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Abstract—Feature extraction is a critical issue in many
machine learning systems. A number of basic fusion opera-
tors have been proposed and studied. This article proposes an
evolutionary algorithm, called evolutionary deep fusion method,
for searching an optimal combination scheme of different
basic fusion operators to fuse multiview features. We apply
our proposed method to chemical structure recognition. Our
proposed method can directly take images as inputs, and users do
not need to transform images to other formats. The experimen-
tal results demonstrate that our proposed method can achieve
a better performance than those designed by human experts on
this real-life problem.
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I. INTRODUCTION

FEATURE extraction is a key in many machine learning
systems. A number of deep neural networks (DNNs), such

as Inception [1], ResNet [2], and DenseNet [3] have been
used for this purpose. Different networks extract features from
different views. It is natural to use several neural networks
to extract multiview features and then do fuse them [4]. A
number of basic fusion operators, such as concatenation [5],
elementwise addition [6], elementwise multiplication [7], ele-
mentwise max [8], bilinear pooling [9], and tensor-based
fusion [10] have been proposed and widely used in machine
learning field. To the best of our knowledge, all the existing
fusion methods use only one single basic fusion operator, and
the features for fusion are manually selected by human experts.
This article will investigate how to design an algorithm for
searching an optimal combination scheme of different basic
fusion operators to fuse multiview features. More specifically,
We address the following two issues.

1) How to select view features for fusion?
2) How to select and use different basic fusion operators

for fusing these selected features?
Inspired by the recent success of evolutionary algorithms

(EAs) on neural architecture search (NAS), we code a fusion
scheme as a chromosome vector which consists of selected
features and basic fusion operators. The performance of each
fusion scheme can be evaluated by its corresponding deep
fusion network. We use an EA for finding an optimal fusion
scheme. Our work represents a first attempt to automatically
construct an optimal fusion scheme.

We apply our proposed method, named evolutionary deep
fusion method (EDF), to chemical structure recognition. In this
article, chemical structure recognition is defined as a task for
identifying and/or verifying what compounds are in a chemical
structure.1 It can be used in many cheminformatics appli-
cations, such as patent search and drug search [11]. Many
methods have been developed for this recognition problem
(e.g., [12], [13]). Molecules can be naturally represented as
graphs [14] and chemical structure recognition can be mod-
eled as a graph search problem [15], [16]. VF2, a widely used
molecular graph matching algorithm [17] for this recognition
problem is of high time complexity. Some heuristics meth-
ods (e.g., [13]) have also been proposed for solving molecular
graph search problems. However, all these methods require

1Chemical structure recognition is to automatically convert images into
some special formats in some research papers.
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some special formats (e.g., SMILES [18], MOLfile [19])
designed by human experts for chemical structures. Designing
these formats and collecting data requires a lot of human labor
work, and these human designed formats often have some
deficiencies. For example, markush structures cannot be repre-
sented in MOL files [20]. These deficiencies could deteriorate
the performance of a chemical structure recognition system.

The most commonly used form of compound structures is
images. Some Image2Structure tools (e.g., ChemGrapher [21],
MolRec [22], Imago [23], OSRA [24], MolVec,2 more
see [25]) have been developed for automatically converting
images into some special formats. However, their perfor-
mances are not very satisfactory. For example, as reported
in [25], the accuracy recognition rates of MolVec 0.9.7, Imago
2.0, and OSRA 2.1 are 66.67%, 40.00%, and 57.78%, respec-
tively, on the JPO dataset. Thus, using these generated special
formats, molecular graph matching algorithms may not work
very well.

Over the last few years, artificial intelligence techniques,
especially deep learning, have been extensively applied in
chemistry, such as medical diagnosis [26] and chemical syn-
theses [27]. Several datasets are available for training neural
networks and other machine learning systems. For example,
ChEMBL [28] and PubChem [29] contain a large number
of chemical structure images, ChEMBL is a large bioactiv-
ity dataset and PubChem’s BioAssay is a small molecules
dataset. For our research purpose, we have also collected a
dataset, named ChemBook, which contains only natural com-
pounds. These datasets make it feasible to train a DNN which
can directly identify compounds from images of chemical
structure.

