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Abstract—Recently, multilabel classification has generated 

considerable research interest. However, the high dimensionality 
of multilabel data incurs high costs; moreover, in many real 
applications, a number of labels of training samples are randomly 
missed. Thus, multilabel classification can have great complexity 
and ambiguity, which means some feature selection methods 
exhibit poor robustness and yield low prediction accuracy. To 
solve these issues, this paper presents a novel feature selection 
method based on multilabel fuzzy neighborhood rough sets 
(MFNRS) and maximum relevance minimum redundancy 
(MRMR) that can be used on multilabel data with missing labels. 
First, to handle multilabel data with missing labels, a relation 
coefficient of samples, label complement matrix, and label-specific 
feature matrix are constructed and implemented in a linear 
regression model to recover missing labels. Second, the 
margin-based fuzzy neighborhood radius, fuzzy neighborhood 
similarity relationship, and fuzzy neighborhood information 
granule are developed. The MFNRS model is built based on 
multilabel neighborhood rough sets combined with fuzzy 
neighborhood rough sets. Based on algebra and information views, 
certain fuzzy neighborhood entropy-based uncertainty measures 
are proposed for MFNRS. The fuzzy neighborhood mutual 
information-based MRMR model with label correlation is 
improved to evaluate the performance of candidate features. 
Finally, a feature selection algorithm is designed to improve the 
performance for multilabel data with missing labels. Experiments 
on twenty datasets verify that our method is effective not only for 
recovering missing labels but also for selecting significant features 
with better classification performance. 
 

Index Terms—Feature selection, fuzzy neighborhood entropy, 
multilabel fuzzy neighborhood rough sets, MRMR.  

I. INTRODUCTION 
N recent years, multilabel classification has attracted 
increasing interest from scholars in various fields [1]. Feature 

selection is a crucial pre-processing step that aims to eliminate 
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redundant features, find an optimal feature subset, and improve 
the performance of multilabel classification. However, it is 
difficult to obtain all the proper labels in real applications [2]. 
Typically, a few labels will be missing, which presents a 
significant challenge for multilabel feature selection. Currently, 
feature selection models can be roughly categorized as filter, 
wrapper, or embedded methods [3], [4]. It is excellent for filter 
methods to effectively evaluate candidate features [5]. The 
embedded and wrapper approaches are time-consuming, and in 
some cases, their selected features can be dependent on specific 
classifier [6], [7]. Therefore, we focus on feature selection 
using filter to deal with multilabel data with missing labels. 

In many real-world applications, due to the unavailability of 
all labels, there exist numerous instances with missing labels 
[8], [9]. Namely, only partial labels are available in label- 
related applications. These missing labels result in inaccurate 
measures between candidate features and label sets, which 
leads to the loss of valuable features in feature selection [10]. 
This limits the practical applications of multilabel classification. 
Zhu et al. [11] proposed a feature selection algorithm for 
multilabel data with missing labels under l2,1 norm loss. Ma et 
al. [12] combined input and updated labels in unlabelled space 
for multilabel classification with missing labels. In general, the 
aforementioned methods employed all the features available to 
distinguish all labels, which may be inaccurate. For multilabel 
classification, each label is affected by its own specific features. 
Jiang et al. [13] used sparsity regularisation and manifold 
regularisation induced by local feature correlation to select 
related features. Zhang et al. [14] employed label-specific 
features to represent samples to predict corresponding labels. 
Huang et al. [15] learned label-specific features and 
class-dependent labels using a sparse stacking approach. 
Although these methods consider the relationship between 
labels and specific features, they ignore relevant information 
among labels. Furthermore, because some partial labels are 
missing for multilabel data, it is important to restore missing 
labels. To solve these issues, a correlation coefficient between 
any two samples and a label correlation complement matrix are 
proposed and implemented in a linear regression model; then a 
relation matrix between labels and specific features is 
employed to improve prediction accuracy of label. A novel 
linear regression model with label correlation and label-specific 
features is constructed to recover missing labels. 

In recent years, multilabel neighborhood rough sets (MNRS) 
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and fuzzy neighborhood rough sets (FNRS) have been favoured 
as two efficient tools for feature selection [5], [16]–[19]. 
MNRS can deal with continuous and numerical data. Duan et al. 
[20] presented an MNRS-based multilabel feature selection 
algorithm. Sun et al. [5] proposed a multilabel feature selection 
model based on BPSO and MNRS. Liu et al. [16] designed an 
MNRS-based online multilabel feature selection method. 
However, because these models use neighborhood similarity 
classes to approximately describe decision equivalence classes, 
they cannot represent the fuzziness of instances under a fuzzy 
background [17], [18]. To overcome this drawback, using fuzzy 
information granules to describe instance decisions, FNRS can 
construct a robust distance and thereby reduce error rate of data 
classification [17]. Chen et al. [19] studied a variable-precision 
FNRS-based multilabel feature selection method. Vluymans et 
al. [21] investigated multilabel classification using fuzzy rough 
neighborhood consensus. However, these FNRS-based models 
manually select the neighborhood radius, which causes high 
computational cost, ignores the correlation among labels, and 
leads to randomness and uncertainty in multilabel classification. 
To address these issues, fuzzy neighborhood radius based on 
margin [5] is proposed, using all similar and heterogeneous 
instances under each label, which will automatically set a 
neighborhood radius for each dataset to reduce time cost and 
interference from noisy and improve accuracy. To date, there 
have been few reports of combining MNRS with FNRS for 
multilabel feature selection. Therefore, it would be beneficial 
for us to study multilabel fuzzy neighborhood rough sets 
(MFNRS) and design an MFNRS-based feature selection 
algorithm for multilabel data with missing labels. 

Mutual information is an effective metric for evaluating 
uncertainty in random variables [22]–[27]. Ircio et al. [22] 
designed a mutual information-based filter feature selection 
model. To date, feature selection based on mutual information 
has been developed for multilabel data. Gonzalez-Lopez et al. 
[23] studied mutual information and proposed a continuous 
feature selection method for multilabel classification. Qian et al. 
[24] presented a feature selection method using label 
distribution and mutual information for multilabel learning. 
However, these studies did not obtain probability and joint 
distributions of the variables, and the discretization of features 
easily led to loss of key information. Moreover, mutual 
information in a fuzzy scenario cannot describe the correlation 
and redundancy of features [25]. Zhang et al. [26] designed a 
fuzzy mutual information-based multilabel feature selection for 
continuous data. Wang et al. [27] proposed a label distribution- 
based multilabel feature selection method using fuzzy mutual 
information. Thus, the fuzzy mutual information measure can 
handle multilabel data with continuous probability distribution 
well in label space. However, few scholars have focused on 
multilabel feature selection for missing labels to deal with the 
probability distribution of data. Based on this observation, a 
novel fuzzy neighborhood radius based on margin is defined to 
reflect the diversity and differences of samples, and a fuzzy 
similarity relationship is developed for label set to represent the 
inner correlation between labels. However, few algebra- and 
information-based measures for multilabel feature selection 

have been reported for multilabel fuzzy neighborhood decision 
systems. Thus, to study fuzziness from the perspectives of 
algebra and information, fuzzy neighborhood entropy-based 
uncertainty measures are proposed for multilabel fuzzy 
neighborhood decision systems. Furthermore, the maximum 
relevance minimum redundancy (MRMR) [28] criterion is 
employed to study fuzzy neighborhood entropy. To solve the 
problem that MRMR ignores the correlation among labels, 
label correlation based on fuzzy similarity relationship within 
the label set is developed and implemented in MRMR. Finally, 
the improved MRMR with label correlation is presented to 
evaluate the performance of candidate feature subsets. 

Our main contributions can be summarized as follows: 
(1) To handle the problem of missing labels in multilabel 

data, a relation coefficient between samples is investigated to 
discover topological information, and a label complement 
matrix is defined to obtain label semantic information and learn 
high-order label correlation. Furthermore, a label-specific 
feature matrix is implemented in the linear regression model to 
learn the relations among labels with specific features. Based 
on the aforementioned approaches, a multilabel learning 
method based on linear regression is constructed to obtain the 
complete label matrix as a pre-processing step for feature 
selection in multilabel data with missing labels. 

