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a b s t r a c t

By considering the information granulation in Granular Computing, the concept of the multi-
granularity is important. It is mainly because different results of information granulation will imply
different levels of granularity. Nevertheless, multi-granularity has been paid less attention to the
problem of attribute reduction in rough set which is regarded as one of the most important
mathematical tools in Granular Computing. Therefore, how to search the multi-granularity reduct
will be mainly explored in this paper. Different from the previous studies which generate reduct by
using one and only one granularity, multi-granularity reduct is actually a set of the reducts derived
from multiple levels of granularity. A natural way for computing multi-granularity reduct is to repeat
the process of searching reduct for each level of granularity. Obviously, such an approach is time-
consuming. To fill such a gap, an acceleration strategy is introduced into the process of searching
multi-granularity reduct. Our acceleration strategy can be respectively realized through considering
two variations of granularity: 1) from a finer granularity to a coarser granularity; 2) from a coarser
granularity to a finer granularity. Such two variations indicate that the reduct related to previous
granularity may have guidance on the computation of reduct related to the present granularity.
Consequently, two accelerators are designed for speeding up the process of finding multi-granularity
reduct. The experimental results over 16 UCI data sets show that our accelerators can not only
reduce the elapsed time of searching attributes significantly, but also select attributes which will
not contribute to a poorer classification performance. This study suggests new trends concerning the
problem of attribute reduction and the corresponding searching strategy.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Presently, as one of the important tools for characterizing
uncertainty, rough set [1–10] has been successfully applied to
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Feature Selection [11–15], Pattern Recognition [16–19], Data Min-
ing [20] and so on. It should be emphasized that in the develop-
ment of rough set, much attention has been paid to the attribute
reduction [21–33]. The reason can be attributed to the following
two aspects: (1) attribute reduction is useful in reducing the
dimensionality of data; (2) the derived reduct, i.e., a subset of the
raw condition attributes has clear explanation based on the used
measure in attribute reduction.

Up to now, it is noticed that most of the results about at-
tribute reduction focus on one and only one fixed structure. For
example, considering the classical rough set for analyzing data
with categorical values, such a fixed structure is actually the
partition derived from the raw attributes. Moreover, considering
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the neighborhood rough set [34–36] for analyzing data with
continuous or even mixed values, such a fixed structure is actually
the neighborhood system [37] derived from the raw attributes
and the given parameter, i.e., radius. Immediately, how to quan-
titatively characterize those structures has gained a substantial
amount of attention. Fortunately, from the viewpoint of Granular
Computing (GrC) [38–45], the concept of the granularity offers
us a simple and intuitive way to measure the structure. In view
of this, attribute reduction based on one and only one fixed
structure can be regarded as the single granularity [46,47] based
attribute reduction.

Nevertheless, it should be noticed that the single granularity
based attribute reduction may have some inherent limitations in
practical application. Some challenges are as follows.

1. Single granularity based attribute reduction cannot be used
for parameter selection. For instance, Gaussian kernel fuzzy
rough set [48–50] and neighborhood rough set are two typ-
ical examples of parameterized rough set, different param-
eters [51] indicate that different levels of granularity have
been used to construct rough sets. If one and only one pa-
rameter is taken into consideration in attribute reduction,
then it is impossible for us to determine whether the reduct
related to the given parameter can provide a satisfied gen-
eralization performance for us. Therefore, to find reduct
with better generalization performance, multiple different
parameters should be tested, that is, multi-granularity is
required.

2. Single granularity based attribute reduction is lack of
power in reflecting the variation tendency of generaliza-
tion performance [52]. For instance, by using the heuris-
tic algorithm, one and only one reduct is obtained over
the given granularity, there is no comparison among the
performances derived from multiple reducts in terms of
multiple levels of granularity. From this point of view,
multi-granularity should be paid much attention to the
problem of attribute reduction.

3. The process of finding single granularity based reduct is not
suitable for multiple levels of granularity. For instance, if s
different parameters are required to construct rough set,
then the process of finding single granularity based reduct
should be executed s times repeatedly until the reducts in
terms of all parameters have been obtained. Moreover, if
the number of used parameters is further increased, then
the elapsed time for finding all of the reducts will also be
increased. From this point of view, how to speed up the
process of finding reducts with respect to multi-granularity
is another important topic to be addressed.

To overcome the limitations of single granularity based at-
tribute reduction mentioned above, a set which contains different
levels of granularity, i.e., multi-granularity will be introduced
into the framework of attribute reduction. Consequently, a set
of the reducts can be derived, such a set is referred to as the
multi-granularity reduct in the context of this paper. For example,
if the structure of multi-granularity [53–56] is constructed by
using a set of parameters, then the generalization performances
related to reducts which are derived from those parameterized
granularity can be compared. From this point of view, not only
the reduct which provides us with better performance can be
found for realizing parameter selection, but also the variation
tendency of the generalization performance in terms of the varied
granularity can be observed.

Following the above discussions, the immediate problem is
to find multi-granularity reduct. Generally speaking, a natural
way of finding multi-granularity reduct is to compute reduct
one by one in terms of each granularity by using a searching

strategy. Nevertheless, it can be observed that the mechanism
may be time-consuming if the number of used granularity is
greater. Therefore, to further reduce the elapsed time of com-
puting multi-granularity reduct, an acceleration strategy will be
introduced into the process of finding multi-granularity reduct.
Our acceleration strategy is mainly realized by considering two
variations of granularity respectively: one variation is from a
finer granularity to a coarser granularity, the other variation is
from a coarser granularity to a finer granularity. With such two
variations, the basic thinking of our acceleration strategy is that
the reduct related to the previous granularity may offer guidance
for searching reduct over the present granularity. This is the core
of speeding up the process of finding multi-granularity reduct.

Obviously, multi-granularity attribute reduction can be con-
sidered as a generalization of single granularity based reduct. The
foundation of multi-granularity attribute reduction is based on
the consideration of some inherent limitations of single granu-
larity based attribute reduction. Furthermore, to reduce the time
consumption of finding multi-granularity reduct, an acceleration
strategy should be designed. It must be noticed that such a
strategy is based on the consideration of variation of granularity.
It is mainly because the variation of granularity may guide the
computation of granularity related reduct.

The rest of this paper is organized as follows. The basic notions
of neighborhood rough set and neighborhood based granularity
are introduced in Section 2, it is mainly because the neighbor-
hood approach is useful in providing a simple way for us to
understand multi-granularity. In Section 3, not only the concept
of multi-granularity attribute reduction is proposed, but also two
acceleration algorithms are designed for finding multi-granularity
reduct. The experimental results and the corresponding analy-
ses have been addressed in Section 4. We then conclude some
remarks and perspectives for future research in Section 5.