Effective features are very important for chemical structure
recognition [30]. Using different neural networks, we can eas-
ily obtain many features for chemical structures from different
views and then transform chemical structure recognition into
a multiview learning problem.

Our major contributions include:
1) we propose a simple yet efficient evolutionary EDF. It is

a mix of deep learning, multiview learning and EA. EDF
can not only automatically select proper DNNs to extract
multiview features and select proper views from a candi-
date view set, but also find a suitable fusion scheme for
different views from a candidate basic fusion operator
set;

2) we have applied the proposed EDF to the chemical
structure recognition problem. The experimental results
have demonstrated the effectiveness of EDF. EDF has
been successfully integrated into a patent data analysis
platform at Shanxi University.

The remainder of this article is organized as follows. In
Section II, we review the related work of multiview learn-
ing and neural architecture search (NAS). In Section III, we
present the details of the EDF method. In Section IV, the
performance of the EDF is evaluated on three chemical struc-
ture recognition datasets. Finally, we draw conclusions in
Section V.

2https://github.com/ncats/molvec

II. RELATED WORK

In this section, we give a review of multiview learning and
neural architecture search for DNNs.

A. Multiview Learning

Multiview learning aims to build models that can pro-
cess multiview data so that it can achieve a better classi-
fication performance and make the system more robust. It
has successfully been applied to many fields, such as drug
target prediction [31], concept approximation [32], among
other [33]–[35]. Formally, let X = Rm1 ×Rm2 × · · · ×Rm|V|

denote the instance space (or feature space) of |V| view rep-
resentations, where mi(1 ≤ i ≤ |V|) denotes the feature
dimension of ith view and Y = {l1, l2, . . . , lq} denotes the
label space with q class labels. Denote D as an unknown dis-
tribution over X × Y . A training set D = {(xv

i , yi)|1 ≤ v ≤
|V|, 1 ≤ i ≤ n} ∈ (X × Y)n is drawn identically and inde-
pendently from D, where xv

i = (xv
i1, xv

i2, . . . , xv
imv

) ∈ Rmv is
the vth view feature vector with dimension mv and yi ∈ Y
is the known label associated with xv

i . The task of multiview
recognition is to learn a predictive function f : X �→ Y from
D which can assign a proper label f (x) ∈ Y to an unseen
instance x.

A learner can be denoted as a two-tuple L = (h,F),
where h is a learned decision function also called a classi-
fier, and F is a fusion function. Fusion plays a very important
role in multiview learning and it has attracted much research
effort [36].

1) Basic Fusion Operators: There are some simple yet
efficient fusion operators, such as concatenation [5], element-
wise addition [6], elementwise multiplication [7], elementwise
max [8], and elementwise average.

Concatenation: The information from multiple views is
fused as follows:

o(xi) =
[
x1

i , x2
i , . . . , x|V|i

]
(1)

where [·, ·] is the concatenation operator.
Elementwise fusion operators require that the dimensions

of input vectors are the same, hence different view features
need to be mapped into the same dimension space by a linear
function before fusion. This can be achieved using a fully
connected (FC) layer without any activation function.

Addition: The information from |V| views is fused as
follows:

o(xi) = FC
(

x1
i

)
+ FC

(
x2

i

)
+ · · · + FC

(
x|V|i

)
. (2)

Multiplication: The information from |V| views is fused as
follows:

o(xi) = FC
(

x1
i

)
◦ FC

(
x2

i

)
◦ · · · ◦ FC

(
x|V|i

)
(3)

where ◦ denotes Hadamard product, namely elementwise
multiplication.

Max: The information from |V| views is fused as follows:

o(xi) = max
(

FC
(

x1
i

)
, FC

(
x2

i

)
, . . . , FC

(
x|V|i

))
(4)

where max is elementwise max, also called max-pooling.
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Average: The information from |V| views is fused as
follows:

o(xi) = 1

|V|
(

FC
(

x1
i

)
+ FC

(
x2

i

)
+ · · · + FC

(
x|V|i

)
(5)

where + denotes elementwise addition, also called
average-pooling.

2) Advanced Fusion Methods: Recently, two advanced
fusion methods, namely, bilinear-based fusion [4], [9] and
tensor-based fusion [10], [37], have been proposed.