(2) To solve the issue that the neighborhood radius for each 
dataset is manually set, the margin combining all similar and 
heterogeneous samples under each label is introduced, and then 
a novel margin-based fuzzy neighborhood radius is set to 
granulate all instances using fuzzy neighborhood information 
granules automatically. Furthermore, the MFNRS model is 
constructed by combining MNRS with FNRS. To integrate the 
advantages of MNRS and FNRS, the fuzzy neighborhood lower 
and upper approximations and fuzzy neighborhood 
approximate accuracy are provided in MFNRS. Thus, the 
robust performance of multilabel classification can be 
significantly improved for the MFNRS model. 

(3) To study the uncertainty measures of multilabel data with 
missing labels, fuzzy neighborhood entropy combined with 
fuzzy neighborhood approximate accuracy is studied from both 
algebra and information viewpoints, and subsequent entropy 
measures are proposed. Then, based on the MRMR strategy, 
fuzzy neighborhood mutual information is proposed to evaluate 
the redundancy among features and correlation between 
features and labels. Furthermore, the label correlation based on 
fuzzy similarity relationship within the label set is implemented 
in MRMR. Thus, a new MRMR approach is developed to 
evaluate candidate features. Finally, a feature selection 
algorithm for multilabel data with missing labels is designed for 
multilabel fuzzy neighborhood decision systems. 

The remainder of this paper is organised as follows. In 
Section II, related concepts are reviewed. Section III presents a 
multilabel learning model with missing labels and the MFNRS 
model; moreover, an improved MRMR approach is proposed. 
Section IV describes the design of the multilabel feature 
selection algorithm for missing labels. Experiments are 
reported in Section V, and Section VI summarizes the findings 
and contributions of this study. 
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II. PRELIMINARIES 

A. Multilabel neighborhood rough sets 
Let NDS = <U, C, D, V, F, ∆, δ> represent a neighborhood 

decision system, where U = {x1, x2, ⋯, xm}; C is a set of 
conditional attributes; D is a set of decision attributes; V = 

a A aV∈
, where Va is a value set of attribute a; F: U × {CD} → 

V is a map function; ∆ denotes a distance function; and 0 ≤ δ ≤ 1 
is a neighborhood radius. Let MNDS = <U, C, D, V, F, ∆, δ> be 
a multilabel neighborhood decision system, which can be 
abbreviated to MNDS = <U, C, D, δ>, where D = {d1, d2, ⋯, dl} 
is a label set. For any B ⊆ C, the neighborhood relationship is 
denoted [5] as 

( ) {( , ) | ( , ) , 0},NR B x y U x yδ δ δ= ∈ ∆ ≤ ≥           (1) 
and the neighborhood class of x in B is expressed [5] as 

 ( ) { | , , ( , ) , 0},B x y x y U x yδ δ δ= ∈ ∆ ≤ ≥            (2) 
where ∆(x, y) denotes the Euclidean distance function, and δB(x) 
is also referred to as the neighborhood granularity of x. 

Given MNDS = <U, C, D, δ> with B ⊆ C, L = {l1, l2, ⋯, lM} 
and L ⊆ D, Dj represents a set with label lj, and Di denotes a set 
of labels associated with xi. The lower and upper 
approximations of D to B are respectively described as [5]  

{ | , ( ) , },j
B i j i B i iN D x l D x D x Uδ= ∀ ∈ ⊆ ∈          (3) 

{ | , ( ) , }.j
B i j i B i iN D x l D x D x Uδ= ∀ ∈ ≠ ∅ ∈       (4) 

The neighborhood entropy of xi∈U is denoted [5] as 
| ( ) |( ) log .

| |
B ixH B
U

δ
= −                           (5) 

B. Fuzzy neighborhood rough sets 
Suppose that there exists a fuzzy neighborhood decision 

system FNDS = <U, C, D, V, F, ∆, δF> with the fuzzy 
neighborhood parameter δF, or in short, FNDS = <U, C, D, δF>. 
For any a∈ B ⊆ C, the fuzzy similarity relation RB can be 
induced on U if RB satisfies the following [27]  

(1) Reflexivity: RB(x, x) = 1, ∀ x, y∈U. 
(2) Symmetry: RB(x, y) = RB(y, x), ∀ x, y∈U. 
(3) Transitivity: RB(x, z) ≥ min(RB(x, y), RB(y, z)), ∀ x, y∈U. 

Then, the fuzzy neighborhood similarity can be expressed as 
[x]B(y) = RB(x, y) and [ ] ( ) min ([ ] ( )).

B

a
a B ax y x y∈=  

Given FNDS = <U, C, D, δF> with B ⊆ C, U/D = {X1, X2, ⋯, 
Xl}, for any x, y ∈ U, the fuzzy neighborhood information 
granule of x with respect to B is expressed [18], [29] as 

0 ( , ) 1
( ) [ ] ( ) .

( , ) ( , ) 1

F
Ba

B B F
B B

R x y
x x y

R x y R x y
δ

α
δ

 < −= = 
≥ −    

(6) 

The fuzzy neighborhood lower and upper approximations of 
X with respect to B are respectively expressed as [18]  

( ) { | ( ) },B BFN X x U x Xα α= ∈ ⊆                 
 
(7) 

( ) { | ( ) }.B BFN X x U x Xα α= ∈ ≠ ∅             (8) 
For any B ⊆ C, the approximate accuracy of D with respect to B 
is expressed [18] as 

| ( ) |
.

| ( ) |
B

B

B

FN X
AP

FN X

α
α

α
=                              (9) 

III. FEATURE SLECTION IN   MULTILABEL DATA WITH MISSING 
LABELS 

A. Multilabel learning with missing labels 
Missing labels significantly interfere with classification 

performance on multilabel data. To overcome this drawback, 
the relation coefficient of instances is defined to discover 
topological information between two instances, and a label 
complement matrix is designed for integration with a linear 
regression model to obtain more semantic information of labels. 
Thus, a relation matrix of label-specific features is introduced 
to enhance the robustness and prediction accuracy of the linear 
regression model with l1 norm regularisation. 

Definition 1: Suppose that there exists a sample set U with 
X ⊆ U. Let X be a training data matrix. Then, for any x∈U, the 
relation coefficient L of xi and xj is defined as 

L  1 ,
max( ) min( )

ijCV
CV CV

= −
−

                  
(10) 

where CV = XXT, XT is the transpose of training data matrix, CV 
∈Rm×m is the correlation matrix of samples, max(CV) is the 
maximal value of CV, and min(CV) is the minimal value of CV. 

Definition 2: Suppose that Y is a training label matrix and   
is a label correlation matrix. To describe the dependence degree 
between a data sample and its labels of data when there are 
missing labels, a minimum function is defined as follows to solve 
the multilabel problem:  

 

21
2 3 1C

min || Y Y || Tr( Y LY ) || || ,
2

T T
F

λ λ λ− + +   

    
(11)

                
 

where λ1, λ2 and λ3 are weighting parameters, Tr( T
 YTLY ) 

is the trace of matrix Y LYT T
  , and   represents the label 

correlation. If two samples are highly similar, they may have 
similar labels. The topological structure of the data can be 
extracted by CV. Furthermore, by minimizing the correlation 
matrix trace Tr( Y LYT T

  ) of samples labels, sufficient 
structural information of the original data can be obtained. To 
ensure that a label of a sample is only determined by a subset of 
specific features in the original dataset, the regression 
coefficient W is employed to indicate the label-specific feature 
matrix. Then, l1 regularisation is implemented in the linear 
regression model to induce sparsity. 

Definition 3: Suppose that W is a label-specific feature matrix. 
Then, the optimization problem of multilabel data with missing 
labels can be expressed as 

2 21

W,C

2 3 1 4 1

1min || Y XW || || Y Y || +
2 2

Tr( Y LY ) || W || || || ,

F F

T T

λ

λ λ λ

− + −

+ +

 

                   
(12) 

where λ1, λ2, λ3, and λ4 represent the weighting parameters. 
Note that the optimization problem in Eq. (12) is convex, but 

it is not smooth because the objective function contains the l1 
regularisation and trace terms. Then, the accelerated proximal 
gradient method in [9] is used to solve this non-smooth 
objective function, where Φ is a combined variable of W and . 
The optimization problem can be transformed as 

  
min { ( ) ( ) ( )},G f g

Φ
Φ = Φ + Φ

                      
(13) 

where f(Φ) = 2 21
2

1 || Y XW || || Y Y || Tr( Y LY )
2 2

T T
F F

λ λ− + − +   
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and g(Φ) = λ3||W||1 +λ4||  ||1. Note that f(Φ) is convex and 
differentiable, and g(Φ) is not differentiable. Therefore, for any 

L > 0, ( ) ( ) ( ) ( ) ( ) 2( , ) ( )+ ( ), || || ( )
2

t t t t t
L F

Lf f gΩ Φ Φ = Φ 〈∇ Φ Φ − Φ 〉 + Φ − Φ + Φ .  

