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Abstract—Monotonic classification is a kind of classification task in which a monotonicity constraint exist between features and class,
i.e., if sample xi has a higher value in each feature than sample xj , it should be assigned to a class with a higher level than the level of
xj ’s class. Several methods have been proposed, but they have some limits such as with limited kind of data or limited classification
accuracy. In our former work, the classification accuracy on monotonic classification has been improved by fusing monotonic decision
trees, but it always has a complex classification model. This work aims to find a monotonic classifier to process both nominal and
numeric data by fusing complete monotonic decision trees. Through finding the completed feature subsets based on discernibility
matrix on ordinal dataset, a set of monotonic decision trees can be obtained directly and automatically, on which the rank is still
preserved. Fewer decision trees are needed, which will serve as base classifiers to construct a decision forest fused complete
monotonic decision trees. The experiment results on ten datasets demonstrate that the proposed method can reduce the number of
base classifiers effectively and then simplify classification model, and obtain good classification performance simultaneously.

Index Terms—Monotonic classification, decision tree, ensemble learning, feature selection, discernibility matrix.
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1 INTRODUCTION

C LASSIFICATION is one of important research issues in
machine learning and data mining. From the viewpoint

of constraints among feature values, classification tasks can
be regarded as two types: nominal classification and ordinal
classification. For an ordinal classification task, the ordinal
relationship between different class labels should be taken
into account [1], [2]. Monotonic classification is a special
ordinal classification task, where the class values are ordinal
and discrete, and there is a monotonicity constraint between
features and class [3]. The monotonicity constraint indicates
that if sample xi has a higher value in each feature than
sample xj , it should be assigned to a class with a higher
level than the level of xj ’s class [4]. Monotonic classification
is a common task, which has attracted increasing attention
from domains of data mining, knowledge discovery, pattern
recognition, intelligent decision making, and so on.

There are many monotonic classification tasks in real-
life. For example, evaluating a university’s comprehensive
ability is such a problem. In this problem, scientific research
ability, teacher quality and teaching level are three impor-
tant indicators, and in the scores of these indicators an
ordinal relation exists obviously. The evaluation of universi-
ty’s comprehensive ability has three levels–“high, medium,
low”, among which an ordinal relation exists. There is
a monotonicity constraint between the features (scientific
research ability, teacher quality and teaching level) and class
(the evaluation level of university’s comprehensive ability)
as follows: If a university A has a higher scores in these
three features than another university B, university A will
have a higher level in the evaluation level than university
B. In addition, there are many problems with the same
characteristics as follows: consumers select commodities in a
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market according to their price and quality; employers select
their employees based on their education and experience;
investors select stocks or bonds in terms of their probability
of appreciation or risk; universities select scholarship stu-
dents according to students performances; editors make a
decision on a manuscript according to its quality; and so on.
This kind of problem is monotonic classification.

Typical classification methods, neural networks, support
vector machine, decision tree, etc., are not fit for solving
monotonic classification problems because they do not con-
sider the monotonicity constraint between features and class
[4]. Therefore, special methods for monotonic classification
task need to be designed [1], [2]. Monotonic classification
problems are widespread in real-life world, but compared
with general classification problems, much less attention
has been paid to monotonic classification these years. At
present, some effective results for monotonic classification
have been reported, and they can be roughly classified into
two kinds of methods: First, some theoretic frameworks
for monotonic classification have been developed, such as
rule-based classifiers [5]–[10], set-valued and interval or-
dered information systems [11], [12] and ordered entropy
model [13]. These methods always got few consistent rules
because they produced much larger classification bound-
ary on practical works [14]. Second, some algorithms for
learning monotonic decision model were designed [15]–
[18], like ordinal learning model [19], modified nearest
neighbor algorithm [18], ranking impurity [20] and ordinal
decision trees [21]–[25]. They can improve the performance
of extracting ordinal information, but they can not ensure
the monotonicity of a decision tree learned from a training
dataset with a monotonicity constraint. These two kinds of
methods were reviewed and analyzed in Ref [26] in detail.

Ref [4] presented a rank entropy based monotonic de-
cision tree (REMT) algorithm to reduce the influence of
noisy data and obtain decision rules with clear semantics,
which can get a monotonic decision tree if training samples
are from a monotonic dataset. Although REMT is robust
and understandable, its generalization ability is limited. Ref
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[26] proposed a fusing monotonic decision trees (FREMT)
algorithm which combined decision trees with ensemble
learning technique. The method had obvious effect on im-
proving the classification performance. However, it may not
obtain complete feature subsets (the complete feature sub-
sets mean all the feature subsets of original feature set under
a given condition) under one variable precision parameter
value due to its adopted heuristic search strategy, which
results in a series of variable precision parameter values to
construct base decision trees are needed. The performance
of FREMT has a large fluctuation along the variation of
variable precision parameter values and no single one can
make the classification performance good enough. This is
because the parameter is introduced into the definition
of classes’ lower and upper approximation sets under the
rough set frame, and the “belong to under a strict sense”
in computing lower and upper approximations will relax to
the “belong to under the sense of a precision”. When the
variable precision parameter value is zero, the upper and
lower approximations become strict, which will lead to few-
er samples in lower approximation set and more samples in
upper approximation set. Then the union set of all classes’
boundary domain always approaches the whole dataset,
which may result in an almost zero significance on most
features. Like this, the variable precision value can affect the
number of samples in upper and lower approximation set,
and further the value of feature significance. So if FREMT
only runs under one variable precision value, the number of
feature subsets may be too few to get a good classification
model. The FREMT usually obtains a large number of base
classifiers in multiple variable precision values in order to
get a higher accuracy, which results in complicated classifi-
cation model. So for monotonic classification problem, it is
needed to build a simplified classification model with good
classification performance through learning from a set of
samples with class labels. Therefore, it is significant to obtain
a comparable or even better classification performance with
fewer base classifiers.