Bilinear methods model all pairwise interactions among fea-
tures from different views and provide a richer representation
than linear methods. For example, multimodal low-rank bilin-
ear (MLB) pooling approach [38] is to solve the dimension
curse in feature fusion, it approximates the outer product by
projecting first different view features into low-dimensional
spaces and then performs elementwise multiplication on the
projected features. The fusion process can be formalized as
follows:

c = MLB
(
v1, v2, . . . , v|V|

)

= UT
(

UT
1 v1 ◦ UT

2 v2 ◦ · · · ◦ UT|V|v|V|
)
+ b (6)

where ◦ denotes elementwise multiplication. Ui ∈ RMi×d and
c ∈ Rm, where d and m are hyperparameters to determine the
dimension of joint embeddings and the output dimension of
low-rank bilinear models, respectively.

Noting that MLB could result in insufficient representa-
tion, [9] proposed a multimodal factorized bilinear (MFB)
pooling. In MFB, the features from different views are first
expanded to a high-dimensional space and then integrated the
expanded vectors with Hadamard product. Then sum pooling
followed by the normalization layers is conducted to squeeze
the high-dimensional feature into the compact output feature.
The fusion process can be formalized as follows:

c = MFB
(
v1, v2, . . . , v|V|

)

= SumPool
(

ÛT
1 v1 ◦ ÛT

2 v2 ◦ · · · ◦ ÛT|V|v|V|, k
)

(7)

where the function SunPool(x, k) uses a 1-D nonoverlap
window with size k to do sum pooling over x.

Tensor-based methods model interactions among different
view features by using a |V|-fold Cartesian product from
view embeddings. Recently, many efficient models have been
proposed. For example, [10] developed a tensor fusion network
(TFN) by introducing a tensor fusion layer. Given |V| view
vectors {vi ∈ Rmi}|V|i=1, they are fused as follows:

c =
[

v1
1

]
⊗

[
v2
1

]
⊗ · · · ⊗

[
v|V|
1

]
(8)

where ⊗ is the Kronecker product operator. It is worth noting
that the output tensor c ∈ R(m1+1)×(m2+1)×···×(m|V|+1) could
be of high dimension and this could easily cause curse of
dimensionality. Hence, it is only applicable on a very small
number of views.

B. Network Architecture Search

DNN learning has successfully been applied to many areas,
such as face recognition and speaker recognition. It is well
known that network architectures play an critical role. Neural
architecture search (NAS) is to search for an optimal network
structure in an automatic manner. An NAS often consists of its
search space definition, search strategy selection, and model
evaluation.

The search space can be classified into macro and micro
search spaces [39]. The macro search space is mainly for
information of global structure [40], such as the number of
layers, the operation types of each layer, and the hyper param-
eters of each operation. The micro search space is mainly for
the change of repeated blocks or cells [1], [41].

The search strategy of network structure often uses rein-
forcement learning (RL), EA, and gradient-based method.

The RL-based search strategy gives an agent a reward as
instructional feedback in an interactive way to find the optimal
strategy in a finite-horizon environment. MetaQNN [42] mod-
els the neural architecture search as Markov decision process,
and uses RL method to generate the convolutional neural
network (CNN) architecture. Zoph and Le [43] used the recur-
rent neural network (RNN) as a controller to sample and
generate the string description of a network structure. This
structure is then trained and evaluated, and then the RL is
used to learn the controller’s parameters so that it can produce
a more accurate network structure.

The EA-based search strategy uses the validation accuracy
as instructional feedback to select the optimal model. In [40]
and [44], some neural network structures with one input layer,
one output layer and one global pooling layer are first initial-
ized as initial individuals. In the process of evolution, new
network structures are obtained using crossover and mutation,
new parent population will be selected from the parent and off-
spring population. Compared with RL, EA can achieve similar
accuracy, but it is faster and can produce smaller models.

Gradient-based search is much faster than RL-based and
EA-based NAS methods. A gradient-based strategy using
differentiable architecture sampling proposed in [39] needs
only a few hours to obtain and optimal model. However,
gradient-based search often requires much more computer
memories.

III. PROPOSED METHOD

In this section, the details of the proposed EDF are
presented. As shown in Fig. 1, the framework of EDF con-
sists of two main stages, this first one is to extract multiview
features (Section III-A) and the second one is to find a proper
deep fusion network (Section III-B).

