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Abstract—A fuzzy granular structure refers to a mathematical
structure of the collection of fuzzy information granules granu-
lated from a data set, while a fuzzy information granularity is
used to measure its uncertainty. However, the existing forms of
fuzzy information granularity have two limitations. One is that
when the fuzzy information granularity of one fuzzy granular
structure equals that of the other, one can say that these two fuzzy
granular structures possess the same uncertainty, but these two
fuzzy granular structures may be not equivalent to each other.
The other limitation is that existing axiomatic approaches to
fuzzy information granularity are still not complete, under which
when the partial order relation among fuzzy granular structures
cannot be found, their coarseness/fineness relationships will not
be revealed. To address these issues, a so-called fuzzy granular
structure distance is proposed in this study, which can well
discriminate the difference between any two fuzzy granular
structures. Besides this advantage, the fuzzy granular structure
distance has another important benefit: it can be used to establish
a generalized axiomatic constraint for fuzzy information granu-
larity. By using the axiomatic constraint, the coarseness/fineness
of any two fuzzy granular structures can be distinguished. In
addition, through taking the fuzzy granular structure distances
of a fuzzy granular structure to the finest one and the coarsest
one into account, we also can build a bridge between fuzzy
information granularity and fuzzy information entropy. The
applicable analysis on twelve real-world data sets shows that
the fuzzy granular structure distance and the generalized fuzzy
information granularity have much better performance than
existing methods.

Index Terms—Granular computing; Fuzzy granular structure
distance; Fuzzy information granularity; Fuzzy information en-
tropy

I. INTRODUCTION

Granular computing (GrC) was first proposed by Zadeh
in 1996 [55], and is becoming an important issue in arti-
ficial intelligence and information processing [56]–[58]. As
Zadeh pointed out, information granulation, organization and
causation are three key issues in granular computing. It has
been applied in various fields, which include data clustering,
machine learning, approximate reasoning, data mining and
knowledge discovery, and so on. To date, several methods
have been employed for studying granular computing, such
as rough set theory [4], [10], [16], [39], [47], fuzzy set theory
[25]–[27], [50], [51], concept lattice theory [11], [28], [49],
and quotient space theory [61].

Pawlak established the rough set theory in 1982 [31], [32],
which can be seen as a new method for studying uncertainty
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[12]–[15], [40]–[43], [48], [52]. In the context of a rough
set, a given equivalence relation divides a data set into
some classes or concepts, often called a granular structure
in granular computing, and an equivalence class is called an
information granule [17], [18]. As a basic concept of rough set
theory, a granular structure base means a family of granular
structures, where each granular structure is induced by a crisp
binary relation. The crisp binary relations includes equivalence
relation, tolerance relation, neighborhood relation, dominance
relation, and so on. If we employ a fuzzy binary relation
for granulating a data set, objects will be granulated to a
fuzzy granular structure, i.e., a collection of fuzzy information
granules [3], [33]–[36], [41], which can be used to construct
rough approximations of a fuzzy rough set [1], [2], [7]–[9],
[54], [59], [60]. Similar to the concept of granular structure
base, a fuzzy granular structure base correspondingly indicates
a set of fuzzy granular structures induced by a family of fuzzy
binary relations.

Information granularity is a measure to calculate the granu-
lation degree of a universe in the granular computing area.
It has been an important problem of how to compute the
information granularity of a granular structure in granular
computing. For fuzzy-set-based granular computing, fuzzy
information granularity is employed for measuring the granu-
lation degree of a fuzzy granular structure induced by a given
data set. The smaller the fuzzy information granularity, the
finer a fuzzy granular structure. Up to now, several definitions
of (fuzzy) information granularity have been developed with
various perspectives and viewpoints [12], [14], [15], [41],
[48], [52]. Liang et al. [14], [15] contributed two forms of
information granularity for measuring that of complete data
and that of incomplete data, respectively. Wierman [48] gave
a so-called granulation measure to evaluate the uncertainty of
knowledge from a knowledge base, and its form is the same
as Shannon entropy in some sense. Combination granulation
proposed by Qian and Liang [12] also can be used to mea-
sure the granulation degree of knowledge from a knowledge
base. Xu et al. [52] improved the roughness in rough set
theory given by Pawlak [31], which also can be seen as
an information granularity. Qian et al. [41] put forward two
forms of fuzzy information granularity to measure the coarse-
ness/fineness of a fuzzy knowledge structure. To obtain a
constraint framework of fuzzy information granularity, a series
of axiomatic approaches to fuzzy information granularity were
developed in the literature [41]. For revealing the properties
of information granularity, a partial order relation is often
employed for depicting the monotonicity between granular
structures. However, the fuzzy information granularity still has
its shortages. In what follows, we analyze two limitations of
the existing fuzzy information granularities, which become the
main motivations of this study.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, FINAL VERSION 2

(1) Usually, if the fuzzy information granularities of two
fuzzy granular structures are equivalent, then one means that
uncertainty of these two fuzzy granular structures are identical.
But, we cannot judge that they are the same granular structure.
That is to say, the fuzzy information granularity cannot well
differentiate two fuzzy granular structures from the same fuzzy
knowledge base.

(2) An axiomatic constraint of fuzzy information granularity
proposes constraints of how to define a reasonable measure for
quantifying the information granularity of a fuzzy granular
structure, in which a partial order relation plays a very
important role. In recent years, several partial order relations
have been developed on fuzzy granular structures, where
the granulation partial order relation is the most successful
for distinguishing the coarseness/fineness between two fuzzy
granular structures. Despite its success, the partial order re-
lation often cannot be found between many fuzzy granular
structures. This shows that the existing axiomatic approaches
still are incomplete for depicting axiomatic constraints of a
fuzzy information granularity.

From the above these analyses, it can be seen that fuzzy
information granularity still needs further study. To address
these issues, in this paper, we first present a new concept,
fuzzy granular structure distance, for differentiating two fuzzy
granular structures from the same universe. Its some inter-
esting properties are also analyzed, which are used to verify
its correctness, validity and rationality. Based on the fuzzy
granular structure distance, then, one gives an axiomatic
approach to fuzzy information granularity, called a generalized
fuzzy information granularity, which is established based on
the fuzzy granular structure distance between a fuzzy granular
structure and the finest one. This developed axiomatic ap-
proach can well overcome the limitation of existing versions.
Finally, through using the fuzzy granular structure distance,
we also build a bridge between fuzzy information granularity
and fuzzy information entropy. This bridge shows that in
some sense, there may be a complement relationship between
the fuzzy information granularity and the fuzzy information
entropy.

The organization of the rest of the paper is as follows. In
Section 2, several preliminary concepts in granular computing
are briefly recalled. In Section 3, we discuss two limitations
of existing forms of information granularity. To overcome
these limitations, Section 4 presents a so-called fuzzy granular
structure distance to characterize the difference between any
two fuzzy granular structures, and gives its several interesting
properties. In Section 5, through analyzing existing axiomatic
approaches to fuzzy information granularity, based on the
proposed fuzzy granular structure distance, we develop a much
more generalized axiomatic approach, called a generalized
fuzzy information granularity, which solves the problem that
each of existing partial order relations between fuzzy granular
structures is often not found. In section 6, we also built
a bridge between fuzzy information granularity and fuzzy
information entropy. Finally, Section 7 gives a conclusion of
this paper.

II. PRELIMINARIES

In granular computing, granular structure bases, fuzzy gran-
ular structure bases, fuzzy information granules and fuzzy
granular structures are several important concepts, which will
be briefly reviewed in this section.

An approximation space K = (U,R) in rough set theory is
also called a granular structure in granular computing, where
U is a finite and non-empty set, called a universe, and R ⊆
U×U is an equivalence relation on U [31], [32]. The universe
U can be partitioned into some disjoint classes by a given
equivalence relation R, which is generally called a quotient
set, just U/R. An equivalence relation is a special kind of
similarities among objects from a data set. When two objects
are included in the same class ER(x), one can say that these
two objects cannot be distinguished using the equivalence
relation R. In general, a granular structure determined by R on
U cam be formally represented as F (R) = {ER(x) | x ∈ U},
in which each equivalence class ER(x), x ∈ U , is viewed as
an information granule consisting of indistinguishable objects
[23], [24], [38]. A family of granular structures from the
same universe is called a granular structure base, denoted by
F = (U, R), where U is a finite universe and R is a set of
equivalence relations.

Given a granular structure base F = (U, R), one knows
that every granular structure F (R) = {ER(x) | x ∈ U} is
a cover of the universe U , where ∀x ∈ U , ER(x) 6= Ø and⋃

x∈U ER(x) = U hold. Given this representation, a partial
order relation ¹ has been introduced [12], [13], [37], [53],
which is as follows:

P ¹ Q (P, Q ∈ R) ⇔ EP (xi) ⊆ EQ(xi) for any
i ∈ {1, 2, · · · , |U |}.

