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Abstract

With the advent of the age of big data, a typical big data set called limited labeled big data appears. It includes
a small amount of labeled data and a large amount of unlabeled data. Some existing neighborhood-based rough set
algorithms work well in analyzing the rough data with numerical features. But, they face three challenges: limited
labeled property of big data, computational inefficiency and over-fitting in attribute reduction when dealing with
limited labeled data. In order to address the three issues, a combination of neighborhood rough set and local rough set
called local neighborhood rough set (LNRS) is proposed in this paper. The corresponding concept approximation and
attribute reduction algorithms designed with linear time complexity can efficiently and effectively deal with limited
labeled big data. The experimental results show that the proposed local neighborhood rough set and corresponding
algorithms significantly outperform its original counterpart in classical neighborhood rough set. These results will
enrich the local rough set theory and enlarge its application scopes.
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1. Introduction

Rough set theory was introduced by Pawlak [1, 2, 3] as a powerful soft computing tool for modelling and
processing uncertainty information. It has been applied to feature selection [4, 5, 6, 7, 8], pattern recognition
[9, 10], uncertainty reasoning [11], granular computing [12, 13, 14, 15], data mining and knowledge discovery
[16, 17, 18, 19, 20, 21]. Over the past decades, it has an enormous impact on the uncertainty management and5

uncertainty reasoning.
There are two significant notions for rough set. One fundamental notion is concept approximation, in which a

general concept represented by a set is always characterized via the so-called upper and lower approximations. Given a
data set U and a binary relation R including equivalence relation, tolerance relation, neighborhood relation, dominance
relation, and so on, and this given binary relation partitions a data set into a family of concepts, also called a granular10

structure U/R in granular computing, and each of which is called an information granule used to approximate a target
concept [22, 23, 24]. One can get a rough set of any subset on the data set via employing information granule from
U/R. The other important notion is attribute reduction which can be considered as a kind of specific feature selection
[25, 26, 27, 28], whose objective is to reduce the number of attributes and to preserve a certain property that we want
at the same time. In rough set theory, we are interested in the property of retaining the distinguishing ability provided15

by the originally whole attribute set [29, 30], rather than try to maximize the classification power [31, 32, 33, 34]. In
other words, based on rough set theory, one can omit irrelevant and redundant attributes that will not influence the
discriminability to to current recognition tasks [35, 29, 36, 37] and select useful features from a given data set. Given
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Table 1: A data table with limited labeled objects
Objects x1 x2 · · · xp · · · xn−1 xn

a1 a1(x1) a1(x2) · · · a1(xp) · · · a1(xn−1) a1(xn)
a2 a2(x1) a2(x2) · · · a2(xp) · · · a2(xn−1) a2(xn)
...

...
...

. . .
...

. . .
...

...
ak ak(x1) ak(x2) · · · ak(xp) · · · ak(xn−1) ak(xn)

Class labels d1 d2 · · · dr

a set of objects with class labels, some decision rules, which is called a rough classifier, can be obtained by utilizing
attribute reduction induced by rough set model. We can predict the class label of an unseen object through using this20

set of decision rules. Considering this point, classical rough model can be thought as a supervised learning method.
Rough set theory is originally constructed on the basis of an equivalence relation. However, it is limited in many

real-world applications. To overcome this limitation, ones extend the equivalence relation to other binary relations,
such as similarity relation, tolerance relation, dominance relation and neighborhood relation, to generalize the classical
rough sets. Among them, neighborhood rough sets are very important extension to deal with numeric data.25

For convenience, we combine neighborhood rough set [38] with the decision-theoretic rough sets [39, 40] into
the same rough set model, as a representative, called global neighborhood rough set in this paper. Let (U,N) be a
neighborhood approximation space with N being neighborhood relation on U. The lower and upper approximations
of the set X are defined as follows. {

Nα(X) = {x|P(X|δ(x)) ≥ α, xεU},
Nβ(X) = {x|P(X|δ(x)) > β, xεU}.

(1)

where P(.) is a conditional function, δ(x) is neighborhood of x and α, β are two parameters from the decision-theoretic30

rough set:
The existing rough set models have made great achievement in rough data analysis, but they encounter some

challenges when handling large-scale data sets. In what follows, we present a detailed description.

(a) Semi-supervised property of big data

Many state-of-the-art algorithms focus on classifiers or regressors from a given training set, where every object35

must be labeled. With the development of the age of the big data, one can get more data objects than ever. Some
methods [41, 42, 43, 44] have been proposed to deal with stream data, such as data obtained from all kinds of sensors
and that from social media, which increase dynamically. However, these models generally use labeled objects, and
these unlabelled objects are not used to construct concept approximation for rough set-based supervised learning,
where these algorithms require a large number of labeled data, and labelling these data is expensive and laborious. On40

the contrary, with the advent of Internet, obtaining unlabeled data becomes easy and cheap. Under the environment
of big data, a data set to deal with could be represented as a data table shown in Table 1 (we can call it limited labeled
decision table). In the original rough set model, only the data set {x1, x2, · · · , xp} is used, which means that the model
cannot use other information provided by unlabeled data. So a semi-supervised learning strategy is necessary, in
which it can automatically learn rough classifiers from big data with limited labeled data. This is one motivation of45

rough data analysis in big data.

(b) Computational inefficiency

From the Equation (1), we can know that, calculating its lower/upper approximation needs to use all information
granules obtained by scanning all objects, which is exceedingly time-costing. And its time complexity isO(n2) without
pre-ranking and O(n log n) with pre-ranking [45, 46]. For a large-scale data set, they cannot effectively and efficiently50

work to satisfy the requirement in real world. How to reduce the time consumption is the second motivation of this
study.

(c) Over-fitting in attribute reduction
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The over-fitting degree in attribute reduction can be observed by the monotonicity of positive regions of a target
decision, which is often measured by the accuracy of approximation in Eq. (9). It is a truth modeling classifier task55

which is influenced by noise easily [47]. So, we should consider robustness and sensitivity of attribute reduction to
noise samples. If the measures used to evaluate significance of attribute in attribute reduction are robust to noisy
objects, the performance of the trained classifier would be better. Some existing extended rough set model, such
as variable precision rough set [48], decision rough set [39, 40], bayesian rough set [49], probabilistic rough set
[50, 51, 40], etc., can be used to solve this issue. Each of these rough set models can be used to control the degree60

of uncertainty, misclassification and imprecise information. We can see that for these rough set models, lower/upper
approximation of a target concept are often not monotonic with the number of attributes, where objects outside this
target concept may be included. How to ensure the monotonicity of an attribute reduction process is also a motivation
of this study.