2. Preliminary knowledge

2.1. Neighborhood rough set

Formally, a decision system can be denoted as DS= ⟨U, AT , d⟩:
U is a nonempty finite set of samples such that U = {x1, x2,
. . . , xn}, it is called the universe; AT is a nonempty finite set of
the condition attributes; d is the attribute of decision. ∀xi ∈ U
and ∀a ∈ AT , a(xi) is the value of xi over condition attribute a,
and d(xi) denotes the label of sample xi, i.e., the decision value of
xi.

Given a decision system DS, assuming that the decision values
of all samples are categorical, it is not difficult to define an
equivalence relation over d such that:

IND({d}) = {(xi, xj) ∈ U × U : d(xi) = d(xj)}.

By using IND({d}), a partition U/IND({d}) = {X1, X2, . . . , Xk}

over the universe U can be derived. ∀Xp ∈ U/IND({d}), Xp is
regarded as the pth decision class which contains samples with
the same label. Specially, ∀xi ∈ U , [xi]d denotes the decision class
which contains the sample xi.

Given a decision system DS, suppose that B ⊆ AT is a subset
of condition attributes, ∀xi, xj ∈ U , disBij is then used to denote the
Euclidean distance between xi and xj through using B. Note that
all of the Euclidean distances between samples used in this paper
have been normalized. Furthermore, if a radius δ ∈ [0, 1] is given,
then the neighborhood relation is shown in the following Eq. (1):

Nδ
B = {(xi, xj) ∈ U × U : disBij ≤ δ}. (1)

Correspondingly, ∀xi ∈ U , the neighborhood of xi determined by
B is:

δB(xi) = {xj ∈ U : disBij ≤ δ}. (2)
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Definition 1 ([34]). Given a decision system DS, δ ∈ [0, 1], ∀B ⊆

AT , the neighborhood lower and upper approximations of d in
terms of B are defined as:

Nδ
B(d) =

k⋃
p=1

Nδ
B(Xp), (3)

Nδ
B(d) =

k⋃
p=1

Nδ
B(Xp); (4)

in which for each Xp ∈ U/IND({d}), the neighborhood lower and
upper approximations of decision class Xp are:

Nδ
B(Xp) = {xi ∈ U : δB(xi) ⊆ Xp}, (5)

Nδ
B(Xp) = {xi ∈ U : δB(xi) ∩ Xp ̸= ∅}. (6)

Definition 2 ([34]). Given a decision system DS, δ ∈ [0, 1], ∀B ⊆

AT , the approximation quality of d in terms of B is defined as:

γ δ(B, d) =

|Nδ
B(d)|

|U |
, (7)

in which |X | denotes the cardinality of set X .

From the viewpoint of rough set theory, the approximation
quality is frequently used to evaluate the certainty of belong-
ingness. The greater the value of the approximation quality, the
higher the degree of the belongingness.

Proposition 1 ([34]). Given a decision system DS, δ ∈ [0, 1],
∀B′, B ⊆ AT , if B′

⊆ B holds, then we have γ δ(B′, d) ≤ γ δ(B, d).

Proposition 1 implies that the value of approximation quality
is monotonic, that is, using more attributes will not contribute to
a lesser value of approximation quality.

Definition 3 ([57]). Given a decision system DS, δ ∈ [0, 1], ∀B ⊆

AT , the conditional entropy of d in terms of B is defined as:

CEδ(B, d) = −
1

|U |

∑
xi∈U

|δB(xi) ∩ [xi]d| log
|δB(xi) ∩ [xi]d|

|δB(xi)|
. (8)

From the viewpoint of rough set theory, the conditional en-
tropy reflects the discrimination ability of the set of condition
attributes B for the decision attribute d. The lower the value of the
conditional entropy, the stronger the ability of the discrimination.

Proposition 2 ([57]). Given a decision system DS, δ ∈ [0, 1],
∀B′, B ⊆ AT , if B′

⊆ B holds, then we have CEδ(B′, d) ≥ CEδ(B, d).

Proposition 2 implies that the value of conditional entropy is
monotonic, that is, using more attributes will not increase the
value of conditional entropy.

2.2. Neighborhood based granularity

Presently, it is well-known that the concept of granularity
plays a key role in the development of rough set theory. Different
levels of granularity may lead to different results of rough approx-
imations and the corresponding measures, e.g., approximation
quality and conditional entropy.

Neighborhood rough set provides a natural way for us to
research the topic which is related to granularity in rough set
theory. It is mainly because the neighborhood relation used to
construct neighborhood rough set is directly determined by the
value of radius. A smaller value of radius indicates a finer gran-
ularity of neighborhood relation while a greater value of radius
indicates a coarser granularity of neighborhood relation. To char-
acterize the levels of the granularity, the following definition can
be used.

Definition 4 ([58,59]). Given a decision system DS, δ ∈ [0, 1],
∀B ⊆ AT , the neighborhood granularity determined by the radius
δ is:

Gδ
B =

|Nδ
B|

|U |
2 . (9)

Obviously,
1

|U |
≤ Gδ

B ≤ 1 holds. Take for instance one extreme

case, if the neighborhood relation is ω = {(xi, xi) ∈ U × U :

∀xi ∈ U}, then the finest granularity will be derived, and the

value of the granularity will be the minimal one
1

|U |
. It follows

that the approximation quality achieves the maximal value 1,
while the conditional entropy achieves the minimal value 0. And
in another extreme case, if the neighborhood relation is η =

{(xi, xj) ∈ U × U : ∀xi, xj ∈ U}, then the coarsest granularity
will be derived, and the value of the granularity will be the
maximal one 1. It follows that the approximation quality achieves
the minimal value 0, while the conditional entropy achieves the

maximal value − log
1

|U |
.

Following Definition 4, it can be observed that if the neighbor-
hood relation varies, then the value of granularity will also vary.
Moreover, following Eq. (1), it can be observed that the result of
neighborhood relation is determined by the value of radius and
then we can conclude that different values of radius will lead to
different levels of granularity.

2.3. Attribute reduction

In recent years, with respect to different requirements, dif-
ferent types of attribute reduction [60,61] have been proposed.
However, it can be found that those definitions of attribute reduc-
tion may have similar structure, and then to extract commonness,
Yao et al. have presented the following general form of attribute
reduction [62,63].

Definition 5. Given a decision system DS, δ ∈ [0, 1], ∀B ⊆ AT , ρδ

is a constraint related to δ, B is referred to as a ρδ-reduct if and
only if :

1. B meets the constraint ρδ;
2. ∀B′

⊂ B, B′ does not meet the constraint ρδ .

Definition 5 shows us a general form of attribute reduction
in rough set theory. The first condition implies that the attribute
subset B should satisfy the given constraint ρδ , the second condi-
tion implies that the attribute subset B is the smallest one, i.e., no
attributes can be deleted from B if the constraint ρδ is required
to meet.

Example 1. Generally speaking, in rough set theory, different
constraints can be constructed by using different measures. Since
different measures may have different explanations (e.g., the
explanations can be the performances of characterizing uncer-
tainty [64,65], classification ability [66–68] and so on), the con-
straint ρδ may have various forms. The following are some simple
examples.