If P ¹ Q, one can say that P is much finer than Q. It has
been proved (R,¹) is a poset [12], [53].

However, as Professor Zadeh pointed out, a crisp informa-
tion granulation does not well characterize the fact that in
much, perhaps most, the granules of human reasoning and
information granulation are fuzzy rather than crisp [56]. It is
necessary to generalize crisp information granulations to fuzzy
cases. To address this issue, we review the following concepts
in fuzzy cases.

In fuzzy information granulation, an equivalence relation in
the crisp information granulation is replaced by a fuzzy binary
relation R̃ from a given universe U . We often represents a
fuzzy binary relation by a relation matrix, which is formally
as follows

M(R̃) =




r11 r12 · · · r1n

r21 r22 · · · r2n

· · · · · · · · · · · ·
rn1 rn2 · · · rnn


 , (1)

where rij ∈ [0, 1] means the similarity between two objects
xi and xj .

Given two fuzzy binary relations R̃1, R̃2, several operations
between them have been often defined as

1) R̃1 = R̃2 ⇔ R̃1(x, y) = R̃2(x, y), for all x, y;
2) R̃ = R̃1 ∪ R̃2 ⇔ R̃ = max{R̃1(x, y), R̃2(x, y)};
3) R̃ = R̃1 ∩ R̃2 ⇔ R̃ = min{R̃1(x, y), R̃2(x, y)};
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4) R̃1 ⊆ R̃2 ⇔ R̃1(x, y) ≤ R̃2(x, y), for all x, y.
Similar to an equivalence relation, given a universe, a

fuzzy binary relation can correspondingly induce a set of
fuzzy information granules, which is regarded as a fuzzy
binary granular structure. In order to uniformly represent,
the granulation result characterized by this family of fuzzy
information granules is uniformly called a fuzzy granular
structure in this paper. A fuzzy binary granular structure on
U is formally written as

F (R̃) = (G eR(x1), G eR(x2), · · · , G eR(xn)), (2)

where G eR(xi) = ri1/x1 + ri2/x2 + · · · + rin/xn. G eR(xi)
means the fuzzy information granule determined by xi with
respect to R, and rij is the similarity between objects xi and
xj [3], [6]. Here, “+” indicates the union of objects. In fact,
G eR(xi) also can be understood as the fuzzy neighborhood of
xi in a sense. The cardinality of the fuzzy information granule
G eR(xi) can be calculated with

|G eR(xi)| =
n∑

j=1

rij . (3)

A family of fuzzy binary granular structures is called
a fuzzy granular structure base, denoted by F = (U, R̃).
To uniformly represent granular structures, in this study, a
fuzzy binary granular structure determined by P̃ ∈ R̃ is
denoted as F (P̃ ) = (G eP (x1), G eP (x2), · · · , G eP (xn)), where
G eP (xi) = pi1/xi + pi2/xi + · · · + pin/xi. In this case, the
granular structure is also a binary neighborhood system (BNS)
[17]–[24]. Furthermore, we let F(U) note the collection of all
fuzzy binary granular structures from a given universe U .

Given a fuzzy binary granular structure F =
(S eP (x1), G eP (x2), · · · , G eP (xn)), in particular, if pij = 0,
i, j ≤ n, then |G eP (xi)| = 0, i ≤ n, and the fuzzy
granular structure is called the finest one, write as P̃ = ω̃,
i.e., F (ω̃) = (Geω(x1), Geω(x2), · · · , Geω(xn)), where
Geω(xi) =

∑n
j=1

ωij

xj
,∀i, j ≤ n, ωij = 0; if pij = 1,

i, j ≤ n, then |G eP (xi)| = |U |, i ≤ n, and the fuzzy
granular structure is called the coarsest one, write as
P̃ = δ̃, i.e., F (δ̃)(Geδ(x1), Geδ(x2), · · · , Geδ(xn)), where
Geδ(xi) =

∑n
j=1

δij

xj
,∀i, j ≤ n, δij = 1.

These fuzzy granular structures found some base units
in human fuzzy reasoning. The underlying algebra structure
among F(U) has been discovered, which can used to reveal
the hierarchical structure on fuzzy granular structures [41].
To investigate this issue, four operators among fuzzy granular
structures have been proposed for revealing the algebra struc-
ture. These four operators in a family of fuzzy binary granular
structures are defined by the following definition.

Definition 1: Let F(U) be the collection of all fuzzy binary
granular structures on the universe U , G(P̃ ), G ∈ F(U) two
fuzzy granular structures. Four operators

⋂
,

⋃
, − and o on

F(U) are defined as

F (P̃ )
⋂

F (Q̃) = {G eP∩ eQ(xi) | G eP∩ eQ(xi) = G eP (xi)∩G eQ(xi)},
(4)

F (P̃ )
⋃

F (Q̃) = {G eP∪ eQ(xi) | G eP∪ eQ(xi) = G eP (xi)∪G eQ(xi)},
(5)

F (P̃ )−F (Q̃) = {G eP− eQ(xi) | G eP− eQ(xi) = G eP (xi)∩ ∼ G eQ(xi)},
(6)

oF (P̃ ) = {oS eP (xi) | oG eP (xi) =∼ G eP (xi)}, (7)

where xi ∈ U , i ≤ n and ∼ G eP (xi) = (1 − pi1)/xi + (1 −
pi2)/xi + · · ·+ (1− pin)/xi.

These four operators are used to execute intersection op-
eration, union operation, subtraction operation and comple-
ment operation in-between fuzzy granular structures. Based
on these four operators, we can fine, coarsen, decompose
fuzzy granular structures and calculate complement of a fuzzy
granular structure, respectively. It deserves to point out that⋂

,
⋃

, − and o can be seen as four atomic formulas, and their
finite connections are also formulas. In the context of these
four operators, it has been proved that the algebra structure
of these fuzzy granular structures is a lattice structure. In
addition, those proposed four operators also can be employed
for generating some new fuzzy granular structures on the same
universe. That is to say, on the same universe, we can induce
new fuzzy binary granular structures by some known fuzzy
binary granular structures through combining these operators.
Furthermore, these four operators have some nice properties
which have been discussed in [41].

III. TWO LIMITATIONS OF FUZZY INFORMATION
GRANULARITY

Fuzzy information granularity and fuzzy information en-
tropy are two main approaches to measuring the uncertainty
of a fuzzy granular structure [3], [41]. A fuzzy information
granularity is used to assess the coarseness of a fuzzy granular
structure, while a fuzzy information entropy is adopted for
measuring the uncertainty of the actual structure of a fuzzy
granular structure. As Qian et al. pointed out [41], in a sense,
the relationship between fuzzy information entropy and fuzzy
information granularity may be a complement relationship,
and they have the same capability for characterizing the
uncertainty of a fuzzy binary granular structure. However,
the existing definitions of fuzzy information granularity still
have two shortages, which are revealed by the following two
subsections, respectively.

A. First limitation of fuzzy information granularity
In granular computing, the scale of each of information

granules is often taken into account for designing measures
of information granularity [14], [33]–[36], [38], which are
used to compute the degree of granulation of a crisp granular
structure. Some of fuzzy information entropies are also defined
based on sizes of fuzzy information granules in a fuzzy
granular structure. To measure the information granularity of
a fuzzy granular structure, the literature [3] and the literature
[41] developed two forms of fuzzy information granularities,
respectively. In the following, we only review these two
definitions of fuzzy information granularity.

Definition 2: Let F (R̃) = (G eR(x1), G eR(x2), · · · ,
G eR(xn)). Then, fuzzy information granularity of R̃ is
defined as

GK(R̃) =
1
n

n∑

i=1

|G eR(xi)|
n

, (8)
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where |G eR(xi)| is the cardinality of the fuzzy information
granule G eR(xi).

Definition 3: Let F (R̃) = (G eR(x1), G eR(x2), · · · ,
G eR(xn)). Then, fuzzy information granularity of R̃ is
defined as

Er(R̃) = −
n∑

i=1

1
n

log2
1

|G eR(xi)| , (9)

where |G eR(xi)| is the cardinality of the fuzzy information
granule G eR(xi).

Usually, if the fuzzy information granularity (or fuzzy
information entropy) of one fuzzy granular structure is equal
to that of the other fuzzy granular structure, one can say
that these two fuzzy granular structures possess the same
uncertainty. But, this does not mean that these two fuzzy
granular structures are equivalent each other. That is to say,
the fuzzy information entropy and the fuzzy information
granularity cannot well reveal the difference between two
fuzzy granular structures in a fuzzy granular structure base.
It can be seen from the following examples.