A. Extracting Multiview Features

We use some different DNNs as different view feature
extractors, these DNNs will be trained on three datasets:
1) ChemBook-10k; 2) ChEMBL-10k; and 3) PubChem-10k.
Next, similar to other works [45], chemical structure images
will be successively fed into the trained models to extract the
penultimate layer vector as data representation, i.e., a view.
The pseudocode of this process is given in Algorithm 1.

Authorized licensed use limited to: Shanxi University. Downloaded on October 05,2021 at 07:27:04 UTC from IEEE Xplore.  Restrictions apply. 



886 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 5, OCTOBER 2021

Fig. 1. Overall framework of EDF.

Algorithm 1 Pseudocode of Extracting Multiview Features
Input: A chemical structure recognition training dataset D =

(X, Y), test dataset D̂ = (X̂, Ŷ), and multiple deep network
set NET = {Neti}|NET|

i=1 .
Output: A multiview training dataset V = {Vi}|V|i=1 and test

dataset V̂ = {V̂i}|V|i=1.
1: for i = 1 to |V| do
2: Train Neti on D;
3: Vi ← Neti(X), take X as input and output Vi;
4: V̂i ← Neti(X̂), take X̂ as input and output V̂i;
5: end for
6: return V and V̂ .

Fig. 2. Illustrative example of the decoding process from an individual
chromosome vector to a deep fusion network.

B. Finding Proper Deep Fusion Network With EDF

In the following, we will introduce the encoding and decod-
ing methods, and the framework of the proposed evolutionary
multiview fusion method.

1) Encoding and Decoding (Encoding): We propose a
variable-length encoding strategy for deep fusion networks.

Specifically, an individual is encoded as a list of two parts,
the first part is for views, and the second is for the fusion
scheme used.

Let V be a set of views and F be a set of basic fusion
operators. Then an individual chromosome vector p can be
represented as

p = [v, f ]

where v = (v1, v2, . . . , vk) where each vi is an element from V;
and f = (f1, f2, . . . , fk−1) where each fi is an element from F.

We should point out that each individual chromosome vector
may have a different k value.

Decoding: We decode an individual chromosome vector
p = [v, f ] to a deep fusion network as shown in Fig. 2. The
corresponding network takes v = (v1, . . . , vk) as its input and
works as follows.

1) Transfer each vi to ui by a fully connected layer and
then a Relu function.

2) Fuse u1, . . . , uk as follows:
a) c = u1;
b) for i = 1 to k−1, c← the result of fusion operator

fi on c and ui+1.
3) Normalize c

c← sign(c) | √|c| | (9)

c← c

‖c‖ . (10)

4) Transfer c to a probability vector ŷ by a fully connected
layer and a softmax function.

Our major reason for transferring vi to ui is to make sure
that all the ui’s are of the same dimension.

The parameters to learn in the deep fusion work include
weights in these fully connected layers. This network can be
used for classification.

2) Framework of EDF: In the following, we give the
detailed steps of EDF including population initialization,
fitness evaluation, offspring generation, and selection.

Population Initialization: We randomly generate an ini-
tial population of N individual chromosome vectors. Each
individual chromosome p can have a different k value.
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Fitness Evaluation: To evaluate the fitness of each individual
chromosome vector p in the current population, we decode it
to a deep fusion neural network, train it on a multiview training
dataset and then evaluate its classification accuracy on a test
dataset. The fitness of p is the classification accuracy.

Noting that at each generation, we need to evaluate the
fitness of N individual chromosome vectors (when N is the
population size). In our implementation, we train and eval-
uate their corresponding deep fusion networks in parallel.
To further reduce the computational overhead, we record all
the evaluated vectors and do not re-evaluate a individual
chromosome vector p if it has already been evaluated.

Crossover: Given two chromosome vectors p1 = [v1, f 1]
and p2 = [v2, f 2], we do the following crossover to generate
two new chromosome vectors p1

o = [v1
o, f 1

o ] and p2
o = [v2

o, f 2
o ].

1) Do one-point crossover on v1 and v2 to produce v1
o

and v2
o.

2) Do one-point crossover on f 1 and f 2 to produce f 1
o

and f 2
o .