1. From the perspective of approximation quality, it reflects
the degree of certainty that samples belong to the decision
classes. If the value of approximation quality is greater,
then the degree of such certainty will be higher. Therefore,
constraint ρδ can be set as the form such that γ δ(B, d) ≥

γ δ(AT , d), that is, ρδ-reduct is the minimal subset of condi-
tion attributes, which will not contribute to a lesser value
of approximation quality.
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2. From the perspective of conditional entropy, it reflects
the discrimination ability of condition attributes for deci-
sion attribute. If the value of conditional entropy is lower,
then the ability of the discrimination will be stronger.
Therefore, constraint ρδ can be set as the form such that
CEδ(B, d) ≤ CEδ(AT , d), that is, ρδ-reduct is the minimal
subset of condition attributes, which will not increase the
value of conditional entropy.

To find the ρδ-reduct shown in Definition 5, a lot of re-
searchers have put forward various searching strategies [69–73].
Presently, it can be observed that the heuristic searching strategy
has been widely used because of its lower time complexity. It
should be noticed that in the framework of heuristic searching,
the significance function is a key factor. This is mainly because
the significance function can be used to evaluate the importance
of the candidate attribute. A general form of significance function
is then defined as follows.

Definition 6. Given a decision system DS, δ ∈ [0, 1], ∀B ⊆ AT ,
ρδ is a constraint related to δ, the importance of attribute a with
respect to B may have the following two forms such that:

Sigδ(a, B, d) = ρδ(B ∪ {a}, d) − ρδ(B, d), (10)
Sigδ(a, B, d) = ρδ(B, d) − ρδ(B ∪ {a}, d). (11)

In Definition 6, ρδ(B, d) is the ρδ-value obtained by B in terms
of d. The significance function shown in Eq. (10) indicates that
the greater the ρδ(B ∪ {a})-value, the higher the performance if
attribute a is added into B; the significance function shown in
Eq. (11) indicates that the lower the ρδ(B∪ {a})-value, the higher
the performance if attribute a is added into B.

For example, if the concept of approximation quality is re-
quired to characterize the certainty of belongingness, then the
greater value of approximation quality is what we want and
Eq. (10) should be used to evaluate the significance of the can-
didate attribute; if the concept of the conditional entropy is
required to characterize the ability of discrimination, then the
smaller value of conditional entropy is what we want and Eq. (11)
should be used to evaluate the significance of the candidate
attribute.

In the framework of heuristic searching, through using the
significance function shown in Definition 6, the most important
attribute will be selected in each iteration until the obtained
set of attributes satisfies the constraint. The detailed process of
computing reduct is shown in the following Algorithm 1.

Algorithm 1. Heuristic searching for computing reduct.

Input: A decision system DS and radius δ.
output: A ρδ-reduct B.
1. B = ∅, compute ρδ(AT , d);
2. Do

(1) ∀a ∈ AT − B, compute Sigδ(a, B, d);
(2) Select an attribute b ∈ AT − B based on the set of

the importance {Sigδ(a, B, d) : ∀a ∈ AT − B};
(3) B = B ∪ {b};

Until constraint ρδ is satisfied;
3. While |B|≥2 and constraint ρδ is satisfied

∀c ∈ B, compute ρδ(B − {c}, d);
If constraint ρδ is satisfied
B = B − {c};

End
End

4. Return B.

In Algorithm 1, the time complexity of computing reduct is
O(|U |

2
· |AT |

2). It is mainly because in the worst case: (1) the time

complexity of computing importance of candidate attributes is
O(|U |

2
· |AT |); (2) no attributes are redundant in AT , i.e., all of

the condition attributes should be tested, and then the times of
iterations in both Steps 2 and 3 are |AT |.

In practical application, the process of computing reduct by
using Algorithm 1 requires to be executed repeatedly in terms
of different values of δ. The purpose is to select a reduct with
better generalization performance. As what has been pointed
out in Section 2.2, different radii will lead to different levels of
granularity, it follows that Algorithm 1 may be used to search
multi-granularity reduct.

3. Multi-granularity attribute reduction

Following the discussions above, it is obvious that multi-
granularity reduct can be derived by executing the process of
Algorithm 1 repeatedly. In the following, we will firstly present
the formal definition of multi-granularity attribute reduction
from the viewpoint of neighborhood granularity.

Definition 7. Given a decision system DS, Θ = {δ1, δ2, . . . , δs}

is a set of the ordered radii such that δ1 ≤ δ2 ≤ · · · ≤ δs,
B = {B1, B2, . . . , Bs} is referred to as the multi-granularity reduct
if and only if for each neighborhood granularity Gδt

AT (1 ≤ t ≤ s),
Bt is the ρδt -reduct.

In Definition 7, ρδt -reduct is actually a reduct related to δt
if the radius δt is used. The attribute reduction shown in Def-
inition 5 is a single granularity case, it is mainly because one
and only one radius is considered. Different from it, the attribute
reduction shown in Definition 7 is a multi-granularity case be-
cause multiple different radii have been used. Note that if one
and only one radius is used in Definition 7, then Definition 7 will
degenerate into Definition 5.

Based on Definition 7, we observe that the multi-granularity
reduct B can be easily obtained by repeatedly executing Algo-
rithm 1. However, such a process may take a substantial amount
of time if many different values of radius should be tested. For in-
stance, based on Algorithm 1, if the number of the used granular-
ity is s, then the time complexity of computing multi-granularity
reduct will be O(|U |

2
· |AT |

2
· s).

To further reduce the time consumption for computing multi-
granularity reduct, the novel searching strategy has became a
necessary. In the following, we will propose two novel searching
algorithms. One is called the forward accelerator based searching
and the other is called the backward accelerator based searching.

3.1. Forward accelerator for multi-granularity attribute reduction

Given a decision system DS, if we consider two radii such that
δ1 ≤ δ2, then the granularity ranges from a finer one to a coarser
one. The main thinking of our forward accelerator is: the process
of searching ρδ2-reduct is based on the ρδ1-reduct. That is, to
find ρδ2-reduct, we do not begin our searching with an empty set
because the searching space is AT in that case. In the framework
of our forward accelerator, only the attributes in AT − B1 need to
be searched for deriving B2. From this point of view, the following
key steps are in the forward accelerator.