Example 1: Let U = {x1, x2, x3}, F (P̃ ) = (G eP (x1),
G eP (x2), G eP (x3)) ∈ F(U) and F (Q̃) = (G eQ(x1),
G eQ(x2), G eQ(x3)) ∈ F(U) be two fuzzy granular structures,
where G eP (x1) = 0.2/x1 + 0.3/x2 + 0.6/x3, G eP (x2) =
0.4/x2 + 0.7/x2 + 0.8/x2, G eP (x3) = 0.2/x1 + 0.2/x2 +
0.6/x3, and G eQ(x1) = 0.4/x1 +0.4/x2 +0.3/x3, G eQ(x2) =
0.3/x1 + 0.4/x2 + 0.3/x3, G eQ(x3) = 0.5/x1 + 0.6/x2 +
0.8/x3.

From Definition 2, we calculate their fuzzy information
granularities as follows.

GK(P̃ ) = 1
3

∑3
i=1

|G eP (xi)|
3 = 4

9 ,
GK(Q̃) = 1

3

∑3
i=1

|G eP (xi)|
3 = GK(P̃ ) = 4

9 .
That is GK(P̃ ) = GK(Q̃).

From Definition 3, we compute the information granularities
of these two fuzzy granular structures as follows.

Er(P̃ ) = −
3∑

i=1

1
3 log2

1
|G eR(xi)| = 1

3 log22.09,

Er(Q̃) = −
3∑

i=1

1
3 log2

1
|G eR(xi)| = 1

3 log22.09.

That is Er(P̃ ) = Er(Q̃).
However, the fuzzy granular structure F (P̃ ) is clearly not

equal to F (Q̃). It shows that the fuzzy information granularity
cannot effectively differentiate any two fuzzy granular struc-
tures. Fuzzy information entropy also has the same shortage,
and hence we omit its discussion here.

B. Second limitation of fuzzy information granularity

For characterizing the uncertainty of a granular structure,
a partial order relation plays a very important role. In recent
years, several partial order relations on fuzzy granular struc-
tures have been developed. In what follows, we review the
existing partial order relations and their properties.

In what follows, we suppose F (P̃ ), F (Q̃) ∈ F(U),
where F (P̃ ) = (G eP (x1), G eP (x2), · · · , G eP (xn)), G eP (xi) =
pi1/x1 + · · · + pii/xi + · · · + pin/xn, F (Q̃) =
(G eQ(x1), G eQ(x2), · · · , G eQ(xn)) and G eQ(xi) = qi1/x1 +

· · · + qii/xi + · · · + qin/xn, then the existing partial order
relations and their properties are as follows.

The partial order relation ¹̃1 is defined as [3], [45]:
F (P̃ )¹̃1F (Q̃) ⇔ G eP (xi) ⊆ G eQ(xi), for all i ≤ n ⇔

pij ≤ qij , for all i, j ≤ n, just P̃ ¹̃1Q̃. It is called a rough
partial order relation.

Furthermore, F (P̃ ) = F (Q̃) ⇔ G eP (xi) = G eQ(xi), for
all i ≤ n ⇔ pij = qij , for all i, j ≤ n, write as P̃ = Q̃.
F (P̃ )≺̃1F (Q̃) ⇔ F (P̃ )¹̃1F (Q̃) and F (P̃ ) 6= F (Q̃), denoted
by P̃ ≺̃1Q̃.

The partial order relation ¹̃2 is defined as [41]:
F (P̃ )¹̃2F (Q̃) ⇔ |G eP (xi)| ≤ |G eQ(xi)|, for all i ≤ n, where
|G eP (xi)| =

∑n
j=1 pij , |G eQ(xi)| =

∑n
j=1 qij , just P̃ ¹̃2Q̃.

The partial order relation is called a generalized rough partial
order relation.

Moreover, F (P̃ ) ' F (Q̃) ⇔ |G eP (xi)| = |G eQ(xi)|, for all
i ≤ n, just P̃ ' Q̃. F (P̃ )≺̃2F (Q̃) ⇔ F (P̃ )¹̃2F (Q̃) and
F (P̃ ) 6' F (Q̃), write as P̃ ≺̃2Q̃.

The partial order relation ¹3 is defined as [41]:
F (P̃ )¹̃3F (Q̃) ⇔ for F (P̃ ), there exists a sequence F

′
(Q̃)

of F (Q̃) such that |G eP (xi)| ≤ |G eQ(x
′
i)|, for all i ≤ n, just

P̃ ¹̃3Q̃, where F
′
(Q̃) = (G eQ(x

′
1), G eQ(x

′
2), · · · , G eQ(x

′
n)). It

is called a granulation partial order relation.
In addition, F (P̃ ) ≈ F (Q̃) ⇔ |G eP (xi)| = |G eQ(x

′
i)|, for all

i ≤ n, denoted by P̃ ≈ Q̃. F (P̃ )≺̃3F (Q̃) ⇔ F (P̃ )¹̃3F (Q̃)
and F (P̃ ) 6≈ F (Q̃), write as P̃ ≺̃3Q̃.

To date, these three partial order relations have been well
used to compare the coarseness/fineness between two given
fuzzy granular structures from the same universe. The rela-
tionships among these three partial order relations had been
established with the following three theorems.

Theorem 1: [41] Partial order relation ¹̃1 is a special
instance of partial relation ¹̃2.

Theorem 2: [41] Partial order relation ¹̃2 is a special
instance of partial relation ¹̃3.

Theorem 3: [41] Partial order relation ¹1 is a special
instance of partial relation ¹̃3.

From the above theorems, one can draw such a conclusion
that the partial order relation ¹̃3 is the best one for distin-
guishing the coarseness/fineness between two fuzzy granular
structures. However, the partial order relation ¹̃3 still has its
shortages for distinguishing fuzzy granular structures. This
is because that one cannot find these partial order relations
among some fuzzy granular structures, which is illustrated
with Example 2.

Example 2: Let U = {x1, x2, x3, x4}, F (P̃ ) = (G eP (x1),
G eP (x2), G eP (x3), G eP (x4)) ∈ F(U) and F (Q̃) = (G eQ(x1),
G eQ(x2), G eQ(x3), G eQ(x4)) ∈ F(U) be two fuzzy granular
structures, where G eP (x1) = 1/x1 + 0/x2 + 0/x3 + 0/x4,
G eP (x2) = 0.3/x2+0.6/x2+0/x2+0/x4, G eP (x3) = 0/x1+
0/x2+0.4/x3+0/x4, G eP (x4) = 0/x1+0/x2+0/x3+0.1/x4,
and G eQ(x1) = 1/x1 + 0.6/x2 + 0/x3 + 0.7/x4, G eQ(x2) =
0.3/x1 + 0.7/x2 + 0.8/x3 + 0/x4, G eQ(x3) = 0/x1 + 0/x2 +
0/x3 + 0/x4, G eQ(x4) = 0/x1 + 0/x2 + 0.7/x3 + 0.4/x4.

For this example, there does not exist any array of members
in F (Q̃) such that F (P̃ )¹̃3F (Q̃) or F (Q̃)¹̃3F (P̃ ). Never-
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theless, the fuzzy granular structure F (Q̃) should be much
coarser than the fuzzy granular structure F (P̃ ), intuitively.
Unfortunately, one cannot differentiate the coarseness/fineness
between these two fuzzy granular structures through using
the granulation partial order relation ¹̃3 in this case. That
is to say, when there does not exist one of these three
partial order relations between F (P ) and F (Q), their informa-
tion granularities cannot be compared. Hence, the axiomatic
definitions of information granularity based on these partial
order relations still have such a limitation for characterizing
coarseness/fineness degrees among fuzzy granular structures.

From Subsection A and Subsection B, the existing forms
of fuzzy information granularity have two obvious limitations,
which brings a challenge for studying uncertainty in granular
computing. To overcome these limitations, it is very desirable
to develop a measure for differentiating two fuzzy granular
structures, which is an important problem in granular com-
puting.

IV. FUZZY GRANULAR STRUCTURE DISTANCE AND ITS
PROPERTIES

In this section, we will introduce a concept of fuzzy granular
structure distance to distinguish two given fuzzy knowledge
structures.

From the composition of a fuzzy granular structure, fuzzy
information granules are basic units. To give an effective
distance between two fuzzy granular structures, the fuzzy
information granules determined by an object with two fuzzy
binary relations should be well differentiated. The accumula-
tion of differences on fuzzy information granules determined
by all objects can characterize the entire difference between
two fuzzy granular structures from the same universe.

Based on the above idea, given a universe U , we introduce
a new concept of fuzzy granular structure distance with the
following definition.

