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A B S T R A C T

In the construction of the knowledge system, visual perception is the primary means of acquiring knowledge.
Thus, it is very essential to solve the problems related to visual perception. Visual complexity, as a basic aspect of
visual perception, is extremely important for human being to understand and perceive the visual stimuli. This
leads to an interesting question: what factors affect visual complexity of images and how to evaluate the visual
complexity objectively. In order to address this issue, we take digital painting images as the visual stimuli. We
firstly conduct an experiment to collect the subjective complexity labels of painting images and then identify the
factors that affect visual complexity perception. Three main factors that affect human visual complexity per-
ception are identified, namely, distribution of compositions, colors, and contents. Secondly, we study theoretical
and empirical concepts from psychology and art theory to design 29 global, local, and salient region features
which represent the above three factors. Moreover, we provide two ways to estimate the visual complexity of
painting images. One is to evaluate the visual complexity level of painting images by classifying the complexity
level into three levels (low, middle and high complexity). Another one is to predict a complexity value for
painting images by a regression model. The experimental results indicate that the proposed classification method
(by Random Forest classifiers) can predict the visual complexity perception of paintings with an accuracy of
86.78%. By the comparisons, the proposed method outperforms other measurements of image complexity with a
higher correlation coefficient between subjective complexity and objective measures of complexity.
Furthermore, we apply the regression model of visual complexity to predict the other features of painting
images. The results show that the regression model has a good ability of measuring aesthetic quality, beauty, and
liking of color of the painting images involved in JenAesthetics dataset.

1. Introduction

For humans, 80% of the information and knowledge are acquired
from human vision system. This makes the importance of visual per-
ception is for more than other perceptions in the construction of the
knowledge system. Moreover, with the development of Artificial
Intelligence, it is increasingly necessary to endow a computer the ability
of visual perception like a person. Visual complexity, as a basic aspect
of visual perception, is extremely important for human being to un-
derstand and perceive the visual stimuli. Therefore, how to evaluate
visual complexity objectively becomes a timely topic in the fields of
psychology and computer science.

Visual complexity is regarded as a primary cue on judgments of
visual appeal [1]. Nowadays, people can easily enjoy the paintings on
the Internet without going to the museums [2]. If they select images

only by visual feeling (e.g., visual appeal or pleasure) instead of specific
keywords (e.g., rose), then visual complexity plays several central roles
in composing the said feeling [3]. Hence, presenting an objective
measure of complexity which is similar to human perception is ex-
ceedingly useful. In practice, objectively measuring visual complexity
has a wide range of applications. From a psychological sense, measures
of visual complexity are helpful for human viewers to analyze the ef-
fects of visual complexity on aesthetic judgments, and thus are useful
for neuroscientists and psychologists who are interested in the me-
chanism of object perception and the process of learning and memory.
From an applied sense, measures of visual complexity can be utilized by
computer engineers to construct information systems and tools for the
analysis, estimation, visualization and recognition of images, and could
allow designers to anticipate consumers’ and users’ aesthetic and af-
fective responses to the complexity of the products from wallpapers to
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webpages.
Previous research [3–15] has proposed a number of measures of

image complexity such as information theory, pattern measure, fractal
dimension, quad tree method and region of interest method. These
methods can provide a computable and objective means to measure the
image complexity. However, they merely consider the distribution of
spatial frequencies of visual stimuli and disregard the mechanism of
human visual perception.

Considering the nature of visual perception (i.e., assessing visual
complexity is a constructive process of perception), we assume that
visual complexity perception is significantly affected by visual features
in the images, such as the features of colors, distribution of objects, and
contents. Therefore, in this paper, we hope to achieve a model to es-
timate the visual complexity of painting images based on image fea-
tures. In order to achieve this purpose, three steps are conducted: (1)
Experiment of subjective complexity: labeling subjective complexity of
paintings and identifying the factors that affect human visual com-
plexity through a questionnaire survey;(2) Feature extraction: ex-
tracting a group of global, local, and salient features depending on the
results of the questionnaire in step (1); and (3) Mapping stage: em-
ploying classification and regression methods to build the relationship
between the visual complexity perceived by humans and the features
extracted from the paintings.

In conclusion, our research identifies the main factors that affect
visual complexity perception of visual stimuli, and provides computa-
tional methods to estimate visual complexity of painting images. Our
research contributes to the “computational visual complexity” by:

• Identifying three main factors (distribution of compositions, colors,
and contents) that affect visual complexity perception of painting
images.

• Providing quantified methods to compute visual features that re-
present three factors and distinguishing influential visual features of
perceived complexity.

• Validating the effectiveness of the proposed complexity assessment
methods (visual complexity level classification and visual com-
plexity score prediction) and applying it to predict other visual
emotions (aesthetic, beauty, etc.).

The rest of the paper is organized as follows. Section 2 reviews the
measures of visual complexity and its related works. Section 3 in-
troduces the subjective complexity assessment experiment and identi-
fies the main factors affecting visual complexity perception. Section 4
quantifies the visual features that extracted from global, local and
salient regions. Section 5 builds the objective measures of complexity:
complexity level classification and complexity score regression.
Section 6 discusses the influential visual attributes that affect visual
complexity of painting images, followed by conclusions in Section 7.