In order to address these three challenges, a new rough set model for rough data analysis in big data, called65

local neighborhood rough set, is presented. To construct lower/upper approximations of a target concept under the
learning framework of the local neighborhood rough set, it is unnecessary to compute information granules of all
objects in advance. Only those of objects within a target concept need to be calculated. This saves a great amount
of computing time and fully meets the needs of big data analysis. Some interesting properties and measures in the
local neighborhood rough set will also be given. Based on the local rough set, the LLAC algorithm for computing a70

local lower approximation of a target concept and the LARC algorithm for searching a local attribute reduction of a
target concept, were designed. Moreover, the LLAD algorithm for calculating a local lower approximation of a target
decision and the LARD algorithm for finding a local attribute reduction of a target decision, will be proposed. The
one of the advantages of these four algorithms is that their time complexity is linear. Hence, LNRS can fully be apply
to rough data analysis in big data. At last, we use four real data sets from UCI and an artificial data set to verify the75

performance of these four algorithms. Corresponding experiment results show that these algorithms achieve a great
success for rough data analysis in big data.

The remainder of this paper is organized as follows. In section 2, local rough set and neighborhood rough set
are reviewed. In section 3, we first construct the local neighborhood rough set and explore its prime properties and
measures. Section 4 provides solutions of how to compute the lower/up local approximation of a target concept and80

how to find an attribute reduction of a target decision in the local neighborhood rough set. In Section 5, we verify
scalability of the local neighborhood rough set on an artificial large-scale data set. Finally, we conclude this paper by
outlook for further research and discussion in Section 6.

2. Related work

In this section, we briefly review some basic concepts related to local rough set (LRS) [52] and neighborhood85

rough set (NRS) [53].

2.1. LRS

For obtaining a rough set < lower approximation, upper approximation > of any subset on sample set, one
first computes all the information granules by comparing the difference between any two objects from a given data
set. This implies that a global rough set must observe the relationships between a target concept and each of the90

information granules. However, this is not a good strategy for approximating a target concept X ⊆ U. In fact, the
information granules {[x] : [x] ∩ X = φ, x ∈ U} are not useful for computing the lower/upper approximation of X.
Indeed, we only need to calculate the information granules related to the target concept X. In particular, this kind of
large-scale data sets n >>| X | often exist in real applications (even we can have lots of labeled data, we still can obtain
more unlabeled data. For examples, ImageNet consists of over 14 million hand-annotated images, its amount still is95

less than the amount of unlabeled images on Internet), where n and |X| are the size of the data set and X, respectively.
This time reduction improvement would be very useful for rough data analysis based on big data. According to this
consideration, Qian et al.[52] reconstructed the rough set model as follows:
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Definition 1. [52] Let (U,R) be an approximation space andD is an inclusion degree defined on P(U)×P(U). Then,
for any X ⊆ U, the α−lower and β−upper approximations are defined by

R(LRS ,α)(X) = {x | D(X/[x]R) ≥ α, x ∈ X}, (2)

R(LRS ,β)(X) = {x | D(X/[x]R) > β, x ∈ U} = ∪{[x]R | D(X/[x]R) > β, x ∈ X}. (3)

The pair 〈R(LRS ,α)(X),R(LRS ,β)(X)〉 is called the LRS.
The boundary of X is denoted by BNR(X) = R(LRS ,β)(X) − R(LRS ,α)(X), which we refer to as the local boundary100

region of X.

2.2. NRS

Let < U,C ∪ D > be a decision information system, where U = {x1, x2, · · · , xn} is a finite and nonempty set of
objects, xi is a sample, C and D, described samples,are called condition attribute and decision attribute respectively.

For any xi, x j, xk ∈ U, there exists a corresponding number ∆ satisfying105

(1)∆(xi, x j) ≥ 0,∆(xi, x j) = 0 if and only if xi = x j,
(2)∆(xi, x j) = ∆(x j, xi), and
(3)∆(xi, x j) + ∆(x j, xk) ≥ ∆(xi, xk),

where ∆ is a distance function and < U,∆ > is a metric space.
For any two samples xi = (x1

i , x
2
i , ..., x

N
i ) and x j = (x1

j , x
2
j , ..., x

N
j ) a general metric, named Minkowsky distance, is110

defined as
∆(xi, x j) = (

∑N
k=1 |x

k
i − xk

j |
P)

1
P

In fact, the distance function has various forms, a detailed survey on this topic can refer to [34]. In this paper, we
select Minkowsky distance, where P = 2 (also called Euclidean distance).

Given arbitrary xi ∈ U and B ⊆ C, the neighborhood δB(xi) of xi in feature space B is defined as115

δB(xi) = {x j|∆(xi, x j) ≤ δ}
Given an approximation space neighborhood approximation space < U,N >, where U is a set of objects and N is

a neighborhood relation over U. For an any subset X ⊆ U, lower and upper approximation are defined as{
N(X) = {x|δ(x) ⊆ X, xεU)},
N(X) = {x|X ∩ δ(x) , φ, xεU)}.

(4)

3. Local neighborhood rough set

Rough set is a useful tool for rough data uncertainty analysis. But these tasks based on the global rough set are120

time-consuming for many data sets, especially big data. In order to use rough set to handle big data efficiently, we
introduce a general rough set framework, called local neighborhood rough set.

3.1. Construction of a local neighborhood rough set and its properties

In GNRS, all information granules are obtained by comparing otherness between any two objects from a given
universe. The strategy means that we need to consider the relationship between a target concept and each information125

granule. However, this is not a good strategy for approximating target concept X ⊂ U. In fact, we only use the
information granules {δ(x)|δ(x) ∩ X , φ, x ∈ X}, when approximating a target concept. This implies that the infor-
mation granules {δ(x)|δ(x) ∩ X = φ, x ∈ X} is useless for constructing lower/upper approximation of X. Hence, it is
unnecessary to compute them. Namely, we only need to compute the {δ(x)|δ(x)∩X , φ, x ∈ X}, which can immensely
reduce time consumption. In the context of big data, this kind of large-scale data sets n >>| X | often exist, in which130

n and | X | are the size of this data and X, respectively.
Based on the above analysis, in order to analyse big data by applying rough set theory, we reconstruct rough set

model as follows:
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Figure 1: Space structure for the toy example.

Definition 2. Let NAS = (U,N) be a neighborhood approximation space, and D an inclusion degree defined on
P(U) × P(U). Then for any X ⊆ U, the α − lower and β − upper approximation are denoted by{

Nα(X) = {x|D(X/δ(x)) ≥ α, xεX},
Nβ(X) = {x|D(X/δ(x)) > β, xεX}.