Definition 4: Let F = (U, R̃) be a fuzzy granular struc-
ture base, P̃ , Q̃ ∈ R̃, F (P̃ ) = {G eP (x), x ∈ U} and
F (Q̃) = {G eQ(x), x ∈ U} two fuzzy granular structures. The
fuzzy granular structure distance between F (P̃ ) and F (Q̃) is
formally defined as

D(F (P̃ ), F (Q̃)) =
1
|U |

|U |∑

i=1

|G eP (xi)∆G eQ(xi)|
|U | , (10)

where |G eP (xi)∆G eQ(xi)| = |G eP (xi)∪G eQ(xi)| − |G eP (xi)∩
G eQ(xi)|, xi ∈ U .

The fuzzy granular distance can well describe the difference
between two fuzzy granular structures coming from the same
universe.

Theorem 4 (Extremum): Let F(U) be the collection of all
fuzzy granular structures induced by the universe U , F (P̃ ),
F (Q̃) two granular structures in F(U). Then, D(F (P̃ ), F (Q̃))
achieves its minimum value D(F (P̃ ), F (Q̃)) = 0 if and only
if F (P̃ ) = F (Q̃); and D(F (P̃ ), F (Q̃)) achieves its maximum
value 1 if P̃ = ω and Q̃ = δ (or P̃ = δ and Q̃ = ω).

Obviously, 0 ≤ D(F (P̃ ), F (Q̃)) ≤ 1 holds.
In what follows, we continue to employ Example 1 for

verifying the validity of the fuzzy granular structure distance.

Example 3: (Continued from Example 1) By Definition 4,
it follows that

D(F (P̃ ), F (Q̃)) = 1
|U |

|U |∑
i=1

|G eP (xi)∆G eQ(xi)|
|U |

= 1
3 ( 0.6+0.9+0.9

3 ) = 2.4
9 .

It can be seen that the fuzzy granular structure distance can
effectively measure the difference of those two fuzzy granular
structures in Example 1.

In what follows, we investigate some of important properties
of the fuzzy granular structure distance proposed above.

Based on the definition of the fuzzy rough partial relation
¹̃1 among fuzzy granular structures, we can find that the
relation among fuzzy granular structures is based on the
inclusion relations between two fuzzy information granules
of every object with two fuzzy binary relations. Therefore,
we can employ the rough partial relation ¹̃1 for investigating
the properties of the fuzzy granular structure distance.

For further investigation, we first give a distance between
two fuzzy sets with the same number of objects.

Let Ã and B̃ be two fuzzy sets, then the difference between
them can be described by the equation as follows.

d(Ã, B̃) = |Ã ∪ B̃| − |Ã ∩ B̃|. (11)

For the distance between fuzzy sets, one can obtain the
following lemma.

Lemma 1: Let Ã, B̃, C̃ be three fuzzy sets on the same
universe, Ã ⊆ B̃ ⊆ C̃ or Ã ⊇ B̃ ⊇ C̃, then d(Ã, B̃) +
d(B̃, C̃) = d(Ã, C̃).

Proof: Supposing Ã ⊆ B̃ ⊆ C̃, then for any xi ∈ U , we
have µ eA(xi) ≤ µ eB(xi) ≤ µ eC(xi). Hence,

d(Ã, B̃) + d(B̃, C̃)
= |Ã ∪ B̃| − |Ã ∩ B̃|+ |B̃ ∪ C̃| − |B̃ ∩ C̃|
=

n∑
i=1

µ eB(xi)−
n∑

i=1

µ eA(xi) +
n∑

i=1

µ eC(xi)−
n∑

i=1

µ eB(xi)

=
n∑

i=1

µ eC(xi)−
n∑

i=1

µ eA(xi)

= |Ã ∪ C̃| − |Ã ∩ C̃|
= d(Ã, C̃)
If Ã ⊇ B̃ ⊇ C̃, similarly, we have d(Ã, B̃) + d(B̃, C̃) =

d(Ã, C̃). This completes the proof.
Let F (P̃ ) = {G eP (x), x ∈ U}, F (Q̃) = {G eQ(x), x ∈

U} and F (R̃) = {G eR(x), x ∈ U} be three fuzzy granular
structures on the universe U . By Definition 4 and Lemma 1,
we can get some theorems as follows.

Theorem 5: Let F = (U, R̃) be a fuzzy granular
structure base, P̃ , Q̃, R̃ ∈ R̃. If F (P̃ )¹̃1F (Q̃)¹̃1F (R̃)
or F (R̃)¹̃1F (Q̃)¹̃1F (P̃ ), then D(F (P̃ ), F (R̃)) =
D(F (P̃ ), F (Q̃)) + D(F (Q̃), F (R̃)).

Proof: Suppose that F (P̃ )¹̃1F (Q̃)¹̃1F (R̃), for any xi ∈
U , we have G eP (xi) ⊆ G eQ(xi) ⊆ G eR(xi). By Lemma 1, one
has that

D(F (P̃ ), F (Q̃)) + D(F (Q̃), F (R̃))

= 1
|U |

|U |∑
i=1

|G eP (xi)∆G eQ(xi)|
|U | + 1

|U |
|U |∑
i=1

|G eQ(xi)∆G eR(xi)|
|U |

= 1
|U |

|U |∑
i=1

d(G eP (xi),G eQ(xi))

|U | + 1
|U |

|U |∑
i=1

d(G eQ(xi),G eR(xi))

|U |
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= 1
|U |

|U |∑
i=1

d(G eP (xi),G eQ(xi))+d(G eQ(xi),G eR(xi))

|U |

= 1
|U |

|U |∑
i=1

d(G eP (xi),G eR(xi))

|U |

= D(F (P̃ ), F (R̃))
Similarly, when F (R̃)¹̃1F (Q̃)¹̃1F (P̃ ), one also has that

D(F (P̃ ), F (R̃)) = D(F (P̃ ), F (Q̃))+D(F (Q̃), F (R̃)). This
completes the proof.

This theorem is clearly illustrated by the following Example
4.

Example 4: Let U = {x1, x2}, F (P̃ ) = (G eP (x1),
G eP (x2)) ∈ F(U), F (Q̃) = (G eQ(x1), G eQ(x2)) ∈
F(U), F (R̃) = (G eR(x1), G eR(x2)) ∈ F(U), and
F (P̃ )¹̃1F (Q̃)¹̃1F (R̃), where G eP (x1) = 0.1/x1 + 0.2/x2,
G eP (x2) = 0.2/x2 + 0.3/x2, G eQ(x1) = 0.2/x1 + 0.3/x2,
G eQ(x2) = 0.3/x1 + 0.4/x2, G eR(x1) = 0.3/x1 + 0.4/x2,
G eR(x2) = 0.4/x1 + 0.6/x2. By Definition 4, one can
get D(F (P̃ ), F (Q̃)) = 0.4

4 , D(F (Q̃), F (R̃)) = 0.5
4 ,

and D(F (Q̃), F (R̃)) = 0.9
4 , hence D(F (P̃ ), F (R̃)) =

D(F (P̃ ), F (Q̃)) + D(F (Q̃), F (R̃)).
From the above discussions and analysis, we can get three

corollaries as follows.
Corollary 1: Let F(U) be a family of all fuzzy granular

structures induced by a given universe U , F (P̃ ), F (Q̃) ∈
F̃(U) two fuzzy granular structures. If F (P̃ )¹̃1F (Q̃), then
one has that D(F (P̃ ), F (ω̃)) ≤ D(F (Q̃), F (ω̃)).

Corollary 2: Let F(U) be a family of all fuzzy granular
structures induced by a given universe U , F (P̃ ), F (Q̃) ∈
F̃(U) two fuzzy granular structures. If F (P̃ )¹̃1F (Q̃), then
one has that D(F (P̃ ), F (δ̃)) ≥ D(F (Q̃), F (δ̃)).

In what follows, we discuss the triangle inequality of the
fuzzy granular structure distance on F̃(U).

Due to the maximum and minimum operators of the fuzzy
set and Equation (11), we can easily obtain another lemma as
follows.

Lemma 2: Given three fuzzy sets Ã, B̃ and C̃, then
d(Ã, B̃)+d(B̃, C̃) ≥ d(Ã, C̃), d(Ã, B̃)+d(Ã, C̃) ≥ d(B̃, C̃)
and d(Ã, C̃) + d(B̃, C̃) ≥ d(Ã, B̃).

Based on the lemma above, one can draw a conclusion that
(F(U), D) is a distance metric on F(U).

Theorem 6: Let F(U) be a family of all fuzzy granular
structures induced by a given universe U , then (F(U), D) is
a distance space.

Proof: 1) By Definition 4, it is clear that
D(F (P̃ ),K(Q̃)) ≥ 0.

2) From the symmetry of the operator ∆, one has that
D(F (P̃ ), F (Q̃)) = D(F (Q̃),K(P̃ )).