To address this issue, it is necessary that complete
feature subsets should be achieved only under one vari-
able precision parameter value. It has four reasons: (1)
The completeness of feature subsets is helpful to improve
the classification accuracy of monotonic classification. (2)
Because the existing methods can not get enough feature
subsets on one variable precision parameter value, more
feature subsets need to be found under various variable
precision parameter values, which may lead to redundancy
of feature subsets. (3) Too many feature subsets obtained
by the existing methods make their running take up more
storage space and spend more computational cost. (4) The
redundant feature subsets may lead to the over-fitting of an
algorithm and the weakening generalization ability. Besides
heuristic search strategy, the discernibility matrix method
can also be used to obtain feature subsets [27]–[30]. But the
existing feature selection algorithms based on discernibility
matrixes can only be used in general data and not consider
the ordinal relations. In this work, we define a discerni-
bility matrix on ordinal dataset and then obtained com-
plete feature subsets. Then we propose a method of fusing
complete monotonic decision trees, namely FCMT, which
omits the process of selecting decision trees and determining

the number of decision trees. A set of monotonic decision
trees can be obtained directly and automatically, and they
will serve as base decision trees to construct a decision
forest. Although it includes fewer number of trees, rank is
still preserved which can ensure monotonically consistent
rules. The FCMT method can reduce the number of base
classifiers effectively and then simplify classification model,
and obtain good classification performance simultaneously.

The rest of the paper is organized as follows. In Section
2, the preliminaries on discernibility matrix and monotonic
decision tree are introduced. In Section 3, we explain how
to construct discernibility matrix and the FCMT method in
detail. Experimental results and analysis are presented in
Section 4. Finally, we give some conclusions about this paper
in Section 5.

2 PRELIMINARIES

To illustrate the proposed method clearly, some basic con-
cepts, such as dependency and feature selection on a ordinal
dataset, discernibility matrix, discernibility function and
REMT algorithm, are introduced briefly in this section.

2.1 Feature selection on ordinal dataset
Let U = {x1, ..., xn} be a set of samples and C be a set of
features to describe the samples; d is a class. For the features
and class, if there is a superior sequence relationship be-
tween the values of samples, the dataset OD = {U,C∪{d}}
will be an ordinal dataset.
Definition 1. [31] Given an ordinal dataset OD = {U,C ∪

{d}}, B ⊆ C, the range of d is {d1, d2, ..., dt}, where
d1 ≺ d2 ≺ ... ≺ dt (d1 ≺ d2 means d1 is dominated by
d2), the dominance relations on discourse domain U are
as follows:

R≥
B = {(xi, xj) ∈ U × U |f(xi, c) ≥ f(xj , c), ∀c ∈ B}

(1)
R≤

B = {(xi, xj) ∈ U × U |f(xi, c) ≤ f(xj , c), ∀c ∈ B}
(2)

R≥
{d} = {(xi, xj) ∈ U × U |f(xi, d) ≥ f(xj , d)} (3)

R≤
{d} = {(xi, xj) ∈ U × U |f(xi, d) ≤ f(xj , d)} (4)

where f(xi, c) is the value of xi in feature c(c ∈ B), and
f(xi, d) is the value of xi in class d.

Definition 2. [4] Let OD = {U,C ∪ {d}} be an ordinal
dataset, B ⊆ C . If ∀(xi, xj) ∈ U , (xi, xj) ∈ R≥

B ⇒
(xi, xj) ∈ R≥

{d}, we say OD is B-monotonically consis-
tent.

When the ordinal dataset satisfies the monotonically con-
sistency between its feature set and class, it is a monotonic
classification.

Denote the set which dominates x and the set dominated
by x as follows:

[x]≥B = {y ∈ U |f(y, c) ≥ f(x, c),∀c ∈ B} (5)

[x]≤B = {y ∈ U |f(y, c) ≤ f(x, c),∀c ∈ B} (6)

The lower approximation and upper approximation of
the set which dominates di are defined as follows:
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Definition 3. [31] Let d≥i be a sample set whose class is no
worse than class di. The lower approximation and upper
approximation are:

R≥
Bd

≥
i = {x ∈ U |[x]≥B ⊆ d≥i } (7)

R≥
Bd

≥
i = {x ∈ U |[x]≤B ∩ d≥i ̸= ∅} (8)

The feature dependency on an ordinal dataset is defined
as follows.
Definition 4. [32] Given an ordinal dataset OD = {U,C ∪

{d}} and B ⊆ C , the monotonic dependency of d respect
to B is defined as:

γB(d) =
|U −

∪t
i=1 BNDB(di)|

|U |
(9)

Where t is the number of classes, BNDB(di) is the class
boundary of di in terms of feature set B, BNDB(di) =

BNDB(d
≥
i ) = BNDB(d

≤
i ) = R≥

Bd
≥
i −R≥

Bd
≥
i .

According to different purposes, feature selections on
different senses were defined [33], [34]. Ref [35] defined
an feature selection on ordinal dataset based on the feature
dependency.
Definition 5. [35] Given an ordinal dataset OD = {U,C ∪

{d}} and B ⊆ C , the feature selection on an ordinal
dataset is that from feature set C we selected the feature
subset B which satisfies two conditions:
(1) Sufficiency condition: γB(d) = γC(d);
(2) Necessity condition: ∀c ∈ B, γB−{c}(d) < γC(d).