For any L ≥ Lf, the given iteration over t, ΩL(Φ, Φ(t)) ≥ G(Φ) 
holds, where Lf is the Lipschitz constant. Then, the quadratic 
model is employed to approximate G(Φ). H(t) = Φ(t) − 

 
( )1 ( )tf

L
∇ Φ , 

where
 
Φ can be obtained by minimizing ΩL(Φ, Φ(t)) using 

{ }( ) 2( ) argmin ( , ) argmin ( ) || H( ) || .
2

t
L F

LpL g t
Φ Φ

Φ = Ω Φ Φ = Φ + Φ −
 
(14)

  
Huang et al. [9] demonstrated that if a sequence αt satisfies 
2 2

1 1 tt tα α α+ +− ≤ , the convergence rate can be improved to 

2
1( )O
t

, when setting ( ) 1
1

1( )t t
t t

t

α
α
−

−
−Φ = Φ + Φ

 
for the tth iteration. 

Thus, using one variable each time and fixing the other using its 
previous value, the parameters W and   can be minimized 
alternately through the following steps: 

Step1. By fixing  , the derivation of f(Φ) with respect to W 
is obtained by ∇Wf(Φ) = XTXW − XTY . If ε represents the 
step size and the l1 regularisation can be solved by the 
soft-thresholding operator proxε(wij) = (|wij| − ε)+sign(wij), then 
the accelerated proximal gradient for W is given as 

( ) 1
1 1

( ) ( )
W

1W W (W W ) ; 1W prox (W (W , )).t t
t t t t

t

t tf
Lε

α
α
−

− +

−
= + − = − ∇ 

(15) 

Step2. By fixing W, the derivation of f(Φ) with respect to   
is obtained by ( )f∇ Φ



 = (1 + λ1)YTY  − YTXW –λ1YTY + 
λ2YT (L+LT)Y . When the soft-thresholding operator can be 
defined as proxε( ij ) = (| ij | − ε)+, the accelerated proximal 
gradient for   is given as  

( ) 1
1 1

( ) ( )1( ); 1prox ( (W, )).t t
t t t t

t

t tf
Lε

α
α
−

− +

−
= + − = − ∇



       (16) 

Theorem 1: Given X ⊆ U, the optimization problem of 
multilabel data with missing labels in Eq. (12) is Lipchitz 
continuous, and the Lipchitz constant Lf can be denoted as 

2 2 2 2 T 2
2 2 1 2 2 2 22(|| X X || +||X Y|| +||(1+ )Y Y|| +||Y X|| || Y (L L )Y || )T T T T T

fL λ λ= + + . 
Proof. It follows immediately from Steps 1 and 2 that 

2
1 2

2
1

T 2
2

2 2 2 2 2 2
2 2 1 2

2 2 T 2 2
2 2 2

( ) ( )

|| X X W  X Y || || (1+ )Y Y Y X W
+ Y (L L )Y ||
2 || X X || || W || +2||X Y|| || || +2||(1+ )Y Y|| || ||

||Y X|| || W|| 2 || Y (L L ) Y || || || .

F
T T T T

F
T

F
T T T

F F F
T T

F F

f f

λ

λ

λ

λ

∇ Φ − ∇ Φ

= ∆ − ∆ + ∆ − ∆

+ ∆

≤ ∆ ∆ ∆

− ∆ + + ∆

 



 



 

Namely, 2 2 2 2
1 2 2 2 1 2( ) ( ) 2(|| X X || +||X Y|| +||(1+ )Y Y||T T T

F
f f λ∇ Φ − ∇ Φ ≤  

2
2 2 2
2 2 2

W
||Y X|| || W|| || Y (L L )Y || )T T T

F
F

λ
∆

+ ∆ + +
∆

.
 
Thus, the Lipschitz 

constant of the objective function is obtained as 
2 2 2 2 T 2
2 2 1 2 2 2 22(|| X X || +||X Y|| +||(1+ )Y Y|| +||Y X|| || Y (L L )Y || )T T T T T

fL λ λ= + + . 
B. Multilabel fuzzy neighborhood rough sets  

Because the fuzzy neighborhood radius is set manually to 
achieve optimal accuracy in almost all approaches [18], [29], 
the time cost is high. Moreover, the integrity and information 

diversity of multilabel data are easily ignored. To address these 
drawbacks, a new margin-based fuzzy neighborhood radius is 
presented by combining features and labels of samples; this 
approach reduces noise caused by weak correlation between 
samples. By integrating label correlation, fuzzy similarity 
within label set is defined to explore inner correlation between 
labels. Based on algebra and information viewpoints, by 
integrating the MNRS and FNRS models, MFNRS is presented, 
and various uncertainty measures are proposed to evaluate the 
performance of candidate features for multilabel classification. 

Definition 4: Suppose that there exists a multilabel fuzzy 
neighborhood decision system MFNDS = <U, C, D, δF> with 
label set L = {l1, l2, ⋯, lM} and L ⊆ D. For any x∈U, the fuzzy 
neighborhood radius δF is defined as 

| | | |

1 1

( , ( )) ( , ( ))
( )

| ( ) | | ( ) |
,

| || |

i i i i

i i

U L l l l l
j i

l lF

x NS x x NT x
NS x NT x

U L
δ

= =

∆ ∆
−

=
∑ ∑

         
(17) 

where
 

NSli(x) and NTli(x) represent the heterogeneous and 
similar samples of x with respect to label li, respectively, and  
∆li(x, NSli(x)) and ∆li(x, NTli(x)) denote the distance from x with 
respect to NSli(x) and NTli(x) under li, respectively. 

Definition 5: Suppose that there exists MFNDS = <U, C, D, 
δF > with B ⊆ C, B = {f1, f2, ⋯, fn}, L = {l1, l2, ⋯, lM}, and L ⊆ D. 
For any x, y∈U and f∈B, the fuzzy neighborhood similarity 
relationship between x and y with respect to f is defined as 

0, | ( , ) ( , ) |
( , ) .

1 | ( , ) ( , ) |, | ( , )
=

( , ) |

F

f F

F x f F y f
R x y

F x f F y f F x f F y f
δ

δ

 − >


− − − ≤
  (18) 

Then, the fuzzy neighborhood similarity matrix [x]f(y) = Rf(x, y). 
Therefore, the fuzzy neighborhood similarity matrix based on B 
can be expressed as [x]B(y) = min ([x]f(y)). 

 Definition 6: Suppose that there exists MFNDS = <U, C, D, 
δF > with B = {f1, f2, ⋯, fn} ⊆ C. For any x, y∈U, the fuzzy 
neighborhood information granule of x related to B is defined as 

0, ( , ) 1
[ ] ( ) .

( , ), ( , ) 1

F
B

B B F
B B

R x y
FN x y

R x y R x y
δ δ

δ

 < −= = 
≥ −      

(19) 

Definition 7: Suppose that there exists MFNDS = <U, C, D, 
δF > with L = {l1, l2, ⋯, lM} and L ⊆ D. For any xi, xj, xs, xt∈U, 
the fuzzy similarity relationship under label set L is defined as 

( , ) ( , )
1 4 , 0.25

,max( ( , )) min( ( , )) max( ( , )) min( ( , ))
0

i j i j
L

ij s t s t s t s t

d x x d x x
r d x x d x x d x x d x x

otherwise


− × ≤= − −




(20) 

where 2
1

( ,  ) ( ( ) )m
i j ir jrr

d x x c c
=

= −∑ , | ( ) ( ) |
| ( ) ( ) |

i j
ij

i j

L x L x
c

L x L x
=





is the Jaccard 

similarity coefficient, and L(x) indicates the label set of x∈U. 
Note that cij maps a sample label to Euclidean space [30], which 
is used to compare the similarities and differences between 
finite samples. However, in multilabel datasets, there are much 
fewer positive labels for each sample than there are negative. 
Inspired by the label correlation presented in Section III.B of 
Lin’s paper [31], a finer-grained measure of similarity between 
samples in label space based on cij is given in Eq. (20), from 
which the fuzzy relationship matrix of the label set can be 
obtained, reflecting the intrinsic correlation among labels.  
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Definition 8: Suppose that there exists MFNDS = <U, C, D, 
δF > with B ⊆ C, L = {l1, l2, ⋯, lM}, and L ⊆ D. Dj is a set with 
label lj, and Di is the label set associated with xi. Then, the fuzzy 
neighborhood lower and upper approximations of D with respect 
to B are respectively defined as 