2. Measures of complexity

A variety of methods to measure complexity have been proposed in
the fields of psychology and computer science.

In the field of psychology, several researchers mainly investigated
the factors that affected human visual complexity perception.
According to Oliva et al. [16], visual complexity was defined by the
degree of difficulty in providing a verbal description of an image. In
their study, 34 participants used the method of hierarchical grouping to
classify indoor scenes. The results showed that visual complexity is
represented by several dimensions, such as the number of objects,
clutter, openness, symmetry, organization, and variety of colors. Pieters
et al. [17] investigated the visual complexity of advertising. They dis-
tinguished two types of visual complexity (feature complexity and de-
sign complexity) in advertising and proposed an objective measure for
each. Saleem et al. [18] studied the visual complexity of 3D shapes and
introduced an approach based on view similarity to determine the

perceived shape complexity. Purchase et al. [19] explored the visual
complexity of images. They attempted to investigate whether visual
complexity could be quantified to match a human’s perception of
complexity. Through an empirical study, they concluded that the sub-
jective notion of complexity was consistent both in an individual and in
a group but did not easily relate to the most obvious computational
metrics.

From the view of computer science, various methods have been
proposed to measure complexity. Andrienko et al. [5] developed a
complexity measure based on mean information gain of spatial corre-
lations of 2-D patterns. Rigau et al. [20] proposed a new framework to
investigate the complexity of an image by considering the number of
partitioned regions and the compositional complexity of partitioned
images. The Jensen-Shannon divergence was employed to calculate the
compositional complexity of partitioned image. Patel and Holt [21]
compared the pattern measure proposed by Klinger and Salingaros [6]
with respondents’ perceptions of the complexity of background image
scenes; the results showed that a high positive correlation exists be-
tween mathematical measures and the subjects’ perceptions. Further-
more, Murguia et al. [7] proposed a novel fuzzy approach to determine
the complexity of an image based on the analysis of edge level per-
centage. Cardaci et al. [8] presented an experiment to obtain the per-
ceived time of paintings. The aim of this experiment was to build the
relationship between the objective measure of complexity and the
perceived time. The results indicated that there is a strong correlation
between psychological and computational results (statistical properties
of the paintings). In their another work [9], they proposed a fuzzy
mathematical model of visual complexity based on fuzzy measures of
entropy. Their proposed method fitted well with the perceived time of
images, but neglected the image color and other perceived features.
Fractal dimension (FD) has often been applied as a parameter of com-
plexity, related to, for example, surface. The previous research [10]
showed that FD accounts for more of the variance in judgments of
perceived beauty in visual art than measures of visual complexity alone,
particularly in abstract and natural images. Besides, Donderi [11] found
a correlation between subjective estimations of visual complexity and
the size of compressed digital image files. Rosenholtz et al. [12] pro-
posed two classical methods for image visual complexity measurement:
Subband Entroy (SE) and Feature Congestion (FC). Additionally, com-
pression based methods should be the simplest method of measuring
the complexity of an image. A larger file size indicates high complexity
[22]. However, these methods are abstract and difficulty in explaining
why some images look more complex than others. Redies et al. [23]
proposed a measure of image complexity (Com) based on the maximum
gradient magnitudes of each pixel in the Lab color space. The gradient
represents the local changes of lightness in an image. Thus, the higher
the mean absolute gradient, the more complex an image is. Sun, Ya-
masaki and Aizawa [24] designed 114-dimension features to evaluate
the image complexity, and then they extended the proposed method to
the applications of beauty predication and quality assessment.

3. Experiment: subjective assessment of complexity

Unlike research on photographs, it is very difficult to find a website
of paintings with complexity ratings by a large community.
Consequently, to implement the first step of the proposed approach, we
conduct an experiment to acquire the subjective assessment of the
complexity of painting images.

3.1. Stimuli

In the experiment, 500 painting images are utilized, including 50
painting images obtained from the dataset of PaintingDb1[25], 150

1 PaintingDb is a virtual art gallery with thousands of painting images and a
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painting images selected from Jenaesthetics subjective dataset
[26–29],2 and 300 painting images from Wikiart.3 The two main styles
of paintings are abstract and impressionism. The set of painting images
used in our experiment includes paintings with different complexity
levels created by different artists. Our dataset associated with the
complexity scores are available for the public and other research group
from the authors on request.

The experimental images are selected carefully to minimize some
possible affected factors (e.g. a painting’s fame and a respondent’s
preference). In the selection process, several rules are considered: 1) the
painting images are not famous paintings and are unknown to the
participants, 2) the portraits paintings are excluded, and 3) the painting
images with clear human faces are excluded. To reduce the influence of
image size, we resize all experimental images with the same height in
the experiment. In the experiment, the painting images are randomly
displayed on a 65-inch plasma display panel TV one by one.

