs to be

presented to evaluate the performance of feature redundancy for
our proposed feature selection method.

Definition 14. A reduction rate for datasets is defined as
Rate =1 — M (25)
IC]|

where |C| describes the number of conditional attributes, and
|[R| denotes the number of selected features generated under
the given neighborhood parameter. Since a higher reduction rate
shows that the method has a stronger reduction capacity for
datasets, a higher reduction means the redundancy degree will
be lower.

For the eight high-dimensional gene expression datasets, the
Fisher score method [38] is employed to compute the value of
the Fisher score and sort it based on all the genes from the
eight datasets, and g genes are selected to form a candidate
gene subset. The classification accuracy under the following seven
dimensions (10, 50, 100, 200, 300, 400 and 500) is acquired
so that the appropriate dimension can be selected for feature
selection. Fig. 2 demonstrates the variation trend between the
classification accuracy and the number of genes on the eight gene
expression datasets.

According to Fig. 2, it is obvious that when the number of
genes increases, the accuracy generally changes. As we know,
the classification accuracy and the cardinality of selected fea-
tures are two important aspects for evaluating the classification
performance of the feature selection methods. It is necessary to
select the appropriate number of genes from Fig. 2. Hence, the
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Fig. 2. Classification accuracy versus the number of genes on the eight gene
expression datasets.

dimensions of genes can be set to 200-dimension features for the
Colon and MLL datasets, and 50-dimension features for the DLBCL,
Lung and Prostate datasets. For the Brain dataset, the number
of appropriate genes can be set as 400-dimension features. Both
the Leukemia and Breast datasets can employ 100-dimension
features for feature selection.

Note that if all of the feature values are categorical, the neigh-
borhood tolerance relation will degenerate to the tolerance re-
lation [17]. Thus, the neighborhood parameter will be set as
0 for three datasets (Nursery, Mushroom and Soybean) in our
experiments. The classification accuracy of selected features on
the twelve datasets is obtained by using the FSNTDJE algorithm
with the different neighborhood parameter values. After obtain-
ing the results of feature selection with different parameters, the
classification accuracy under the Naive Bayes and C4.5 classifiers
is achieved for the four UCI datasets. For the eight gene expres-
sion datasets, the classification accuracy and the reduction rate
are evaluated under the KNN (k = 10) and C4.5 classifiers. The
results of different parameter values are shown in Fig. 3, where
the horizontal coordinate represents the different neighborhood
parameter values with § € [0.05, 1] at an interval of 0.05, and
the left and right vertical coordinates state the accuracy and the
reduction rate, respectively.

Fig. 3 shows that when the neighborhood parameter val-
ues change from 0.05 to 1, the classification accuracy of se-
lected features by FSNTDJE is increasing and the reduction rate
is decreasing in most cases. It can be observed that the dif-
ferent parameters produce a great impact on the classification
performance of FSNTDJE. Thus, for each dataset, the optimal
neighborhood parameter can be chosen in Fig. 3. It can be seen
from Fig. 3(a) that the classification accuracy of selected features
reaches the best performance when the parameter equals 0.5 on
the Credit dataset under the Naive Bayes and C4.5 classifiers.
For the Wpbc dataset in Fig. 3(b), the neighborhood parameter
can be set to 0.15 under the Naive Bayes classifier and 0.35
under the C4.5 classifier. Fig. 3(c) demonstrates the classification
accuracy of the Annealing dataset with different neighborhood
parameters, and the neighborhood parameter can be set to 0.3
under both the Naive Bayes and C4.5 classifiers. Fig. 3(d) shows
the classification accuracy of the Ozone level dataset with the
different neighborhood parameter values, and its neighborhood
parameter can be set as 0.1. Fig. 3(e) reveals that the classification
accuracy of the selected feature subset reaches the best value

when the parameter value is 0.2 for the Colon dataset under the
KNN and C4.5 classifiers. Similar to Fig. 3(e),(f) demonstrates that
the reduction rate decreases as the neighborhood parameter val-
ues increase, and the classification accuracy of selected features
reaches the relative maximum when the neighborhood parameter
is 0.1 under the KNN and C4.5 classifiers. Fig. 3(g) indicates that
for the Brain dataset, under the two different classifiers, the
neighborhood parameter can be set as 0.45. For the Leukemia
dataset in Fig. 3(h), the neighborhood parameters can be set to
0.15 and 0.05 under the KNN and C4.5 classifiers, respectively. In
Fig. 3(i), on the KNN and C4.5 classifiers, the parameter can be
set as 0.2 on the Breast dataset. For the Lung dataset in Fig. 3(j),
we can see the slight difference of classification accuracy between
the two classifiers. It follows that the neighborhood parameters
can be set to 0.3 under the KNN classifier and 0.35 under the C4.5
classifier. The parameters can be set as 0.15 for the MLL dataset
and 0.25 for the Prostate dataset, as observed from Fig. 3(k) and
(1) under the KNN and C4.5 classifiers, respectively.

5.3. Classification results on low-dimensional UCI datasets

This part of our experiments evaluates the performance of
our proposed FSNTDJE algorithm in terms of the number of se-
lected features and the classification performance on the low-
dimensional UCI datasets. The FSNTDJE algorithm is compared
with four state-of-the-art feature selection algorithms, described
as follows: (1) the conditional entropy-based feature selection al-
gorithm in rough sets (FSCE) [26], (2) the positive approximation-
based incomplete feature selection algorithm in rough sets (IF-
SPA) [43], (3) the positive region-based feature selection algo-
rithm using the rough set model (FSPR) [18], and (4) the rough
set theory-based heuristic SetCover feature selection algorithm
(SetCover) [26]. By using the different neighborhood parameters
obtained in Section 5.2 and following the techniques proposed
in [18,26,39,40], the average number of selected features and the
appropriate neighborhood parameters on the seven UCI datasets
from Table 2 are obtained and shown in Table 3, where the
average sizes of selected feature subsets of the five methods are
obtained from the 10-fold cross-validation method. Note that the
bold font indicates the best result in all the following subsections.