{ | , ( ) , },j
i j i i iB BFN D x l D FN x D x Uδ= ∀ ∈ ⊆ ∈

          
 (21) 

{ | , ( ) , }.j
i j i i iB BFN D x l D FN x D x Uδ= ∀ ∈ ≠ ∅ ∈        (22) 

Then, the fuzzy neighborhood approximate accuracy of D with 
respect to B is defined as 

( ) .B
B

B

FN D
FAP D

FN D
=

                                   
(23) 

Definition 9: Suppose that there exists MFNDS = <U, C, D, 
δF > with B ⊆ C, L = {l1, l2, ⋯, lM}, and L ⊆ D. The fuzzy 
neighborhood entropy of B is defined as 

| |

1

( ) | ( ) |( ) log .
| | | |

UB B i
i

FAP D FN xFNH B
U U

δ

=
= − ∑

                
(24) 

Remark 1: Definition 9 shows that FAPB(D) is the fuzzy 
neighborhood approximate accuracy of D relative to B  from an 

algebra perspective and | |

1

| ( ) |1 log
| | | |

U B i
i

FN x
U U

δ

=
− ∑ is the fuzzy 

neighborhood entropy of B from an information perspective. 
Then, new fuzzy neighborhood entropy compensates for the 
defects of information entropy in multilabel classification. 

Property 1: Let MFNDS = <U, C, D, δF > with B ⊆ C. Then, 
0 ≤ FNH(B) ≤ log|U|.  

Definition 10: Suppose that there exists MFNDS = <U, C, D, 
δF> with L = {l1, l2, ⋯, lM} and L ⊆ D. For any B1, B2 ⊆ C, the 
fuzzy neighborhood joint entropy of B1 and B2 is defined as 

1 2 1 2| |
1 2 1

( ) | ( ) ( ) |
( , ) log .

| | | |
UB B B i B i
i

FAP D FN x FN x
FNH B B

U U

δ δ

=
= − ∑



  (25) 

Definition 11: Suppose that there exists MFNDS = <U, C, D, 
δF>. For any B1, B2 ⊆ C and xi∈U, the fuzzy neighborhood 
conditional entropy of B1 with respect to B2 is defined as 

1 2 2

1 2

1 2 2

2

( ) ( )
| |

( ) ( )1

1 2

| ( ) ( ) | | |
log( )

| | | ( ) |
( | ) .

| |

B B B

B B B

FAP D FAP D
U B i B i

FAP D FAP Di
B i

FN x FN x U
U FN x

FNH B B
U

δ δ

δ=

= −
∑







(26) 
Definition 12: Suppose that there exists MFNDS = <U, C, D, 

δF>. For any B1, B2 ⊆ C and xi∈U, the fuzzy neighborhood 
mutual information of B1 and B2 is defined as 

1 2 1 2

1 2

1 2 1 2

1 2

( ) ( ) ( )
| |

( ) ( ) ( )

1 2

1

| ( ) | | ( ) | | |
log( )

| | | ( ) ( ) |
( ) .

| |
;

B B B B

B B B B

FAP D FAP D FAP D
U B i B i

FAP D FAP D FAP Di
B i B i

FN x FN x U
U FN x FN x

B BFNMI
U

δ δ

δ δ+=

= −
∑







(27) 
Remark 2: Definitions 10–12 combine the fuzzy 

neighborhood approximate accuracy from algebra perspective 
and the fuzzy information entropy from information perspective, 
which allows the uncertainty of multilabel fuzzy neighborhood 
decision systems with missing labels to be measured accurately. 

Property 2: Suppose that there exists MFNDS = <U, C, D, δF> 
with L = {l1, l2, ⋯, lM} and L ⊆ D. For any B1, B2 ⊆ C, the 
following properties hold: 

(1) FNMI(B1; B2) ≥ 0; 
(2) FNH(B1|B2) = FNH(B1, B2) − FNH(B2); 
(3) FNMI(B1; B2) = FNH(B1) + FNH(B2) − FNH(B1, B2); 
(4) FNMI(B1; B2) = FNH(B1) − FNH(B1|B2). 

Proof. (1) The proof is straightforward. 
(2) It follows immediately from Definitions 9-11 that 

1 2 2
1 2

21 2
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1 2 2
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1 2 2
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−
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1
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Then, FNH (B1|B2) = FNH (B1, B2) − FNH(B2) holds. 
(3) It follows immediately from Definitions 9, 10 and 12 that 
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Thus, FNMI (B1; B2) = FNH(B1) + FNH(B2) − FNH(B1, B2). 
(4) It follows immediately from Definitions 9, 11 and 12 that 
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Hence, obviously FNMI (B1; B2) = FNH(B1) − FNH(B1|B2). 
Definition 13: Suppose that there exists MFNDS = <U, C, D, 

δF> with B ⊆ C, L = {l1, l2, ⋯, lM}, and L ⊆ D. lxi denotes a 
sample set with the same label as xi. If  ( )

iB i xFN x lδ ⊆ , the fuzzy 
decision of xi is consistent.  

Property 3: Suppose that there exists MFNDS = <U, C, D, 
δF> with B ⊆ C, L = {l1, l2, ⋯, lM}, and L ⊆ D. Then, 

( )
| |

( )1

| ( ) | | |1( ) log( ).
| | | ( ) | | |

;
B

i

B

i

FAP D
U B i x

FAP Di
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B

U
l

δ

δ=
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Proof. Suppose that any xi∈U (i = 1, 2, 3 ⋯, m) is consistent. It 
follows from the proof of Property 3 in [5] that 

( ) ( )
iB l i B i xFN x FN x lδ δ=



 . Then, we have ( )
iB i xFN x lδ ⊆ , and 

( ) ( )B l i B iFN x FN xδ δ=
  can be obtained clearly. Furthermore, from 

Definition 8, it follows that  
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From Definition 8, ( ) ( )B l BFAP D FAP D=


holds. Therefore, we 

clearly have 
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C. MRMR based on fuzzy neighborhood mutual information 
MRMR only considers the redundancy among features and 

correlation between labels and features, while it ignores the 
impact of label correlation on features [27], [32], [33]. 
Moreover, MRMR-based methods cannot sufficiently 
eliminate redundant features or evaluate the integrity of 
knowledge. To overcome these drawbacks, the correlation 
among labels is defined and implemented in MRMR with the 
fuzzy neighborhood similarity relationship on the label set, 
which can measure the significance of features and reflect the 
inner correlation between labels to improve classification 
performance. 

Definition 14: Suppose that there exists MFNDS = <U, C, D, 
δF> with S ⊆ C, S is the selected features, L = {l1, l2, ⋯, lM}, and 
L ⊆ D. The maximum relevance is formulated as 

,

1max ( , ), ( , ) ( ; ).
| |

i i

i i i i
f S l L

REL f L REL f L FNMI f l
L ∈ ∈

= ∑
      

(28) 

Definition 15: Suppose that there exists MFNDS = <U, C, D, 
δF> with S ⊆ C, S is the selected features, L = {l1, l2, ⋯, lM}, and 
L ⊆ D. The minimum redundancy is formulated as 

,

1min ( , ), ( , ) ( ; ).
| |

i j

i i i j
f f S

RED f S RED f S FNMI f f
S ∈

= ∑     (29) 

Definition 16: Suppose that there exists MFNDS = <U, C, D, 
δF> with L = {l1, l2, ⋯, lM}, and L ⊆ D. The label correlation 
with the fuzzy similarity relationship on label set L is defined as 

max ( , ), ( , ) = ,
i

i

l
ij

i i L
l L ij

r
LCD l L LCD l L

r∈
∑

                     
(30) 

where il
ijr  represents the fuzzy similarity relationship for label li, 

and L
ijr  is the fuzzy similarity relation for label set L. 

Definition 17: Suppose that there exists MFNDS = <U, C, D, 
δF> with S ⊆ C, S is the selected features, L = {l1, l2, ⋯, lM}, and 
L ⊆ D. MRMR with the label fuzzy similarity relationship is 
defined as 

,

max ( , , ),
( , ) + ( , )( , , ) =

( , )

( ; ) +
= max{ }.1 ( ; )

| |

i

i

i j

i i

i
l

ij
i i L

l L ij

i j
f f S

J REL RED LCD
REL f L LCD l LJ REL RED LCD

RED f S

r
FNMI f l

r

FNMI f f
S

∈

∈

∑

∑

               (31) 

Remark 3: Definition 17 shows that REL(fi, L) analyses the 
relevance between fi and L, LCD(li, L) reflects the inner 
correlation between labels, and RED(fi, S) focuses on the 
redundancy between fi and S. J(REL, RED, LCD) evaluates the 
significance of each feature one by one and obtain an optimal 
feature subset for multilabel datasets with missing labels. 