3.2. Participants

In the experiment, 68 participants from Shanxi University, with ages
ranging from 21 to 30 years (mean= 21.5, SD=1.35 , 33 males and 35
females), join in the experiment. They are required to sit two meters
away from the screen and asked to provide responses according to the
experiment rules. Before conducting the experiment, informed consents
are obtained from all participants.

3.3. Procedure

Two parts (complexity rating and questionnaire establishment) are
implemented in our experiment. After a brief introduction of the ex-
periment, Part I is implemented before Part II. In Part I, all painting
images are displayed twice. In the first instance, the respondent is re-
quired to view all images one by one with no time constraint. In the
second instance, the respondent is asked to assess complexity using a
Likert scale of 1–7, with the degrees ranging from very simple to very
complex. In Part II (the questionnaire is shown in Appendix), the re-
spondent is asked to complete a questionnaire that contains a list of
possible factors that affect complexity assessment. Then, the respondent
is asked to select the factors that are important for them to assess the
complexity of a painting.

3.4. Results

The subjective complexity assessments of the 400 paintings are
obtained from Part I. Fig. 1 shows several painting images marked as
Low Complexity (LC), Middle Complexity (MC), and High Complexity
(HC) by the subjects. To construct a ground truth, the mean and stan-
dard deviation (SD) values of complexity score for each painting are
calculated among all respondents. Some examples of mean and SD
values of complexity scores are shown in Fig. 1. Furthermore, the an-
swers to the questionnaire in the experiment are ranked according to
the frequency of options mentioned by the subjects. The results are
shown in Table 1. The top three frequently mentioned options in the
experiment are “distribution of compositions,” “color”, and “contents.”
Apparently, these three factors significantly affect the respondents’ as-
sessment of complexity.

4. Feature extraction

From the results of the subjective experiment, three factors that

greatly affect subjective complexity assessment (distributions, color,
and contents) are identified. Synthesizing the results of the ques-
tionnaire and human visual processing mechanism, we extract a total of
29 features to represent the three factors.

These features are separated into three categories: global features,
local features, and salient region features. Global features refer to the
characteristics of the first impression human beings acquire when they
see a painting. Local features reflect the regional information of a
painting. Salient region features represent the characteristics of the
most visually important region of a painting.

4.1. Global features

When viewing something, people first develop a holistic impression
of the item and then go into its segments and details [30]. Therefore,
global features may influence the first impression of human visual
perception. Each global feature extracted in this research is explained
below.

4.1.1. Global color features
When humans view the paintings, color is an immediate and dis-

tinguished characteristic in subjective visual perception. As is defined
in [31], color is the characteristic of a visible object or light source by
which an observer may distinguish differences between two structure-
free fields of the same size and same shape. Furthermore, it is identified
that color compositions influence the painting price in [32]. Therefore,
color is the first and foremost characteristic of paintings among all
global features.

Color complexity measure
f 4 − f1 4: Color complexity measures in four levels of image pyramid

are extracted.
To measure the complexity of the colors in a painting, we employ

the method of color complexity measure (CCM) [33].
CCM is defined as follows

∑= −
∈

ψ i j G c x y c( , ) ( ( , ) ),
x y

α
, Ω i j( , ) (1)

where (x, y) is the pixel that belongs to the local window Ω(i, j), Gα
denotes the Gaussian weighting function and c is an average color value
within a local window size Ω(i, j) centered at (i, j). ∥ ∥ denotes the color
difference measure.

The average color value within a local window is calculated by

∑=
∈

c
N

c x y1 ( , ),
x y, Ω i j( , ) (2)

where (x, y) is the pixel that belongs to the local window Ω(i, j) and N is
the number of pixels in the local window Ω(i, j).

The color difference measure is important to represent the human
visual perception of colors. Generally, the color difference is evaluated
using the Euclidean distance between two color points in a color space.
In this part, we adopt the CIELab color space which describes all the
colors visible to the human eyes. But in this color space, a small
Euclidean distance between two color points is proportional to the
difference that human visual system perceives. It is identified in [33]
that a larger Euclidean distance has no meaning but only large differ-
ence in human visual system. Thus, we employ the color difference
proposed in [33]. It is defined as

= − ⎡
⎣⎢

− ⎤
⎦⎥

D c i j c x y exp
E c i j c x y

γ
( ( , ), ( , )) 1

( ( , ), ( , ))
,

(3)

where γ is the normalized factor and E(c(i, j), c(x, y)) is the Euclidean
distance in CIELab color space.

(footnote continued)
streamlined user interface.

2 A public dataset with subjective aesthetic scores, http://www.inf-cv.uni-jena.de/en/
jenaesthetics

3 http://www.wikiart.org 4 f denotes the feature.
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= − + − + −E c i j c x y L L a a b b( ( , ), ( , )) ( ) ( ) ( ) ,ij xy ij xy ij xy
2 2 2 (4)

We employ Eq. (1) to calculate the color complexity of the local
neighbor region centered at pixel of (i, j). For the entire image, we
calculate the mean CCM of all pixels.