(5)

where δ(x) = {y|∆(x, y) ≤ δ},∆ is a distance function,D(X/δ(x)) =
|X∩δ(x)|
|δ(x)| referred to as the degree of inclusion [54].

The pair 〈Nα(X),Nβ(X)〉 is called a local neighborhood rough set. The boundary of X is denoted by BNN(X) =135

Nβ(X) − Nα(X).

Example 1. Given a samples set U = {x1, x2, x3, x4}, corresponding label set D = {y1, y2, ∗, ∗} (‘*’ denotes that
corresponding samples are not labeled), samples set with labels X = {x1, x2}, and α = 0.5. Their space structure is
shown in Fig. 1.

For LNRS, we only need to obtain neighborhood relations for these objects from X. According to Fig 1, we have:140

δ(x1) = {x1, x4}, δ(x2) = {x2, x4}.
Further, there areD(X/δ(x1)) = 1

2 andD(X/δ(x2)) = 1
2 .

Based on Definition 2, one can get NLNRS
α=0.5 (X) = {x1, x2}.

However, for GNRS, we need to obtain neighborhood relations for all objects from U. According to Fig 1, we get:
δ(x1) = {x1, x4}, δ(x2) = {x2, x4}, δ(x3) = {x3, x4}, δ(x4) = {x4, x1, x2, x3}.145

Further, there areD(X/δ(x1)) = 1
2 ,D(X/δ(x2)) = 1

2 ,D(X/δ(x3)) = 0, andD(X/δ(x4)) = 1
2 .

Based on Equation (1), we can obtain NGNRS
α=0.5 (X) = {x1, x2, x4}

From Example 1, we can find that we only need to obtain these neighborhood relations of samples with labels
in the context of LNRS. It is worth noting that obtaining these neighborhood relations of samples with labels needs
to use the information hidden in these samples without labels. However, for GNRS model, one has to compute all150

neighborhood relations of all samples with labels and without labels.
The local neighborhood rough set degrades to a neighborhood rough set if α = 1 and β = 0, which implies that the

generalized model maintains the consistent ability to deal with uncertainty and does not change the idea of the latter
(it can be seen as a type of global neighborhood rough set).

In fact, these objects from Nα(X), can be further divided into two categories. Nα(X) = {x| D(X/δ(x)) ≥ α, x ∈155

X} = {x| D(X/δ(x)) = 1, x ∈ X} ∪ {x| 1 > D(X/δ(x)) ≥ α, x ∈ X}. Here, we denote CLN(X) = {x| D(X/δ(x)) = 1, x ∈
X}, called a certain set of Nα(X), and denote PLN(X) = {x| 1 > D(X/δ(x)) ≥ α, x ∈ X}, called a possible set of Nα(X).
It is obvious that
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Nα(X) = CLN(X) ∪ PLN(X) and |Nα(X)| = |CLN(X)| + |PLN(X)|.

Theorem 1. Given two equivalence relations P,Q with P ≺ Q, a target concept X and the parameter α. If x ∈160

CLQ(X), then x ∈ CLP(X).

Proof. If x ∈ CLQ(X), from the definition of CLQ(X), one has that D(X/δQ(x)) = 1, so |X∩δQ(x)|
|δQ(x)| = 1, thus δQ(x) ⊆ X.

In addition, due to P ≺ Q, we have that δP(x) ⊆ δQ(x) ⊆ X. Thus D(X/δP(x)) = 1. Then, the object x ∈ CLP(X).

However, for every object coming from the possible set PLN(X), the above property may not hold, as it is affected
by the parameter α.165

Compared with classical rough set, local rough set possesses some interesting properties.

Property 1. Given an approximation space (U,N), and an inclusion degree defined D. Then, for any X,Y ⊆ U, 0 ≤
β < α ≤ 1, the following properties hold:

(1) Nα(X) ⊆ X;
(2) β ∈ [0,min{D(X/δ(x)) : x ∈ X}]⇒ X ⊆ Nβ(X);170

(3) Nα(φ) = Nβ(φ) = φ, Nα(U) = Nβ(U) = U;
(4) X ⊆ Y ⇒ Nα(X) ⊆ Nα(Y),Nβ(X) = Nβ(Y);
(5) Nα(X ∩ Y) ⊆ Nα(X) ∩ Nα(Y),

Nβ(X ∪ Y) ⊇ Nβ(X) ∪ Nβ(Y);
(6) Nα(X ∪ Y) ⊇ Nα(X) ∪ Nα(Y),175

Nβ(X ∩ Y) ⊆ Nβ(X) ∩ Nβ(Y);
(7) 0.5 < α1 < α2 ≤ 1⇒ Nα2

(X) ⊆ Nα1
(X),

0 ≤ β1 < β2 < 0.5⇒ Nβ2 (X) ⊆ Nβ1 (X).

Proof. (1)For ∀x ∈ Nα(X), by α − lower approximation in Definition 1, we can get x ∈ X. So, for any X ⊆ U and
0 < α ≤ 1, one has Nα(X) ⊆ X.180

(2) Since N is a neighborhood relation on U, ∀x ∈ X, one has that x ∈ δ(x) and X ∩ δ(x) , Ø. Hence, we get that
D(X/δ(x)) > 0. Thus, when β ∈ [0,min{D(X/δ(x)) : x ∈ X}), we have that ∀x ∈ X, x ∈ δ(x) andD(X/δ(x)) > β hold.
Therefore, from the definition of β−upper approximation in Definition 1, when β ∈ [0,min{D(X/δ(x)) : x ∈ X}), we
can get that x ∈ Nβ(X), ∀x ∈ X, that is X ⊆ Nβ(X).

(3)For ∀x ∈ U, 0 ≤ β < α ≤ 1, we can get D(φ/δ(x)) =
|φ∩δ(x)|
|δ(x)| = 0 ≤ β < α, x < Nα(φ), x < Nβ(φ). Thus,185

Nα(φ) = Nβ(φ) = φ. Furthermore, We can get D(U/δ(x)) =
|U∩δ(x)|
|δ(x)| = 1 ≥ β > α, x ∈ Nα(U), x ∈ Nβ(U). So, one can

get that Nα(U) = Nβ(U) = U.
(4)For ∀x ∈ U,when X ⊆ Y, one can get easily D(X/δ(x)) < D(Y/δ(x)). For ∀x ∈ Nα(X), when X ⊆ Y, we

have D(Y/δ(x)) ≥ D(X/δ(x)) ≥ α.Thus, x ∈ Nα(Y).Nα(X) ⊆ Nα(Y). Analogously, we can prove that X ⊆ Y implies
Nβ(X) = Nβ(Y).190

(5)For ∀x ∈ Nα(X ∩ Y), one can get that
x ∈ Nα(X ∩ Y)⇒ x ∈ X ∩ Y,D(X ∩ Y/δ(x)) ≥ α
⇒ x ∈ X ∧ x ∈ Y,D(X ∩ Y/δ(x)) ≥ α
⇒ D(X/δ(x)) ≥ D(X ∩ Y/δ(x)) ≥ α, x ∈ X
∧D(Y/δ(x)) ≥ D(X ∩ Y/δ(x)) ≥ α, x ∈ Y195

⇒ D(X/δ(x)) ≥ α, x ∈ X ∧D(Y/δ(x)) ≥ α, x ∈ Y
⇒ x ∈ Nα(X) ∧ x ∈ Nα(Y)
⇒ x ∈ Nα(X) ∩ Nα(Y)
from which one can get that Nα(X ∩ Y) ⊆ Nα(X) ∩ Nα(Y).