D. Multilabel feature selection algorithm for missing labels 
To recover missing labels, the multilabel learning algorithm 

using accelerated proximal gradient optimization (MLAPG) is 
summarised in Algorithm 1. Suppose that m, n and l describe 
the numbers of samples, features, and labels, respectively. The 
time complexity of Algorithm 1 is mostly from Steps 3, 4, and 6. 
Step 3 calculates the Lipschitz constant, and its complexity is 
approximately O(n3 + l3). The complexity of calculating the 

gradient of f(Φ) with respect to W in Step 4 is O(n2m + n2l + nml 
+ nl2). Similarly, the complexity of Step 6 is O(ml2 + l3 + nml + 
n2l). Because m > n > l in most cases, the worst total time 
complexity of Algorithm 1 is O(n2(n + m) + l2 (n + m) + nml). 

Algorithm 1. MLAPG 
Input: Training data set X∈ Rm×n; training label set Y∈ Rn×l; parameters λ1, 
λ2, λ3 and λ4. 
Output: Optimal solution W* and  *. 
1.  Initialise W0, W1 = rand (n, l); 0 , 1  = zeros (l, l); Φ = {W, }; t = 1.  
2.  WHILE not converged  
3.     Calculate Lipchitz constant Lf according to Theorem 1. 
4.     Update W(t) and Wt+1 with Eq. (15). 
5.     Let W(t+1) = W(t). 
6.     Update ( )t

 and 1t+  with Eq. (16). 

7.     Let ( +1)t
 = ( )t

 . 
8. 

    
Let

 
1

2( ) / 21 4 1t tα α+ = + + . 
9.     Let t = t + 1. 
10.  END WHILE 
11.  W* = Wt. 
12.   * = t  . 

The aforementioned MLAPG algorithm is a pre-processing 
step of the multilabel feature selection used to recover the 
missing labels. Then, multilabel feature selection for missing 
labels using MRMR (MFSMR) is described by Algorithm 2. 

Algorithm 2: MFSMR 
Input: Multilabel fuzzy neighborhood decision system MFNDS = <U, C, D, 
δF>, fuzzy neighborhood parameter δF. 
Output: Optimal feature subset S. 
1.  Initialise S = Ø; k = 1. 
2.  Use MLAPG to obtain the complete multilabel dataset. 
3.  Calculate the fuzzy neighborhood granule BFN δ with Eq. (19). 
4.  FOR fk ∈C 
5.    Calculate REL(fk, L) with Eq. (28), where li∈D. 
6.    Calculate RED(fk, S) with Eq. (29), where li∈ D. 
7.    Calculate LCD(li, L) with Eq. (30), where li, L∈D. 
8.    Find fk satisfying Eq. (31). 
9.    Let S = S  { fk } and C = C − { fk }. 
10.   Let k = k +1. 
11.  END FOR 
12.  RETURN Reduced feature subset S. 

In Algorithm 2, based on Algorithm 1, the time complexity 
of Step 2 is O(n2(n + m) + l2 (n + m) + nml). Step 3 calculates the 
fuzzy neighborhood with complexity O(ml). The main time 
cost of MFSMR is from Steps 4-11. The time complexity of 
Step 5 is O(ml + n), and that of Step 6 is O(mlogm + n), where 
the complexity of calculating the label correlation is 
O(nmlogm). In addition, there exists a loop in Step 4. Therefore, 
in the worst case, the total time complexity of MFSMR is 
O(n2(n + m) + l2 (n + m) + nml + n2mlogm). 

IV. EXPERIMENTAL ANALYSIS 

A. Experiment preparation 
To demonstrate the performance of our MLAPG and 

MFSMR algorithms, several experiments were performed on 
twenty multilabel datasets from various fields, which were 
downloaded from http://mulan.sourceforge.net/datasets.html, 
http://meka.sourceforge.net/#datasets and http://computer.njnu. 
edu.cn/Lab/LABIC/LABIC_Software.html, respectively. The 
characteristics of these datasets are described in Table I. 
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TABLE I 
DESCRIPTION OF THE TWELVE MULTILABEL DATASETS 

NO. Datasets Instance Feature Label LC LD Domain 
1 Arts 5000 462 26 1.636 0.063 Text 
2 Bibtex 7395 1836 159 2.402 0.015 Text 
3 Birds 645 260 19 1.470 0.074 Audio 
4 bookmarks 7395 1836 159 2.402 0.015 Text 
5 Business 5000 438 30 1.588 0.053 Text 
6 Computer 5000 681 33 1.508 0.046 Text 
7 Corel5k 5000 499 374 3.522 0.009 Image 
8 Delicious 16105 500 983 19.02 0.002 Text 
9 Education 5000 550 33 1.461 0.044 Text 

10 Enron 1702 1001 53 3.378 0.064 Text 
11 Entertainment 5000 640 21 1.42 0.068 Text 
12 Health 5000 612 32 1.662 0.052 Text 
13 Medical 978 1449 45 1.245 0.028 Text 
14 Recreation 5000 606 22 1.423 0.065 Text 
15 Reference 5000 793 33 1.169 0.035 Text 
16 Scene 2407 294 6 1.074 0.179 Image 
17 Science 5000 743 40 1.451 0.036 Text 
18 Social 5000 1047 39 1.283 0.033 Text 
19 Society 5000 636 27 1.692 0.063 Text 
20 Yeast 2417 103 14 4.237 0.303 Biology 

*LC: label cardinality; LD: label density [33]. 

As in [34], [35], a multi-label k-nearest neighbours 
(MLKNN) algorithm evaluates the classification performance 
of all feature selection methods; its smoothing parameter is 1 
and K = 10. Then, MLKNN is employed to describe the 
processing results for the original dataset. Nine evaluation 
metrics are used to demonstrate the classification performance 
of feature selection: number of selected features (N), average 
precision (AP), coverage (CV), one error (OE), ranking loss 
(RL), Hamming loss (HL), macro-averaging F1 (MacF1), 
micro-averaging F1 (MicF1), and macro-AUC (AUC) [9], [10], 
[35], [36]. For AP, MacF1, and MicF1, the larger the values, the 
better the performance is; for CV, OE, RL, and HL, the lower 
the values, the better the performance is. Then, the 
experimental results for the selected features are obtained using 
five-fold cross-validation with all the test datasets. For 
convenience, “↑” represents a larger result being better, and 
“↓” represents the contrary. The optimal value for each index is 
given in bold font. 

B. MLAPG compared with other multilabel classification 
methods with missing labels 

These experiments aimed to evaluate MLAPG under 
different missing percentages in terms of AP, CV, OE, RL, HL, 
and AUC. Five state-of-the-art multilabel classification 
algorithms were selected for comparison: MLMF [37], MLNB 
[38], CDN-LR [39], sCDN-LR [40], and GLOCAL [41]. 
Following the approaches to setting parameters in [9], [42], 
[43], the four parameters λ1, λ2, λ3, and λ4 of MLAPG for the 
training samples of each dataset were set to values {10−5, 10−4, 
⋯, 103}. The parameters of other algorithms can be found in 
[37]–[41]. Following the experiments presented in [37], Arts, 
Business, Computer, Education, Entertainment, Health, 
Medical, Recreation, Reference, Scene, Science, Social, and 
Society were selected from Table I for comparison, and the 
classification results of seven methods on thirteen datasets with 
different missing percentages (p) of labels are provided in six 
tables. From Table II, the AP of MLAPG is the highest under 
different missing percentages of labels on most datasets, except 
for the Education, Entertainment, and Medical datasets. For the 

Education and Entertainment datasets, MLAPG is second to 
MLMF in metrics of high p. For the Medical dataset, there is no 
obvious difference between MLAPG and MLMF, and MLAPG 
outperforms the other algorithms. More comparison results on 
the thirteen datasets in terms of CV, OE, RL, HL, and AUC can 
be found in the supplementary file. It follows from the 
experimental results in all tables that MLAPG is clearly the best 
performing algorithm in terms of the six considered metrics for 
multilabel datasets with missing labels; the classification 
performances of other algorithms show a downward trend as 
the missing percentage of labels increases. 