Several features hidden in this resolution are extracted in another
resolution. In this study, we apply the Gaussian pyramid to the painting
image and calculate the CCM ( −f f1 4) based on the four pyramid levels.

= = =f CCM G x y i j( , ), 1, 2, 3, 4; 1, 2, 3, 4.i j (5)

where i is the feature in a different level (j) of the pyramid.
Basic color features

−f f5 7: The average hue (f5), saturation (f6) and brightness (f7) of a
painting are exacted based on HSL color space.

1. Hue
Hue is the most obvious characteristic of a color [34]. In artistic
sense, the average of hue and saturation more or less reflect the
colorful keynote of a painting relative to the viewer’s perception [2].
The average of hue is calculated by

∑ ∑=f
MN

I m n1 ( , ),
n m

H5
(6)

where M and N are the number of rows and columns of the image,
and IH(m, n) is the hue value at the pixel (m, n).

2. Saturation
The saturation of a painting somehow affects a human’s feeling
evoked by the painting. The average of saturation is calculated by

∑ ∑=f
MN

I m n1 ( , ),
n m

s6
(7)

where M and N are the number of rows and columns of the image,
and IH(m, n) is the saturation value at the pixel (m, n).

3. Brightness
Brightness is a measure of how light or dark a color is in the entire
painting, and it reflects the tone of a painting. The average of
brightness of a painting can be calculated as:

∑ ∑=f
MN

L m n1 ( , ),
n m

7
(8)

where M and N are the number of rows and columns of the image,
and = + +L m n I m n I m n I m n( , ) ( ( , ) ( , ) ( , ))/3R G B . Here, IR, IG, and
IB respectively stand for red, green, and blue channels of the image.

4.1.2. Content features
Contents include points of interest and edges.
Points of interest
f8: Points of interest are a reflection of the contents of an image.

When many points of interest exist in an image, the complexity of the
image is perceived to be high [9]. The feature of points of interest is
extracted in this part.

Symmetry plays a relevant role in perception problems [35]. It is an
interesting property in detecting the points of interest. Discrete sym-
metry transform (DST) is an algorithm to measure the local symmetry.
It searches the area of interest in active vision. In this study, we employ
DST method to extract the points of interest in the painting images. It is
defined as

= −DST std T E(1 ( )) ,i j k i j
k

i j, , , (9)

where std stands for the standard deviation for = … −k n0, , 1 of the
first-order moment relative to an axis with orientation =α kπ n/k . Here,
we assign =n 4.

∑= − − −
∈

T x i sinα y j cosα g( ) ( ) ,i j
k

x y C
k k x y,

( , )
,

r (10)

where Cr is the disk center at (i, j) of radius r, α is the axis orientation,
and gx, y is the value of pixel (x, y) located in Cr. Ei, j measures the local
smoothness of the image.

Fig. 1. Some painting images that are labeled as LC, MC, and HC.

Table 1
Top three frequently mentioned options of the questionnaire in the
experiment.

Options Frequency

Distribution of compositions (D) 58
Colors (A) 53
Contents (C) 50
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∑= − − + − =
∈ ∈ +

E g g x s y t, 1,i j
x y δC s t δC

x y s t,
( , ) ,( , )

, ,
r r 1 (11)

where δCr stands for the circular edge of Cr. If the image is locally flat,
=E 0i j, .
The points of interest (P) are extracted by

= ⎧
⎨⎩

≥ +
P

DST DSTd μ σ2
0 otherwise

ij
ij ij

(12)

where μ and σ are respectively the mean and standard deviation of DST
values calculated from the entire image.

Through the above DST extraction method, we extract the points of
interest in the painting images.

=f P8 (13)

Edge density
f9: The edge density of a painting can be determined by the ratio

between the pixel number of the extracted edges and that of the entire
image.

An image with lots of edges contains many objects, resulting in high
perceived complexity [9]. Edge density can be determined as follows

=f N N/ ,edges img9 (14)

where f9 is the edge density of an image, Nedges is the pixel number of
the extracted edges, and Nimg is the pixel number of the entire image. In
our research, the Canny algorithm is used to extract the edges in this
work. The high and low thresholds are automatically calculated based
on the gradient histogram of the image.

4.2. Local features

Local features represent the detailed information of paintings. To
extract the local features in the painting, we first segment the image
into several parts and then analyze the characteristics in segments.

4.2.1. Image segmentation
In this study, an initial segment is required to partition the image

into small regions for merging. We select the method of mean shift for
the initial segment because it creates less over segmentation when
compared with the method of watershed. We use a free software,
EDISON System [36], to obtain the initial segmentation map. After the
initial segmentation, an image is subdivided into many small regions.