Table 3 lists the average number of features selected by the
five different algorithms using 10-fold cross-validation. As seen
from Table 3, with the Naive Bayes and C4.5 classifiers, the
average number of features selected by FSNTDJE is less than that
of FSCE, IFSPA, FSPR and SetCover in most cases. For the Nursery
and Soybean datasets, the SetCover and FSNTDJE algorithms have
obtained nearly the same average number of features under the
two different classifiers; however, both of them have approxi-
mately one more than the other three algorithms. On the Credit
and Annealing datasets, the average number of features selected
by FSNTDJE is slightly lower than that of FSPR, and they achieve
the minimum among the five algorithms. For the Mushroom
dataset, the number of features selected by FSNTDJE is 4.2, which
is 0.2-3.4 lower than that of the other four algorithms. For the
Wpbc dataset, the number of selected features of FSNTDJE is 4.9
under the Naive Bayes classifier, which reaches the lowest value.
Nevertheless, under the C4.5 classifier, the average number of
features selected by FSNTDJE is nearly the same as that by the
SetCover algorithm for Wpbc. Under the two classifiers, FSNTDJE
reaches the minimal number of features on the Ozone level
dataset. Furthermore, the Mean index denotes the mean value of
all the results in the following subsections. It is obvious that the
mean result of FSNTDJE under the Naive Bayes classifier in Table 3
is the minimal. On the whole, the proposed FSNTDJE algorithm is
efficient in terms of the average number of selected features for
all datasets.
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Fig. 3. The classification accuracy and the reduction rate for the twelve datasets with different neighborhood parameter values.
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Table 3

The number of selected features with the five algorithms.
Datasets FSCE IFSPA FSPR SetCover FSNTDJE

Naive Bayes(8) C4.5(6)

Nursery 7.9 6.7 7 8.4 8.2(0) 8.2(0)
Credit 1.9 112 97 10.9 9.5(0.5) 9.5(0.5)
Mushroom 4.4 7.6 45 55 4.2(0) 4.2(0)
Wpbc 116 121 104 89 4.9(0.15) 7.6(0.35)
Soybean 9 9.3 89 95 9.8(0) 9.8(0)
Annealing 121 102 7.6 9.8 7.5(0.3) 7.5(0.3)
Ozone level 318 304 215 211 16.4(0.1) 16.4(0.1)
Mean 127 125 9.9 10.6 8.6 9.0

Table 4

The classification accuracy of the six methods under the Naive Bayes classifier.
Datasets oDP FSCE IFSPA FSPR SetCover  FSNTDJE
Nursery 09211 08994 0.8929 0.8991 0.9032 0.9451
Credit 0.7638 0.8124 0.8191 0.8086 0.8065 0.8536
Mushroom 09201 09219 09271 0.9019 0.9169 0.9583
Wpbc 0.6111 06569 0.6625 0.6706 0.6718 0.6649
Soybean 0.9055 0.8828 0.8801 0.8792 0.9159 0.8156
Annealing 05877 0.6166 0.6072 0.6002 0.6118 0.9136
Ozone level 0.6784 0.6595 0.6819 0.7004 0.6827 0.7808
Mean 0.7751 0.7785 0.7851 0.7800 0.7870 0.8747

Table 5

The classification accuracy of the six methods under the C4.5 classifier.
Datasets ODP FSCE IFSPA FSPR SetCover  FSNTDJE
Nursery 0.9705 0.9501 0.9337 0.9435 0.9705 0.9219
Credit 0.8565 0.8245 0.8461 0.8352 0.8568 0.8765
Mushroom 1 09766 09816 1 1 0.9951
Wpbc 06919 0.7071 0.7262 0.7065 0.7124 0.7374
Soybean 0.8338 0.8217 0.8338 0.8470 0.8369 0.8769
Annealing 0.9048 0.9235 0.9063 0.9044 09125 0.9201
Ozone level 09215 09214 0.9258 09305 0.9254 0.9522
Mean 08793 08750 0.8791 0.8810 0.8878 0.8972

In what follows, the average classification accuracy of our
proposed method is illustrated using the six methods to evaluate
the classification performance on the selected features, i.e., the
feature subsets are selected with 10-fold cross-validation; more-
over, to obtain objective classification results and reduce random
errors, all the compared methods are performed 10 times, and
the results are the average value of the 10 evaluations of the
classification accuracy. The FSNTDJE algorithm is compared with
the above four feature selection methods (FSCE, IFSPA, FSPR and
SetCover) and the original data processing method (ODP). The
two classifiers (Naive Bayes and C4.5) are employed to test the
classification performance. Following the designed techniques
in [18,26,39,40], the average classification accuracy of optimal
features selected by the six methods under the Naive Bayes and
C4.5 classifiers is shown in Tables 4 and 5, respectively.

As seen from Table 3, there is little differences in the average
number of features selected by the five algorithms, on the basis of
which, Tables 4 and 5 show the differences among the six meth-
ods. It is obvious that the classification accuracy of the FSNTDJE
algorithm outperforms that of the other five methods on most of
the datasets, except for the Wpbc and Soybean datasets under the
Naive Bayes classifier, and the Nursery, Mushroom and Annealing
datasets under the C4.5 classifier. Moreover, the mean accuracy of
FSNTDJE in Tables 4 and 5 has been improved and is the highest
on the two different classifiers. From Tables 3 and 4, under the
Naive Bayes classifier, although FSNTDJE does not perform as well
as FSCE, IFSPA and FSPR in the average sizes of selected fea-
tures, the classification accuracy of FSNTDJE is 2.4-5.22% higher
than that of ODP, FSCE, IFSPA and FSPR for the Nursery dataset;
however, FSNTDJE is inferior to SetCover on the Soybean dataset.
Though there are some differences in the average sizes of features

selected by the five algorithms, the average accuracy of FSNTDJE
is higher than that of other methods on all datasets, except for
the Wpbc and Soybean datasets. Similarly, as seen from Tables 3
and 5, under the C4.5 classifier, the mean accuracy of FSNTDJE is
0.94-2.22% higher than that of the other five methods, and the
accuracy of FSNTDJE is nearly the same as that of the SetCover in
all datasets. For the Mushroom dataset, the classification accuracy
of FSNTDJE is 0.05% lower than that of ODP, FSPR and SetCover;
however, FSNTDJE selects fewer features than the other methods,
and it displays better classification performance than FSCE and
IFSPA. In summary, in terms of the mean accuracy, our FSNTDJE
algorithm demonstrates great stability with Naive Bayes and C4.5,
whereas the accuracy of the ODP, FSPR and SetCover algorithms
is slightly unstable. It can be ascertained from the results in
Tables 4 and 5 that for the Nursery dataset under Naive Bayes, and
the Mushroom and Annealing datasets under C4.5, it is possible
that FSNTDJE reduces some important features in the process of
feature selection, which results in decreasing the classification
accuracy of the selected feature subsets.