Analogously, for ∀x ∈ Nβ(X) ∪ Nβ(Y),we can get that200

x ∈ Nβ(X) ∪ Nβ(Y)
⇒ x ∈ Nβ(X) ∨ x ∈ Nβ(Y)
⇒ D(X/δ(x)) > β, x ∈ X ∨D(Y/δ(x)) > β, x ∈ Y
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⇒ D(X ∪ Y/δ(x)) ≥ D(X/δ(x)) > β, x ∈ X∨
D(X ∪ Y/δ(x)) ≥ D(Y/δ(x)) > β, x ∈ Y205

⇒ D(X ∪ Y/δ(x)) > β, (x ∈ X ∨ x ∈ Y)
⇒ D(X ∪ Y/δ(x)) > β, (x ∈ (X ∪ Y))
⇒ x ∈ Nβ(X ∪ Y)
then we obtain that Nβ(X ∪ Y) ⊇ Nβ(X) ∪ Nβ(Y).

(6)For ∀x ∈ Nα(X) ∪ Nα(Y),we can get that210

x ∈ Nα(X) ∪ Nα(Y)
⇒ x ∈ Nα(X) ∨ x ∈ Nα(Y)
⇒ D(X/δ(x)) ≥ α, x ∈ X ∨D(Y/δ(x)) ≥ α, x ∈ Y
⇒ D(X ∪ Y/δ(x)) ≥ D(X/δ(x)) ≥ α, x ∈ X∨
D(X ∪ Y/δ(x)) ≥ D(Y/δ(x)) ≥ α, x ∈ Y215

⇒ D(X ∪ Y/δ(x)) ≥ α, (x ∈ X ∨ x ∈ Y)
⇒ D(X ∪ Y/δ(x)) ≥ α, (x ∈ (X ∪ Y))
⇒ x ∈ Nα(X ∪ Y) so one can get that Nα(X) ∪ Nα(Y) ⊆ Nα(X ∪ Y).

Meanwhile, for ∀x ∈ Nβ(X ∩ Y),one can get that
x ∈ Nβ(X ∩ Y)⇒ x ∈ X ∩ Y,D(X ∩ Y/δ(x)) ≥ β220

⇒ x ∈ X, x ∈ Y,D(X/δ(x)) ≥ β,D(Y/δ(x)) ≥ β
⇒ D(X/δ(x)) ≥ β, x ∈ X ∧D(Y/δ(x)) ≥ β, x ∈ Y
⇒ x ∈ Nβ(X) ∧ x ∈ Nβ(Y)
⇒ x ∈ Nβ(X) ∩ Nβ(Y)
from which one can get that Nβ(X ∩ Y) ⊆ Nβ(X) ∩ Nβ(Y);225

(7)For 0.5 < α1 < α2 ≤ 1,∀x ∈ Nα2
(X)

x ∈ Nα2
(X)⇒D(X/δ(x)) ≥ α2, x ∈ X

⇒ D(X/δ(x)) ≥ α2 > α1, x ∈ X
⇒ D(X/δ(x)) ≥ α1, x ∈ X ⇒ x ∈ Nα1

Then 0.5 < α1 < α2 ≤ 1 implies that Nα2
(X) ⊆ Nα1

(X).230

Analogously, we can prove that 0 ≤ β1 < β2 < 0.5⇒ Nβ2 (X) ⊆ Nβ1 (X).

In real applications, for a classification problem, a decision table S = (U,C ∪ D) with C ∩ D = Ø is often used,
where C and D are called condition attribute set and decision attribute set, respectively.

In machine learning, a classifier is built on a supervised learning algorithm with labeled training data. In rough
set theory, a rough classifier is also learned from an object set with class labels (called a training set). However, in big235

data analysis, supervised learning often requires a large amount of labeled data, which is an expensive and laborious
task and sometimes even infeasible. In contrast, unlabeled data are cheap and easy to obtain because a large amount of
them can be easily collected. Therefore, techniques to automatically do rough data analysis on big data with limited
labeled data in a semi-supervised way, are desirable.

In the above case, we assume that U is the entire universe, Ulable ⊆ U is labeled sample set, Uunlable = U − Ulable240

is unlabeled sample set, and U is parted into r mutually exclusive crisp subsets by the decision attributes D, i.e.,
Ulable/D = {X1, X2, · · · , Xr}. For many large scale data sets, we often have that |Ulable| � |U |. Given any subset B ⊆ C
and NB is the neighborhood relation induced by B, like a global rough set, in such a case, the local lower and local
upper approximations of the decision attributes D with respect to B are defined as{

NB(D) = {NB(X1),NB(X2), · · · ,NB(Xr)},
NB(D) = {NB(X1),NB(X2), · · · ,NB(Xr)}.

245

Denoted by POS B(D) =
⋃r

i=1 NB(Xi), it is called the local positive region of D.

3.2. Several measures in the local neighborhood rough set

Like Pawlak’ rough set, uncertainty of a local neighborhood rough set is caused by the existence of a boundary
region. As we know, the greater the boundary region of rough set is, the weaker its accuracy is. In the local rough set,
in order to express this idea, the formal definition of an accuracy measure is given as follows:250
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Definition 3. Let S = (U, AT ) be an information system, X ⊆ U and B ⊆ AT an attribute subset. The accuracy
measure of X by B is defined as

α(B, X) =
|NB(X)|

|NB(X)|
, (6)

Gediga [55] introduced a simple statistic for the approximation precision of X by B. In local neighborhood rough
set, it can be defined as

π(N, X) =
|NB(X)|

|X|
. (7)

In rough set theory, accuracy of approximation is employed for describing the ability of a partition to approximate a
decision[47],[48]. For a decision table S = (U,C ∪ D) and an attribute subset B ⊆ C, given a local rough set, the
approximation accuracy of B with respect to D can be given as follows:255

γ(B,D) =

∑
{|NB(X)| : X ∈ U/D}∑
{|X| : X ∈ U/D}

=
|POS B(D)|∑
{|X| : X ∈ U/D}

. (8)

where X ∈ U/D means a labeled class.
In this paper, the precision of approximation π and γ is used to compare the monotonicity of the proposed local

rough set and the global rough set in attribute reduction of a target concept and a target decision respectively.