C. MFSMR compared with other multilabel feature selection 
algorithms with missing labels 

The first part of this subsection demonstrates the efficiency 
of MFSMR on eight multilabel datasets in terms of AP, CV, OE, 
and RL. MFSMR was compared with seven state-of-the-art 
multilabel feature selection algorithms with missing labels: 
MDDM_proj [44], MDDM_spc [44], MLNB [38], MDMR 
[45], MLFRS [46], PMU [47], and MFML [10]. Following the 
experimental strategies and results in [10], the N value of eight 
datasets determined by MLNB was adopted in this experiment. 
Figs. 1–4 show the classification variation tendency of eight 
algorithms under various missing percentages, where the 
horizontal and vertical axes denote the missing percentage of 
labels and classification results of each metric, respectively.  

Fig. 1 shows that in terms of AP, MFSMR is the best 
performing algorithm on the Arts, Computer, Enron, 
Entertainment, Recreation, Reference, and Science datasets. 
For the Health dataset, MFSMR performs as well as MFML 
and is better than the other six algorithms. From Fig. 2, 
MFSMR performs better on six datasets: Arts, Computer, 
Entertainment, Health, Reference, and Science; however, its 
CV on the Recreation dataset is volatile and reaches its optimal 
values when the missing percentages are 0% and 40%. On the 
Enron dataset, the performances of MFSMR and three 
algorithms (MDMR, MLFRS, and MFML) are all similar. Fig. 
3 indicates that in terms of OE, MFSMR performs better than 
the other algorithms for almost all missing percentages on five 
datasets: Arts, Computer, Enron, Entertainment, and Health. 
On the Recreation and Reference datasets, the difference 
between the performance of MFSMR and that of MFML is 
insignificant, whereas MFSMR is superior to the other six 
algorithms. For the Science dataset, MFSMR outperforms other 
methods when the missing percentage of labels is less than or 
equal to 70%. Fig. 4 illustrates that in terms of RL, MFSMR 
achieves better results than the other algorithms on the Arts, 
Computer, Health, Reference, and Science datasets. For the 
Enron and Entertainment datasets, PMU, MDMR, MLFRS, 
MFML, and MFSMR cannot clearly distinguish pros and cons 
when the missing percentage is more than 20%. For the 
Recreation dataset, the classification performance is unstable, 
and there is no obvious advantage for any algorithm. According 
to the aforementioned values of all evaluated metrics, it can be 
concluded that MFSMR obtains better results than the other 
seven algorithms and indeed improves the classification 
performance for multilabel datasets with different missing 
percentages of labels. 
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TABLE II 
AP (↑) VALUES OF THE SEVEN METHODS ON THE THIRTEEN DATASETS WITH DIFFERENT MISSING LABELS PERCENTAGES 

Datasets p MLKNN MLMF MLNB CDN-LR sCDN-LR GLOCAL MLAPG 

Arts 

10% 0.5214 0.6156 0.2347 0.3345 0.5881 0.6023 0.6259 
30% 0.5330 0.6107 0.2348 0.2901 0.5814 0.5972 0.6201 
50% 0.5312 0.5975 0.2321 0.2808 0.5626 0.5838 0.6091 
70% 0.5213 0.5770 0.2210 0.2066 0.4785 0.5578 0.5898 

Business 

10% 0.8786 0.8888 0.2470 0.3086 0.8679 0.8728 0.8898 
30% 0.8776 0.8862 0.2234 0.2997 0.8685 0.8731 0.8879 
50% 0.8754 0.8825 0.1925 0.2840 0.8630 0.8721 0.8871 
70% 0.8715 0.8769 0.1471 0.2014 0.8544 0.8686 0.8865 

Computer 

10% 0.6278 0.7025 0.1826 0.2697 0.6782 0.6812 0.7163 
30% 0.6229 0.6944 0.1696 0.2233 0.6721 0.6746 0.7175 
50% 0.6153 0.6799 0.1440 0.2022 0.6519 0.6621 0.7139 
70% 0.6204 0.6546 0.1205 0.1489 0.5965 0.6382 0.7115 

Education 

10% 0.5942 0.6387 0.1846 0.5779 0.6119 0.6235 0.6427 
30% 0.5871 0.6302 0.1698 0.3657 0.6087 0.6176 0.6358 
50% 0.5780 0.6212 0.1204 0.1830 0.5863 0.6064 0.6196 
70% 0.5671 0.5997 0.0923 0.1401 0.5197 0.5776 0.5909 

Entertainment 

10% 0.6042 0.6853 0.2701 0.6021 0.6670 0.6699 0.6922 
30% 0.5979 0.6777 0.2752 0.5952 0.6551 0.6626 0.6797 
50% 0.5977 0.6677 0.1996 0.3028 0.6339 0.6535 0.6642 
70% 0.5865 0.6491 0.1671 0.2353 0.5761 0.6314 0.6349 

Health 

10% 0.7080 0.7862 0.1037 0.1454 0.7616 0.7685 0.7929 
30% 0.7218 0.7806 0.1020 0.1342 0.7581 0.7624 0.7907 
50% 0.7239 0.7707 0.0978 0.1187 0.7417 0.7624 0.7902 
70% 0.7156 0.7502 0.0911 0.0978 0.6812 0.7284 0.7880 

Medical 

10% 0.7857 0.8931 0.0672 0.2084 0.8846 0.8675 0.9006 
30% 0.7617 0.8879 0.0592 0.1453 0.8698 0.8399 0.8819 
50% 0.7337 0.8759 0.0523 0.0958 0.8401 0.7845 0.8772 
70% 0.6878 0.8471 0.0461 0.0641 0.7848 0.6903 0.8550 

Recreation 

10% 0.4493 0.6248 0.5077 0.5824 0.5973 0.6119 0.6422 
30% 0.4436 0.6142 0.4847 0.5540 0.5796 0.6022 0.6329 
50% 0.4681 0.6025 0.4571 0.4977 0.5602 0.5858 0.6163 
70% 0.4950 0.5733 0.3646 0.3622 0.4625 0.5476 0.5942 

Reference 

10% 0.6141 0.7118 0.1093 0.2530 0.6972 0.6935 0.7217 
30% 0.6134 0.7020 0.0938 0.1839 0.6876 0.6849 0.7108 
50% 0.6324 0.6881 0.0782 0.1299 0.6475 0.6849 0.6882 
70% 0.6361 0.6579 0.0656 0.0876 0.6034 0.6390 0.6695 

Scene 

10% 0.8475 0.8545 0.8174 0.8298 0.8186 0.8266 0.8586 
30% 0.8422 0.8513 0.8061 0.8219 0.8152 0.8208 0.8520 
50% 0.8379 0.8487 0.7893 0.8151 0.8092 0.8087 0.8492 
70% 0.7994 0.8245 0.6234 0.8058 0.8072 0.5573 0.8273 

Science 

10% 0.5298 0.5891 0.2082 0.3135 0.5546 0.5791 0.6067 
30% 0.5212 0.5799 0.1715 0.2595 0.5554 0.5691 0.6001 
50% 0.5106 0.5661 0.1455 0.2302 0.5276 0.5538 0.5894 
70% 0.4898 0.5385 0.1051 0.1435 0.4351 0.5237 0.5475 

Social 

10% 0.7483 0.7734 0.1436 0.2546 0.7568 0.7576 0.7849 
30% 0.7438 0.7667 0.1353 0.2433 0.7495 0.7527 0.7668 
50% 0.7393 0.7574 0.1184 0.1745 0.7353 0.7434 0.7629 
70% 0.7263 0.7374 0.0925 0.1424 0.6990 0.7234 0.7468 

Society 

10% 0.6131 0.6357 0.3236 0.3595 0.6175 0.6239 0.6462 
30% 0.6062 0.6290 0.3200 0.3409 0.6135 0.6161 0.6448 
50% 0.5978 0.6193 0.2664 0.2958 0.5993 0.6065 0.6422 
70% 0.5858 0.6049 0.1998 0.2579 0.5540 0.5898 0.6421 
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Fig. 1.  AP index of the eight algorithms on eight multilabel datasets with different missing percentages.