3) Set p1
o = [v1

o, f 1
o ] and p2

o = [v2
o, f 2

o ].
4) Repair each of p1

o and p2
o to make sure that it is feasible

as follows.
a) If |vo| − 1 < |fo|, delete the (|fo| − |vo| + 1) most

left elements in fo.
b) If |vo| − 1 > |fo|, delete the (|vo| − |fo| − 1) most

left elements in vo.
Now we give an example of crossover. Let p1 =

[(3, 1, 5, 4), (1, 3, 3)] and p2 = [(4, 3, 6), (2, 1)]. Suppose that
1) gives v1

o = (3, 3, 6) and v2
o = (4, 1, 5, 4) and 2) pro-

duces f 1
o = (2, 3, 3) and v2

o = (1, 1). Then 3) will gives
p1

o = [(3, 3, 6), (2, 3, 3)] and p2
o = [(4, 1, 5, 4), (1, 1)]. After

repairing 4), p1
0 = [(3, 3, 6), (3, 3)] and p2

0 = [(1, 5, 4), (1, 1)].
Mutation: Given p = [v, f ], mutation alters some randomly

selected elements in v and f .
Selection: We use binary tournament selection in our

experiments [46].
The EDF is shown in Algorithm 2.

IV. EXPERIMENTAL STUDIES

A. Datasets

In our experiments, three chemical structure recognition
datasets are used to study our proposed EDF. Each dataset
includes 10 000 classes. These three datasets are ChemBook-
10k, ChEMBL-10k, and PubChem-10k collected from the
Chemical Book Website,3 Pubchem4 and ChEMBL,5 respec-
tively. In the following, we take ChemBook-10k as an example
to explain how these datasets are collected.

We first collect 10 000 chemical structure images of differ-
ent compounds. Each image is classified as a different class.
Then we perform the following nine operators on each image
to generate another nine images to each class.

Flip: It flips along horizontalzontal or vertical orienta-
tion. Fig. 3(2) gives an example of horizontal reflection. We
randomly choose one from horizontal and vertical reflection.

3https://www.chemicalbook.com/
4https://pubchem.ncbi.nlm.nih.gov/
5https://www.ebi.ac.uk/chembl/

Algorithm 2 Evolutionary EDF
Input: N: population size;

T: maximal generation number;
D = (X, Y): training dataset;
D̂ = (X̂, Ŷ): test dataset;
F: a set of basic fusion operators;
NET: a set of DNNs.

Output: A deep fusion network.
1: Extract multi-view features using Algorithm 1 that takes

D, D̂ and Net as inputs and outputs V and V̂;
2: Generate an initial population P0;
3: Evaluate the fitness of each chromosome vector in P0;
4: for t = 1 to T do
5: Generate offspring Qt using the crossover operator;
6: Conduct mutation on each chromosome in Qt;
7: Evaluate the fitness of each chromosome in Qt;
8: Select next generation population Pt+1 from Qt ∪ Pt

using a selection operator;
9: end for

10: pbest ← Select the chromosome with the best fitness from
PT .

11: return the fusion network corresponding to pbest.

Fig. 3. Original image and new images generated by nine operators.

Cropping: It crops a rectangle region of any size on an
image randomly, and then resizes it to the original size.
Fig. 3(3) is an example of cropping.

Color Shifting: It generates a new image by adjusting the
saturation, brightness, contrast, and sharpness of an image.
Fig. 3(4) is an example of color shifting.

Translation: It translates the original image by random val-
ues along horizontal and vertical orientation Fig. 3(5) is an
example of translation.

Overlay: It takes a rectangle region of any size on the
original image randomly. Fig. 3(6) is an example of overlay.

Contrast: It generates a new image by adjusting the contrast
of the original image. Fig. 3(7) is an example of contrast.

Noising: It generates a new image by adding a Gaussian
(σ = 0.3) noise to the original image. Fig. 3(8) is an example
of noise.

Resizing: It resizes the original image to a small one, and
then uses the background color of original image to fill the
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gap between the new size and original size. Fig. 3(9) is an
example of resizing.

Rotation: It rotates the original image at a random angle.
The new region beyond original size is cropped, and then the
gap between the original size and new size is filled by the
background color of original image. Fig. 3(10) is an example
of rotation.