4. Computing approximation of a target concept and attribute reduction of a target decision

In this section, we focus on approximation and attribute reduction of a target concept.260

4.1. Computing the local lower approximation of a target concept

In this part, an algorithm computing a local lower approximation of a target concept is designed, and its efficiency
is verified on several real data sets.

4.1.1. Algorithm
From Definition 1 and relative analysis, we know, in order to obtain lower/upper approximation of local rough265

set, we only need to compute information granules of objects within a given target concept. Here in below, we give
corresponding algorithm description.

Algorithm 1. Computing the local lower approximation of a target concept(LLAC)
Input: An information system S = (U, AT ), a target concept set X, inclusion degree α and neighborhood size δ;
Output: Local α − lower approximation LA of X.270

(1) for each x ∈ X, compute δ(x)
(2) LA← φ, i← 1.
(3) for each x ∈ X

ifD(X/δ(x) ≥ α
LA← LA ∪ {x}275

(4) return LA and end.
For convenience, we name the algorithm of computing a global lower approximation GLAC. In this part, we

evaluate time complexity of the LLAC algorithm. Step 1 needs to compute |X| neighborhood information granules
through scanning the entire universe U, thus its time complexity isO(|X||U |). But the time complexity of calculating all
neighborhood information granules is O(|U |2) for the classical GLAC. In Step 3, in order to get lower approximation280

of the LLAC, we only need to compare the |X| neighborhood information granules with the concept X. Hence, its
time complexity is O(|X|2). However, the time complexity for obtaining lower approximation of global rough set is
O(|X||U |). Each of other steps of the LLAC and GLAC is constant. To intuitively compare, the time complexity of each
step in LLAC and that GLAC are shown in Table 2. From Table 2, we can see that the time complexity of the GLAC
is much higher than that of the LLAC. In the next theorem, we quantitatively evaluate the ratio of time-reduction of285

the LLAC algorithm relative to the GLAC algorithm.
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Table 2: The time complexities of the LLAC algorithm and GLAC algorithm
Algorithms Step 1 Step 3 Other steps

Global lower approximation O(|U |2) O(|X||U |) Constant
Local lower approximation O(|X||U |) O(|X|2) Constant

Table 3: Datasets description
Id Datasets Cases Features Classes
1 EEG 14980 14 2
2 Hill-Valley 606 100 2
3 Magic 19020 10 2
4 Occupancy Detection 20560 5 2

Theorem 2. Given an information system S = (U, AT ) and a target concept X ⊆ U, the speedup ratio of the LLAC
algorithm is p = 1 − |X|

|U | relative to the GLAC algorithm.

Proof. From the time complexity of LLAC algorithm and that of a global lower approximation in Table 2, we have
that290

p = (O(|U |2 + |X||U |) − O(|X||U | + |X|2))/O(|U |2 + |X||U |)
= O(|U |2 + |X||U | − |X||U | − |X|2)/O(|U |2 + |X||U |)
= O(|U |2 − |X|2)/O(|U |2 + |X||U |)
= O((|U | + |X|)(|U | − |X|))/O(|U |(|U | + |X|))
= O(|U | − |X|)/O(|U |)295

= 1 − |X|
|U | .

Hence, the ratio of time-reduction of the LLAC algorithm is p = 1 − |X|
|U | . This completes the proof.

From the above theorem, we can see that the LLAC algorithm can improve O(|U |2+|X||U |)
O(|X||U |+|X|2) =

|U |
|X| times than the

corresponding global lower approximation for computational time. Therefore, it is more efficient for computing a
local lower approximation. Particularly, the size |X| of the target concept is far less than the size |U | of the universe,300

i.e., |X| << |U | in the context of big data. Then |X| may be regarded as a constant. In other words, the time complexity
of LLAC is lineO(|X||U |+ |X|2) in term of |U |. Hence, the LLAC algorithm can be highly efficient for big data analysis.

4.1.2. Experimental analysis
In the experiments in this paper, all algorithms are all run on a personal computer with Windows 10 and Core(TM)

I7-4790 CPU 3.6 GHz, and ECC DDR3, 8 GB memory. The software being used is JAVA. Without loss of generality,305

we only let the parameter α = 0.5, α = 0.7, and α = 1, respectively and δ = 0.001.
For experimental design, we fix the size of target concept, which is the front 10% objects from each of these four

data sets. To distinguish the computational time, we divide each of these four data sets into ten parts of equal size.
These samples from the first part are labeled, and these samples from other parts are not labeled. The first part is
regarded as the 1st data set, the combination of the first part and the second part is viewed as the 2nd data set, . . . , the310

combination of all ten parts is viewed as the 10th data set. These data sets can be used to calculate time used by each
of the LLAC algorithm and the GLAC algorithm and Fig. 2 shows it vis-a-vis the size of universe.

Fig. 2 displays the change trends of both LLAC and GLAC with the increase of data set size (the x-coordinate
and y-coordinate pertain to the size of the data set and the computing time, respectively). From Fig. 2, we can see
the computing time of these two algorithms increases with the increase of the size of data. In addition, for each value315

of the parameter α, the LLAC algorithm is consistently faster than the GLAC algorithm on the same universe and
attribute set. The differences between these two algorithms for time consumption are markedly larger when the size
of the data set increases. Table 4 shows that the computational time of LLAC and GLAC algorithms on the tenth data
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(a) EEG (b) Hill-Valley

(c) Magic (d) Occupancy Detection

Figure 2: Time of LLAC and GLAC versus the size of universe

set in the nine data sets. From Table 4, we observe that it only uses one tenth of the run time used by GLAC. One can
say that for computing the local lower approximation of a target concept, the LLAC algorithm under the local rough320

set is efficient for handling big data.

4.2. Computing local attribute reduction of a target decision

In this subsection, we develop a heuristic, greedy and forward search algorithm for searching a local attribute
reduction of a target decision algorithm and verify its efficiency through employing several real data sets.