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3053844, IEEE
Transactions on Fuzzy Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

0% 10% 20% 30% 40% 50% 60%

5.0

5.2

5.4

5.6

5.8

6.0

6.2

 MDDMspc
 MDDMproj
 MLNB
 PMU
 MDMR
 MLFRS
 MFML
 MFSMR

Co
ve

ra
ge

The percentage of missing labels       0% 10% 20% 30% 40% 50% 60%

4.0

4.2

4.4

4.6

4.8

5.0

Co
ve

ra
ge

The percentage of missing labels       0% 10% 20% 30% 40% 50% 60%

13.0

13.5

14.0

14.5

15.0

Co
ve

ra
ge

The percentage of missing labels       0% 10% 20% 30% 40% 50% 60%
2.8

3.0

3.2

3.4

3.6

3.8

4.0

Co
ve

ra
ge

The percentage of missing labels  
(a) Arts                                               (b) Computer                                         (c) Enron                                           (d) Entertainment 

0% 10% 20% 30% 40% 50% 60%

3.2

3.4

3.6

3.8

4.0

4.2

Co
ve

ra
ge

The percentage of missing labels       0% 10% 20% 30% 40% 50% 60%

4.8

5.0

5.2

5.4

5.6

5.8

Co
ve

ra
ge

The percentage of missing labels       0% 10% 20% 30% 40% 50% 60%

3.2

3.4

3.6

3.8

4.0

Co
ve

ra
ge

The percentage of missing labels      0% 10% 20% 30% 40% 50% 60%

5.5

6.0

6.5

7.0

7.5

8.0

Co
ve

ra
ge

The percentage of missing labels  
(e) Health                                        (f) Recreation                                             (g) Reference                                        (h) Science 

Fig. 2.  CV index of the eight algorithms on eight multilabel datasets with different missing percentages. 
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Fig. 3.  OE index of the eight algorithms on eight multilabel datasets with different missing percentages. 
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Fig. 4.  RL index of the eight algorithms on eight multilabel datasets with different missing percentages. 

The following evaluates the effectiveness of MFSMR on six 
datasets in terms of AP, OE, HL, and MacF1. The eight 
state-of-the-art multilabel feature selection algorithms for 
comparison included MDDM [44], PMU [47], SFUS [48], 
MDMR [45], and MLMLFS (p = 0.4, p = 0.6, p = 0.8, and p = 1) 
[11]. Following the strategies of feature selection with missing 
labels designed by Zhu et al. [11], optimal scores under certain 
features are provided for all compared algorithms, and the 
experimental results for 80%, 50%, 25%, and 0% missing 
labels are provided. As the missing percentage increases, the 
structure information of labels is degraded to a greater extent, 
resulting in worse classification performance. As shown in 

Table III, when p = 80%, the structure information of labels has 
been completely destroyed, and all other compared algorithms 
obtain worse performances compared to MFSMR, which has 
remarkable performance for the Arts, bookmarks, Reference, 
and Social datasets in terms of AP and MacF1. In terms of OE 
and HL, the performance of MFSMR is not significantly 
prominent compared with that of MLMLFS; however, 
MFSMR is far superior to the other algorithms. More 
comparison results under 50%, 25%, and 0% missing labels in 
terms of AP, OE, HL, and MacF1 can be found in the 
supplementary file. In general, MFSMR achieves superior 
classification performance on six datasets with missing labels. 
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TABLE III 
CLASSIFICATION RESULTS OF NINE ALGORITHMS IN TERMS OF FOUR METRICS ON SIX DATASETS WITH 80% MISSING LABELS 

Metrics Datasets MDDM PMU SFUS MDMR MLMLFS (p = 0.4) MLMLFS (p = 0.6) MLMLFS (p = 0.8) MLMLFS (p = 1) MFSMR 

AP 
(↑) 

Artificial 0.4410 0.4454 0.4522 0.4531 0.5100 0.5213 0.5118 0.5080 0.5269 
Birds 0.6077 0.6087 0.6191 0.6130 0.6451 0.6599 0.6628 0.6658 0.6581 

Bookmarks 0.2556 0.2488 0.2719 0.2630 0.4117 0.4466 0.4554 0.4521 0.4565 
Reference 0.5728S 0.577 0.5871 0.5722 0.6135 0.6149 0.6164 0.6135 0.6275 

Social 0.6535 0.6624 0.6568 0.6691 0.7068 0.7114 0.7113 0.7123 0.7214 
Yeast 0.7228 0.7192 0.7244 0.7209 0.7440 0.7443 0.7433 0.7443 0.7428 

OE 
(↓) 

Artificial 0.7347 0.7130 0.7013 0.6960 0.6160 0.5930 0.6083 0.6093 0.5800 
Birds 0.5046 0.4551 0.4644 0.4551 0.4087 0.3963 0.3963 0.3839 0.4086 

Bookmarks 0.6090 0.5890 0.4290 0.5764 0.2063 0.1740 0.1700 0.1757 0.1833 
Reference 0.5220 0.5210 0.5093 0.5200 0.4733 0.4727 0.4743 0.4747 0.4800 

Social 0.4607 0.447 0.4583 0.4327 0.3697 0.3650 0.3603 0.3593 0.3650 
Yeast 0.2486 0.2465 0.2497 0.2454 0.2388 0.2410 0.2410 0.2410 0.2050 

HL 
(↓) 

Artificial 0.0630 0.0630 0.0629 0.0628 0.0592 0.0586 0.0586 0.0586 0.0588 
Birds 0.0661 0.0568 0.055 0.0568 0.0542 0.0540 0.0540 0.0531 0.0584 

Bookmarks 0.0385 0.0433 0.0375 0.0531 0.0324 0.03050 0.0300 0.0301 0.0253 
Reference 0.0351 0.0317 0.0336 0.0317 0.0293 0.0293 0.0292 0.0293 0.0305 

Social 0.0298 0.0296 0.0295 0.0291 0.0242 0.0241 0.0239 0.0235 0.0241 
Yeast 0.2217 0.2251 0.2224 0.2243 0.2053 0.2053 0.2053 0.2052 0.2077 

MacF1 
(↑) 

Artificial 0.0165 0.0292 0.043 0.0435 0.1598 0.1805 0.1623 0.1572 0.1896 
Birds 0.4220 0.4396 0.4303 0.4396 0.4752 0.4748 0.4787 0.4966 0.4925 

Bookmarks 0.1237 0.1453 0.1598 0.179 0.3227 0.3736 0.3852 0.3782 0.4140 
Reference 0.2908 0.2092 0.2839 0.2387 0.3987 0.3787 0.3518 0.3541 0.4040 

Social 0.266 0.3126 0.2118 0.3341 0.3987 0.4034 0.4209 0.4196 0.4420 
Yeast 0.5352 0.5408 0.5416 0.5448 0.6082 0.6082 0.6139 0.6094 0.6095 

 

The final part further demonstrates the performance of 
MFSMR on four datasets in terms of AP, CV, OE, RL, and 
MacF1. The five state-of-the-art multilabel feature selection 
algorithms were compared with MFSMR: CMFS [49], MSSL 
[50], CSFS [51], MLMLFS [11], and FSLCLC [13]. Following 
the experimental technologies in [13], the number of missing 
labels is set as m; for example, m = 3 denotes that three labels of 
all training samples are randomly masked. The significance of 
features is sorted through MFSMR and the features are selected 
from top to bottom gradually, where the ratio of selected 
features is from 0.1 to 1 with a step size of 0.1. When the ratio is 
1, all features are selected. Table IV shows that the five indices 
vary with m on datasets Bibtex, Corel5k, Enron, and Delicious 
selected from Table I, from which, MFSMR is better than the 
other five algorithms on dataset Bibtex in terms of CV and RL. 
For indices AP and MacF1, when m = 1, MFSMR and FSLCL 
exhibit little difference in performance. MFSMR is slightly 
inferior to FSLCL in terms of OE. For the Corel5k dataset, 
MFSMR exhibits great performance on most indices when m = 
2 and 3; it is only second to FSLCL when m = 1, whereas it is 
better than the other algorithms in terms of AP and MacF1. As 
can be seen for dataset Delicious, when m =1 and 2, MFSMR 
performs better than the other algorithms. When m = 3, the 
performance of MFSMR declines for most indices. For the CV 
index, there are no algorithms that have significant advantages 
over MLKNN. On the Enron dataset, MFSMR yields the best 
results in terms of the four metrics when compared with the 
other six methods. Overall, MFSMR outperforms the six other 
compared methods on these four multilabel datasets when 
different labels are masked. In general, MFSMR can select the 
most relevant features and realise excellent classification 
performance for multilabel datasets with missing labels. 