2.2 Discernibility matrix
Ref [28] defined the discernibility matrix and discernibility
function on information system.
Definition 6. Given an information system IS = (U,C),

the discernibility matrix of the information system IS is
n × n matrix, which is defined as M I = {mI

ij}, where
mI

ij = {c ∈ C|f(xi, c) ̸= f(xj , c)}.

Definition 7. Given an information system IS = (U,C),
the discernibility matrix M I = {mI

ij}, mI
ij = {c ∈

C|f(xi, c) ̸= f(xj , c)}, then the discernibility function
of a discernibility is defined as:

f(M)I =
∧{∨

(mI
ij)|∀xi, xj ∈ U,mI

ij ̸= ∅
}

(10)

Then Ref [27] extended the definition of discernibility
matrix from information system to dataset as follows:
Definition 8. Let D = (U,C ∪ {d}) be a consistent dataset.

Then the class-relative discernibility matrix is defined as
MD = {mD

ij}, where

mD
ij =

{
{c ∈ C|f(xi, c) ̸= f(xj , c)}, f(xi, d) ̸= f(xj , d)
mI

ij , otherwise
(11)

2.3 REMT
Hu et al. [4] proposed a monotonic decision tree algorithm
REMT, which had a good robustness and could solve the
conflict between the monotonicity and generalization ability
to a certain extent. The method can generate a rule-set which
is simple and easy to understand. The REMT algorithm is
listed in Algorithm 1.

Algorithm 1 REMT
Require: criteria: features of samples; decision: class labels

of samples; ε: stopping criterion;
Ensure: a monotonic decision tree T .

1: generate the root node.
2: if the number of samples is 1 or all samples are from the

same class, the branch stops growing.
3: otherwise,
4: for each feature ai, do
5: for each cj ∈ Vai (Vai is the domain of value of ai),

do
6: divide samples into two subsets according to cj ,
7: if f(ai, x) ≤ cj then
8: put x into one subset, and set f(ai, x) = 1,
9: else

10: put x into the other subset , and set f(ai, x) = 2.
11: end if
12: denote now ai with respect to cj by ai(cj), compute

RMIcj = RMI≥({ai(cj)}, {d}).
13: end for j
14: c∗j = argmaxj RMIcj .
15: end for i
16: select the best feature a∗ and the corresponding point

c∗:
(a∗, c∗)argmaxi maxj RMI≥({ai(cj)}, {d}).

17: if RMI≥({a∗}, {d}) < ε, then stop.
18: build a new node and split samples with a∗ and c*.
19: recursively produce new splits according to the above

procedure until stopping criterion is satisfied.

3 FUSING COMPLETE MONOTONIC DECISION
TREES

In this section, we will explain the proposed FCMT method
in detail. A discernibility matrix for the ordinal dataset
is generated, and then we get a set of complete feature
subsets through the matrix. Based on the subsets, a complete
monotonic decision forest for monotonic classification are
obtained.

Similar to the general classification problem, the training
samples for the monotonic classification problem also have
some redundant or unrelated features which may affect
performance of classify model and the decision maker’s
understanding to the essence of problem. So more important
information in a dataset could be extracted by obtaining
the feature subset on ordinal dataset. The selected feature
subset should keep the same approximation ability for
classification results as original feature set, that is to say,
the dependency of class respecting to feature subset and the
dependency of class respecting to original feature set should
be identical. Moreover, redundant features should not be
include in selected feature subset.

Here a method of feature selection based on discernibil-
ity matrix is proposed, which can obtain complete feature
subsets under one variable precision parameter value only.
Thus the number of feature sets can be reduced greatly and
then the classification model could be simplified.
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3.1 Discernibility matrix for ordinal dataset
Although some discernibility matrix constructing approach-
es were proposed, most of them were defined on the general
datasets and they can’t be used in the ordinal dataset direct-
ly. An discernibility matrix for ordinal dataset is proposed
in this subsection.

We firstly divide samples in an ordinal dataset into two
sets: monotonically consistent set and non-monotonic set.
Definition 9. Let OD = (U,C∪{d}) be an ordinal dataset, C

the feature set, {d} the class. Under the variable precision
parameter β, the monotonically consistent set Uβ

M is
defined as:

Uβ
M =
{x| |[x]

≤
C∩[x]

≤
d |

|[x]≤C |
≥ 1− β}, if |[x]≥C | < n0

{x| |[x]
≥
C∩[x]

≥
d |

|[x]≥C |
≥ 1− β}, if |[x]≤C | < n0

{x| |[x]
≥
C∩[x]

≥
d |

|[x]≥C |
≥ 1− β,

|[x]≤C∩[x]
≤
d |

|[x]≤C |
≥ 1− β}, otherwise

(12)

Where 0 < β < 0.5, n0, which is much smaller than the
size of dataset, is a constant not less than 1. That is, when
the number of samples which dominates x is very small,
we judge the monotonic consistency of x by considering the
samples dominated by x. In the same way, when the number
of sample set dominated by x is very small, we determine
the monotonic consistency of x by considering the samples
which dominates x. And the non-monotonic set Uβ

NM is:

Uβ
NM = U − Uβ

M . (13)

In consideration of the sample consistency, we define the
discernibility matrix on ordinal dataset as follows.
Definition 10. Let OD = (U,C ∪ {d}) be an ordinal dataset,

C the feature set, {d} the class. The discernibility matrix
on ordinal dataset MO is defined as Eqs. (14) and (15)
(see the equations on next page).