Then each class has ten images. Then we randomly choose
one image from each class to form the test set. The remaining
images will be used as the training set.

To facilitate neural network training process, the following
preprocessing operations are conducted.

1) Resize the size of each image to the same size 230×230
to ensure DNNs can take them as inputs.

2) The background of original images is white and contents
are black, turn them from RGB into grayscale to reduce
the size of the dataset.

3) Normalize each pixel value by

x = x

127.5
− 1

where x denotes a pixel value.

B. Experimental Settings

In our experiments, all methods are implemented using
Tensorflow6 (version: 2.0.3). Our computational environment
is Ubuntu 16.04.4, 512-GB DDR4 RDIMM, 2X 40-Core Intel
Xeon CPU E5-2698 v4 @ 2.20GH and NVIDIA Tesla P100
with 16-GB GPU memory.

1) Parameter Settings:
a) Training of DNNs: All DNN models are trained using

the Adam algorithm. The learning rate is 0.001, the
exponential decay rate for the first moment estimates is
0.9, the exponential decay rate for the second moment
estimates is 0.999. Every network is trained for 100
epochs. To avoid overfitting, training process will stop
when a neural network model performance does not
improve after 10 epochs.

b) EA: To efficiently utilize the GPU resources, the popula-
tion size is set to be a multiple of the number of GPUs.
7 NVIDIA Tesla P100 GPUs are used, and the popula-
tion size is set to be 28. Following [47], the number of
generations is set to be 20, the probabilities of crossover
and mutation are set to 0.9 and 0.2, respectively.

2) Chromosome Vector p = [v, f ]: We consider two ver-
sions: 1) reused = False, different elements in v are not
allowed to be the same and 2) reused = True, there is no
such constraint on v.

3) Candidate Views and Fusion Operators: In Algorithm 1
for extracting multiview features, two settings for NET
are used in the experiments. One is NET5 = {Resnet50,
Densenet121, Xception, InceptionV3, MobileNetV2},
and the other is NET10 = {Resnet50, Densenet121,
Xception, InceptionV3, MobileNetV2, Resnet18, Resnet34,
Densenet169, Densenet201, NASNetMobile}.

F, the set of basic fusion operators, is set to include ele-
mentwise addition (Add), elementwise multiplication (Mul),

6https://github.com/tensorflow/tensorflow

concatenation (Concat), elementwise max (Max), and elemen-
twise average (Avg). Note that the dimension of a fused feature
obtained by the concatenation operator will be larger, we use
a linear mapping to transfer it back to the feature space of the
same dimension.

4) Performance Metrics: Top-1 accuracy and Top-5 accu-
racy are used to evaluate the performances of all the methods

Top-1 = 1

n

n∑
i=1

I
(
in_top_k

(
ŷi, yi, 1

))
(11)

Top-5 = 1

n

n∑
i=1

I
(
in_top_k

(
ŷi, yi, 5

))
(12)

where ŷi denotes the probability vector that a deep fusion
network outputs, yi denotes the ground truth class, and the
function in_top_k(ŷi, yi, k) returns whether yi is in a list that
consists of these prediction classes corresponding to the first
k highest probability values in ŷi. I(·) is a indicator function

I(·) =
{

1, if True
0, if False.

The higher values of Top-1 and Top-5 are, the better the
performance of the evaluated method is.

C. Compared Methods

1) Five Single View Methods: ResNet50 [2],
DenseNet121 [41], Xception [48], InceptionV3 [41],
and Mobilenetv2 [49].

2) Five Multiview Basline Methods: Addition, average,
max, multiplication, and concatenation.

3) Two Ensemble Learning Methods:
a) Simple Soft Voting (SSV) [50]: It simply averages the

outputs of the five single view methods.
b) Maximum Rule (MR) [51]: It selects the highest confi-

dence score among the outputs of the five single view
methods.

4) Three State-of-the-Art Multiview Methods:
a) MLB [38]: It has been explained in Section II-A. m is set

to be 128 and d takes a value from {64, 128, 256, 512}.
b) MFB [9]: It has been explained in Section II-A. m is

set to be 128 and k takes a value from {1, 2, 3, 4}.
c) TFN [10]: It has been explained in Section II-A. Batch

normalization (BN) is used in order to avoid overfit-
ting [52]. m is set to be 128 and mi takes values from
{5, 10, 15, 20}.