4.2.1. Definition of a local attribute reduction of a target decision325

The aim of attribute reduction is to find a subset of attributes so that the classification task has the maximal
consistency in the reduction set. However, the lower approximation of any rough set model with a parameter α , 1
is not monotonic, which often causes over-fitting problem [56, 48]. This is induced by the very strong constraint
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Table 4: The computational time for concept approximation with LLAC and GLAC

Datasets α = 0.5 α = 0.7 α = 1
LARC(s) GARC(s) LARC(s) GARC(s) LARC(s) GARC(s)

EEG 34.0398 371.5881 33.8306 361.4159 35.0514 350.7959
Hill-Valley 0.3924 3.8723 0.3790 3.8501 0.3714 4.0022

Magic 42.1641 414.2564 40.2146 410.2744 40.4122 404.7643
Occupancy Detection 20.7668 223.5289 21.4709 241.3208 21.7125 224.1059

NB(X) = NAT (X) of an attribute reduction [30, 9]. Besides, much more run time is spent in the searching process. For
global rough set model, the task of attribute reduction of a target decision has the same limitation, where the stopping330

criterion POS B(D) = POS C(D) is not only too strong but also time-consuming. To address the two limitations of low
efficiency and over-fitting, we introduce the definition of local attribute reduction of a target decision as follows

Definition 4. Let S = (U,C ∪ D) be a decision table and B ⊆ C. If |POS B(D)| ≥ |POS C(D)| and |POS B′ (D)| �
|POS C(D)| for any B

′

⊂ B, then we call B a local attribute reduction of S .

From the above definition, we can know that there may be multiple attribute reductions for a target decision335

with class labels. Let {B1, B2, · · · , Bs} be s local attribute reductions of S with respect to D, its core can be written
Core = B1 ∩ B2 ∩ · · · ∩ Bs. The attributes from the core are indispensable for constructing a local attribute set of a
target decision. It is noted that sometimes the core can be empty.

4.2.2. Algorithm
In fact, Definition 3 may induce multiple attribute reductions for a target decision with class labels. But in most340

applications, it is enough to find one of them. At present, some heuristic algorithms based on greedy and forward
search algorithms have been designed based on the significance measures of attributes in global rough set. For this
kind of attribute reduction approaches, two important measures of attributes are used for heuristic functions, which
are inner importance measure and outer importance measure. In this local rough set, we can also develop a local
positive-region based attribute reduction algorithm, in which the significance measures of attributes are defined as345

follows:

Definition 5. Let S = (U,C ∪ D) be a decision table, B ⊆ C and ∀a ∈ B. The inner significance measure of a in B is
defined as

S iginner(a, B,D,U) = γB(D) − γB−{a}(D),

where γB(D) =
|POS B(D)|
|U | , and POS B(D) is the local positive region of B with respect to D.350

Definition 6. Let S = (U,C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B. The outer significance measure of a in
B is defined as

S igouter(a, B,D,U) = γB∪{a}(D) − γB(D).

From the definition and relation analysis, we see the computation of the two important measures of attributes is
the main part of time consumption of a heuristic attribute reduction algorithm. To reduce the computational time,355

we will want to introduce an efficient strategy of heuristic attribute reduction, in which we concentrate on the rank
preservation of the significance measures of attributes in a decision table. Simply, we denote the certain set POS B(D)
of on the universe U by CPU

B (D) = ∪{δD
B (x)|D(X/δD

B (x)) = 1, x ∈ X, X ∈ U/D}, called the certain positive region.

Theorem 3. Let S = (U,C ∪ D) be a decision table, B ⊆ C and U
′

= U − CPU
B (D). For ∀a, b ∈ C − B, if

S igouter(a, B,D,U) ≥ S igouter(b, B,D,U), then S igouter(a, B,D,U
′

) ≥ S igouter(b, B,D,U
′

).360
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Proof. From the definition of S igouter(a, B,D) = γB∪{a}(D) − γB(D), we know that its value only depends on the
dependency function γB(D) =

|POS B(D)|
|U | .

Since U
′

= U − ∪{δU
B (x)|D(X/δU

B (x)) = 1, x ∈ X, X ∈ U/D}, so there must exist X ∈ U/D such that 1 >

D(X/δU
B (x)) ≥ α for ∀x ∈ U

′

, then the object x belongs to the positive region POS U
′

B (D). Hence ∀α > 0, we have that

POS U
B (D) = {x|D(X/δU

B (x)) ≥ α, x ∈ X, X ∈ U/D}365

= {x|1 > D(X/δU
B (x)) ≥ α, x ∈ X, X ∈ U/D} ∪ {x|D(X/δU

B (x)) = 1, x ∈ X, X ∈ U/D}
= POS U

′

B (D) ∪ {x|D(X/δU
B (x)) = 1, x ∈ X, X ∈ U/D}

From the above equation and the definition of local positive region, we have that
|POS U

′

B∪{a}(D)| − |POS U
′

B (D)|

= |POS U
B∪{a}(D)| − |{x|D(X/δU

B (x)) = 1, x ∈ X, X ∈ U/D}| − |POS U
′

B (D)|370

= |POS U
B∪{a}(D)| − (|{x|D(X/δU

B (x)) = 1, x ∈ X, X ∈ U/D}| + |POS U
′

B (D)|)

= |POS U
B∪{a}(D)| − (|{x|D(X/δU

B (x)) = 1, x ∈ X, X ∈ U/D} ∪ POS U
′

B (D)|)
= |POS U

B∪{a}(D)| − |POS U
B (D)|

Therefore, we have
S igouter(a,B,D,U)
S igouter(a,B,D,U′ ) =

γU
B∪{a}(D)−γU

B (D)

γU′

B∪{a}(D)−γU′

B (D)
375

=
|U
′
|

|U |
|POS U

B∪{a}(D)|−|POS U
B (D)|

|POS U′

B∪{a}(D)|−|POS U′

B (D)|

=
|U
′
|

|U |
|POS U

B∪{a}(D)|−|POS U
B (D)|

|POS U
B∪{a}(D)|−|POS U

B (D)|=
|U
′
|

|U | .

Because |U
′
|

|U | ≥ 0 and S igouter(a, B,D,U) ≥ S igouter(b, B,D,U), hence S igouter(a, B,D,U
′

) ≥ S igouter(b, B,D,U
′

).
This completes the proof.

From the above theorem, one can see that the rank of attributes in the process of attribute reduction will remain380

unchanged after reducing the certain positive region. This mechanism can be used to improve the computational
performance of a heuristic attribute reduction algorithm.

In a forward greedy attribute reduction approach, starting with the attribute with the maximal inner importance,
we take the attribute with the maximal outer significance into the attribute subset in each loop until this attribute subset
satisfies the stopping criterion, and then we can get an attribute reduction of a target decision. Formally, a forward385

greedy attribute reduction algorithm for searching a local attribute reduction with respect to a given target decision
can be formulated as follows.