In Eq. (15), µik and µjk are as follows:

µik =
|[xi]

≥
{c} ∩ d≥k |

|[xi]
≥
{c}|

(16)

µjk =
|[xj ]

≥
{c} ∩ d≥k |

|[xi]
≥
{c}|

(17)

In Eq. (15), in order to preserve the monotonicity xj will
be replaced by x′

j when xi ∈ Uβ
M and xj ∈ Uβ

NM . x′
j has

the same feature values with xj , but their class values are
different. Define the probability that xj belongs to the class
which dominates dk as follows:

P (d(xj) ≥ dk) =
|[xj ]

≥
{c} ∩ d≥k |

|[xj ]
≥
{c}|

(18)

Then, the probability that xj belongs to the class dk is:

P (d(xj) = dk) = P (d(xj) ≥ dk)− P (d(xj) ≥ dk+1)

=


|[xj ]

≥
{c}∩d

≥
k |

|[xj ]
≥
{c}|

−
|[xj ]

≥
{c}∩d

≥
k+1|

|[xj ]
≥
{c}|

, k = 1, 2, ..., t− 1

|[xj ]
≥
{c}∩d

≥
k |

|[xj ]
≥
{c}|

, k = t

(19)

So the class value of x′
j is:

d∗k = argmax
k

P (d(xj) = dk). (20)

Note:

1) If the class values of two samples in the monoton-
ically consistent set do not fulfill ordinal relation
R≤

{d}, the features on which the two samples don’t

fulfill ordinal relation R≤
{c} will be put in the dis-

cernibility matrix.
2) If xi belongs to the monotonically consistent set

while xj belongs to the non-monotonic set, we
will modify the class value of sample xj with x′

j

according to Eq. (20). When the class values of
samples xi and x′

j do not satisfy the ordinal relation
R≤

{d}, the features on which the two samples don’t

satisfy the ordinal relation R≤
{c} will appear in the

discernibility matrix.
3) If both the two samples belong to the non-

monotonic set, we will compute the µ values for
each class d≥k . µik represents the probability that xi

belongs to the class which dominates dk. If µik is
greater than µjk on each class d≥k (which means xi

has a higher probability of belonging to a superior
class value than xj), then ordinal relation R≤

{d} is not
true for xi and xj . So discernibility matrix should
include the features on which the two samples don’t
satisfy ordinal relation R≤

{c}.

By means of the definition of discernibility matrix, the
corresponding ordinal discernibility function is defined.

Definition 11. The ordinal discernibility function based on
the ordinal discernibility matrix is defined as

f(MO) =
∧{∨

(mO
ij)|∀xi, xj ∈ U,mO

ij ̸= ∅
}

(21)

Through Eq. (21), the set of all prime implicants of
f(MO) determines the set of complete feature subsets. To
illustrate the proposed idea clearly, a simple case is given as
follows.

Example 1. Table 1 is an ordinal dataset including six sam-
ples from the dataset “Bankruptyrisk”. We selected two
samples in each class.

TABLE 1
Ordinal dataset from “Bankruptyrisk”

sample a b c d e f g h i j k l class
x1 2 2 2 1 1 4 4 4 4 4 2 4 3
x2 2 1 3 1 1 3 5 2 4 2 1 3 3
x3 2 1 1 1 1 3 2 2 4 4 2 3 2
x4 2 1 2 1 1 2 4 3 3 2 1 2 2
x5 2 2 1 1 1 1 3 3 3 4 3 4 1
x6 2 1 1 1 1 1 2 2 3 4 3 4 1
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MO = {mO
ij} (14)

mO
ij =


{c ∈ C|(xi, xj) /∈ R≤

{c}}, if (xi, xj) /∈ R≤
{d} and xi, xj ∈ Uβ

M

{c ∈ C|(xi, xj) /∈ R≤
{c}}, if (xi, x

′
j) /∈ R≤

{d} and xi ∈ UM , xj ∈ Uβ
NM

{c ∈ C|(xi, xj) /∈ R≤
{c}}, if µik > µjk for ∀d≥k and xi, xj ∈ Uβ

NM

∅, otherwise

(15)

MO =



∅ ∅ {b, c, f, g, h, l} {b, f, h, i, j, k, l} {c, f, g, h, i} {b, c, f, g, h, i}
∅ ∅ {c, g} {c, f, g, i, l} {c, f, g, i} {c, f, g, i}
∅ ∅ ∅ ∅ {f, i} {f, i}
∅ ∅ ∅ ∅ {c, f, g} {c, f, g, h}
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅


(22)

According to Eq. (15), the discernibility matrix is Eq. (22).
So the discernibility function is:

f(MO) = {b ∨ c ∨ f ∨ g ∨ h ∨ l} ∧ {b ∨ f ∨ h ∨ i ∨ j ∨ k ∨ l}
∧ {c ∨ f ∨ g ∨ h ∨ i} ∧ {b ∨ c ∨ f ∨ g ∨ h ∨ i} ∧ {c ∨ g}
∧ {c ∨ f ∨ g ∨ i ∨ l} ∧ {c ∨ f ∨ g ∨ i}
∧ {f ∨ i} ∧ {c ∨ f ∨ g} ∧ {c ∨ f ∨ g ∨ h}
= {c ∨ g} ∧ {f ∨ i}
= {c ∧ f} ∨ {g ∧ f} ∨ {c ∧ i} ∨ {g ∧ i}

(23)
In this way, all feature subsets, {c, f}, {g, f}, {c, i} and

{g, i}, could be obtained.

3.2 Fusing complete monotonic decision trees
It is well known that ensemble leaning, which applies
multiple learners to solve one problem, can improve gener-
alization performance of a learning system. Decision forest
is one kind of ensemble leaning manner, in which decision
trees are considered as base learners. Here monotonic clas-
sification problem is solved through constructing decision
forest. Two aspects should be considered: training multiple
decision trees and fusing these classification results of all
trees.