1. Find the ρδ1-reduct B1 by using Algorithm 1.
2. If B1 is also the ρδ2-reduct, then we have B = {B1, B1}.
3. If B1 is not the ρδ2-reduct, then select suitable attributes

from AT −B1 and add them into B1 until the constraint ρδ2

is satisfied, then generate B2 and B = {B1, B2}.
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For example, from the perspective of approximation quality,
if γ δ2 (B1, d) < γ δ2 (AT , d), then add some attributes in AT − B1
into B1, the value of approximation quality will be increased by
Proposition 1. From the perspective of conditional entropy, if
CEδ2 (B1, d) > CEδ2 (AT , d), then add some attributes in AT − B1
into B1, the value of conditional entropy will be decreased by
Proposition 2. The process of adding attributes will be terminated
if the constraint over granularity Gδ2

AT is satisfied.
Obviously, the above strategy can actually reduce the search-

ing space if multi-granularity is required, and then it is possible
for us to reduce the elapsed time for computing multi-granularity
reduct. Consequently, a detailed process of computing multi-
granularity reduct by using forward accelerator is designed in the
following Algorithm 2.

Algorithm 2. The forward accelerator based searching.

Input: A decision system DS, set of the ordered radii Θ =

{δ1, δ2, · · · , δs}.
output: A multi-granularity reduct B = {B1, B2, · · · , Bs}.
1. Using Algorithm 1 to compute B1;
2. For t = 2 to s

(1) Bt = Bt−1;
(2) If Bt is the ρδt -reduct

t = t + 1, go to (1);
Else
Go to (3);

End
(3) Do

(i) ∀a ∈ AT − Bt , compute Sigδt (a, Bt , d);
(ii) Select an attribute b ∈ AT − Bt based on the

set of the importance {Sigδt (a, Bt , d) : ∀a ∈ AT − Bt};
(iii) Bt=Bt ∪ {b};

Until constraint ρδt is satisfied;
(4) While |Bt |≥2 and constraint ρδt is satisfied

∀c ∈ Bt , compute ρδt (Bt − {c}, d);
If constraint ρδt is satisfied

Bt = Bt − {c};
End

End
End

4. Return B = {B1, B2, · · · , Bs}.

In Algorithm 2, the time complexity of computing ρδ1-reduct
is O(|U |

2
· |AT |

2), it is mainly because the process of finding such a
reduct is the same to that of Algorithm 1. Furthermore, it should
be noticed that the time complexity of computing ρδ2-reduct is
O(|U |

2
·|AT − B1|

2), it is mainly because in the worst case, B1 does
not satisfy the constraint ρδ2 , more attributes in AT − B1 should
be searched and added into B1, then the time complexity of com-
puting importance of candidate attributes is O(|U |

2
· |AT − B1|

2).
Similarly, the time complexity of computing ρδ3-reduct is O(|U |

2
·

|AT − B2|
2); · · ·; the time complexity of computing ρδs-reduct is

O(|U |
2

· |AT − Bs−1|
2). Therefore, the whole time complexity of

Algorithm 2 is O(|U |
2
·
∑s

t=2 |AT − Bt−1|
2
+|U |

2
·|AT |

2). Obviously,
such time complexity is much less than that of Algorithm 1 if
multi-granularity reduct is required.

3.2. Backward accelerator for multi-granularity attribute reduction

Similar to the mentioned in forward accelerator, a backward
accelerator can also be designed for finding multi-granularity
reduct. If we consider two radii such that δ1 ≤ δ2, then the main
thinking of the backward accelerator is: the process of searching
ρδ1-reduct is based on ρδ2-reduct. That is, to find ρδ1-reduct,
the following two aspects are considered: (1) only samples in
U −Nδ2

B2
(d) need to be scanned and then evaluate the importance

of the candidate attributes; (2) we do not begin our searching
with an empty set, because the searching space is AT in that case.
In the framework of our backward accelerator, only the attributes
in AT − B2 need to be searched for deriving B1. Consequently, the
following key steps are in the backward accelerator.

1. Find the ρδ2-reduct B2 by using Algorithm 1.
2. If B2 is also the ρδ1-reduct, then we have B = {B2, B2}.
3. If B2 is not the ρδ1-reduct, then select suitable attributes

from AT −B2 and add them into B2 until the constraint ρδ1

is satisfied, then generate B1 and B = {B1, B2}.

For example, from the perspective of approximation quality,
if γ δ1 (B2, d) < γ δ1 (AT , d), then add some attributes in AT − B2
into B2, the value of approximation quality will be increased by
Proposition 1. From the perspective of conditional entropy, if
CEδ1 (B2, d) > CEδ1 (AT , d), then add some attributes in AT − B2
into B2, the value of conditional entropy will be decreased by
Proposition 2. The process of adding attributes will be terminated
if the constraint over granularity Gδ1

AT is satisfied.
Similar to what has been discussed in Section 3.1, the above

strategy can also reduce the searching space if multi-granularity
is required, and then it is possible for us to reduce the elapsed
time of computing multi-granularity reduct. Consequently, a de-
tailed process for computing multi-granularity reduct by using
backward accelerator is designed in the following Algorithm 3.

Algorithm 3. The backward accelerator based searching.

Input: A decision system DS, set of the ordered radii Θ =

{δ1, δ2, · · · , δs}.
output: A multi-granularity reduct B = {B1, B2, · · · , Bs}.
1. Using Algorithm 1 to compute Bs;
2. For t = s − 1 to 1

(1) Bt = Bt+1, U ′
= U − Nδt+1

Bt+1
(d);

(2) If Bt is the ρδt -reduct
t = t − 1, go to (1);

Else
Go to (3);

End
(3) Do

(i) ∀a ∈ AT − Bt , compute Sigδt (a, Bt , d) over U ′;
(ii) Select an attribute b ∈ AT − Bt based on the

set of the importance {Sigδt (a, Bt , d) : ∀a ∈ AT − Bt};
(iii) Bt=Bt ∪ {b};

Until constraint ρδt is satisfied;
(4) While |Bt |≥2 and constraint ρδt is satisfied

∀c ∈ Bt , compute ρδt (Bt − {c}, d);
If constraint ρδt is satisfied

Bt = Bt − {c};
End

End
End

4. Return B = {B1, B2, · · · , Bs}.

In Algorithm 3, the time complexity of computing ρδs-reduct
is O(|U |

2
· |AT |

2), it is mainly because the process of finding such a
reduct is the same to that of Algorithm 1. Furthermore, it should
be noticed that the time complexity of computing ρδs−1-reduct
is O(|U |

2
· |AT − Bs|

2), it is mainly because in the worst case: (1)
Nδs

Bs (d) is an empty set; (2) if Bs does not satisfy the constraint
ρδs−1 , more attributes in AT − Bs should be searched and added
into Bs, then the time complexity of computing importance of
candidate attributes is O(|U |

2
· |AT − Bs|

2). Similarly, the time
complexity of computing ρδs−2-reduct is O(|U |

2
· |AT − Bs−1|

2);
· · ·; the time complexity of computing the ρδ1-reduct is O(|U |

2
·

|AT − B2|
2). Therefore, the whole time complexity of Algorithm
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3 is O(|U |
2

·
∑s−1

t=1 |AT − Bt+1|
2

+ |U |
2

· |AT |
2). Obviously, such

time complexity is also much less than that of Algorithm 1 if
multi-granularity reduct is required.