D. Experimental Results

In the experiments, we first extract five view features
using Resnet50, Densenet121, Xception, InceptionV3, and
MobileNetV2, respectively. Then, these extracted views of dif-
ferent dimensions are mapped into a dimension of m = 128
by a FC layer, so that elementwise fusion operators can be
used.

The experimental results are summarized in Table I, where
#Paras. is the number of parameters to learn, and Time is the
computing time (in second) for training each neural network
model. It is clear from Table I that:
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TABLE I
COMPARATIVE STUDY

TABLE II
EXPERIMENTAL RESULTS OF MLB, MFB, AND TFN IN DIFFERENT SETTINGS ON CHEMBOOK-10K

1) multiview methods perform better than single view
methods. This suggests that multiview fusion does have
advantages. It also implies that the first stage of EDF is
very useful for the performance improvement;

2) baseline fusion methods statistically work better than
MLB and TFN. Noting that MLB and TFN have
achieved the-state-of-art results on VQA task and multi-
view sentiment analysis task [10], [38], respectively. We
can conclude that a fusion scheme of different views is
very crucial;

3) using five simple fusion operators, EDF is
3.35%, 2.27%, 3.08% better on the Top-1 accu-
racy than the best one of all the compared methods,
some of them were well designed for multiviews
learning by human experts;

4) compared to the other multiview methods, EDF needs
long training time. This is because EDF needs to
train N × T deep fusion networks in the worst case
(N = 28, T = 20 in our experiments). It is clear that
the training time of EDF is about 84 times of that of
Addition on ChemBook-10k. This indicates that parallel

implementation can reduce the clock time. Section IV-E.
will further discuss this issue.

In summary, EDF is very competitive compared with other
manually designed multiview algorithms. View selection in
EDF can remove the redundancy view information, and the
fusion scheme automatically obtained by EDF does work.

E. More Analysis

We further investigate the performance of EDF under
different experimental settings on ChemBook-10k. The exper-
imental results summarized in Table III show that:

1) in general, it can improve the fusion performance if the
dimension of the fusion space and the size of candidate
view set increase. It is also evident that it is better to
allow elements of v in chromosome vector p duplicate.
For example, Top-1 and Top-5 accuracy metrics improve
from 85.31% to 90.06% and from 95.46% to 98.43%
when the setting is changed from m = 64, reused =
False and NET = NET5 to m = 512, reused = True
and NET = NET10, respectively;
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TABLE III
EXPERIMENTAL RESULTS OF EDF IN DIFFERENT SETTINGS ON CHEMBOOK-10K

Fig. 4. Architecture of comparative methods.

Fig. 5. Training and inference times change with the number of GPUs. The
fusion model is obtained in the setup: NET = NET5, reuse = False, m = 512.
Because four views are selected, the maximum number of GPUs is four in
the inference process.

2) EDF with m = 64 performs better than all other com-
pared methods with m = 128. For example, EDF with
reused = True and m = 64 obtains the Top-1 accu-
racy metric of 85.52%, whereas it is 78.11% in TFN
with m = 128. It indicates that EDF needs much fewer
parameters than other methods;

3) as shown in Table II, the number of the parameters used
in TFN with tensor-based fusion is much larger than
other compared methods. This is because the dimen-
sion of the fused vector increases exponentially as the
dimension of embedding vectors increases. In compari-
son, EDF with basic fusion operators except Concat does
not introduce extra parameters. Actually, the number of
parameters can be reduced when some redundancy views
are removed. For example, EDF (m = 128, NET =

Fig. 6. Use frequency distribution of the basic fusion operators.

NET5, reused = False) does not use the view extracted
by Xception, and leads to decrease of the number of
parameters from 2 389 136 to 2 155 664.

In summary, compared with other methods, EDF with dif-
ferent settings works well and does not introduce more extra
parameters. One of major drawbacks of EDF is that its training
time is longer than other methods. One possible way for mini-
mizing this drawback to use parallel computing environments.
We can do EDP training and inference in parallel. Fig. 5 shows
that the training time reduces and the number of inferring
images per second increases as the number of GPUs increases.