For the first problem, we need to generate some different
decision trees, which can be achieved by applying different
data sets. There are often three kinds of ways: using some d-
ifferent samples of training dataset, choosing some different
features from all the features and combining the first and
second methods. Because the completed feature subsets are
obtained we adopt the second one here. Another difficulty
is to determine the number of decision trees. To solve
the difficulty, we set the number of decision trees as the
number of obtained feature subsets. A decision tree can be
generated on a dataset, whose features are all the features of
a feature subset obtained by last subsection, so each feature
subset can construct a decision trees correspondingly. Then
a decision forest can be obtained. Here we construct base
decision trees through employing REMT method [4], which
can be used to get a monotonic decision trees.

For the second problem, each decision tree gives a class
value by its own classification rules for a new sample x, so
the final result will be integrated using a weighted voting
method. Each tree has a variable weight that is computed

by one of its leaf nodes, which gives the classification result
of x in this tree by its rules. For the x, the weight of class dk
in ith decision tree ωi

dk
is computed as follows:

ωi
dk

=
|Leaf i

dk
|

|Leaf i|
(24)

where |Leaf i
dk
| is the number of samples whose class is dk

on the leaf node of the ith decision tree, and |Leaf i| is the
number of all samples on the leaf node of the ith decision
tree.

Based on the above-mentioned constructing method of
decision forest, the proposed FCMT is summarized as Algo-
rithm 2.

Algorithm 2 FCMT
Require: a ordinal dataset OD = (U,C ∪ d); variable

precision: β; stoping criterion of REMT: ε; an sample
depicted by A: x.

Ensure: the class of sample x.
1: divide the samples in ordinal dataset into two sets,

monotonically consistent set and non-monotonic set, by
Eq. (12).

2: produce ordinal discernibility matrix by Eq. (15).
3: compute ordinal discernibility function by Eq. (21) and

get the feature subsets FS = {fs1, ..., fsn}.
4: for fs1 to fsn do
5: learn a tree Ti with REMT.
6: for sample x, compute the weight ωi

k of decision tree
Ti voting dk (k = 1, 2, ...) by Eq. (24).

7: end for
8: return the final class: dk = argmax

k
(

n∑
i=1

ωi
k).

Now, we explain the working process FCMT algorithm.
It can be understood through an illustrative example.

Example 2. We generate a dataset containing 12 samples
by selecting randomly 6 samples in each class from the
dataset “Adult”, in which there are 14 features, as shown
in Table 2. In this dataset, samples x1 to x10 are treated as
the training set of constructing monotonic decision trees,
and samples x11 to x12 are looked forward as the test set
of evaluating the performance of this model.
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TABLE 2
Ordinal dataset from “Adult”

sample a b c d e f g h i j k l m n class
x1 2 1 1 1 2 2 5 2 1 2 1 1 2 1 2
x2 2 4 1 2 1 1 8 2 1 2 1 1 2 1 2
x3 1 6 1 2 1 1 3 3 5 2 1 1 1 1 2
x4 2 5 1 4 1 1 11 3 5 2 1 1 2 1 2
x5 2 2 1 11 2 1 10 3 1 2 1 1 2 1 2
x6 2 2 1 4 1 1 5 3 1 2 1 1 2 1 1
x7 2 1 1 11 2 3 6 4 1 1 2 1 2 1 1
x8 2 1 1 1 2 1 5 3 1 2 2 1 2 1 1
x9 2 1 1 2 1 1 5 3 5 2 1 1 2 1 1
x10 2 6 1 1 2 1 6 3 2 2 1 1 2 8 1
x11 2 5 1 10 1 1 1 3 1 2 1 1 2 1 2
x12 2 1 1 5 2 1 6 3 1 2 2 1 2 1 1

We set β to 0 and n0 to 1. According to Eq. (12) all the
ten samples are in the monotonic consistent set. Then, the
ordinal discernibility matrix is produced as Eq. (25) (see the
equation on next page).

And the ordinal discernibility function is:
f(MO) = {f ∧ j ∧ b ∧ d} ∨ {f ∧ j ∧ b ∧ g ∧ i}.

So the feature subsets are {f, j, b, d} and {f, j, b, g, i}.
Next, two training subsets is generated by these two

feature subsets, which are shown as Table 3 and Table 4.
A monotonic decision tree can be learned with REMT

algorithm on each training subset. The trees T1 and T2

learned from these two training subsets and their nodes
weight are shown as Fig 1.

According to the trees T1 and T2, sample x11 in test set
is both classified into Class 2, and has two weights in Class
1 and Class 2 respectively, as follows:

w1
d1

= 0.33, w1
d2

= 0.67;
w2

d1
= 0.5, w2

d2
= 0.5.

So, the weight sum of d1 from two trees is 0.83, while the
weight sum of d2 is 1.17. Then sample x11 is classified into
Class 2 at last.

Sample x12 is both classified into Class 1 by two trees
and also has two weights in Class 1 and Class 2 respectively,
as follows:

w1
d1

= 0.75, w1
d2

= 0.25;
w2

d1
= 1, w2

d2
= 0.

So, the weight sum of d1 and d2 from two trees are 1.75 and
0.25 respectively. Then sample x12 is classified into Class 1
at last.

3.3 Time complexity

The running time of FCMT method is mainly composed of
two parts: the time of constructing discernibility matrix and
feature subsets; the time of generating decision trees.