To understand the process of finding multi-granularity reduct
by using our acceleration strategy clearly, an example will be
shown as follows. This example not only reveals the mechanism
of our proposed acceleration strategy, but also shows us how
the searching space can be reduced. In the following Exam-
ple 2, the approximation quality is used as the measure to derive
multi-granularity reduct.

Example 2. Given a decision system DS=⟨U, AT , d⟩, in which U =

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, AT = {a1, a2, a3, a4, a5, a6, a7,
a8, a9, a10}, and d is the decision attribute. We consider two radii
δ1=0.3, δ2=0.4, that is, two levels of granularity will be used (see
Table 1).

Based on Algorithm 2, firstly, the Gδ1
AT related reduct B1 can be

derived by using Algorithm 1 such that B1 = {a1, a2, a3, a7}, that
is, γ δ1 (B1, d) ≥ γ δ1 (AT , d). Secondly, it is not difficult to validate
that B1 is also the reduct over Gδ2

AT , that is, γ
δ2 (B1, d) ≥ γ δ2 (AT , d)

also holds. Therefore, B2 = B1 = {a1, a2, a3, a7} and then we have
B = {B1, B2}.

Based on Algorithm 3, firstly, the Gδ2
AT related reduct B2 can

be derived by using Algorithm 1 such that B2 = {a1, a2, a4, a7}.
Secondly, with calculation, it is not difficult to validate that B2
is not the reduct over Gδ1

AT , that is, γ δ1 (B2, d) ≥ γ δ1 (AT , d) does
not hold. Therefore, let U ′

= U − Nδ2
B2
(d) and select important

attributes in AT −B2 = {a3, a5, a6, a8, a9, a10}, until the constraint
is satisfied, if follows that B1 = {a1, a2, a4, a6, a7} and B =

{B1, B2}.

By the above example, it is not difficult to observe that the
searching space of finding the present granularity related reduct
is reduced by using our acceleration strategy. It follows that
the time complexity will also be decreased if our forward and
backward accelerators are used.

4. Experimental analysis

To demonstrate the effectiveness of our forward and backward
accelerators, 16 UCI data sets have been selected to conduct
the experiments. The details of used data sets are shown in the
following Table 2.

In the context of this paper, not only 5-fold cross-validation is
employed, but also 20 different radii have been used, i.e., Θ =

{0.025, . . . , 0.500}. That is to say, 20 different levels of gran-
ularity have been considered in our experiments. The detailed
process is as follows. Each data set is partitioned into 5 disjoint
groups such that U = {U1,U2,U3,U4,U5}. In the first round of
calculation, U2 ∪ U3 ∪ U4 ∪ U5 is regarded as the training set
for deriving 20 reducts with respect to 20 radii, U1 is the testing
set for classification by using these 20 different reducts; · · ·; in
the last round of calculation, U1 ∪ U2 ∪ U3 ∪ U4 is regarded as
the training set for deriving 20 reducts with respect to 20 radii,
U5 is the testing set for classification by using these 20 different
reducts. Moreover, the measures related to both approximation
quality and conditional entropy will be used in our experiments.
In other words, it is expected to find reducts derived from dif-
ferent strategies which can offer greater values of approximation
quality or lower values of conditional entropy.

Furthermore, the Kolmogorov–Smirnov (K–S) test will be em-
ployed for comparing the traditional strategy with our accelera-
tion strategy. The purpose of our comparison is trying to reject
the null-hypothesis that such two strategies perform equally
well. Assuming that the significance level is set as 0.05 and if

the p-value of K–S test is lower than 0.05, we then reject the
null-hypothesis.

Note that in the following subsections, in terms of the measure
of approximation quality, ‘‘γ -reduct’’ denotes the results related
to reducts which are derived by Algorithm 1, while ‘‘↑-γ -reduct’’
denotes the results related to reducts which are derived by Algo-
rithm 2, and ‘‘↓-γ -reduct’’ denotes the results related to reducts
which are derived by Algorithm 3.

Similarly, in terms of the measure of conditional entropy,
‘‘CE-reduct’’ denotes the results related to reducts which are
derived by Algorithm 1, while ‘‘↑-CE-reduct’’ denotes the results
related to reducts which are derived by Algorithm 2, and ‘‘↓-CE-
reduct’’ denotes the results related to reducts which are derived
by Algorithm 3.

Moreover, it should be stressed that the reducts derived by
using Algorithm 1, Algorithm 2 and Algorithm 3 are multi-granul
arity reducts, it is mainly because 20 different radii are used
to find reducts and different radii indicate different levels of
granularity.

4.1. Comparisons of elapsed time

In this section, the elapsed time for computing multi-granula
rity reducts by using different algorithms will be compared. The
detailed results are shown in the following Fig. 1.

With a deep investigation of Fig. 1, it is not difficult to observe
the following.

1. Compared with the process of computing γ -reducts, the
process of searching ↑-γ -reducts is characterized with
lower time consumption. Similarly, compared with the
process of generating CE-reducts, the process of searching
↑-CE-reducts is also quick. Such results indicate that our
forward accelerator shown in Algorithm 2 can significantly
speed up the process of finding multi-granularity reduct.
Moreover, it should be noticed that for the first radius
0.025, i.e., the first granularity, the time consumption of
Algorithm 2 is similar to that of Algorithm 1. It is mainly
because in Algorithm 2, the process of finding this reduct
is the same to that of Algorithm 1.

2. Compared with the process of computing γ -reducts, the
process of searching ↓-γ -reducts is characterized with
lower time consumption. Similarly, compared with the
process of generating CE-reducts, the process of searching
↓-CE-reducts is also quick. Such results indicate that our
backward accelerator shown in Algorithm 3 can also sig-
nificantly speed up the process of finding multi-granularity
reduct. Moreover, it should be noticed that for the last
radius 0.500, i.e., the last granularity, the time consumption
of Algorithm 3 is also similar to that of Algorithm 1. It is
mainly because in Algorithm 3, the process of finding this
reduct is the same to that of Algorithm 1.

To further analyze the elapsed time of computing reducts
by different strategies from the viewpoint of statistics, the K–
S test will be employed. The purpose of K–S test is trying to
reject the null-hypothesis that two compared methods perform
equally well. The significance level is set as 0.05 in this paper,
if the obtained p-value is lower than 0.05, then we reject the
null-hypothesis. The detailed results of p-values are shown in
Table 3.

Following the results shown in Table 3, it is not difficult to
observe the following.