In human visual perception, several regions with similar color or
spatial adjacency should be merged into one region. These regions need
to be represented by several feature descriptors and a rule for region
merging must be defined. We employ the method of color histogram
similarity [37] to calculate the similarity between two adjacent regions.
Each color histogram is quantized into 16 levels and then into a total of
4096 bins in each region. The color histogram similarity ρ is calculated
between two adjacent regions (e.g. regions P and Q) using Bhatta-
charyya coefficient. Bhattacharyya coefficient is an approximate mea-
surement of the amount of overlap between two statistical samples. The
coefficient can be utilized to determine the relative closeness of the two
samples. It is defined as:

∑=
=

ρ P Q Hist Hist( , ) * ,
u

P
u

Q
u

1

4096

(15)

where HistP and HistQ are the normalized histograms of adjacent regions
P and Q, and u denotes their uth bin of them. A high Bhattacharyya
coefficient between P and Q implies a close similarity between the two
adjacent regions. We use the region adjacency graph to store the si-
milarity of the pair of regions.

After calculating the similarity between two neighbor regions, we
use the Region Adjacency Graph (RAG) [38] to store the similarity of
the pair of regions. In this work, the merging rule is defined as follows:

if the similarity (Bhattacharyya coefficient) between adjacent regions P
and Q is the highest among all the similarities, then regions P and Q are
merged. Following this merging rule, we obtain the final segmentation
map. In this experiment, we iterate twice for merging the adjacent re-
gions. The initial mean shift segmentation and final segmentation
images are shown in Fig. 2.

Human vision is sensitive to the large segments in images. Thus, in
this experiment, we mainly extract the features in the first largest
segment (FLS) and the second largest segment (SLS).

4.2.2. Local color features
Color features are important not only for the global impression but

also for the local details. In this part, the local color features are re-
presented through the average of hue, saturation and lightness for the
two largest segments and the color contrast between the largest seg-
ments and their neighbor segments.

Hue, saturation and lightness of the two largest segments
−f f10 15: Hue (f10), saturation (f12), and lightness (f14) of the FLS.

Hue (f11), saturation (f13), and lightness (f15) of the SLS.
A total of 6 features are calculated based on HSL color space in this

part. Hue, saturation and lightness are calculated as follows:

∑= =+
∈

f
Area

I m n i1 ( , ), 1, 2i
R m n R

H9
( , )i i (16)

∑= =+
∈

f
Area

I m n i1 ( , ), 1, 2i
R m n R

S11
( , )i i (17)

∑= =+
∈

f
Area

I m n i1 ( , ), 1, 2i
R m n R

L13
( , )i i (18)

where AreaRi is the area of the segment Ri. IH(m, n), IS(m, n), and IL(m,
n) are the hue, saturation, and lightness value of the pixel (m, n), re-
spectively.

Color contrast between segments
−f f16 18: Contrast of hue (f16), saturation (f17), and lightness (f18)

between the FLS and its neighbor segments.
In this part, we analyze the contrast of hue, saturation and lightness

between the largest segment and its neighbor segments. The calcula-
tions are listed as follows.

The hue, saturation and lightness contrasts of the largest segment
are calculated as follows:

Fig. 2. (a) Example of a painting image in our dataset. (b)Initial watershed
segmentation. (c) Initial mean shift segmentation. (d) Finial segmentation after
region merging.
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= − ∈f max H H i, Ωlargest i nei16 (19)

= − ∈f max S S i, Ωlargest i nei17 (20)

= − ∈f max L L i, Ωlargest i nei18 (21)

where Ωnei is the set of neighbor segments around the largest segment.
Hlargest is the hue value of the largest segment, and Hi is the hue value of
the ith neighbor segment. Slargest is the saturation value of the largest
segment, and Si is the saturation value of the ith neighbor segment.
Llargest is the lightness value of the largest segment, and Li is the lightness
value of the ith neighbor segment.

4.2.3. Distribution features
In the experiment of subjective assessment, the distribution of the

components in the painting image is found to be an important aspect
that affects visual complexity perception. This aspect refers to the dis-
tribution of the segments, the number of all segments and the shapes of
the major segments.

Number of all segments
f19: Number of all segments. In general, a larger number of segments

in a painting image implies high complexity of the image.
In the image segmentation procedure, the painting image is merged

according to color similarity, and finally segmented into small regions.
The number of these small regions is the number of all segments.

Areas of top two largest segments
−f f20 21: Areas of the FLS (f20) and the SLS (f21). A larger segment

denotes a highly homogenous region. This condition creates gentle vi-
sual perceptions.

Shape complexity of the first two largest segments
−f f22 23: Shape complexities of the FLS (f22) and the SLS (f23).

The contours of the regions with different shapes (rectangle, circle
or fractal) elicit different visual perception [39], which is used to
measure the shape complexity of the top two largest segments.

The shape complexity of each segment is calculated as follows:

= =+f
P
πA

i
4

, 1, 2i
R

R
21

2
i

i (22)

where PRi and ARi are the perimeters and areas of both the first and
second largest regions.

4.3. Salient region features

Salient region is the most visually important region in an image
[40]. When the observers see a painting, they are easily attracted to the
visual salient region at the first glance. In this part, we introduce the
features extracted from the salient region.