Before constructing discernibility matrix, the samples in
dataset should be divided into two sets: the monotonically
consistent set UM and the non-monotonic set UNM . To
judge the consistency of each sample, we need to traverse
the m features of each sample. Then its time complexity is
O(mn2). Next, discernibility matrix will be constructed by
pairwise comparison of all the samples: (1) For two samples
both in set UM , we need to compare their m features in turn,
and the time complexity of computing discernibility features
of these samples is O(m|UM |2). (2) For two samples, one of
which in set UM and the other in set UNM , the class label

of sample in set UNM should be modified. Supposing that
dataset was be divided into t classes, the time complexity
of modifying these class labels is O(tn). Then the time
complexity of computing discernibility features of these
samples is O(tn|UNM |) + O(m|UM ||UNM |). (3) For two
samples both in set UNM , µ of sample to each class need
to be calculated and its time complexity is O(tn). Then
the time complexity of computing discernibility features of
these samples is O(tn|UNM |) + O(tm|UNM |2). Finally, the
feature subsets are obtained based on discernibility matrix,
and its time complexity is O(mn2). The sum of the time
complexities of above steps is as follows:

O(mn2) +O(m|UM |2) +O(tn|UNM |) +O(m|UM ||UNM |)
+O(tn|UNM |) +O(tm|UNM |2) +O(mn2)

≤ O(mn2) +O(mn2) +O(tn2) +O(mn2) +O(tn2)

+O(tmn2) +O(mn2)

= O(4mn2) +O(2tn2) +O(tmn2)
(26)

So the time complexity of first part is O(tmn2).
When the decision tree is generated, the time complexi-

ties of non-leaf nodes and leaf nodes should be considered
separately. In non-leaf nodes, the features (less than m) in
feature subsets need to be considered in turn. Taking the
v values in feature range as the split points, and rank mu-
tual information will be computed under each split points.
We need to traverse all the samples for the rank mutual
information of each sample. Then the time complexity of
this process is at most O(mvn2). In leaf nodes, we need to
traverse all the samples in this nodes to compute support
degree of each class of this node. Then the time complexity
in leaf nodes is at most O(n). So supposing that the numbers
of non-leaf nodes and leaf nodes in the decision forest are k1
and k2 respectively and the number of feature subsets is h,
the time complexity of second part is O(hn+k1mvn2+k2n).

Therefore, the time complexity of FCMT method is
O(tmn2) +O(hn+ k1mvn2 + k2n).

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental data and evaluation

In order to test the performance of our approach, we em-
ployed ten datasets, which are same as Ref [26] and are
shown in Table 5. In this table, Students Score is a real-world
dataset.
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MO =



∅ ∅ ∅ ∅ ∅ {e, f} {j} {f} {e, f} {f}
∅ ∅ ∅ ∅ ∅ {b, g} {b, g, j} {b, d, g} {b, g} {d, g}
∅ ∅ ∅ ∅ ∅ {b, i} {b, i, j} {b, d, i} {b} {d, i}
∅ ∅ ∅ ∅ ∅ {b, g, i} {b, g, i, j} {b, d, g, i} {b, d, g} {d, g, i}
∅ ∅ ∅ ∅ ∅ {d, e, g} {b, g, j} {b, d, g} {b, d, e, g} {d, g}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅



(25)

TABLE 3
Training subset with features {f, j, b, d}

sample b d f j class
x1 1 1 2 2 2
x2 4 2 1 2 2
x3 6 2 1 2 2
x4 5 4 1 2 2
x5 2 11 1 2 2
x6 2 4 1 2 1
x7 1 11 3 1 1
x8 1 1 1 2 1
x9 1 2 1 2 1
x10 6 1 1 2 1

TABLE 4
Training subset with features {f, j, b, g, i}

sample b f g i j class
x1 1 2 5 1 2 2
x2 4 1 8 1 2 2
x3 6 1 3 5 2 2
x4 5 1 11 5 2 2
x5 2 1 10 1 2 2
x6 2 1 5 1 2 1
x7 1 3 6 1 1 1
x8 1 1 5 1 2 1
x9 1 1 5 5 2 1
x10 6 1 6 2 2 1

(a) Monotonic decision tree T1 trained with features {f, j, b, d} (b) Monotonic decision tree T2 trained with features {f, j, b, g, i}

Fig. 1. Monotonic decision trees trained with two data subsets

TABLE 5
Datasets used in the experiments

Type Data set Num. of samples Num. of features (numeric | nominal) Num. of classes

UCI or Weka datasets

Adult 500 14 ( 0 | 14 ) 2
Bankruptyrisk 39 12 ( 0 | 12 ) 3

Wine 1599 11 ( 0 | 11 ) 2
Squash 50 24 ( 22 | 2 ) 3

Car 1728 6 ( 0 | 6 ) 4
German 1000 20 ( 7 | 13 ) 2

Australia 690 14 ( 6 | 8 ) 2
Autompg 392 7 ( 0 | 7 ) 4

Swd 3240 10 ( 0 | 10 ) 3
Real world dataset Student Score 512 25 ( 25 | 0 ) 3
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The classification accuracy (CA) and the mean absolute
error (MAE) are used to verify the performance of the
proposed approach and reference models.

CA =

∑
xi∈U

I(ŷi, yi)

|U |
(27)

MAE =

∑
xi∈U

|ŷi − yi|

|U |
(28)

where I(ŷi, yi) =

{
1, ŷi = yi
0, ŷi ̸= yi

, yi is the real class of xi

and ŷi is the forecasting class of xi by classifier.

4.2 Effectiveness of feature selection
In this section, we will verify the effectiveness of feature
selection based on discernibility matrix by observing the
gap between the mean dependency γ̃ on feature subsets and
the dependency γ on all features. The dependency of each
feature subset is computed at first, and then we compare
their mean value γ̃ with the dependency γ on original fea-
ture set. If γ̃ is always similar to the dependency of original
feature set γ, the feature subsets can be regarded as effective.
We get ten pairs of dependencies γ and γ̃ by executing ten
experiments which use ten different training datasets from
10-fold cross validation. The experiment results are shown
in Fig. 2.