Algorithm 2. A forward greedy local attribute reduction algorithm for a target decision(LARD)
Input: An decision table S = (U,C ∪ D), labeled sample set Ulable ⊆ U, inclusion degree α and neighborhood

size δ;390

Output: red.
(1) red ← φ.
(2) compute S iginner(ak,C,D,U), k ≤ |C|.
(3) red ← ak, where S iginner(ak,C,D,U) = max(S iginner(ak,C,D,U), ak ∈ AT ).
(4) i← 1,R1 ← red,U1 = Ulable,U1/D = X j

i , j ≤ r;.395

(5) while |POS red
Ui

α
(D)| < |POS C

Ui

α
(D)|

Ui+1 = ∪x∈X −CLUi
red(Xi);

Xi+1 = Xi −CLUi
red(Xi);

red ← red ∪ a0, where S igouter(ak, red, Xi,Ui) = max(S igouter(ak, red, Xi,Ui), ak ∈ C − red);
Ri ← Ri−1 ∪ {a0};400

(6) return red and end
In order to conveniently compare, we denote the algorithm for finding an attribute reduction of a target decision

in the context of global rough set by GARD.
In the above LARD algorithm, Step 1 needs to compute |C| local lower approximations for r labeled class using

the LLAC algorithm. Hence, its time complexity is O(|C|(
r∑

j=1
|X j|2 +

r∑
j=1
|X j||U |)). However, the time complexity of this405
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Table 5: The time complexities of the LARD algorithm and the GARD algorithm
Algorithms Step 2 Step 3 Step 5 Other steps

GARD O(|C|(|U |2 +
r∑

j=1
|X j||U |)) O(|C|) O(

∑|C|
i=1(|C| − i + 1))(|U |2 +

r∑
j=1
|X j||U |)) Constant

LARD O(|C|(
r∑

j=1
|X j||U | +

r∑
j=1
|X j|2)) O(|C|) O(

∑|C|
i=1(|C| − i + 1))(

r∑
j=1
|X j

i ||Ui| +
r∑

j=1
|X j

i |
2)) Constant

step in global rough set is O(|C|(|U |2 +
r∑

j=1
|X j||U |)). Step 3 needs to scan the |C| attributes, hence, its time complexity is

O(|C|), and this step in global rough set has the same case. In Step 5, we add an attribute with the maximal significance
into the set in each stage until finding a reduction. This process is called a forward reduction algorithm whose time

complexity is O(
∑|C|

i=1(|C| − i + 1))(
r∑

j=1
|X j

i |
2 +

r∑
j=1
|X j

i ||Ui|)). However, the time complexity of this step in a classical

heuristic algorithm is O(
∑|C|

i=1(|C| − i + 1))(|U |2 +
r∑

j=1
|X j||U |)). Each of other steps of the LARD algorithm is constant.410

To stress these findings, the time complexity of each step in the LARD algorithm and the GARD algorithm is shown
in Table 5.

It can be seen from Table 5 that the time complexity of the LARD algorithm is much lower than that of the GARD
algorithm. Hence, one can draw a conclusion that the LARD algorithm may significantly reduce the computational
time for attribute reduction of a target decision, which can efficiently work in the context of big data.415

4.2.3. Experimental analysis
In this experimental analysis, we want to verify the advantages of the LARD algorithm from three aspects: mono-

tonicity, efficiency and generality.

• Over-fitting issue

The over-fitting degree in attribute reduction can be observed by the monotonicity of positive regions of a target420

decision, which is often measured by the accuracy of approximation in Eq. (9). Given a decision table S = (U,C∪D),
labeled sample set Ulable ⊆ U, and unlabeled sample set Uunlable = U − Ulable. X1, X2, · · · , Xr ∈ Ulable/D are r classes
with labels, P = {N1,N2, · · · ,Nn} a family of attributes with N1 � N2 � · · · � Nn (Ri ∈ 2AT ). Let Pi = {N1,N2, · · · ,Ni},

we denote the accuracy of approximation of D with respect to Pi by γ(Pi,D) =

∑
{|RPi (X)|: X∈Ulable/D}∑
{|X|: X∈Ulable/D}

=
|POS Ri (D)|∑
{|X|: X∈Ulable/D}

,
where X ∈ Ulable/D means each of those classes with labels. We use the same experiment settings. Ulable includes425

these samples from the first part, and Uunlable consists of these samples from other parts.
If an attribute reduction algorithm possesses two properties that the quality of its approximation monotonically

increases and the number of an attribute reduction induced by the algorithm is smaller. In general, we can say that
the algorithm may be much better. In this experiment, we observe the two measures for the LARD algorithm and
the GARD algorithm. Fig. 3 displays the quality of approximation of D used by each of the LARD algorithm and430

the GARD algorithm and shows it vis-a-vis the number of attributes (the x-coordinate and y-coordinate concern the
number of the attributes and the value of precision of approximation, respectively). Table 6 shows the number of
attributes in attribute reductions obtained by the LARD algorithm and the GARD algorithm.

Fig. 3 detailedly shows that the accuracy of approximation of the LARD algorithm monotonically increases with
the increase of the number of attributes on these four data sets. However, the accuracy of approximation of the GARD435

algorithm does not always monotonically increases with the increase of the number of attributes. For instance, in
Fig. 3(c) , we can obviously see that the accuracy of approximation of the GARD algorithm with α = 0.5 is not
monotonic as the number of attributes increases. We also can see from Table 6 that the number of attributes selected
by the LARD algorithm is usually not larger than that selected by the GARD algorithm with the same parameter value
on the same data set. The reason is that positive region of a target decision for global rough set may be beyond its own440

region, which leads to that these values of accuracy of approximation of the GARD algorithm may be larger than 1,
which clearly causes over-fitting in attribute reduction. Based on these results, one can say that the LARD algorithm
may effectively reduce the over-fitting degree in attribute reduction for a target decision.
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(a) EEG (b) Hill-Valley

(c) Magic (d) Occupancy Detection

Figure 3: Accuracy of approximation of a target decision versus number of attributes

• Efficiency of the LARD algorithm

We still take the same settings as Section 4.1.2. to verity the efficiency of LARD algorithm. In this part, to445

compare computational time of LARD algorithm with the GARD algorithm vis-a-vis the size of universe, we take the
front 10% objects from each of these nine data sets as its corresponding target decision. The experimental results are
shown in Fig. 4 and Table 7. And this Figure displays more detailed tendency of computational time change of each
algorithm with the increase of data set size. Table 7. shows that the computational time of attribute reductions of the
same target decision using LARD and GARD algorithms on the nine data sets with different values of the parameter450

α. What excites us is that the LARD algorithm is consistently faster than the GARD algorithm on the same universe.
Additionally, the computational time of the LARD algorithm is much smaller than that of the GARD algorithm. For
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Table 6: The number of attributes in attribute reductions of LARD and GARD