1. For the comparison of the elapsed time of computing ↑-γ -
reduct and γ -reduct, all obtained p-values are lower than
0.05. Similarly, For the comparison of the elapsed time
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Table 1
A toy example of data.
Samples a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 d

x1 0.9949 0.7981 0.5359 0.0291 0.8866 0.6359 0.7325 0.9612 0.2998 0.7561 1
x2 0.4906 0.2204 0.8291 0.1362 0.9703 0.7898 0.1629 0.4664 0.1591 0.2882 1
x3 0.5035 0.8579 0.2674 0.6946 0.9425 0.5663 0.9211 0.7870 0.6653 0.6062 1
x4 0.7688 0.9047 0.1762 0.5157 0.6381 0.3774 0.2222 0.4226 0.6842 0.7660 2
x5 0.3881 0.2920 0.4312 0.5426 0.0906 0.8216 0.0836 0.9437 0.7924 0.8462 2
x6 0.4533 0.7259 0.4757 0.8085 0.0747 0.3049 0.0737 0.0013 0.3486 0.9020 2
x7 0.1329 0.3394 0.7852 0.7937 0.1825 0.3194 0.7696 0.9813 0.2501 0.5957 2
x8 0.7585 0.2727 0.1307 0.5019 0.0317 0.7850 0.8177 0.5702 0.3450 0.0685 3
x9 0.5652 0.1703 0.0514 0.2766 0.7249 0.5037 0.7404 0.3465 0.3286 0.2180 3
x10 0.6486 0.6640 0.6275 0.1197 0.1442 0.2610 0.7582 0.5575 0.9275 0.8694 3

Table 2
Data sets description.
ID Data sets Samples Attributes Decision classes

1 Breast cancer wisconsin (Diagnostic) 569 30 2
2 Cardiotocography 2126 21 10
3 Dermatology 366 34 6
4 Forest type mapping 523 27 4
5 Libras movement 360 90 15
6 Page blocks classification 5473 10 5
7 QSAR biodegradation 1055 41 2
8 Statlog (Image segmentation) 2310 18 7
9 Statlog (Landsat satellite) 6435 36 6
10 Steel plates faults 1941 33 2
11 Waveform database generator (Version 1) 5000 21 3
12 Waveform database generator (Version 2) 5000 40 3
13 Wall-following robot navigation 5456 24 4
14 Website phishing 1353 9 2
15 Wine quality 4898 11 7
16 Wireless indoor localization 2000 7 4

Fig. 1. Comparisons of elapsed time for computing different reducts.
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Table 3
p-values for comparing elapsed time of deriving reducts.
ID γ -reduct & γ -reduct & CE-reduct & CE-reduct &

↑-γ -reduct ↓-γ -reduct ↑-CE-reduct ↓-CE-reduct

1 4.74E−09 5.55E−10 4.74E−09 4.74E−09
2 2.49E−07 1.53E−06 4.74E−09 1.53E−06
3 4.74E−09 8.42E−06 4.74E−09 4.74E−09
4 4.74E−09 1.53E−06 4.74E−09 4.74E−09
5 1.53E−06 4.15E−05 4.74E−09 4.74E−09
6 1.53E−06 8.42E−06 4.74E−09 3.63E−08
7 3.63E−08 7.25E−04 4.74E−09 3.63E−08
8 1.53E−06 1.53E−06 4.74E−09 2.49E−07
9 3.63E−08 1.53E−06 4.74E−09 4.74E−09
10 4.74E−09 3.63E−08 4.74E−09 4.74E−09
11 4.74E−09 8.42E−06 4.74E−09 4.74E−09
12 3.63E−08 2.49E−07 4.74E−09 4.74E−09
13 8.42E−06 1.53E−06 4.74E−09 5.55E−10
14 1.83E−04 8.42E−06 4.74E−09 4.74E−09
15 3.63E−08 1.53E−06 4.74E−09 3.63E−08
16 4.15E−05 8.42E−06 4.74E−09 4.74E−09

Table 4
Comparisons among stabilities of reducts (the greater values are in bold).
ID ↑-γ -reduct ↓-γ -reduct γ -reduct ↑-CE-reduct ↓-CE-reduct CE-reduct

1 0.7390 0.6044 0.3213 0.9046 0.6789 0.7224
2 0.4141 0.2944 0.2983 0.7926 0.4806 0.3857
3 0.6414 0.4376 0.3545 0.7569 0.6185 0.3538
4 0.4279 0.5986 0.2964 0.9400 0.6311 0.3665
5 0.4580 0.3580 0.1378 0.7565 0.8036 0.2015
6 0.5416 0.4296 0.3946 0.8477 0.7033 0.7072
7 0.4141 0.4126 0.2577 0.7810 0.5289 0.5243
8 0.5292 0.3042 0.3361 0.9842 0.7143 0.6864
9 0.5185 0.4217 0.2597 0.9312 0.7337 0.3540
10 1.0000 0.5315 0.5315 1.0000 0.5815 0.4666
11 0.4563 0.4105 0.3653 0.8911 0.8796 0.6254
12 0.4867 0.4347 0.3414 0.9159 0.7568 0.4578
13 0.4719 0.4174 0.4060 0.8313 0.6735 0.6050
14 0.6310 0.5816 0.4520 0.7739 0.6924 0.5476
15 0.4871 0.4767 0.3228 0.9199 0.6111 0.6123
16 0.5191 0.4677 0.4799 0.8578 0.6965 0.5932

Table 5
p-values for comparing classification accuracies based on different reducts (CART
classifier).
ID γ -reduct & γ -reduct & CE-reduct & CE-reduct &

↑-γ -reduct ↓-γ -reduct ↑-CE-reduct ↓-CE-reduct

1 7.25E−04 0.0232 7.25E−04 0.9655
2 0.9655 0.4973 2.49E−07 0.9655
3 0.0591 0.9655 2.49E−07 0.0082
4 0.2753 0.2753 8.42E−06 0.0082
5 0.0026 0.4973 2.49E−07 0.0082
6 0.0232 0.7710 1.83E−04 0.9999
7 0.0232 0.7710 3.63E−08 0.0232
8 0.0232 0.4973 7.25E−04 1.0000
9 0.1349 0.0232 3.63E−08 0.1349
10 0.0026 1.0000 8.42E−06 0.9999
11 0.0232 0.7710 3.63E−08 1.53E−06
12 0.0232 0.0591 8.42E−06 1.53E−06
13 0.7710 0.9999 0.0026 0.2753
14 0.2753 0.2753 0.0232 0.9655
15 7.25E−04 0.7710 0.0232 0.0082
16 0.7710 0.0232 4.74E−09 0.2753

of computing ↑-CE-reduct and CE-reduct, all obtained p-
values are also lower than 0.05. Such results imply that our
forward accelerator and the traditional approach perform
significantly different in time consumption.