From Fig.2, it can be observed that the difference be-
tween the dependency γ̃ and γ is small on all datasets. For
Adult, Bankruptyrisk, Car and Australia, the dependencies
γ and γ̃ almost have no difference on ten experiments. For
Wine, there is only one slight deviation on 3rd experiment.
The number of dependency γ with slight deviation is five
at most on one dataset, but all the differences are very
small (no more than 0.05). Therefore, we conclude that these
feature subsets could keep the same approximation ability
for classification results as original feature set, which means
that the feature subsets are effective.

4.3 Tuning variable precision parameter β
The experiments in this subsection will testify the classifi-
cation performance of the proposed FCMT with different
variable precision parameter β. For each dataset, 10-fold
cross validation technique is used, in which 90% data are
served as the training data and the remained samples are
used as the test data.

For fair comparison, we set ε = 0.01 in experiments like
Ref [4], and then observe the influence of β on classification
performance. Let β vary from 0 to 0.3 with a step length
0.02. We compare classification accuracy and mean absolute
error of FCMT, REMT and FREMT under each β value. The
experiment results are shown in Fig.3 and Fig.4 respectively.

In this experiment, REMT has a constant CA and MAE
in each different β value. From Fig.3 and Fig.4, we can see
that in most β values our method FCMT have higher CA
and lower MAE than REMT and FREMT in most datasets.
Especially in five datasets (Wine, German, Australia, Au-
tompg and Swd), FCMT have better indicator values under
all kinds of β value. In addition, in all datasets FCMT is su-
perior to REMT for two indicators, while FREMT sometimes

TABLE 6
W-T-L summarization table

Method FCMT-REMT FCMT-FREMT
CA 144-0-0 81-0-5

MAE 144-0-0 81-0-4

is inferior to REMT in some β values. This is because FREMT
method adopts a heuristic search strategy, which may not
obtain all feature subset in one β value. Particularly, When
β > 0.16, FREMT can not find feature subsets, while FCMT
can get all the feature subsets under each β value.

Win-tie-loss (W-T-L) summarization table is shown in
Table 6. A win means that the former method is better than
the latter method on a criterion, while a loss means that the
former method is worse than the latter method. A tie means
that both methods have the same performance. From Table
6, It can be seen clearly that FCMT is superior to both the
reference methods.

4.4 Performance of the proposed FCMT
In this subsection, we compare the number of trees, classify
accuracy and mean absolute error of these three methods
under their best parameter values respectively. For FREMT,
we integrated all β values (β varied from 0 to 0.16 with a
step length 0.02 and ε = 0.01) like Ref [26], which means
the feature subsets need to be computed under 9 different
parameter values. And 10-fold cross validation technique
is also used in each method. The comparisons are listed in
Table 7.

From Table 7, it is obvious that FCMT has much fewer
trees than FREMT. Especially on the data sets with more
features, such as Adult, Squash and German datasets, the
dominance is more evident (They have 14, 24 and 20 fea-
tures, and their numbers of trees have reduced by 88.9%,
91.8% and 83.3%, respectively). On these datasets, the low-
est reduced percentage is 50%, while the highest reduced
percentage reaches up to 91.8%. Also, FCMT have higher
CA and lower MAE than the REMT on all the datasets.
The FCMT has better indicator values than the FREMT on
all the dataset except German and Australia, in which the
difference between the indicators of two methods is also
very small (not more than 0.017). The above experiments
support that the proposed FCMT is effective for simplifying
the model and improving classification performance.

4.5 Verifying on real world dataset
To verify the effectiveness of FCMT in real world, we carry
out the experiments described in Sections 4.2 to 4.4 on a real
world dataset Student Score, which includes 512 students
coming from Software Engineering of grade 2010 in Shanxi
University and their scores of 25 courses (features). These
students are decided into three groups according to their
scores: 122 students with excellent academic achievemen-
t, 269 students with ordinary academic achievement and
121 underachievers. The Student Score dataset is a natural
monotonic classification problem and its label distribution
is shown as Fig.5a.

The three groups of experiments on Student Score are
as follows: (1) compare the dependencies γ and γ̃ in ten
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Fig. 2. Dependencies on ten different training sets

TABLE 7
Comparison on number of trees, CA and MAE

Dataset Num. of trees CA MAE
FREMT FCMT REMT FREMT FCMT REMT FREMT FCMT

Adult 36 4 0.604 ± 0.126 0.774 ± 0.034 0.790 ± 0.049 0.396 ± 0.126 0.226 ± 0.034 0.210 ± 0.049
Bankruptyrisk 27 6.4 0.650 ± 0.139 0.858 ± 0.108 0.858 ± 0.072 0.350 ± 0.139 0.142 ± 0.108 0.142 ± 0.072

Wine 14 4.3 0.465 ± 0.063 0.626 ± 0.032 0.683 ± 0.053 0.535 ± 0.063 0.374 ± 0.032 0.317 ± 0.053
Squash 68 5.6 0.580 ± 0.145 0.740 ± 0.089 0.800 ± 0.092 0.480 ± 0.147 0.260 ± 0.089 0.250 ± 0.092

Car 12 6 0.817 ± 0.031 0.871 ± 0.011 0.907 ± 0.025 0.203 ± 0.031 0.148 ± 0.011 0.111 ± 0.032
German 45 7.5 0.529 ± 0.032 0.711 ± 0.037 0.695 ± 0.053 0.471 ± 0.032 0.289 ± 0.037 0.305 ± 0.053