In the process of conducting the experiments, the rough sort-
ing of the five feature selection methods on the time complexity
is obtained as follows: O(FSNTDJE)< O(FSCE) = O(SetCover) <
O(FSPR) < O(IFSPA), where O(A) represents the time complexity
of the A algorithm. Suppose that there are m samples and n
features, and the time complexity of FSCE is O(mn?) [26]. For
the low-dimensional UCI datasets, the time complexity of FSCE
is low. Notably, these UCI datasets usually have a large number
of samples and a small number of features in most instances;
however, the microarray gene expression datasets with the small
sample size are high-dimensional. Since m < n on the large-scale
and high-dimensional datasets, the time complexity of FSNTDJE
is O(mn), which is much less than that of FSCE. For the SetCover
algorithm, its time complexity is O(mn?) [40]. Since the time com-
plexity of the FSPR algorithm is mainly spent on the calculation of
tolerance classes of each sample for the different decision classes,
FSPR runs slowly, and its time complexity is O(mn? logm) [18].
In addition, the time complexity of IFSPA is O(mn?) [39], which
is very time-consuming. For computing tolerance classes, [FSPA
consumes much time. Therefore, one can conclude that the FSNT-
DJE algorithm achieves lower time complexity and can efficiently
eliminate the redundant features and optimize the classification
performance of incomplete datasets.

The third part of this subsection is to further illustrate the
classification results of the FSNTDJE algorithm on some selected
datasets in terms of the number of selected features and their
classification accuracy. Here, four state-of-the-art feature selec-
tion methods for incomplete datasets used in comparison include
(1) the heuristic discernibility matrix-based feature selection
algorithm using fuzzy rough sets (DMFS) [45], (2) the rough sets-
based backward attribute reduction algorithm for incomplete
ordered information systems with fuzzy decision (BKAR) [46],
(3) the mutual information-based feature selection algorithm
with the forward greedy strategy from incomplete decision sys-
tems in rough sets (MIFS) [36], and (4) the discernibility matrix-
based knowledge reduction algorithm using dominance rough
sets (DMKR) [47]. It should be noted that to compare the FSNTDJE
algorithm with the abovementioned four feature selection meth-
ods and the ODP method, the Credit and Annealing datasets are
selected from Table 2 for convenience. Following the experimen-
tal techniques and parameters designed in [36,45-47], Tables 6
and 7 show the experimental results of the six different methods,
where the average number of selected features with 10-fold
cross-validation and the average accuracy of the 10 evaluations
can be implemented under the Naive Bayes and C4.5 classifiers.

As shown in Table 6, FSNTDJE achieves the lowest number of
the selected Credit features and the highest classification accu-
racy. Compared with the other five methods, the average number
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Table 6
The classification accuracy of the selected Credit features with the six
methods.

Methods Features Naive Bayes C4.5 Mean

ODP 15 0.7638 0.8565 0.8101
DMFS 119 0.7891 0.7873 0.7882
BKAR 115 0.7849 0.8059 0.7954
MIFS 124 0.8014 0.8373 0.8194
DMKR 13.7 0.7699 0.7924 0.7812
FSNTDJE 9.5 0.8536 0.8765 0.8651

Table 7

The classification accuracy of the selected Annealing features with the six
methods.

Methods Features Naive Bayes C4.5 Mean

ODP 38 0.5877 0.9048 0.7463
DMFS 10.7 0.9170 0.8823 0.8997
BKAR 9.2 0.9224 0.9107 0.9166
MIFS 9.6 0.8351 0.9241 0.8796
DMKR 10.0 0.9146 0.9033 0.9089
FSNTDJE 7.5 0.9136 0.9201 0.9169

of features selected by our algorithm is 2-4.5 lower than that
achieved by five methods. Moreover, with the Naive Bayes and
C4.5 classifiers, the accuracy of features selected by FSNTDJE
is higher than that of the other five methods, i.e., under the
Naive Bayes classifier, the accuracy of our algorithm is 5.22-8.98%
higher than the other methods, and under the C4.5 classifier, it
is 2-8.92% higher than them. Hence, the FSNTDJE algorithm can
achieve great classification performance for the Credit dataset.

According to the classification results in Table 7, the FSNT-
DJE algorithm obtains the lowest number of selected Annealing
features and the highest mean accuracy, based on which, the
accuracy of features selected by our algorithm under the Naive
Bayes classifier is as good as that of the DMFS, BKAR and DMKR
algorithms and is 32.59% and 7.85% higher than that of ODP and
MIFS, respectively. Moreover, the accuracy of FSNTDJE is similar
to MIFS and higher than that of the other four methods under the
C4.5 classifier. Thus, our proposed FSNTDJE algorithm can remove
redundant features from the original Annealing dataset.

From all the above results and analysis, it is obvious that there
is no algorithm consistently better than the others for different
learning tasks and classifiers. In general, it can be observed from
Tables 4 to 7 that our FSNTDJE algorithm, compared with these
other feature selection methods, can reflect the decision-making
ability of features, avoid the loss of useful information caused by
discretization, and tackle the uncertainty and efficiently improve
the classification performance in incomplete neighborhood deci-
sion systems. Therefore, the proposed FSNTDJE algorithm outper-
forms the other related feature selection methods on incomplete
low-dimensional UCI datasets.

5.4. Classification results on high-dimensional gene expression
datasets

This section of our experiments demonstrates the classifica-
tion performance of our proposed method on high-dimensional
gene expression datasets. The FSNTDJE algorithm is compared
with four state-of-the-art feature selection methods, which in-
clude (1) the rough sets-based correlation feature selection al-
gorithm (CFS) [44], (2) the fast correlation-based filter feature
selection algorithm in rough sets (FCBF) [42], (3) the interacting
features selection algorithm, which can handle feature inter-
action and efficiently selects relevant features (INT) [42], and
(4) the information gain and divergence-based feature selection
algorithm for statistical machine learning (IG) [43]. Similar to
Section 5.3, the average sizes of feature subsets selected by the

Table 8

The number of selected genes with the five algorithms.
Datasets CFS FCBF INT IG FSNTDJE

Naive Bayes(§)  C4.5(6)

Colon 23.6 144 14 10.1 9.5(0.4) 11.5(0.2)
DLBCL 65.1 372 505 438 7.3(0.25) 6(0.1)
Brain 357 14 49.1 134  14.4(0.45) 16.1(0.45)
Breast 130.1 99.0 1020 119  7(0.2) 7(0.2)
Prostate  89.3 765 725 9.2 5.9(0.2) 7.2(0.25)
Mean 68.76  45.7 57.62 9.88 9.04 9.56

above methods using 10-fold cross-validation and the appropriate
neighborhood parameters on the gene expression datasets are ob-
tained and shown in Table 8. Following the designed experiments
in [41-44], the five gene expression datasets (Colon, DLBCL, Brain,
Breast and Prostate) are selected from Table 2 to conveniently
compare the abovementioned four algorithms.