3) In order to prove the triangle inequality, given three fuzzy
granular structures F (P ), F (Q) and F (R̃) ∈ F(U), without
loss of generality, one needs to prove D(F (P̃ ), F (Q̃)) +
D(F (P̃ ), F (R̃)) ≥ D(F (Q̃), F (R̃)).

By Lemma 2, for xi ∈ U , D(G eP (xi), G eQ(xi)) +
D(G eP (xi), G eR(xi)) ≥ D(G eQ(xi), G eR(xi)), hence

D(F (P̃ ),K(Q̃)) + D(F (P̃ ),K(R̃))

= 1
|U |

|U |∑
i=1

|G eP (xi)∆G eQ(xi)|
|U | + 1

|U |
|U |∑
i=1

|G eP (xi)∆G eR(xi)|
|U |

= 1
|U |

|U |∑
i=1

d(G eP (xi),G eQ(xi))

|U | + 1
|U |

|U |∑
i=1

d(G eP (xi),G eR(xi))

|U |

= 1
|U |

|U |∑
i=1

1
|U | (d(G eP (xi), G eQ(xi)) + d(G eP (xi), G eR(xi)))

≥ 1
|U |

|U |∑
i=1

d(G eQ(xi),G eR(xi))

|U |

= 1
|U |

|U |∑
i=1

D(F (Q̃), F (R̃))

Analogously, one has that D(F (R̃), F (Q̃)) +
D(F (P̃ ), F (R̃)) ≥ D(F (Q̃), F (P̃ )) and D(F (R̃), F (Q̃)) +
D(F (P̃ ), F (Q̃)) ≥ D(F (R̃), F (P̃ )).

Therefore, (F̃(U), D) is a distance space.

Example 5: (Continued from Example 2) By Defini-
tion 4, we can obtain that D(K(P̃ ), F (Q̃)) = 2.6

9 ,
D(F (Q̃), F (R̃)) = 2.6

9 , and D(F (P̃ ), F (R̃)) = 1.4
9 .

Thus, one has that D(F (R̃), F (Q̃)) + D(F (P̃ ), F (R̃)) ≥
D(F (Q̃), F (P̃ )), D(F (R̃), F (Q̃)) + D(F (P̃ ), F (Q̃)) ≥
D(F (R̃), F (P̃ )).

From the above discussions, we conclude that the fuzzy
granular structure distance is an effective metric for calculating
the difference between two fuzzy granular structures from the
same universe, which also can describe the geometric structure
of all fuzzy granular structures from the same universe from
the idea of geometry.

V. GENERALIZED FUZZY INFORMATION GRANULARITY

In recent years, several researchers have already paid atten-
tion to the problem of what is the essence of fuzzy information
granularity for fuzzy granular structures. Qian et al. [41]
attempted to unify the definitions by using some existing
axiomatic approaches to fuzzy information granularity. In
this section, based on the proposed fuzzy granular structure
distance, we aim to propose a generalized axiomatic definition
to fuzzy information granularity.

Through employing the partial order relation ¹i, i ∈
{1, 2, 3}, Qian et al. [41] had given three axiomatic
definitions of a fuzzy information granularity in the context
of fuzzy binary granular structures.

Definition 5: [41] Let F(U) be the set constructed by all
fuzzy binary granular structures on the universe U . ∀F (P̃ ) ∈
F(U), there exists a real number g(P̃ ) satisfying the following
properties:

1) g(P̃ ) ≥ 0 (Nonnegativity);
2) if F (P̃ ) = F (Q̃), ∀F (P̃ ), F (Q̃) ∈ F(U), then g(P̃ ) =

g(Q̃) (Invariability);
3) if F (P̃ )≺̃1F (Q̃), ∀F (P̃ ), F (Q̃) ∈ F(U), then g(P̃ ) <

g(Q̃) (Monotonicity);
then g is called a fuzzy rough granularity (just FRG).

Definition 6: [41] Let F(U) be the set constructed by all
fuzzy binary granular structures on the universe U . ∀F (P̃ ) ∈
F(U), there exists a real number g(P̃ ) satisfying the following
properties:

1) g(P̃ ) ≥ 0 (Nonnegativity);
2) if F (P̃ ) ' F (Q̃), ∀F (P̃ ), F (Q̃) ∈ F(U), then g(P̃ ) =

g(Q̃) (Invariability);
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3) if F (P̃ )≺̃2F (Q̃), ∀F (P̃ ), F (Q̃) ∈ F(U), then g(P̃ ) <
g(Q̃) (Monotonicity);
then g is called a generalized fuzzy rough granularity (just
GFRG).

Definition 7: [41] Let F(U) be the set constructed by all
fuzzy binary granular structures on the universe U . ∀F (P̃ ) ∈
F(U), there exists a real number g(P̃ ) satisfying the following
properties:

1) g(P̃ ) ≥ 0 (Nonnegativity);
2) if F (P̃ ) ≈ F (Q̃), ∀F (P̃ ), F (Q̃) ∈ F(U), then g(P̃ ) =

g(Q̃) (Invariability);
3) if F (P̃ )≺̃3F (Q̃), ∀F (P̃ ), F (Q̃) ∈ F(U), then g(P̃ ) <

g(Q̃) (Monotonicity);
then g is called a fuzzy information granularity (just FIG).

For the above three axiomatic definitions of fuzzy informa-
tion granularity, to date, the fuzzy information granularity has
the strongest ability for differentiating the coarseness/fineness
degrees of fuzzy granular structures. It is very interesting that
the fuzzy granular structure distance can be used to construct
a fuzzy information granularity. This mechanism is shown in
the following theorem.

Theorem 7: Let F(U) be the set constructed by all fuzzy
binary granular structures on the universe U . ∀F (P̃ ), F (ω̃) ∈
F(U). Then D(F (P̃ ), F (ω̃)) is a fuzzy information granular-
ity.

Proof: Assume U be a finite universe, let
F (P̃ ) = (G eP (x1), G eP (x2), · · · , G eP (xn)) and
F (ω̃) = (Geω(x1), Geω(x2), · · · , Geω(xn)), where
Geω(xi) =

∑n
j=1

ωij

xj
,∀i, j ≤ n, ωij = 0.

(1) Clearly, the distance D is non-negative.
(2) If F (P̃ ) ≈ F (Q̃), then there must exist a bijective

mapping function f : F (P̃ ) → F (Q̃) such that |G eP (xi)| =
|f(G eP (xi))|, xi ∈ U , and f(G eP (xi)) = G eQ(xji

). One has
that

D(F (P̃ ), F (ω̃)) = 1
|U |

|U |∑
i=1

|G eP (xi)∆Geω(xi)|
|U |

= 1
|U |

|U |∑
i=1

|G eP (xi)|−0

|U | = 1
|U |

|U |∑
i=1

|f(G eP (xi))|−0

|U |

= 1
|U |

|U |∑
i=1

|G eQ(xji
)|−0

|U | = 1
|U |

|U |∑
j=1

|G eQ(xj)|−0

|U |

= D(F (Q̃), F (ω̃)).
(3) Now one proves that if F (P̃ )≺̃3F (Q̃), then

D(F (P̃ ), F (ω̃)) < D(F (Q̃), F (ω̃)). Let P̃ , Q̃ ∈ R̃ with
F (P̃ )≺̃3F (Q), F (P̃ ) = {G eP (x1), G eP (x2), · · · , G eP (x|U |)}
and F (Q̃) = {G eQ(x1), G eQ(x2), · · · , G eQ(x|U |)}, then
there exists a sequence F

′
(Q̃) of F (Q̃), where F

′
(Q̃) =

{G eQ(x
′
1), G eQ(x

′
2), · · · , G eQ(x

′
|U |)}, such that |G eP (xi)| ≤

|G eQ(x
′
i)|, and there at least exists xs ∈ U such that

|G eP (xs)| < |f(G eP (xs))| = |G eQ(x
′
s)|. Thus,

D(F (P̃ ), F (ω̃)) = 1
|U |

|U |∑
i=1

|G eP (xi)∆Geω(xi)|
|U |

= 1
|U |

|U |∑
i=1

|GP (xi)|−0
|U |

= 1
|U | (

|U |∑
i=1,i 6=s

|G eP (xi)|−0

|U | + |G eP (xs)|−0

|U | )

Fig. 1: Fuzzy granular structure distance with F (ω̃)

< 1
|U | (

|U |∑
i=1,i 6=s

|G eQ(xi)|−0

|U | +
|G eQ(x

′
s)|−0

|U | )

= 1
|U |

|U |∑
i=1

|G eQ(xi)∆Geω(xi)|
|U |

= D(F (Q̃), F (ω̃)),
i.e., D(F (P̃ ), F (ω̃)) < D(F (Q̃), F (ω̃)).