2. For the comparison of the elapsed time of computing ↓-γ -
reduct and γ -reduct, all obtained p-values are lower than
0.05. Similarly, For the comparison of the elapsed time
of computing ↓-CE-reduct and CE-reduct, all obtained p-
values are also lower than 0.05. Such results imply that

Table 6
p-values for comparing classification accuracies based on different reducts (KNN
classifier).
ID γ -reduct & γ -reduct & CE-reduct & CE-reduct &

↑-γ -reduct ↓-γ -reduct ↑-CE-reduct ↓-CE-reduct

1 7.25E−04 0.0082 0.0026 0.9999
2 0.4973 0.4973 2.49E−07 0.0232
3 0.0232 0.9999 2.49E−07 0.0232
4 0.0591 0.0082 0.0026 0.0232
5 0.9655 0.4973 1.53E−06 0.4973
6 0.0232 0.7710 1.83E−04 0.9999
7 0.0591 0.1349 4.15E−05 0.0591
8 0.0232 0.2753 7.25E−04 1.0000
9 0.1349 0.0026 2.49E−07 0.4973
10 0.0026 1.0000 8.42E−06 0.9999
11 0.0232 1.0000 1.53E−06 1.53E−06
12 0.0232 0.0591 8.42E−06 1.53E−06
13 0.7710 0.9655 0.1349 0.2753
14 0.0232 0.1349 0.1349 0.7710
15 0.1349 0.4973 0.0232 1.0000
16 0.4973 0.7710 3.63E−08 0.0026

Table 7
p-values for comparing classification accuracies based on different reducts (SVM
classifier).
ID γ -reduct & γ -reduct & CE-reduct & CE-reduct &

↑-γ -reduct ↓-γ -reduct ↑-CE-reduct ↓-CE-reduct

1 1.83E−04 0.4973 7.25E−04 0.9999
2 0.9655 0.4973 1.53E−06 0.0082
3 0.0591 0.7710 4.74E−09 0.0082
4 0.1349 0.0232 0.0026 0.0082
5 0.1349 0.2753 3.63E−08 7.25E−04
6 0.0232 0.9655 1.83E−04 0.7710
7 0.0232 0.9999 4.74E−09 0.0232
8 0.0232 0.1349 7.25E−04 1.0000
9 0.1349 0.0082 3.63E−08 0.2753
10 0.0026 1.0000 1.53E−06 2.49E−07
11 0.0232 0.9655 3.63E−08 1.53E−06
12 0.0232 0.4973 0.0082 1.53E−06
13 0.4973 0.9655 0.7710 0.4973
14 0.4973 0.2753 0.9655 0.4973
15 1.83E−04 0.7710 0.0082 1.0000
16 0.2753 0.0591 4.74E−09 0.0026

our backward accelerator and the traditional approach also
perform significantly different in time consumption.

Moreover, considering the results shown in both Fig. 1 and
Table 3, it is not difficult for us to conclude that compared with
the traditional strategy, i.e., Algorithm 1, our forward accelerator
and backward accelerator possess the significant advantage in
speeding up the process of finding multi-granularity reduct.

4.2. Comparisons of lengths

In this section, the lengths of different reducts will be com-
pared. The following Fig. 2 reports the detailed results.

Following Fig. 2, it is not difficult to observe the following.

1. For most of the data sets and radii we tested in our ex-
periments, the lengths of ↑-γ -reducts and ↓-γ -reducts are
greater than those of γ -reducts. Similarly, the lengths of
↑-CE-reducts and ↓-CE-reducts are also greater than those
of CE-reducts. Therefore, we can conclude that Algorithm
2 and Algorithm 3 require more attributes to construct
reducts. Moreover, considering both this conclusion and
the results shown in Fig. 1, we can observe that though
the reducts derived from our acceleration strategy contain
more attributes, the elapsed time of our strategy is still
lower than that of traditional strategy. Obviously, our ac-
celeration strategy is superior to traditional strategy from
the viewpoint of time consumption.
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Fig. 2. Comparisons among different lengths w.r.t. different reducts.

2. Furthermore, it can be observed that in most of the cases,
the lengths of ↑-γ -reducts are greater than those of ↓-γ -
reducts, the lengths of ↑-CE-reducts are also greater than
those of ↓-CE-reducts. Consequently, we can say that by
comparing with Algorithm 3, Algorithm 2 requires more
attributes to construct reducts.

4.3. Comparisons of stabilities

Recently, the stability of reduct has been paid much attention
to by some researchers. Note that the stability of reduct they
studied indicates that the degree of variation of reducts if the
used samples have been changed [51,62,74]. Different from it, in
the following, we will consider another type of stability of reduct,
which is expected to reflect the variation of reducts if granularity
has been changed. Since in our experiment, different radii have
been used, and different radii imply different levels of granularity,
the following Eq. (12) can be used to compute the stability of
reduct.

Sta =

s−1∑
t=1

|Bt ∩ Bt+1|

|Bt ∪ Bt+1|
, (12)

in which Bt denotes the ρδt -reduct.
Obviously, Sta ∈[0,1] holds. For any two reducts related dif-

ferent radii, Sta achieves the minimal value 0 if and only if Bt ∩

Bt+1 = ∅, it implies that the variation of radii, i.e., granularity
will result in a great effect on the results of reduct, and then
the obtained multi-granularity reduct is completely unstable; Sta
achieves the maximal value 1 if and only if Bt = Bt+1, it implies

that the variation of radii, i.e., granularity has no effect on the
results of reduct, and then the obtained multi-granularity reduct
is completely stable.

The detailed results of stabilities of different types of multi-
granularity reduct are shown in Table 4.

With a deep investigation of Table 4, it is not difficult to
observe that for most of the data sets, the values of stability of ↑-
γ -reduct and ↓-γ -reduct are greater than those of γ -reduct, the
values of stability of ↑-CE-reduct and ↓-CE-reduct are also greater
than those of CE-reduct. The results indicate that the multi-
granularity reducts derived by using our acceleration strategy are
more stable than those derived by using traditional searching
strategy, i.e., Algorithm 1.

Moreover, it must be emphasized that compared with the
backward accelerator, our forward accelerator performs better
from the viewpoint of stability. In other words, the multi-granula
rity reducts derived from Algorithm 2 and Algorithm 3 are more
stable.

4.4. Comparisons of classification performances

In this section, the classification performances of multi-gran
ula rity reducts will be further compared. It should be noticed that
CART, KNN and SVM (LIBSVM [75]) classifiers are employed for
testing the classification performances. The detailed results are
shown in the following Figs. 3–5.

With a careful investigation of Figs. 3–5, it is not difficult
to observe that the classification accuracies derived from ↑-γ -
reducts and ↓-γ -reducts are greater than or equal to those de-
rived from γ -reducts, the classification accuracies derived from
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Fig. 3. Comparisons among classification accuracies w.r.t. different reducts (CART classifier).