4.3.1. Salient region extraction
Our purpose is to obtain a local salient region, in which the human

viewers’ attentions are highly attracted. In order to achieve this pur-
pose, we first generate the saliency map and then crop the saliency map
into a local region.

In the step of saliency map generation, we adopt the method of
context-aware saliency proposed in [40] which detects the visually
important parts of the scene. This saliency is based on four principles
observed in the psychological literature: local low-level considerations,
global considerations, visual organizational rules, and high-level fac-
tors. By this method, we can obtain the saliency map of an input
painting, which is shown in Fig. 4(b).

Based on the saliency map, the most visually important region is
automatically cropped using the method mentioned in [41]. This
method crops the region with an optimum rectangle which preserves at
least 70% of total energy of the saliency map. The aspect ratio of the
rectangle can be set as different ratios, such as, 16/16, 9/16, and 16/9.
In our research, the aspect ratio of rectangle is set as 16/16 (a square).
The samples of the input images and the cropped regions are shown in
Fig. 3(a) and (c).

Based on the cropped salient region, we extract four color features
( −f f24 27) and two content features ( −f f28 29). The definition of each
feature is defined as follows.

4.3.2. Color features
The color complexity measure and the basic colors are extracted.
Color complexity measure
f24: The CCM of the salient region. It is calculated according to

Eq. (1).
Basic colors

−f f25 27: Hue (f25), saturation (f26), and lightness (f27) of the salient
region. The calculation formulas are similar to the Eq. (16)-(18). Here,
AreaRi refers to the area of the salient region.

Fig. 3. The salient region extracted from the painting images. (a) The input painting images, (b) The saliency maps of the input images, (c) The cropped salient
regions.
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4.3.3. Content features
For the content features, the edge density and the area of the salient

region are calculated.
f28: The edge density of the salient region. The computation is si-

milar as f9.
f29: The ratio between the area of the salient region and the area of

the whole image.
A total of 29 global, local, and salient region features are extracted

to represent the factors identified in the subjective experiment.

5. Classification and regression models of perceived complexity

The purpose of this work is to propose a computational measure of
estimating visual complexity of paintings. To achieve this purpose, we
propose two ways to objectively measure the complexity of painting
images: 1) to regard the complexity evaluation as a three-class pattern
classification problem, and 2) to predict a complexity score for a
painting image using regression.

5.1. Complexity classification by random forest and support vector machine

In the classification process, we classify the paintings into three
classes: LC, MC, and HC. From the subjective complexity experiment,
we calculate the histogram of the scores for all images. The peaks of
labels are concentrated around “2”, “4”, and “5.8”. Accordingly, the
range of “1-2.5”, “3.5-4.5”, and “5.5-7” are respectively set as the
classes of LC, MC, and HC. In this case, a large gap is assigned between
different levels. In total, 450 painting images are labeled as LC, MC, and
HC. s There are many classifiers used for image classifications [42–45].
In this paper, we employ Random Forest (RF) and Support Vector
Machine (SVM) for complexity classification. RF is a powerful machine
learning classifier that is first introduced in [42] and then developed in
[43]. The RF classifiers are operated by constructing a multitude of
decision trees at training time and outputting the class that is the mode
of the classes of the individual trees. SVMs [46] separate classes by
maximizing the margin between a hyperplane and the nearest training

examples, called support vectors. We implement RF algorithm with
randomForest [47] toolbox and SVM with e1071 toolbox in R (version
3.3.0.). The parameters for RF are set as 1000 trees and a minimum
node size of 10. We employ 70% of data as training data and the rest
30% of data as testing data. For each time of training and testing, the
data are randomly selected. The average accuracy (86.78% ± 1.01%)
is calculated among 5 times of classifications. In addition, we make
experiments to examine the performance when 30% of the data is used
as the training data. The average accuracy (83.86% ± 1.44%) is
obtained among five times of classifications. Compared with the si-
tuation that 70% of the data is used as the training data, the classifi-
cation accuracy becomes less than before. But the difference is slight.
For SVM classifiers, a Radial Basis Function is set to assign the com-
plexity labels. To avoid the overfitting, we carry out 5-fold cross vali-
dation and obtain the average accuracy (78.88% ± 0.02%). Com-
pared with SVM, RF classifiers perform higher accuracy in predicting
the visual complexity of painting images.

5.1.1. Importance of each feature
By RF classification, we obtain the importance of each feature for

predicting visual complexity of painting images. As shown in Fig. 4,
MeanDecreaseAccuracy defines how much the model fit decreases
when a variable is dropped. The greater the drop the more significant
the variable is. According to the MeanDecreaseAccuracy value of each
feature, we list the top ten features and their corresponding meanings in
Table 2. From this table, it is clearly shown that f20 and f3 play very
important roles in classifying the visual complexity of painting images.
The importance of the ten features can also be identified from the figure
of MeanDecreaseGini in Fig. 4. MeanDecreaseGini is a measure of
variable importance based on the Gini impurity index which is used for
the calculation of splits during training [46]. Both Mean-
decreaseaccuracy and MeanDecreaseGini reflect the feature im-
portance.