Summarizing above, D(F (P̃ ), F (ω̃)) is a fuzzy information
granularity.

From the theorem above, we can see that the fuzzy granular
structure distance between the fuzzy granular structure F (P̃ )
and the finest one F (ω̃) can be regarded as a fuzzy information
granularity. In fact, the distance D(F (P̃ ), F (ω̃)) has some
better properties for depicting the information granularity of
any fuzzy granular structure. Its advantages can be further
explained in the following paragraph.

Through analyzing the sematic of the fuzzy granular struc-
ture distance D(F (P̃ ), F (ω̃)), one can come back to resurvey
the performance of information granularity in Definition 7.
In fact, the axiomatic definition in Definition 7 is still not
the best characterization of information granularity of a fuzzy
granular structure. In Definition 7, one needs to find a suitable
mapping function f such that F (P̃ )¹̃3F (Q̃). Nevertheless, if
this partial order relation cannot be found between F (P̃ ) and
F (Q̃), we will not compare their information granularities.
From the viewpoint of the fuzzy granular structure distance,
we can overcome this limitation. In other words, for two
given fuzzy granular structures, if one cannot distinguish
fineness/roughness relationship in-between them, we can first
use the finest fuzzy granular structure as a reference, and then
observe the fuzzy granular structure distance between every
fuzzy granular structure and the finest one. The longer the
fuzzy granular structure distance between a fuzzy granular
structure and the finest one, the bigger the information gran-
ularity of this fuzzy granular structure. This mechanism can
be closely explained by Figure 1.

In Figure 1, F (P̃ ), F (Q̃), F (R̃) are three fuzzy granular
structures, and F (ω̃) are the finest fuzzy granular structures,
where the partial order relation ¹̃1, ¹̃2 and ¹̃3 are all not
found between F (P̃ ) and F (Q̃). That it to say, each of the
axiomatic definition of fuzzy rough granularity, that of gener-
alized fuzzy rough granularity and that of fuzzy information
granularity cannot deal with this situation. Whereas, if we take
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the finest fuzzy granular structure F (ω̃) as a reference, then
the fuzzy granular structure distance can work. In particular,
it is of interest that when F (P̃ )¹̃1F (R̃), D(F (R̃), F (ω̃)) =
D(F (R̃), F (P̃ )) + D(F (P̃ ), F (ω̃)).

Based on the point of view, we develop a more generalized
and comprehensible axiomatic definition of information gran-
ularity of a fuzzy granular structure in granular computing.

Definition 8: Let F = (U, R) be a fuzzy granular structure
base, if ∀P̃ ∈ R, there exists a real number g(P̃ ) satisfying
the below properties:

(1) g(P̃ ) ≥ 0; (Nonnegativity)
(2) if D(F (P̃ ), F (ω̃)) = D(F (Q̃),K(ω̃)), ∀P̃ , Q̃ ∈ R,

then g(P̃ ) = g(Q̃); (Invariability)
(3) if D(F (P̃ ), F (ω̃)) < D(F (Q̃), F (ω)), ∀P̃ , Q̃ ∈ R, then

g(P̃ ) < g(Q̃), (Granulation monotonicity)
then g̃ is called a generalized fuzzy information granularity
(just GFIG).

In the following, we analyze several properties of the
generalized fuzzy information granularity above.

Theorem 8: Let g is a generalized fuzzy information gran-
ularity on a fuzzy granular structure base F = (U, R) ,
P̃ , Q̃ ∈ R. One has the following properties:

(1) g(P̃ ) = g(o o P̃ );
(2) g(P̃

⋂
Q̃) ≤ g(P̃ ), g(P̃

⋂
Q̃) ≤ g(Q̃);

(3) g(P̃ ) ≤ g(P̃
⋃

Q̃), g(Q̃) ≤ g(P̃
⋃

Q̃).
Proof: They are straightforward.

Example 6: (Continued from Example 2.) To distinguish
the coarseness/fineness degree between those two fuzzy gran-
ular structures, we respectively calculate two fuzzy granular
structure distances to the finest fuzzy granular structure F (ω̃)
as follows.

D(F (P̃ ), F (ω̃)) = 1
|U |

|U |∑
i=1

|GP (xi)∆Geω(xi)|
|U | =

1+0.3+0.6+0.4+0.1
16 = 3

20 ,
and

D(F (Q̃), F (ω̃)) = 1
|U |

|U |∑
i=1

|G eQ(xi)∆Geω(xi)|
|U | =

1+0.6+0.7+0.3+0.7+0.8+0.7+0.4
16 = 13

40 .
Obviously, one has that D(F (P̃ ), F (ω̃)) <

D(F (Q̃), F (ω̃)). Hence, the coarseness/fineness between
these two fuzzy granular structures can be distinguished, and
F (Q̃) is much coarser than F (P̃ ). Therefore, the axiomatic
definition of generalized fuzzy information granularity is
much better than that of fuzzy information granularity in
Definition 7.

In next study, we address whether each of GK in Definition
2 and Er in Definition 3 satisfies the proposed axiomatic
definition of generalized fuzzy information granularity or not.

Theorem 9: GK in Definition 2 is a generalized fuzzy
information granularity under Definition 8.

Proof: 1) Obviously, it is non-negative.
2) Let F (P̃ ), F (Q̃) ∈ F(U) be two fuzzy gran-

ular structures, where F (P̃ ) = (G eP (x1), G eP (x2), · · · ,
G eP (xn)), F (Q̃) = (G eQ(x1), G eQ(x2), · · · , G eQ(xn)). We
assume that D(F (P̃ ), F (ω̃)) = D(F (Q̃), F (ω̃)), then one

has that 1
|U |

|U |∑
i=1

|G eP (xi)∆Geω(xi)|
|U | = 1

|U |
|U |∑
i=1

|G eQ(xi)∆Geω(xi)|
|U | ,

that is 1
|U |

|U |∑
i=1

|G eP (xi)|−0

|U | = 1
|U |

|U |∑
i=1

|G eQ(xi)|−0

|U | , hence,

|U |∑
i=1

|G eP (xi)| =
|U |∑
i=1

|S eQ(xi)|, so P̃ ≈ Q̃ (see the definition of

“ ≈ ” in the Subsection B of Section III). Then, from the defi-
nition of ¹̃3, we can know that there exists a sequence F

′
(Q̃)

of F (Q̃), where F
′
(Q̃) = (G eQ(x

′
1), G eQ(x

′
2), · · · , G eQ(x

′
n)),

such that |G eP (xi)| = |G eQ(x
′
i)|, i ≤ n. Therefore,

GK(P̃ ) = 1
n

n∑
i=1

|G eP (xi)|
n = 1

n

n∑
i=1

|G eQ(x
′
i)|

n

= 1
n

n∑
i=1

|G eQ(xi)|
n = GK(Q̃).

3) If D(F (P̃ ), F (ω̃)) < D(F (Q̃), F (ω̃)), i.e.,

1
|U |

|U |∑
i=1

|G eP (xi)∆Geω(xi)|
|U | < 1

|U |
|U |∑
i=1

|G eQ(xi)∆Geω(xi)|
|U | ,

that is 1
|U |

|U |∑
i=1

|G eP (xi)|−0

|U | < 1
|U |

|U |∑
i=1

|G eQ(xi)|−0

|U | ,

hence,
|U |∑
i=1

|G eP (xi)| <
|U |∑
i=1

|G eQ(xi)|, so P̃ ≺̃3Q̃,

then there exists a sequence F
′
(Q̃) of F (Q̃), where

F
′
(Q̃) = (G eQ(x

′
1), G eQ(x

′
2), · · · , G eQ(x

′
n)), such that

|G eP (xi)| ≤ |GQ̃(x
′
i)|, i ≤ n, and there exists x0 ∈ U such

that |G eP (x0)| < |G eQ(x
′
0)|. Hence,

GK(P̃ ) = 1
n

n∑
i=1

|G eP (xi)|
n = 1

n (
n∑

i=1,xi 6=x0

|G eP (xi)|
n +

|G eP (x0)|
n ) < 1

n (
n∑

i=1,xi 6=x0

|G eQ(x
′
i)|

n +
|G eQ(x

′
0)|

n ) = 1
n

n∑
i=1

|G eQ(xi)|
n

= GK(Q̃),
that is GK(P̃ ) < GK(Q̃).

Summarizing the above, GK in Definition 2 is a generalized
fuzzy information granularity under Definition 8. The proof is
completed.

Theorem 10: Er in Definition 3 is a generalized fuzzy
information granularity under Definition 8.