Table 8
The values of radius w.r.t. the maximal classification accuracies (CART classifier).
ID ↑-γ -reduct ↓-γ -reduct γ -reduct ↑-CE-reduct ↓-CE-reduct CE-reduct

1 0.025 0.025 0.025 0.025 0.025 0.025
2 0.075 0.075 0.175 0.025 0.025 0.025
3 0.500 0.025 0.100 0.125 0.025 0.025
4 0.025 0.025 0.050 0.025 0.025 0.050
5 0.075 0.075 0.175 0.475 0.025 0.400
6 0.250 0.200 0.250 0.025 0.025 0.025
7 0.200 0.025 0.050 0.075 0.025 0.050
8 0.200 0.175 0.075 0.025 0.050 0.025
9 0.125 0.125 0.075 0.025 0.025 0.025
10 0.025 0.025 0.025 0.025 0.025 0.025
11 0.025 0.025 0.150 0.025 0.025 0.025
12 0.175 0.100 0.150 0.025 0.025 0.025
13 0.100 0.075 0.100 0.050 0.050 0.050
14 0.025 0.100 0.100 0.100 0.100 0.100
15 0.050 0.100 0.050 0.050 0.100 0.050
16 0.025 0.275 0.025 0.025 0.075 0.025

↑-CE-reducts and ↓-CE-reducts are also greater than or equal to
those derived from CE-reducts. From this point of view, we can
conclude that our forward and backward accelerators may select
attributes with higher generalization performance.

Moreover, similar to Section 4.1, the K–S test is also employed
for comparing the classification accuracies derived from differ-
ent multi-granularity reducts. The detailed results are listed in
Tables 5–7. Note that the p-values are greater than 0.05 are in
italic.

Following the results shown in Tables 5–7, it is not difficult to
observe the following.

1. For the comparison of the classification accuracies derived
from ↑-γ -reducts and γ -reducts, the obtained p-values are
less than 0.05 in some data sets, while the derived p-values
are greater than 0.05 in some other data sets, such a result
indicates that from the viewpoint of approximation quality,
our forward accelerator and traditional approach do not
perform equally well in some data sets, while they perform
equally well in another data sets. For the comparison of
the classification accuracies derived from ↓-γ -reducts and
γ -reducts, most of the obtained p-values are greater than
0.05, such a result indicates that our backward accelerator
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Fig. 4. Comparisons among classification accuracies w.r.t. different reducts (KNN classifier).

Table 9
The values of radius w.r.t. the maximal classification accuracies (KNN classifier).
ID ↑-γ -reduct ↓-γ -reduct γ -reduct ↑-CE-reduct ↓-CE-reduct CE-reduct

1 0.025 0.050 0.025 0.025 0.050 0.025
2 0.050 0.025 0.025 0.050 0.025 0.025
3 0.025 0.025 0.025 0.200 0.025 0.025
4 0.025 0.025 0.025 0.025 0.075 0.125
5 0.100 0.175 0.175 0.300 0.225 0.375
6 0.325 0.200 0.250 0.025 0.025 0.025
7 0.025 0.025 0.050 0.025 0.025 0.025
8 0.200 0.100 0.225 0.200 0.100 0.225
9 0.025 0.100 0.075 0.025 0.025 0.025
10 0.025 0.025 0.025 0.025 0.025 0.025
11 0.175 0.075 0.175 0.025 0.025 0.025
12 0.200 0.050 0.050 0.050 0.050 0.050
13 0.025 0.350 0.025 0.025 0.500 0.500
14 0.025 0.100 0.100 0.025 0.025 0.025
15 0.175 0.025 0.075 0.025 0.025 0.025
16 0.050 0.025 0.050 0.025 0.025 0.025

and traditional approach perform equally well from the
viewpoint of approximation quality.

2. For the comparison of the classification accuracies derived
from ↑-CE-reducts and CE-reducts, the obtained p-values
are much less than 0.05, such a result implies that our
forward accelerator and the traditional approach perform
significantly different. For the comparison of the classifica-
tion accuracies derived from ↓-CE-reducts and CE-reducts,
the obtained p-values are less than 0.05 in some data sets,
while the derived p-values are greater than 0.05 in some
other data sets, the result implies that from the viewpoint

of conditional entropy, our backward accelerator and tradi-
tional approach do not perform equally well in some data
sets, while they perform equally well in another data sets.

In summary, the above analyses imply that the multi-granula
rity reducts obtained by using our forward and backward accel-
erators will not contribute to a poorer classification performance.
Specially, the multi-granularity reduct computed by using our
forward accelerator can improve the classification performance
from the perspective of conditional entropy.

Furthermore, to find the granularity with better generalization
performance, the values of radii with respect to the maximal
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Fig. 5. Comparisons among classification accuracies w.r.t. different reducts (SVM classifier).

Table 10
The values of radius w.r.t. the maximal classification accuracies (SVM classifier).
ID ↑-γ -reduct ↓-γ -reduct γ -reduct ↑-CE-reduct ↓-CE-reduct CE-reduct

1 0.025 0.050 0.050 0.025 0.025 0.050
2 0.025 0.150 0.025 0.125 0.050 0.025
3 0.025 0.025 0.025 0.050 0.025 0.025
4 0.125 0.025 0.050 0.025 0.025 0.025
5 0.275 0.200 0.175 0.450 0.275 0.375
6 0.300 0.200 0.250 0.025 0.025 0.025
7 0.200 0.025 0.050 0.025 0.025 0.025
8 0.225 0.125 0.200 0.025 0.050 0.025
9 0.075 0.150 0.125 0.025 0.025 0.025
10 0.025 0.025 0.025 0.025 0.025 0.025
11 0.100 0.025 0.175 0.025 0.025 0.025
12 0.150 0.050 0.025 0.025 0.025 0.025
13 0.025 0.050 0.150 0.025 0.050 0.025
14 0.100 0.025 0.100 0.025 0.025 0.025
15 0.225 0.125 0.175 0.025 0.025 0.025
16 0.050 0.125 0.050 0.025 0.050 0.025

classification accuracies can be obtained. The detailed results are
shown in Tables 8–10.

Tables 8–10 actually show us the results of selection of gran-
ularity, i.e., radii. It follows that the selected radii can generate
reducts that provide us with higher classification performances.

5. Conclusions and future perspectives

In this paper, to find the multi-granularity reduct, an ac-
celeration strategy is introduced into the process of searching
attributes. Different from the traditional searching strategy which

can only be executed on one and only one granularity, our pro-
posed acceleration strategy can actually speed up the process of
finding reducts in terms of multiple levels of granularity. This is
mainly because the reduct derived from the previous granularity
may guide the computation of reduct over the present granu-
larity, it follows that the lower time complexity is required in
our acceleration strategy. Furthermore, the experimental results
have demonstrated that our acceleration strategy can not only
reduce the elapsed time significantly, but also derive attributes
which will not contribute to a poorer classification performance.
In other words, our acceleration strategy is both efficiency and
effectiveness.
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The following topics are challenges for our further researches.

1. The proposed acceleration strategy can be realized through
using other extended rough set models, e.g., fuzzy rough
set.

2. More measures will be used in further exploration, e.g.,
conditional discrimination index and decision error rate.

3. More types of the expression of multi-granularity will be
addressed, e.g., the multi-granularity derived from sample
selecting or attribute clustering.
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