Table 8 displays the average number of genes selected by the
five feature selection algorithms using 10-fold cross-validation
under the Naive Bayes and C4.5 classifiers. In Table 8, it is clear
that our proposed FSNTDJE algorithm is superior to the CFS, FCBF
and INT algorithms in most cases; however, for the Brain dataset,
FCBF provides the best result, and IG selects the optimal number
of genes on the DLBCL dataset. The FSNTDJE algorithm selects
the minimum average genes for the Colon and Prostate datasets
under the Naive Bayes classifier. For the Breast dataset, the num-
ber of genes selected by FSNTDJE is 7 under the two different
classifiers and reaches the minimal value. Furthermore, the mean
number of genes selected by FSNTDJE is the best, which is 0.84
and 0.32 lower than that of IG on the two different classifiers. In
summary, our proposed approach can select the fewest genes for
the high-dimensional gene expression datasets.

Based on the results in Table 8, the Naive Bayes and C4.5
classifiers are employed to evaluate the classification results for
the five gene expression datasets (Colon, DLBCL, Brain, Breast and
Prostate). It is well known that three indices including accuracy
(Acc), the true positive rate (TPR) and the false positive rate (FPR),
are usually used to evaluate the classification performance of
feature selection. The higher the TPR is, the lower the FPR is, and
the better the method is [44]. The formulas of three indices are
denoted, respectively [44,48,49], as

TN + TP
Acc = , (26)
TN + TP + EN + FP
TP
TPR= —— 27)
TP + FN
FP
FPR= — (28)
TN + FP

where True Positive (TP) represents the number of positive sam-
ples detected as correctly, False Positive (FP) describes the num-
ber of positive samples detected as falsely, True Negative (TN)
denotes the number of negative instances diagnosed as true, and
False Negative (FN) states the negative instances diagnosed as
false. Tables 9 and 10 show the values of Acc, TPR and FPR of
selected genes with the six methods under the Naive Bayes and
C4.5 classifiers, respectively. Similar to the previous subsections,
all the compared methods are executed 10 times, and the values
of Acc are evaluated as the average of 10 classification operations.

It can be easily observed from Table 8 that the five algorithms
differ greatly in the average number of selected genes. According
to Tables 9 and 10, the classification accuracy of FSNTDJE out-
performs that of the other five methods, except for the Colon
and Brain datasets under the Naive Bayes classifier and the Brain
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Table 9 Table 10
Three indices with the six methods under the Naive Bayes classifier. Three indices with the six methods under the C4.5 classifier.
Methods Indices Colon  DLBCL Brain Breast Prostate Mean Methods Indices Colon  DLBCL Brain Breast Prostate Mean
oDP Acc 0.7742 09091 09111 07380 05882 0.7841 oDP Acc 0.8548 0.8312 07444 07500 0.8529  0.8066
TPR 0.7740 0.0900 0.9000 0.7380 0.9150  0.6834 TPR 0.8550 0.6320 0.8000 0.7500 0.8700  0.7814
FPR 0.1820 0.1030 0.0130 04040 03350 0.2074 FPR 0.0750 0.1030 0.0480 0.0960 0.1690  0.0982
CFS Acc 0.8500 0.9000 0.8100 03700 0.2600  0.6380 CFS Acc 07900 07400 0.9700 0.6800 0.2600  0.6880
TPR 0.7600 0.9600 05000 1 1 0.8440 TPR 0.6800 0.6600 0.9600 0.7100 1 0.8020
FPR 0.1000 0.1600 0 1 1.0000  0.4520 FPR 0.1500 0.1600 0 0.3400 1.0000  0.3300
FCBF Acc 0.8000 0.9000 0.6100 0.3700 02600  0.5880 FCBF Acc 07900 07200 0.8600 05800 0.2600  0.6420
TPR 0.7600 0.9600 1 1 1 0.9440 TPR 0.6400 0.6200 0.8700 0.2800 1 0.6820
FPR 0.1800 0.1600  0.6000 1 1 0.5880 FPR 0.1300 0.1600 0.0600 0.2500 1 0.3200
INT Acc 0.7700 0.9000 0.8100 0.3700 02600  0.6220 INT Acc 07900 0.7000 0.9700 0.7900 0.2600  0.7020
TPR 0.7600 0.9600 05000 1 1 0.8440 TPR 07200 06200 0.9600 07100 1 0.8020
FPR 0.2300 0.1700 0 1 1.0000  0.4800 FPR 0.1800 02000 © 0.1700 1 0.3100
IG Acc 0.7900 0.9400 0.8600 0.3200 0.2600  0.6340 IG Acc 07200 07600 07100 0.4700 0.2600  0.5840
TPR 0.7200 0.9600 07000 0.3200 02600  0.5920 TPR 07800 0.6600 0.7400 0.2800 1 0.6920
FPR 0.1800 0.0800 0.0700 1 0.9600  0.4580 FPR 03000 0.1200 0.1600 0.4700 1 0.4100
FSNTDJE  Acc 0.8312 0.9659 0.8952 0.7857 0.6938 0.8344 FSNTDJE ~ Acc 09119 0.8957 0.8742 0.8214 0.9367 0.8880
TPR 0.8550 1 09170 1 0.9490  0.9442 TPR 0.8870 0.7890 09170 0.8950 0.9480  0.8872
FPR 0.1650 0.0260 0 0.0140 0.3050  0.1020 FPR 0.1250 0.0520 02000 0.0270 0.1190 0.1046
Table 11
dataset under the C4.5 classifier. In addition, the values of TPR The classification accuracy of the six methods under the KNN classifier.
and FPR of FSNTDJE achieve better results on most of the five Datasets  ODP DMRA _ FPRA  FRFS IFPR FSNTDJE
datasets. From Tables 8 and 9, under the Naive Bayes classifier, Colon 07258 07625 07958  0.6991  0.6574  0.8763
the differences among the six methods can be clearly identified. ]é‘i:all(setmla ggggg 8‘78223 g'égé g;g;? 8'2(7]35 g-gg;?
Although FSNTDJE does not perform as well as IG. in terms of the MLL 06528 08850 09112 08160 09405  0.9615
average genes selected from the DLBCL and Brain datasets, the Mean 07010 08105 07686 07523 07687  0.8856
mean values of Acc, TPR and FPR are the best with the Naive Bayes
classifier. The Acc of FSNTDJE is nearly 1.8% and 1.59% lower than Table 12
. . al e
tbhat of CFShand ODP for tlhe C_O}llon élmd Brain d%taSEts' rESpeCthEIyi_ The classification accuracy of the six methods under the CART classifier.
ecause the FSNT]?JE algorithm ose some'lmportant' genes 0 Datasets ODP DMRA FPRA TRES IFPR FSNTDJE
the Colon and Brain datasets during reduction, resulting in the
reduction of classification accuracy. It is known that the lower Colon 05967 07875 08125 07252 07595 08910
. ; Leukemia 05903 05492 05492 06800 07556  0.7628
the FPR is, the better the performance of the method is [44]. Breast 05714 07131 06104 07000 07312  0.7642
For the Breast dataset, FSNTDJE achieves the minimum in the MLL 07500  0.8018  0.7537  0.8227 09112  0.8492
average number of genes and obtains the best results in the three Mean 06271 07129  0.6815 07320 07894  0.8168