Australia 47 8.2 0.586 ± 0.055 0.735 ± 0.045 0.718 ± 0.037 0.414 ± 0.055 0.265 ± 0.045 0.282 ± 0.037
Autompg 27 6 0.528 ± 0.054 0.594 ± 0.070 0.696 ± 0.066 0.513 ± 0.054 0.431 ± 0.070 0.315 ± 0.068

Swd 14 6.3 0.581 ± 0.031 0.683 ± 0.032 0.725 ± 0.041 0.451 ± 0.031 0.341 ± 0.032 0.309 ± 0.042
Average 32.22 6.03 0.593 0.732 0.764 0.424 0.275 0.249
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Fig. 3. The average value of classification accuracies of each β value

different training datasets from the 10-fold cross validation;
(2) compare classification accuracy and mean absolute error
of FCMT, REMT and FREMT under different β values which
varies from 0 to 0.3 with a step length 0.02; (3) compare
the number of trees, classification accuracy and mean ab-
solute error of FCMT, REMT and FREMT under their best
parameters respectively. The experiment results are shown
in Fig.5b-d and Table 8.

From Fig.5 and Table 8, we can see that, for Student
Score dataset, the dependencies γ and γ̃ almost have no
difference on ten experiments. So the feature selection is
effective for real world dataset. For all β values except
0.02, FCMT have higher CA and lower MAE than REMT
and FREMT. The number of decision tree is determined
by the number of feature subsets obtained from dataset.
In the existing method FREMT, the feature subsets need to
be computed under 9 different variable precision parameter

values to construct a good classification model. It results in a
large number of feature subsets. But in the proposed FCMT
method, the feature subsets are computed only under one
parameter value since FCMT can obtain a group of complete
feature subsets, whose completeness makes them have a
small number and can be used to construct a better clas-
sification model. So in the best parameter values, FCMT has
much fewer trees than FREMT (The number of trees reduces
by 88.1%). In addition, the completeness of feature subsets
ensures that decision trees learned from these subsets have
good diversity and coverage. Although the small number of
parameters make the number of decision trees reduced, the
good diversity and coverage make the classification perfor-
mance of the proposed FCMT method improved compared
with earlier work. For FCMT, the percentages of improved
CA and MAE are 13.96% and 42.34% respectively compared
with REMT, and are 0.71% and 4.03% respectively compared
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Fig. 4. The average value of mean absolute errors of each β value

TABLE 8
Comparison of number of trees, CA and MAE on Student Score

Num. of trees CA MAE
REMT – 0.752±0.044 0.248±0.044

FREMT 77 0.851±0.054 0.149± 0.054
FCMT 9.2 0.857±0.046 0.143± 0.046
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Fig. 5. The class distribution and experiment results on Student Score dataset

with FREMT. Therefore, on real world dataset, FCMT is
also able to simplify the classification model and improve
classification performance.

5 CONCLUSIONS

In this paper, we proposed an approach FCMT to solve
monotonic classification problem. We obtained complete
feature subsets on an ordinal dataset. Then fusing complete
monotonic decision trees method is proposed. Compared
with the popular “random forest” and other ensemble meth-
ods, the advantages of the proposed FCMT are: (1) The
feature selection approach preserves the rank on ordinal
dataset. (2) It automatically selects decision trees and au-
tomatically determines the number of decision tree. (3) It
executes only under a kind of variable precision parameter
value, so FCMT can reduce the number of decision trees
greatly and obtain good classification performance simulta-
neously. (4) FCMT method is aimed at solving monotonic
classification problem, and it considers ordinal relation and
monotonicity constraint in dataset. Although “random for-
est” and other ensemble methods can be applied to solve
this problem, they cannot obtain the classification rules
satisfying the monotonicity constraint.

However, there has no guiding method to selected pa-
rameter β for FCMT. Besides, the computing cost of ordinal
discernibility matrix and discernibility function might be
expensive. In the future, we will do some research to solve
these two problems. Moreover, our method could be applied
to the service selection problem according to the quality of

service in future, which is one of problems in service com-
puting and a monotonic classification problem essentially.
We plan to design the special algorithm for service selection.

In addition, there are some resemblances between the re-
gression problem and the monotonic classification problem
indeed. Both regression problem and monotonic classifica-
tion problem can deal with the ordinal data. However, the
outputs of the training samples in regression problem are
quantitative real values. A real-valued function is obtained
by learning the training samples, and finally outputs real
values, while the monotonic classification in this manuscript
outputs class labels as final outcome. For monotonic clas-
sification, although there are the ordinal relation among
these class labels, the class labels only show the dominance
relations among them essentially and do not give specific
quantitative values on their dominance quantity. Then, the
training samples in monotonic classification problem only
have qualitative class labels, and the outputs of the clas-
sification model learning from this samples are also class
labels. In this work, we focus on whether the estimated
classes match the practical classes or not, and do not need
to test the exact values of different samples. But it is a very
interesting project to solve monotonic classification problem
through applying regression technique. First, this problem
needs to convert the class labels of training samples into
numerical values; Second, for the real-valued outputs of
regression technique, a map function between these outputs
and each class should be given. Then, two corresponding
need to be designed. One is designing the rules by which the
class labels of training samples with different feature values
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can be converted into numerical values accurately; the other
is finding the reasonable map function. So we will consider
solving above two questions in the future work, which may
provide a new train of thought for monotonic classification
problem. Furthermore, in real life there are indeed some
monotonic problems which need real-value functions to
estimate their specific real values, and it not only focuses
on whether the estimated classes match the practical classes
or not, but also concerns whether the estimated outputs
are accurate or not. This kind of problem needs regression
methods to solve, and it also deals with ordinal data and
have a monotonicity constraint in their features and outputs.
But this paper have not covered this kind of problem, which
will be dealt with in our next research.
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