In order to check the performance in case the features are decreased,
we replicate the experiment by 29 times while reducing one feature for
each time. A total of 29 classification accuracies are shown in Fig. 5. In

Fig. 4. Ranking variable importance associated with visual complexity of painting images by RF.
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this figure, the “yellow line” shows the accuracy that when we use all
features for classification. Each subsequent mark of horizontal axis
means the deletion of the current feature in each classification. It is
clearly shown that when the feature number is decreased, the classifi-
cation accuracy is decreased.

Moreover, we replicate the experiment by using different features
combinations: global features, local features and salient features. The
average accuracies are calculated among 5 times of classifications,
which are shown in Table 3. In this table, all features used for classi-
fication yield the highest classification accuracy.

5.1.2. Comparisons with other measures of complexity
We compare the proposed method with the conventional measures

of complexity. Redies et al. [23] proposed a measure of image com-
plexity based on the Maximum Gradient Magnitudes (MGM) of each
pixel in the Lab color space. Sun, Yamasaki and Aizawa [24] predicted
image complexity based on 114-dimension image features. We realize
the above computational methods of complexity and calculate Pear-
son’s Correlation Coefficient (PCC) between subjective complexity

assessments and objective measures of complexity. The comparisons are
shown in Table 4. In this table, it is indicated that the proposed method
outperforms other measures with a higher correlation (r=0.777) be-
tween subjective complexity and objective measure of complexity.

5.2. Complexity regression by random forest and support vector regression

As complexity is a continuous value, a regression is suitable to
predict a complexity score for a painting image. For each painting
image, the corresponding feature vector is properly normalized to the
range of [0,1]. We employ support vector regression (SVR) and random
forest (RF) for regression. For both regression methods, the perfor-
mance is measured by mean square error (MSE) and PCC. The para-
meters of SVR are learned by performing 5-fold cross validation on the
training set. Table 5 shows the comparison results between SVR and RF.
From this table, RF regression model is better than SVR.

Table 2
Top ten important features for visual complexity perception of painting images.

Features Definitions MeanDecreaseAccuracy Group

f20 Area of the first largest segment 32.42 Local
f3 Color complexity of the third-level

Gaussian pyramid
27.69 Global

f2 Color complexity of the second-
level Gaussian pyramid

24.54 Global

f1 Color complexity of the first-level
Gaussian pyramid

21.83 Global

f19 Number of all segments 21.46 Local
f21 Areas of the second largest segment 17.38 Local
f4 Color complexity of the forth-level

Gaussian pyramid
16.44 Global

f22 Shape complexity of the first
largest segment

14.094 Local

f27 Lightness of the salient region 9.75 Salient
f24 Color complexity of the salient

region
9.66 Salient

Fig. 5. Feature combination with one feature deleted and the corresponding accuracy.

Table 3
Feature combinations and performances.

Features performance(Accuracy)

All features 86.78% ± 1.01%
Global features 77.66% ± 1.41%
Local features 81.86% ± 2.92%
Salient features 72.25% ± 2.72%

Table 4
Comparison of correlations between subjective com-
plexity and objective measures of complexity for dif-
ferent methods.

PCC

Redies-MGM [23] 0.521 *
Sun-114Features [24] 0.716 *
Proposed 0.777*

*=p<0.001

X. Guo et al. Knowledge-Based Systems xxx (xxxx) xxx–xxx

8



5.2.1. Performance on MART dataset
MART dataset [48] is an art collection of the MART museum in

Rovereto, Italy (the digitalized images of the artworks are contained in
the electronic archive of MART). In this work [48], the MART dataset is
public with the subjective negative and positive scores from 1 to 7,
where 1 meant a highly negative emotion and 7 meant a highly positive
emotion. In this paper, we use MART dataset as the comparison dataset.
We firstly collect the subjective complexity scores through a website
and build a new MART database with complexity scores5, and then
perform our methods on this database. The results are shown in Table 6.

5.2.2. Predicting aesthetic quality of paintings in jenaesthetics dataset using
proposed method

Visual complexity has been proved to be highly related to visual
aesthetic of images. In this section, we try to apply the proposed re-
gression method to predict the other features (aesthetic, beauty, Liking
of Color et al.) of the painting images involved in JenAesthetics dataset
[26–29].

We select 600 painting images from JenAesthetics dataset for the
experiment. Visual complexity features are extracted by the measures
illustrated in Section 4. In the prediction process, random forest re-
gression is used for predicting the aesthetic quality of the painting
images. To verify the performance of our method on evaluating other
features, PCC between predicted values and subjective values are cal-
culated and shown in Table 7. According to the coefficients in this table,
it reflects that our proposed method has a good ability of predicting
aesthetic quality, beauty, and liking of color of the painting images.