Proof: 1) Obviously, it is non-negative.
2) Let F (P̃ ), F (Q̃) ∈ F(U) be two fuzzy granular

structures, where F (P̃ ) = (G eP (x1), G eP (x2), · · · ,
G eP (xn)), F (Q̃) = (G eQ(x1), G eQ(x2), · · · , G eQ(xn)).
We assume that D(F (P̃ ), F (ω̃)) = D(F (Q̃), F (ω̃)),

then, 1
|U |

|U |∑
i=1

|G eP (xi)∆Geω(xi)|
|U | = 1

|U |
|U |∑
i=1

|G eQ(xi)∆Geω(xi)|
|U | ,

that is 1
|U |

|U |∑
i=1

|G eP (xi)|−0

|U | = 1
|U |

|U |∑
i=1

|G eQ(xi)|−0

|U | , hence,

|U |∑
i=1

|G eP (xi)| =
|U |∑
i=1

|G eQ(xi)|, so P̃ ≈ Q̃ (see the

definition of “ ≈ ” in the Subsection B of Section III),
then there exists a sequence F

′
(Q̃) of F (Q̃), where

F
′
(Q̃) = (G eQ(x

′
1), G eQ(x

′
2), · · · , G eQ(x

′
n)), such that

|G eP (xi)| = |G eQ(x
′
i)|, i ≤ n. Therefore,

Er(P̃ ) = −
n∑

i=1

1
n log2

1
|G eP (xi)| = −

n∑
i=1

1
n log2

1
|G eQ(x

′
i)|

= −
n∑

i=1

1
n log2

1
|S eQ(xi)| = Er(Q̃).

3) If D(F (P̃ ), F (ω̃)) < D(F (Q̃), F (ω̃)), then,
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1
|U |

|U |∑
i=1

|G eP (xi)∆Geω(xi)|
|U | < 1

|U |
|U |∑
i=1

|G eQ(xi)∆Geω(xi)|
|U | ,

that is 1
|U |

|U |∑
i=1

|G eP (xi)|−0

|U | < 1
|U |

|U |∑
i=1

|G eQ(xi)|−0

|U | ,

hence,
|U |∑
i=1

|G eP (xi)| <
|U |∑
i=1

|G eQ(xi)|, so there

exists a sequence F
′
(Q̃) of F (Q̃), where

F
′
(Q̃) = (G eQ(x

′
1), G eQ(x

′
2), · · · , G eQ(x

′
n)), such that

|G eP (xi)| ≤ |G eQ(x
′
i)|, i ≤ n, and there exists x0 ∈ U such

that |G eP (x0)| < |G eQ(x
′
0)|. Hence,

Er(P̃ ) = −
n∑

i=1

1
n log2

1
|G eP (xi)| =

n∑
i=1

1
n log2|G eP (xi)|

= 1
n

n∑
i=1xi 6=x0

log2|G eP (xi)|+ 1
n log2|G eP (x0)|

< 1
n

n∑
i=1xi 6=x0

log2|G eQ(xi)|+ 1
n log2|G eQ(x0)|

= −
n∑

i=1

1
n log2

1
|G eP (xi)| = Er(Q̃),

i.e., Er(P̃ ) < Er(Q̃).
From the above, we conclude that Er in Definition 3 is a

generalized fuzzy information granularity under Definition 8.
The proof is completed.

Remark: Based on these analysis and discussions above,
one can draw such a conclusion: the generalized fuzzy in-
formation granularity defined by the fuzzy granular structure
distance can well distinguish the coarseness/fineness degree
between any two fuzzy granular structures from the same
universe, which can completely solve the problem of how
to measure the information granularity of a fuzzy granular
structure in fuzzy-set-based granular computing. These results
will be very significant for studying uncertainty in granular
computing.

VI. CONNECTING FUZZY INFORMATION GRANULARITY
AND FUZZY INFORMATION GRANULARITY BY FUZZY

GRANULAR STRUCTURE DISTANCE

The concept of entropy is originally from Physics, which
is often used to assess out-of-order of a system. The bigger
the entropy value of a system is, the higher the out-of-
order of this system is. In information theory, the notion of
entropy was introduced by Shannon to measure uncertainty of
a system’s structure [44]. The entropy in information theory
is named information entropy. It is well known that, the
information entropy can well measure the information content
of an information system. The extended version of the entropy
to measure information content of a fuzzy granular structure is
called a fuzzy information entropy. There has been two forms
of fuzzy information entropy in the existing literatures [3],
[5], [6], [41]. In this section, with the viewpoint of the fuzzy
granular structure distance, we want to reveal the connection
between fuzzy information granularity and fuzzy information
entropy.

To measure the uncertainty of a fuzzy granular structure,
the Shannon’ entropy was extended by Hu et al. [3], and this
variant was also used to characterize the uncertainty of a fuzzy
rough set and that of a fuzzy probability rough sets. The

variant could overcome the limitation of Shannon’s entropy
only working in classical sets.

Definition 9: [3] Let F (R̃) =
(G eR(x1), G eR(x2), · · · , G eR(xn)), then fuzzy information
entropy of F (R̃) is defined as

H(R̃) = − 1
n

n∑

i=1

log2

|G eR(xi)|
n

. (12)

When F (R̃) is a Pawlak granular structure, the fuzzy
information entropy will have the same form as Shannon’s
entropy. In other words, the uncertainty of a Pawlak granular
structure also can be calculated by this definition with a
uniform configuration.

Through generalizing the Liang’s mutual information en-
tropy, Qian et al. [41] gave another measure for fuzzy granular
structures. This measure also can be used to measure the
uncertainty of a given fuzzy granular structure. The following
definition gives the form of the fuzzy information entropy.

Definition 10: Let F (R̃) =
(G eR(x1), G eR(x2), · · · , G eR(xn)), then fuzzy information
entropy of F (R̃) is defined as

E(R̃) =
n∑

i=1

1
n

(1− |G eR(xi)|
n

). (13)

If a Pawlak granular structure be considered, the fuzzy
information entropy also can be degenerated to the form of
Liang’s mutual entropy. The definition of the fuzzy informa-
tion entropy and that of Liang’s mutual entropy are constructed
with a uniform configuration.

Now, we come back to consider another interesting property
of the fuzzy granular structure distance. For any fuzzy granular
structure F (P̃ ), we observe the relationship among F (P̃ ),
the finest one and the coarsest one with a view of the
fuzzy granular structure distance from the same universe. The
following theorem is an interesting phenomenon.

Theorem 11: Let F̃(U) be a family of all fuzzy granular
structures from a given universe U , and F (P̃ ) a fuzzy granular
structure in F̃(U). Then, D(F (P̃ ), F (δ̃))+D(F (P̃ ), F (ω̃)) =
1.

Proof: Let F (P̃ ) = (G eP (x1), G eP (x2), · · · , G eP (xn)),
where G eP (xi) = pi1/x1 + pi2/x2 + · · · + pin/xn,
F (δ̃) = (Geδ(x1), Geδ(x2), · · · , Geδ(xn)), where
Geδ(xi) = 1/x1 + 1/x2 + · · · + 1/xn, and
F (ω̃) = (Geω(x1), Geω(x2), · · · , Geω(xn)), where
Geω(xi) = 0/x1 + 0/x2 + · · ·+ 0/xn.

From the definition of fuzzy granular structure distance, one
has

D(F (P̃ ), F (δ̃)) = 1
n2

∑n
j=1

∑n
i=1 pij

and
D(F (P̃ ), F (ω̃)) = 1

n2

∑n
j=1

∑n
i=1(1− pij).

Hence, we have
D(F (P̃ ), F (δ̃)) + D(F (P̃ ), F (ω̃)) = 1.
Summarizing the above, this completes the proof.
Theorem 11 indicates that the fuzzy granular structure

distance of a fuzzy granular structure to the coarsest one
and that of this granular structure to the finest one are
strictly complementary. Thinking about the characteristic of
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the generalized fuzzy information granularity with the fuzzy
granular structure distance in the previous section, we then
explore some connections between fuzzy information entropy
and the fuzzy granular structure distance.

Firstly, we address the relationship between each of two
fuzzy information entropies of a fuzzy granular structure and
the fuzzy granular structure distance between it and the finest
granular structure. From the definitions of fuzzy information
entropy and the fuzzy granular structure distance, we obtain
the following two theorems.

Theorem 12: Let F̃(U) be a family of all fuzzy granular
structures from a given universe U , and F (P̃ ), F (Q̃) ∈ F̃(U).
If D(F (P̃ ), F (ω̃)) ≥ D(F (Q̃), F (ω̃)), then H(P̃ ) ≤ H(Q̃).

Proof: If D(F (P̃ ), F (ω̃)) ≥ D(F (Q̃), F (ω̃)), from
the proof of Theorem 10, one easily has |G eP (xi)| ≥
|G eQ(x

′
i)|, i ≤ n, and according to Definition 9, then

H(P̃ ) ≤ H(Q̃) holds.
Theorem 13: Let F̃(U) be a family of all fuzzy granular

structures from a given universe U , and F (P̃ ), F (Q̃) ∈ F̃(U).
If D(F (P̃ ), F (ω̃)) ≥ D(F (Q̃), F (ω̃)), then E(P̃ ) ≤ E(Q̃).