indices. Although FSNTDJE is approximately 6% lower than that
of CFS, FCBF and INT for the Prostate dataset, and 9% lower than
that of FCBF for the Brain dataset in the TPR, the values of FPR
are minimal for the Prostate and Brain datasets. Similarly, as
seen from Tables 8 and 10, under the C4.5 classifier, the mean
values of Acc of FSNTDJE are nearly 8.2-30.4% higher than those
of the other five methods. Compared with the results of ODP,
the TPR of our method has been significantly improved with the
exception of the Prostate dataset. Furthermore, regarding the FPR,
for the DLBCL and Prostate datasets, FSNTDJE has the lowest
FPR; however, its mean value is nearly 6.4% higher than that of
the ODP. Based on the results in Table 8, 9 and 10, although
FSNTDJE does not select the fewest genes on the DLBCL and Brain
datasets, FSNTDJE reaches the relative best results in most of the
gene expression datasets. Overall, the experimental results show
that our approach is efficient in eliminating redundant genes and
improves Acc and TPR on the high-dimensional gene expression
datasets.

Similar to the previous analysis of time complexity for the
low-dimensional UCI datasets, the comparison of the above five
methods illustrates a rough order in terms of time complexity
as follows: O(FSNTDJE) < O(FCBF) < O(INT) < O(CFS) < O(IG).
The time complexity of CFS is O(n?) [44,50]. For gene expression
datasets, the number of genes is much larger than the num-
ber of samples, and the time complexity of CFS is greater than
that of FSNTDJE. For the FCBF algorithm, the time complexity
is not more than O(m?n) [41]. The time complexity of INT is
O(mn?) [42]. For the IG algorithm in [43], the time complexity
is not more than O(mn? logn). It can be concluded that FSNTDJE
achieves a lower time complexity than the other four algorithms
for high-dimensional gene expression datasets.

The following portion of this experiment continues testing the
classification performance of the FSNTDJE method on the four
gene expression datasets (Colon, Leukemia, Breast and MLL), se-
lected from Table 2. Four state-of-the-art methods compared with
FSNTDJE are described as follows: (1) the discernibility matrix-
based reduction algorithm in fuzzy rough sets (DMRA) [51], (2)
the fuzzy positive region-based accelerator algorithm in rough
sets (FPRA) [52], (3) the fuzzy rough sets-based feature selec-
tion algorithm by using the boundary region (FRFS) [53], and
(4) the intuitionistic fuzzy positive region-based gene selection
algorithm in fuzzy rough sets (IFPR) [54]. Here, by using different
neighborhood parameters obtained in Section 5.2, similar to the
previous evaluated results, all the compared methods are run 10
times, and the average classification accuracy of the four gene
expression datasets under the KNN (k = 10) and CART classifiers
is the mean of the 10 evaluations. Following the experimental
techniques presented in [51-54], Tables 11 and 12 demonstrate
the classification accuracy of the six methods under the KNN and
CART classifiers, respectively.

As seen from Tables 11 and 12, the average classification accu-
racy of the FSNTDJE algorithm outperforms that of the other five
methods on almost all datasets, except for the Breast dataset un-
der the KNN classifier and the MLL dataset under the CART classi-
fier, and the mean accuracy of FSNTDJE is the highest. According
to Table 11, under the KNN classifier, for the Colon, Leukemia
and MLL datasets, the classification accuracy of FSNTDJE reaches
the highest values, i.e., 87.63%, 90.19% and 96.15%, respectively.
However, the accuracy of FSNTDJE is slightly inferior to that of
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Table 13
The classification accuracy of the five methods under the Naive Bayes
classifier.

Table 15
The optimal features selected by FSNTDJE on the seven UCI datasets under the
Naive Bayes classifier.