We have also analyzed the use frequency distribution of
the basic fusion operators in 16 final deep fusion networks
obtained by EDF in Table III. The use frequency distribution is
shown in Fig. 6. It can be observed that elementwise addition
and elementwise average are more frequently used than other
operators. Surprisingly, the elementwise multiplication used in
recent bilinear fusion models is used the least. This observation
suggests that more deep understanding on these basic operators
is needed.

V. CONCLUSION

We have developed an evolutionary EDF, which can auto-
matically build a good fusion model from given candidate
views and basic fusion operator sets. The experimental studies
have demonstrated that multiview fusion neural networks gen-
erated by EDF perform better than those manually designed
by human experts.

This work is a first step toward use of NAS and EAs on
multiview learning. Several issues are worthwhile investigating
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TABLE A1
COMPARATIVE STUDY ON TINY IMAGENET

along this direction. For example, how can attention mecha-
nisms or other methods be used to control the contribution
of each view to the fusion model [53], how can the training
cost of EDF be reduced by using expensive optimization tech-
niques [54] and how can multiobjective techniques be used in
EDF [55].

APPENDIX

A. Results on Tiny Imagenet

The Tiny ImageNet dataset7 is a subset of the ImageNet. It
consists 200 classes while ImageNet has 1000 classes. Each
class in Tiny ImageNet contains 500 training images and 50
validation images. The resolution of the images is 64×64 pix-
els, which makes it more difficult to extract information from
it. To make sure that the DNNs used in our experiments
can take these images as inputs, we have resized them to
230× 230 pixels. In our experiment, we have not used image
augmentation. The results are shown in Table A1. It is evident
that EDF performs the best.

B. Application

In real-world applications, there exist hundreds of millions
of molecules. A practical model has to be able to recognize
complete unseen chemical images, i.e., recognition in open-set
scenario.

Given a chemical structure image dataset D = {(xi, yi)}ni=1,
where xi denotes a chemical structure image and yi is its name.
In open-set scenario, EDF works as follows.

1) Obtain the deep fusion network with the best classifi-
cation accuracy EDFNet trained on D̂ = {(xi, yi)}mi=1
(m � n in real world) that consists of m random
molecules from D.

2) Construct a retrieve database R = {(ci, yi)}ni=1 as fol-
lows: each chemical structure image from D is suc-
cessively fed into the trained model EDFNet to extract
the penultimate layer vector as data representation, i.e.,
ci ← EDFNet(xi), take xi as input and output ci.

3) Given an unseen image list Q and the name of each
molecule x from Q can be obtained as follows:

7http://cs231n.stanford.edu/tiny-imagenet-200.zip

TABLE A2
EXPERIMENTAL RESULTS OF EDF ON OPEN-SET TASKS

Fig. A1. Interface of image-based patent search.

a) c← EDFNet(x);
b) Calculate similarity si between c and each ci from

R by the Euclidean distance;
c) Return k chemical structure images corresponding

to the first k maximum values in {si}ni=1, and their
name list {ŷi}ki .

In this way, EDF can generalize for all the molecules avail-
able in the real world. The EDF in open-set scenario can be
evaluated by

Rank@k = 1

|Q|
∑

(x,y)∈Q

y ∈ {
ŷi

}k
i

where y is the true name of the unseen image x from Q.
The results of EDF on open-set tasks are shown in Table A2.

In our experiment, D consists of all images from PubChem-
10k and ChEMBL-10k. We consider two settings for D̂ and
Q: 1) D̂ consists of all images from PubChem-10k and Q
consists of all images from the test set of ChEMBL-10k and
2) D̂ consists of all images from ChEMBL-10k and Q consists
of all images from the test set of PubChem-10k. It is evident
that EDF still works well.

Using EDF,8 we have developed an image-based patent
search system in a patent data analysis platform at Shanxi
University. As shown in Fig. A1, molecular structure search
based on EDF has been used as one of the four search
ways (other three are quick search, advanced search and logic
search). Different from other three types of search ways based
on text query, EDF based on image query may be more con-
venient and efficient for cheminformatics researchers in most
cases. It is worth noting that there is little restriction for query
image, such as size, format, resolution, which brings very good
user experience.

8The code is available at https://github.com/xinyanliang/EDF.
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