Proof: Similar to the proof of Theorem 12, it can be
proved.

Motivated by the strictly complementary in Theorem 11, it
is very interesting to observe the relationship between each of
two fuzzy information entropies of a fuzzy granular structure
and the fuzzy granular structure distance between it and the
coarsest granular structure. From the definitions of fuzzy
information entropy and the fuzzy granular structure distance,
we draw the following two conclusions.

Theorem 14: Let F̃(U) be a family of all fuzzy granular
structures from a given universe U , and F (P̃ ), F (Q̃) ∈ F̃(U).
If D(F (P̃ ), F (δ̃)) ≤ D(F (Q̃), F (δ̃)), then H(P̃ ) ≤ H(Q̃).

Proof: The theorem follows directly from Theorem 11,
12 and Definition 9.

Theorem 15: Let F̃(U) be a family of all fuzzy granular
structures from a given universe U , and F (P̃ ), F (Q̃) ∈ F̃(U).
If D(F (P̃ ), F (δ̃)) ≤ D(F (Q̃), F (δ̃)), then E(P̃ ) ≤ E(Q̃).

Proof: The theorem can be directly proved from Theorem
11, 12 and Definition 10.

From the above five theorems, we could say that in a sense,
there may exist a complement relationship between fuzzy
information granularity and fuzzy information entropy. That
is to say, they could have the same capability on measuring
the uncertainty of a fuzzy granular structure on the same
universe. The fuzzy granular structure distance play a key role
for building this bridge between fuzzy information granularity
and fuzzy information entropy in granular computing.

VII. APPLICABLE ANALYSIS

The fuzzy granular structure distance and the generalized
fuzzy information granularity have some potential applica-
tions. For example, in rough set theory, the generalized fuzzy
information granularity can help us to effectively choose
suitable fuzzy granular structures for approximating a target
concept or a target decision with much higher approximation
accuracy. For another example, the fuzzy granular structure
distance can be used to construct a heuristic function in the

process of feature selection, and be also used to perform
association analysis between two variables. In order to the
compactness of the article, we do not make a detailed discus-
sion here.

In what follows, we only analyze the application effective-
ness of the proposed fuzzy granular structure distance and
the generalized fuzzy information granularity in the granular
computing area. To address this issue, we conduct two kinds
of numerical experiments with 12 real-world data sets coming
from UCI Repository of machine learning databases, which
are shown as Table 1. In this table, Glass Identification, Ecoli,
Pima Indians Diabetes, Seeds, Planning Relax and Wine are 6
numeric data sets; and Breast Cancer, Lenses, Balloons, Space
Shuttle Autolanding Domain, Hayes-Roth and Soybean are 6
categorical data sets.

Before testing how the fuzzy granular structure distance
behaves in real-world applications, we need to generate firstly
fuzzy granular structures from these six data sets. For cat-
egorical data, the partition induced by a set of features is
regarded as one special fuzzy granular structures. For the six
numeric data sets, we normalize the numerical feature a into
the interval [0, 1] with

a
′
= a−amin

amax−amin
.

The value of the fuzzy similarity degree rij in Equation
(1) between objects xi and xj with respect to feature a is
calculated as

rij =
{

1− 4× |xi − xj |, |xi − xj | ≤ 0.25;
0, otherwise.

As rij = rji and rii = 1, 0 ≤ rij ≤ 1, the matrix M in
Equation (1) is a fuzzy similarity relation. The fuzzy similarity
relation determines a fuzzy binary granular structure. Given a
data set with m features, one can generate 2m fuzzy binary
granular structures (see final column in Table 1), which are
used to test the effectiveness of the proposed fuzzy granular
structure distance and generalized fuzzy information granular-
ity.

In first experiment, we compare the fuzzy granular structure
distance with information granularity for differentiating fuzzy
granular structures coming from the same data set. We com-
pute pairs of fuzzy granular structures differentiated by the
fuzzy granular structure distance and information granularity,
respectively. With loss of generality, we select GK in Equation
(8) as one representative of the information granularity family
in this experiment. These experimental results on these 12
data sets are shown in Figure 2. The index Identifiable
ratio is computed by the formula Identifiable ratio =
pairs of fuzzy granular structures distinguished from each other

all pairs of fuzzy granular structures .
It is easy to see from Figure 2 that on each data set, the Iden-

tifiable ratio of the fuzzy granular structure distance is equal
or greater than that of the information granularity GK. This
shows that compared to information granularity, the proposed
fuzzy granular structure distance has much better performance
for characterizing differences among fuzzy granular structures.
In fact, as long as two given fuzzy granular structures are not
the same as each other, they can be distinguished by the fuzzy
granular structure distance.
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TABLE I: Twelve data sets in the experimental analysis

Data sets Objects Features Granular structures Pairs of granular structures
Glass Identification 214 9 511 130305

Ecoli 336 7 127 8001
Pima Indians Diabetes 768 8 255 32385

Seeds 210 7 127 8001
Planning Relax 182 12 4095 8382465

Wine 178 13 8191 33542145
Breast Cancer 699 9 511 130305

Lenses 24 4 15 105
Balloons 20 4 15 105

Space Shuttle Autolanding Domain 15 6 63 1953
Hayes-Roth 132 4 15 105

Soybean (Small) 47 35 511 130305

Fig. 2: Comparison on fuzzy granular structure distance and information granularity

In second experiment, we compare the generalized fuzzy
information granularity with three existing versions for char-
acterizing coarseness/fineness degrees of fuzzy granular struc-
tures coming from the same data set. We compute pairs of
fuzzy granular structures whose coarseness/fineness degrees
can be characterized by the generalized fuzzy information
granularity and three existing versions, respectively. Experi-
mental results on the 12 data sets are shown in Figure 3.

From Figure 3, one can see that the Identifiable ratio
of the generalized fuzzy information granularity (GFIG) is
consistently and significantly much better than each of existing
axiomatic approaches to fuzzy information granularity on the
12 data sets. This implies that compared to FRG, GFRG and
FIG, GFIG possesses much stronger ability for comparing
coarseness/fineness relationships among fuzzy granular struc-
tures. These four axiomatic approaches to fuzzy information
granularity can be ranked as follows:

FRG → GFRG → FIG → GFIG.

GFIG is the best one in these four axiomatic approaches to
fuzzy information granularity. It is worth pointing put that

even though two given fuzzy granular structures are the same
as each other in the sense of GFIG, the granular structure
distance between them may be still not zero.

VIII. CONCLUSIONS

In fuzzy granular computing proposed by Zadeh, a fuzzy
granular structure means a mathematical structure of the
collection of fuzzy information granules granulated from a
data set. The concept of fuzzy information granularity is
employed to measure the uncertainty of a fuzzy granular
structure. However, in order to profoundly study uncertainty in
fuzzy granular computing, we have analyzed two limitations
of the fuzzy information granularity. The first limitation is
that the fuzzy information granularity cannot well distinguish
the difference between any two fuzzy granular structures.
This arises from the fact that when the information gran-
ularity of one fuzzy granular structure is equal to that of
the other, however this does not mean that these two fuzzy
granular structures are equivalent each other. The second
limitation is that the existing axiomatic definitions of fuzzy
information granularity are still not able to well measure the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3: Pairs of fuzzy granular structures distinguished by four different axiomatic approaches to fuzzy information
granularity respectively and their Identifiable ratios on twelve data sets

coarseness/fineness relationships among some fuzzy granular
structures. To address these issues, we have proposed a so-
called fuzzy granular structure distance in this study, which

can well discriminate the difference between any two fuzzy
granular structures. Unlike fuzzy information granularity, as
long as two fuzzy granular structures is different, it must
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make a fine distinction between them. This is because that the
fuzzy granular structure distance takes both the distribution of
all fuzzy information granules and the difference between the
two fuzzy information granules induced by each object into
account. To solve the second limitation, based on the proposed
fuzzy granular structure distance, we have developed a gen-
eralized axiomatic approach to fuzzy information granularity,
under which the coarseness/fineness of any two fuzzy granular
structures can be distinguished. In this approach, the partial
order relation among fuzzy granular structures is established
by the fuzzy granular structure distance between each fuzzy
granular structure and the finest one. It is very interesting that
through taking the fuzzy granular structure distances of a fuzzy
granular structure to the finest one and the coarsest one into
account, we have also built a bridge between fuzzy information
granularity and fuzzy information entropy. These results will
be very significant for studying uncertainty in fuzzy granular
computing.
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