Datasets oDP DBAGEL DGAFS DGAFS-MI FSNTDJE Datasets Selected feature subsets Number of features
Colon 0.7742 0.7702 0.7370 0.7698 0.8312 Nursery {1,2,3,4,5,6,7, 8} 8
DLBCL 0.9091 0.7795 0.7481 0.8536 0.9659 Credit {1,2 3,4,6,9, 10, 12, 13, 14} 10
Breast 0.7380 0.7616 0.6293 0.6837 0.7857 Mushroom {1, 4, 5, 22} 4
Lung 0.8226 0.8877 0.7914 0.8780 0.9803 Wpbc {1, 2, 6, 14, 16, 32} 6
Prostate 0.5882 0.7766 0.5231 0.6884 0.6938 Soybean {1,4,6,7,8, 12, 15, 19, 22, 35} 10
Mean 0.7664 0.7951 0.6858 0.7747 0.8514 Annealing {1, 6, 8, 10, 16, 32, 33, 34} 8
Ozone level {1, 3,4, 7,9, 12, 25, 33, 37, 39, 46, 47, 16
52, 55, 62, 63}
Table 14
The classification accuracy of the five methods under the KNN classifier.
Datasets ODP DBAGEL DGAFS DGAFS-MI FSNTDJE Table 16
The optimal features selected by FSNTDJE on the seven UCI datasets under the
Colon 07258  0.8298 07350 07649 0.8763 C45 classifier.
DLBCL 0.8052 0.9205 0.7434 0.8565 0.9610
Breast 0.6909 0.8384 0.7362 07818 0.8027 Datasets Selected feature subsets Number of features
Lung 0.9605 0.9228 0.8911 0.8868 0.9803 Nursery {1,2,3,45,6,7, 8} 8
Prostate 0.8309 0.8234 0.7332 0.6842 0.8750 Credit {1, 2, 3,4,6,9, 10, 12, 13, 14} 10
Mean 0.8027 0.8670 0.7678 0.7948 0.8991 Mushroom {1, 4, 5, 22} 4
Wpbc {1, 3, 5, 12, 13, 16, 23, 24, 32} 9
Soybean {1, 4,6,7,8, 12, 15, 19, 22, 35} 10
Annealing {1, 6, 8, 10, 16, 32, 33, 34} 8
DMRA for the Breast dataset. Similarly, as shown in Table 12, un- Ozone level 212 3;-54-672’ 963 }2. 25, 33, 37, 39, 46, 47, 16

der the CART classifier, FSNTDJE achieves the highest accuracy on
almost all datasets; however, for the MLL dataset, the average ac-
curacy of FSNTDJE is 6.2% lower than that of IFPR, and 2.65-9.92%
higher than that of the other four methods. Overall, in terms
of the average accuracy, our FSNTDJE algorithm demonstrates
stronger stability for the four high-dimensional gene expression
datasets under the KNN and CART classifiers, whereas the classifi-
cation performance of the DMRA, FPRA, FRFS and IFPR algorithms
is slightly unstable. Hence, it can be proven that the FSNTDJE
algorithm can eliminate the redundant genes, significantly im-
prove the classification performance, and outperform the other
five related feature selection methods for high-dimensional gene
expression datasets.

The third part of this subsection further evaluates the classi-
fication performance of the FSNTDJE algorithm compared with
three state-of-the-art feature selection methods in terms of the
classification accuracy of selected gene subsets. These feature
selection methods for contrasts include (1) the dynamic Bayesian
genetic feature selection algorithm, which is designed by enhanc-
ing the principles of the Bayesian genetic algorithm in rough
sets (DBAGEL) [55], (2) the dynamic genetic algorithm-based
feature selection method for selecting the significant features
(DGAFS) [56], and (3) the rough sets-based feature selection
algorithm by selecting significant features and imputing missing
values (DGAFS-MI) [56]. Following the experimental techniques
designed in [55,56], the five gene expression datasets (Colon,
DLBCL, Breast, Lung and Prostate) are selected from Table 2,
the Naive Bayes and KNN (k = 10) classifier are employed, and
then Tables 13 and 14 show the experimental results of the
five different feature selection methods in detail under the two
different classifiers, respectively.

According to Tables 13 and 14, the differences among the five
feature selection methods can be clearly identified. As shown
in Table 13 under the Naive Bayes classifier, FSNTDJE performs
markedly better than the other four methods in classification
accuracy except for the Prostate dataset, and the accuracy of
the ODP, DBAGEL, DGAFS and DGAFS-MI algorithms is similar on
the five gene expression datasets. On the Prostate dataset, the
accuracy of FSNTDJE is 8.28% lower than that of DBAGEL, and
it is 0.54-17.07% higher than that of the other three methods.
This reason is that when FSNTDJE processes the gene dataset,
some noises of the Prostate dataset still exist, so that this case
decreases the accuracy. However, the mean accuracy of FSNTDJE
is nearly 5.63-16.54% higher than that of the other four methods

and reaches the highest value. As seen from Table 14, under the
KNN classifier, the average classification accuracy of the gene
subsets selected by FSNTDJE is the best on the Colon, DLBCL,
Lung and Prostate datasets. However, for the Breast dataset, the
accuracy of FSNTDJE is 3.57% lower than that of DBAGEL, and
it is 2.09-11.18% higher than that of the other three methods.
The reason is that FSNTDJE cannot sufficiently eliminate the noise
genes, which results in weakening the classification performance
of the selected Breast genes. In summary, the FSNTDJE model
can efficiently reduce the dimensions of high-dimensional gene
expression datasets and achieve great classification performance
on these large-scale and high-dimensional datasets.

5.5. Optimal results of feature selection with FSNTDJE

In this subsection of our experiments, by using the FSNTDJE
algorithm, the above neighborhood parameter values are set as
in Section 5.2. Following the experimental techniques designed
by Wang et al. [25], the optimal results of feature selection on
the seven UCI datasets are shown in Tables 15 and 16, and the
eight gene expression datasets are illustrated in Tables 17 and
18. It can be seen from Tables 15 and 16 that all the UCI datasets
achieve the same feature subset under the Naive Bayes and C4.5
classifiers, expect for the Wpbc dataset. From Tables 17 and 18,
the selected gene subsets for the Colon, DLBCL, Brain, Breast, MLL
and Prostate datasets under the KNN classifier are the same as
that under the C4.5 classifier.

5.6. Statistical analysis

To demonstrate the statistical performance of the results of
feature selection, the Friedman test [57] and Bonferroni-Dunn
test [58] are employed to further study the classification accu-
racy of each classifier with the several different methods. The
Friedman statistic is represented as

s T S, S5+ 1)
Xt = WER" ) (29)
(T =-1y
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Table 17
The optimal features selected by FSNTDJE on the eight gene expression datasets
under the KNN classifier.