6. Discussions

We study theoretical and empirical concepts from psychology and
art theory to design the features that represent the above three factors.
A total of 29 global, local, and salient region features are extracted from
the painting images. These features are finally applied in a RF classifier
to predict the complexity of paintings into three levels, namely, HC,
MC, and LC. By RF classification, we also investigate the importance of
each feature for classification. In Table 2, ten important features and
their corresponding meanings are listed. These results can help us fur-
ther understand about which features are more powerful for the visual
complexity assessment. The meanings of these features from the the-
ories of human visual perception and psychology are explained as fol-
lows.

According to the results of subjective experiment, “distribution of
components” is regarded as one of the important factors that affect
visual complexity perception of painting images. f19, f20, f21 and f22, the
features that represent the factor of “distribution of components”, play
important roles in the RF classification model. As shown in Fig. 4, when
the variable f20 is removed from the feature set, the fit of the RF clas-
sification model decreases very quickly. The greater the drop the more
significant the variable is. Thus, f20 plays the most important role in RF
classification model. Human visual perception is sensitive to the largest
segment of the image. The importance of f20 in the proposed model also
proves that the area of the largest segment significantly affects sub-
jective visual complexity of paintings. Obviously, a painting image with

a large number of segments seems to have high visual complexity.
Furthermore, f19 and f21 also prove to be of vital importance for pre-
dicting visual complexity of paintings. Besides, for the largest segment,
its shape complexity also affects subjective visual complexity percep-
tion. It is shown in Fig. 4 that f22 is the sixth important feature asso-
ciated with visual complexity of painting images by RF.

Moreover, f1, f2, f3 and f4 are the average color complexity measures
of a painting in four levels of image pyramid. They are measured based
on the color variation in a local region of a painting. A high color
variation in a local region indicates that this local region has high
complexity. For a whole painting, its color complexity highly affects
visual complexity of paintings. This has been confirmed in our sub-
jective experiment that color is an important factor affecting human
perception of visual complexity in paintings. In addition, different le-
vels of image pyramid contain different features. Some features hidden
in this resolution are obvious in another resolution. In Fig. 4, it shows
that f3 plays a more important role than f2, f1, and f4 in classifying the
visual complexity of paintings. The color feature (f24) in the salient
region is found to be significant in visual complexity prediction. Fur-
thermore, f27 shows lightness of the salient region. It is important for
visual complexity classification.

f9 is the edgy density of a painting image. It represents the content
characteristic of the painting images. Generally, the more contents exist
in a painting, the more complex the painting is. It is revealed in Fig. 4
that f9 is significant for classification.

7. Conclusions and future work

Visual complexity is extremely important for human being to un-
derstand and perceive the visual stimuli. It has a wide range of appli-
cations both in the fields of psychology and computer science.
Therefore, how to evaluate visual complexity from human visual system
needs to be solved timely and adequately. In this paper, we firstly
identify the factors that affect visual complexity of painting images.
Based on these factors, we study theoretical and empirical concepts
from psychology and art theory to design 29 global, local, and salient
region features which are highly associated with the human visual
perception system. Furthermore, we propose two ways to assess visual
complexity of paining images. One is to evaluate the visual complexity
level of painting images by classifying the complexity level into three
levels (low, middle and high complexity). Another one is to predict a
complexity value for painting images by regression model. By the
comparisons, the proposed RF classification method performs better
than other measurements of image complexity in predicting the visual
complexity of painting images. Moreover, we apply the RF regression

Table 5
Complexity regression by SVR and RF.

Methods MSE PCC

SVR 0.662 ± 0.060 0.692 ± 0.0.038 *
RF 0.645 ± 0.035 0.777 ± 0.015 *

*=p<0.001

Table 6
Performance on MART database.

Methods MSE PCC

SVR 0.423 ± 0.038 0.551 ± 0.036*
RF 0.389 ± 0.015 0.580 ± 0.022*

*=p<0.001

Table 7
Comparison of correlations between predicted values
and subjective values.

PCC

Aesthetic Quality 0.768*
Beauty 0.786*
Liking of Color 0.734*
Liking of Composition 0.174
Liking of Content 0.260

*=p<0.001

5 For future information about the collected complexity scores, please contact guox-
iaoying@sxu.edu.cn or 19850102eagle@163.com
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model to predict the other features of painting images. The results show
that the proposed method has a good ability of evaluating aesthetic
quality, beauty, and liking of color of the painting images involved in
JenAesthetics dataset. This work might help to understand the visual
complexity of visual stimuli and contribute to measure complexity
objectively from human visual perception system.

In the future, we will focus on enlarging our image database to in-
crease the robustness of our proposed method and extending our
method to other applications (e.g. painting style classification based on
image complexity).
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Appendix A. The questionnaire in the experiment of subjective
assessment of paintings.

The questionnaire used in the experiment of subjective perception
of complexity is as follows:

Please answer the following two questions.
1) which factors affect your judgment of the visual complexity of

paintings(multiple choices allowed)?
A. Colors
B. Strength of the color changes
C. Content (elements, objects, people)
D. Distribution of composition (regular, or not)
E. Understandability-Abstract
F. Symmetry
G. Contrast
H. Familiarity
I. (if you have any other reasons)
2) Which two factors that are the most important?
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