Datasets Original features
Selected features

LARD GARD
α = 0.5 α = 0.7 α = 1 α = 0.5 α = 0.7 α = 1

EEG 14 7 8 8 8 8 8
Hill-Valley 100 63 71 41 71 71 71

Magic 10 3 4 4 6 4 4
Occupancy Detection 5 4 4 4 4 5 4

Table 7: The computational time for concept approximation with LARD and GARD

Datasets α = 0.5 α = 0.7 α = 1
LARD(s) GARD(s) LARD(s) GARD(s) LARD(s) GARD(s)

EEG 1063.6885 28422.2514 1059.8917 17968.5868 1059.4966 18002.7213
Hill-Valley 284.5502 3051.7323 656.5356 6174.3999 317.5171 6313.0248

Magic 631.4789 12663.8582 869.9849 8473.5255 657.6703 8482.9844
Occupancy Detection 237.2134 3407.0483 226.5693 4000.121 234.7231 3402.2773

example, the LARD algorithm only takes 1/18 computational time of the GARD algorithm on the data set EEG when
α = 1. One can say that for computing the attribute reduction of a target decision, the LARD algorithm under the
local rough set provides a very efficient solution in the context of limited labeled big data.455

• Generalization of classifiers induced by attribute reduction of the LARD algorithm

The purpose of this experiment is to test classification quality induced by attribute reduction of the LARD algorith-
m comparing with those of the GARD algorithm. As we know, a given classifier must obtain the same classification
accuracy on the same attribute reduction. Table 6 shows that almost the same attribute reduction is obtained by using
these two algorithms when α = 0.7 and 1.0 respectively. Hence, the corresponding classifiers have almost the same460

classification accuracy for a given classifier. However, these two algorithms would obtain different attribute reductions
as the parameter α becoming much bigger. In the following, let α = 0.5, all data are labeled, i.e. Ulabel = U. The
results of attribute reduction with the LARD algorithm and the GARD algorithm and their classification accuracies
are observed through employing SVM and KNN (coming from Weka 3.6.10, K=5), which are shown in Table 8.

In Table 8, (·) means the number of attributes in an attribute reduction obtained by an algorithm. It is easy to see465

from Table 8 that when α = 0.5, the number of attributes in the attribute reduction induced by the LARD algorithm
is consistently bigger than that induced by the GARD algorithm on the same data set. In addition, we can also see
that for both classifiers SVM and KNN, the corresponding classification accuracies of classifiers induced by attribute
reduction of the LARD algorithm are mostly higher than those of the GARD algorithm. This implies that one must
select a reasonable α to obtain attribute reduction at least as good as the existing methods. Compared with the original470

attribute set, LARD algorithm can obtain comparable accuracy. However, the number of attribute sets in our algorithm
is only about thirty percent to fifty percent of that of the original attribute set.

Table 8: Classification accuracies of classifiers induced by attribute reductions with LARD and GARD (α = 0.5)
Datasets SVM KNN

Original LARD GARD Original LARD GARD
EEG 0.5512 (14) 0.5511 (7) 0.5512 (1) 0.8379 (14) 0.8311 (7) 0.604 (1)

Hill-Valley 0.6204 (100) 0.6254 (55) 0.4834 (1) 0.5313 (100) 0.5215 (55) 0.49 (1)
Magic 0.7914 (10) 0.7842 (3) 0.7174 (1) 0.8364 (10) 0.8088 (3) 0.6771 (1)

Occupancy Detection 0.9884 (5) 0.9884 (4) 0.8262 (1) 0.9929 (5) 0.9931 (4) 0.8554 (1)
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(a) EEG (b) Hill-Valley

(c) Magic (d) Occupancy Detection

Figure 4: Time consumption of LARD and GARD versus the size of the universe

5. Scalability tests to big data

The purpose of this section is to test the scalability of the local rough set for rough data analysis on very large data
sets. One large scale data set SUSY from UCI [[57], which has 1, 000, 000 objects, 18 features and 2 classes, is used475

in this experiment. We obtain eight data sets by taking the front U1 =
|U |
103 , U2 =

|U |
102 , U3 =

|U |
10 , and U4 = |U | from

each of these two data sets. The number of labeled objects is set |U |103 , where |U | is the size of the data set.
We tested scalability of the two algorithms (LLAC and LARD) in the local rough set on this large data set, which

is the scalability against the number of objects for a given target concept and a given set of labeled objects. Fig. 5 (a)
shows the computational time of the LLAC and GLAC algorithms calculating the lower approximations on different480

numbers of objects and Fig. 5 (b) shows those of the LARD and GARD algorithms for finding the attribute reductions
of a given decision on different numbers of objects, where the parameter α = 0.7, α = 0.9 and α = 1, respectively.
And we cannot get results of GLAC for U4 and GARD for U3 as well as U4 with 24 hours.
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(a) LLAC vs GLAC (b) LARD vs GARD

Figure 5: Time consumption of LLAC, GLAC, LARD and GARD on SUSY

One important observation from these tables is that the run time of the two algorithms in the framework of the
local rough set tends to increase linearly as the numbers of objects increase. For a given target concept/decision,485

the computational time of each algorithm on the data set with |U |
10i objects is almost 10 times longer than that of this

algorithm on the data set with |U |
10i+1 objects. This observation is consistent with the linear time complexity of each of

these two algorithms in the local rough set. Hence, we can say that the proposed local rough set is an effective and
efficient approach to rough data analysis in limited labeled big data.

6. Conclusions and further work490

With the advent of the age of big data, the data scale becomes larger and larger, while labelling a massive amounts
of data is an expensive, time-consuming and laborious task, sometimes even infeasible. As a supervised learning
method, classical neighborhood rough set model mainly faces three issues for numerical big data analysis, including
semi-supervised property of big data, computational inefficiency and over-fitting in attribute reduction. To solve the
issues, we introduce local neighborhood rough set and design corresponding approximation and attribute reduction495

algorithms in this paper. we have verified the performance of these algorithms through employing nine real data
sets and an artificial data set. The experimental analysis shows that the proposed local rough set and corresponding
algorithms significantly improve three limitations of the global rough set. It is worth noting that the performances of
the algorithms in the local rough set become more significant when analyzing huger data sets. Hence, the local rough
set can be regarded as an effective solution to rough data analysis in big data. For further study, there are still many500

attractive and significant issues under the theoretical framework of local rough set model such as rough classifiers
with semi-supervised learning and corresponding applications. These research results probably will be important to
handle limited big data and may effectively promote the development of rough data analysis in big data in the future.
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