Datasets Selected feature subsets Number of features

Colon {493, 1770, 590, 384, 765, 822, 1423, 11
1541, 1060, 581, 1247}

DLBCL {453, 4809, 3371, 1156, 1656, 4767} 6

Brain {1879, 2095, 2459, 3019, 2295, 4151, 16
5175, 5413, 5604, 820, 5281, 4560,
4578, 1602, 633, 4801}

Leukemia {6696, 2010, 4925, 4211, 5300, 6801, 7
4609}

Breast {6425, 744, 6802, 2904, 6024, 5644, 7
8700}

Lung {8457, 11150, 7934, 6597, 6200, 7905, 8
10547, 12431}

MLL {7930, 3054, 8020, 8992, 2933, 10581, 7
7811}

Prostate {7710, 8850, 4483, 5155, 6185, 5314, 8
8768, 5757}

Table 18

The optimal features selected by FSNTDJE on the eight gene expression datasets
under the C4.5 classifier.

Datasets Selected feature subsets Number of features

Colon {493, 1770, 590, 384, 765, 822, 1423, 11
1541, 1060, 581, 1247}

DLBCL {453, 4809, 3371, 1156, 1656, 4767} 6

Brain {1879, 2095, 2459, 3019, 2295, 4151, 16
5175, 5413, 5604, 820, 5281, 4560,
4578, 1602, 633, 4801}

Leukemia {758, 3108, 4267, 6575} 4

Breast {6425, 744, 6802, 2904, 6024, 5644, 7
8700}

Lung {7642, 8457, 11150, 7934, 6597, 10
6200, 7905, 10547, 4584, 8396}

MLL {7930, 3054, 8020, 8992, 2933, 10581, 7
7811}

Prostate {7710, 8850, 4483, 5155, 6185, 5314, 8
8768, 5757}

where s is the number of methods, T is the number of datasets,
and R, is the mean ranking of method A over all the datasets. Fr
follows a Fisher distribution with s — 1 and (s — 1)(T — 1) degrees
of freedom. If the null hypothesis is rejected after the Friedman
test, the Bonferroni-Dunn test can be introduced to further detect
which algorithms are different in statistical terms [59]. Following
the experiments designed in [59], on the basis of the test results
of the above subsections, if the average level of the distance ex-
ceeds the critical distance, the two algorithms will be significantly
different [59,60]. The critical distance [61] is denoted as

s(s+ 1)7 (31)

6T

where g, is the critical tabulated value for the test and « is the
significance level of the Bonferroni-Dunn test.

For the seven low-dimensional UCI datasets in Tables 4 and 5,
the FSNTDJE algorithm is compared with the five methods (ODP,
FSCE, IFSPA, FSPR and SetCover) to conduct the Friedman statistic.
We develop two Friedman tests to investigate whether the clas-
sification performance of the six feature selection algorithms is
significantly different. From the classification accuracy obtained
in Tables 4 and 5, the ranking results of the six algorithms under
the Naive Bayes and C4.5 classifiers are shown in Tables 19 and
20, respectively.

The values of the different evaluation indices under the Naive
Bayes and C4.5 classifiers can be computed according to Egs. (29)
and (30). According to Tables 19 and 20, the Bonferroni-Dunn
tests on the two different classifiers denote that the FSNTDJE
algorithm is significantly superior to the other five algorithms on

D, = 0%

Table 19

The ranking of the six methods under the Naive Bayes classifier.
Datasets OoDP FSCE IFSPA FSPR SetCover FSNTDJE
Nursery 15 3 5 4 15 6
Credit 3 6 4 5 2 1
Mushroom 2 6 5 2 2 4
Wpbc 6 4 2 5 3 1
Soybean 45 6 4.5 2 3 1
Annealing 4 1 3 5 2 6
Ozone level 5 6 3 2 4 1
Mean 3.71 457 3.79 357 2.5 2.86

Table 20

The ranking of the six methods under the C4.5 classifier.
Datasets ODP FSCE IFSPA FSPR SetCover FSNTDJE
Nursery 2 4 6 5 3 1
Credit 6 3 2 4 5 1
Mushroom 4 3 2 6 5 1
Wpbc 6 5 4 2 1 3
Soybean 2 3 4 5 1 6
Annealing 6 2 4 5 3 1
Ozone level 5 6 4 2 3 1
Mean 4.43 3.71 3.71 4.14 3 2

Table 21

The ranking of the six methods under the two classifiers.
Methods Naive Bayes Mean C4.5 Mean

Credit Annealing Credit Annealing

ODP 6 6 6 2 4 3
DMFS 3 2 2.5 6 6 6
BKAR 4 1 2.5 4 3 35
MIFS 2 5 35 3 1 2
DKMR 5 3 4 5 5 5
FSNTDJE 1 4 25 1 2 1.5

the whole. Since s = 6 and T = 7, the values of the two evaluation
indices (Friedman statistics XFZ and Bonferroni-Dunn test Fr) can
be obtained as follows: XFZ = 7.59 and Fr = 1.66 under the Naive
Bayes classifier, and XFZ = 5.38 and Fr = 1.09 under the C4.5
classifier. When the significance level « = 0.1, the critical value
of F(5, 30) is 2.05. Thus, one can carry out the two Bonferroni-
Dunn tests. Namely, CD = 2.24 can be easily obtained by Eq. (31),
where the critical value qo.; = 2.24 can be easily found in [61].
As seen from Tables 19 and 20, under the Naive Bayes classifier,
the Bonferroni-Dunn tests indicate that FSNTDJE has a statistical
advantage over the other five algorithms; nevertheless, under the
C4.5 classifier, SetCover achieves the best results, and FSNTDJE
follows as second-best.

From Tables 6 and 7, it follows that s = 6 and T = 2, and the
ranking values of the six feature selection methods (ODP, DMFS,
BKAR, MIFS, DMKR and FSNTDJE) for the Credit and Annealing
datasets under the Naive Bayes and C4.5 classifiers are shown in
Table 21. As seen from Table 21, under the Naive Bayes classifier,
the values of XFZ and Fr equal 5.43 and 1.19, respectively. In
the same way, under the C4.5 classifier, X? = 8.57 and Fr = 6.
Thus, if « = 0.1 and the critical value of F(5, 5) equals 3.45, the
two Bonferroni-Dunn tests should be executed and CD = 4.19,
where the critical value qo 1 = 2.24. From Table 21, the results of
the Bonferroni-Dunn test demonstrates that our FSNTDJE method
achieves better statistical performance under the Naive Bayes and
C4.5 classifiers.

The following portion is devoted to statistical analysis of all
the high-dimensional gene expression datasets. First, for the
five gene expression datasets (Colon, DLBCL, Brain, Breast and
Prostate) in Tables 9 and 10, we use the five feature selection
methods (ODP, CFS, FCBF, INT and IG) to compare with FSNTDJE,
and then the Friedman statistic is evaluated. According to the
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Table 22 Table 26

The ranking of the six methods under the Naive Bayes classifier. The ranking of the five methods under the Naive Bayes classifier.
Dataset OoDP CFS FCBF INT IG FSNTDJE Datasets OoDP DBAGEL DGAFS DGAFS-MI FSNTDJE
Colon 5 1 3 6 4 2 Colon 2 3 5 4 1
DLBCL 3 5 5 5 2 1 DLBCL 2 4 5 3 1
Brain 1 5 6 5 3 2 Breast 3 2 5 4 1
Breast 2 3 4.5 4.5 6 1 Lung 4 2 5 3 1
Prostate 2 4.5 4.5 4.5 4.5 1 Prostate 4 1 5 3 2
Mean 26 3.7 46 5 39 14 Mean 3 24 5 34 1.2

Table 23 Table 27

The ranking of the six methods under the C4.5 classifier. The ranking of the five methods under the KNN classifier.
Dataset oDP FSCE IFSPA PR SetCover FSNTDJE Datasets oDP DBAGEL DGAFS DGAFS-MI FSNTDJE
Colon 2 4 4 4 6 1 Colon 5 2 4 3 1
DLBCL 2 4 5 6 3 1 DLBCL 4 2 5 3 1
Brain 5 1.5 4 1.5 6 3 Breast 5 1 4 3 2
Breast 3 4 5 2 6 1 Lung 2 3 4 5 1
Prostate 2 4.5 4.5 4.5 4.5 1 Prostate 2 3 4 5 1
Mean 2.8 3.6 4.5 3.6 5.1 14 Mean 3.6 2.2 4.2 3.8 1.2

Table 24

The ranking of the six methods under the KNN classifier. (ODP, DBAGEL, DGAFS, DGAFS-MI and FSNTD]E) under the Naive
Datasets ODP  DMRA  FPRA FRFS IFPR  FSNTDJE Bayes and KNN classifiers, respectively. One has that x? = 15.52
Colon 4 3 2 5 6 1 and Fr = 13.86 under Naive Bayes, and x? = 12.64 and Fr = 6.87
'éig;m'a g ? g ;1 g ; under KNN. Similarly, F(4, 16) is 2.33 and CD = 2.24. Therefore,
MLL 6 4 3 5 5 1 Tables 26 and 27 illustrate that the FSNTDJE method excels the
Mean 5 275 4 425 3.75 1.25 other four methods in the Friedman statistic test.

6. Conclusion

Table 25

The ranking of the six methods under the CART classifier. . . X .
Datasets ODP DMRA TPRA FRES IFPR FSNTDJE feature gelectlon is one of the 1mp0rt.a.r1t parts of classifi-
Colon 5 3 5 s 1 ] cation learning and can improve the classification performance
Leukemia 4 55 55 3 5 1 and decrease the cost of classification in most cases. Uncertainty
Breast 6 3 5 4 2 1 measures for calculating the distinguishing ability of feature sub-
MLL 6 4 5 3 2 1 sets play an important role in the process of feature selection.
Mean 5.5 3.875 4375 3.75 2.25 1.25

classification results of Tables 9 and 10, the ranking results of
the six feature selection methods under the Naive Bayes and C4.5
classifiers are shown in Tables 22 and 23.

It can be easily ascertained from Tables 9 and 10 that s = 6
and T = 5, and then under the Naive Bayes classifier, the values
of XFZ and Fr are 14.69 and 5.69, respectively. Similarly, one has
that XFZ = 12.11 and Fr = 3.76 under the C4.5 classifier. When
the significance level « = 0.1, the critical value of F(5, 50) is
2.16. Thus, two Bonferroni-Dunn tests can be performed. The
critical value qo1 = 2.24 and CD = 2.65 are calculated. From
Tables 22 and 23, under the Naive Bayes and the C4.5 classifiers,
the FSNTDJE algorithm outperforms the other five algorithms in
terms of the Bonferroni-Dunn test in general.

Second, according to Tables 11 and 12, another validation
is conducted for the Colon, Leukemia, Breast and MLL datasets
under the KNN and CART classifiers, and the FSNTDJE algorithm
is compared with the ODP, DMRA, FPRA, FRFS and IFPR methods.
When s = 6 and T = 4, the ranking results of the six feature
selection methods under the KNN and CART classifiers are shown
in Tables 24 and 25, respectively. It follows that XFZ = 10 and
Fr = 3 under the KNN classifier, and x,_? = 13.25 and Fr = 5.89
under the C4.5 classifier. Therefore, CD = 1.48 can be obtained.
In summary, it can be easily proven that FSNTDJE is statistically
superior to the other five algorithms under the two different
classifiers.

Third, this experiment further continues the statistical analysis
on the five gene expression datasets (Colon, DLBCL, Breast, Lung
and Prostate) in Tables 13 and 14. Since s = 5 and T = 5,
Tables 26 and 27 show the ranking values of the five methods

The neighborhood rough set model can effectively solve the re-
duction problem of mixed and incomplete-valued information
systems. In this paper, a novel feature selection method based
on Lebesgue and entropy measures in neighborhood rough sets
is proposed to improve the classification performance of mixed
and incomplete datasets. Based on Lebesgue and entropy mea-
sures, some neighborhood tolerance entropy-based uncertainty
measures are investigated in incomplete neighborhood decision
systems. Then, the neighborhood tolerance dependency joint en-
tropy is presented for dealing with the uncertainty, noise and
incompleteness of incomplete neighborhood decision systems,
which integrates an algebraic view with an information view in
neighborhood rough sets. Moreover, some of their properties and
relationships are established. Thus, a heuristic feature selection
algorithm is designed to optimize the classification efficiency of
selected features in incomplete neighborhood decision systems
with mixed data. The experimental results demonstrate that the
proposed method can select a small, effective feature subset
with great classification ability in mixed and incomplete datasets.
However, our proposed feature selection model cannot optimally
balance the size of the selected feature subset and the classifi-
cation accuracy in all large-scale and high-dimensional datasets.
In our future work, to improve the classification performance
and computational efficiency of the proposed algorithm for clas-
sification tasks with large-scale mixed and incomplete datasets,
more efficient search strategies and uncertainty measures based
on neighborhood rough sets should be explored.
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