D. Parameter analysis 
Here, the parameter sensitivity of MFSMR for the four 

parameters λ1, λ2, λ3, and λ4 is analysed in detail, where λ1 

controls the difference between the recovered label matrix 
manifold and original label matrix, λ2 controls the new label 
matrix manifold, λ3 controls the sparsity of the feature matrix, 
and λ4 controls the sparsity of the label matrix. These 
parameters were tuned using fivefold cross-validation from 
10−5 to 103 with a step size of 101 for each dataset. Following 
the strategies of parameter analysis provided in [8], [9], the 
results on the Bibtex dataset with 60% missing labels are given 
in terms of the AP, CV, OE, RL, HL, and AUC indices; one 
parameter is varied while the other parameters are fixed at their 
best setting. The experimental results are shown in Fig. 5. From 
Fig. 5, it can be observed that MFSMR is relatively insensitive 
to the parameters with wide ranges, and the classification 
performance decreases when the values of λ3 and λ4 are 
increased. The reason for this is that with the increase of λ3 and 
λ4, the discriminative features are lost and the correlated labels 
are filtered out, which indicates the significant contribution of 
adding the new label correlation matrix and label-specific 
feature matrix in the training phase. 
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Fig. 5.  Parameter sensitivity analysis on dataset Bibtex under 60% missing 
label percentage. 
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TABLE IV 
EVALUATION RESULTS OF SEVEN METHODS ON THE Bibtex DATASET WHILE MASKING DIFFERENT LABELS 

Datasets Metrics m MLKNN CMFS MSSL CSFS MLMLFS FSLCLC MFSMR 

Bibtex 

AP 
(↑) 

1 0.2321 ± 0.0051 0.2235 ± 0.0063 0.3215 ± 0.0216 0.2716 ± 0.0125 0.2196 ± 0.0135 0.3593 ± 0.0095 0.3480 ± 0.0205 
2 0.2151 ± 0.0064 0.2095 ± 0.0052 0.2814 ± 0.0149 0.2354 ± 0.0104 0.2120 ± 0.0132 0.3275 ± 0.0082 0.3341 ± 0.0195 
3 0.2095 ± 0.0059 0.2039 ± 0.0051 0.2689 ± 0.0166 0.2111 ± 0.0208 0.2079 ± 0.0134 0.3180 ± 0.0072 0.3231 ± .01126 

CV 
(↓) 

1 80.386 ± 1.2707 77.975 ± 1.5388 63.300 ± 1.0405 68.650 ± 1.2134 75.848 ± 1.6193 61.365 ± 1.2954 51.637 ± 1.8632 
2 77.222 ± 1.4155 81.791 ± 1.5353 71.085 ± 1.5648 75.192 ± 1.1917 79.338 ± 1.0064 67.884 ± 1.3866 55.876 ± 1.1327 
3 80.741 ± 1.7322 82.365 ± 1.7928 73.213 ± 2.0608 77.696 ± 2.8423 79.706 ± 1.4055 70.627 ± 2.0682 57.090 ± 2.4136 

OE 
(↓) 

1 0.6977 ± 0.0092 0.7169 ± 0.0101 0.6093 ± 0.0171 0.6657 ± 0.0210 0.7259 ± 0.0257 0.5736 ± 0.0161 0.5640 ± 0.0212 
2 0.7129 ± 0.0155 0.7242 ± 0.0121 0.6409 ± 0.0201 0.7025 ± 0.0181 0.7286 ± 0.0282 0.5973 ± 0.0122 0.5888 ± 0.0768 
3 0.7140 ± 0.0167 0.7278 ± 0.0110 0.6476 ± 0.0202 0.7399 ± 0.0161 0.7322 ± 0.0289 0.5990 ± 0.0144 0.6330 ± 0.0341 

RL 
(↓) 

1 0.3420 ± 0.0084 0.3453 ± 0.0086 0.2734 ± 0.0087 0.3044 ± 0.0078 0.3366 ± 0.0111 0.2638 ± 0.0100 0.2130 ± 0.0105 
2 0.3545 ± 0.0079 0.3593 ± 0.0090 0.3055 ± 0.0097 0.3279 ± 0.0087 0.3495 ± 0.0066 0.2891 ± 0.0068 0.2224 ± 0.0064 
3 0.3523 ± 0.0096 0.3584 ± 0.0109 0.3120 ± 0.0135 0.3377 ± 0.0161 0.3475 ± 0.0078 0.2969 ± 0.0118 0.2232 ± 0.0124 

MacF1 
(↑) 

1 0.1221 ± 0.0044 0.0851 ± 0.0046 0.1836 ± 0.0103 0.1437 ± 0.0049 0.0949 ± 0.0097 0.2158 ± 0.0073 0.2004 ± 0.0195 
2 0.1094 ± 0.0044 0.0809 ± 0.0038 0.1566 ± 0.0096 0.1189 ± 0.0071 0.0926 ± 0.0100 0.1977 ± 0.0059 0.2028 ± 0.0134 
3 0.1047 ± 0.0050 0.0799 ± 0.0031 0.1458 ± 0.0099 0.1058 ± 0.0088 0.0897 ± 0.0083 0.1930 ± 0.0066 0.1996 ± 0.0117 

Corel5k 

AP 
(↑) 

1 0.3536 ± 0.0066 0.3463 ± 0.0069 0.3703 ± 0.0015 0.3696 ± 0.0041 0.3680 ± 0.0047 0.3771 ± 0.006 3 0.3641 ± 0.0171 
2 0.3212 ± 0.0062 0.3157 ± 0.0075 0.3330 ± 0.0032 0.3289 ± 0.0043 0.3296 ± 0.0029 0.3361 ± 0.0031 0.3401 ± 0.0223 
3 0.2927 ± 0.0054 0.2893 ± 0.0047 0.3000 ± 0.0036 0.3010 ± 0.0049 0.3000 ± 0.0050 0.3059 ± 0.0042 0.3180 ± 0.0190 

CV 
(↓) 

1 71.502 ± 1.3846 72.041 ± 1.3523 70.673 ± 1.4609 70.674 ± 1.3782 70.921 ± 1.1386 70.041 ± 1.1948 70.032 ± 4.3070 
2 79.127 ± 1.2547 79.380 ± 1.2170 78.457 ± 1.1582 78.657 ± 1.2312 78.634 ± 1.1286 77.914 ± 1.2839 78.952 ± 1.7185 
3 85.161 ± 1.0413 85.311 ± 1.0639 85.138 ± 0.9200 84.885 ± 1.0812 85.137 ± 1.1048 84.861 ± 1.0026 84.548 ± 0.0475 

OE 
(↓) 

1 0.5930 ± 0.0116 0.5981 ± 0.0142 0.5662 ± 0.0121 0.5679 ± 0.0081 0.5713 ± 0.0093 0.5507 ± 0.0122 0.5609 ± 0.0349 
2 0.6243 ± 0.0145 0.6268 ± 0.0162 0.6073 ± 0.0111 0.6111 ± 0.0106 0.6083 ± 0.0145 0.6064 ± 0.0064 0.5920 ± 0.0049 
3 0.6559 ± 0.0113 0.6531 ± 0.0122 0.6369 ± 0.0135 0.6362 ± 0.0148 0.6382 ± 0.0142 0.6271 ± 0.0092 0.6248 ± 0.0034 

RL 
(↓) 

1 0.1476 ± 0.0033 0.1492 ± 0.0031 0.1443 ± 0.0028 0.1442 ± 0.0027 0.1450 ± 0.0021 0.1422 ± 0.0025 0.1411 ± 0.0077 
2 0.1647 ± 0.0026 0.1660 ± 0.0026 0.1617 ± 0.0019 0.1626 ± 0.0020 0.1625 ± 0.0017 0.1600 ± 0.0026 0.1584 ± 0.0034 
3 0.1775 ± 0.0023 0.1785 ± 0.0021 0.1761 ± 0.0014 0.1757 ± 0.0018 0.1763 ± 0.0020 0.1747 ± 0.0021 0.1784 ± 0.0034 

MacF1 
(↑) 

1 0.1187 ± 0.0062 0.1122 ± 0.0065 0.1306 ± 0.0065 0.1311 ± 0.0079 0.1325 ± 0.0061 0.1380 ± 0.0057 0.1362 ± 0.0023 
2 0.1009 ± 0.0064 0.0950 ± 0.0080 0.1099 ± 0.0055 0.1067 ± 0.0072 0.1068 ± 0.0072 0.1134 ± 0.0036 0.1242 ± 0.0023 
3 0.0744 ± 0.0067 0.0741 ± 0.0061 0.0820 ± 0.0038 0.0833 ± 0.0057 0.0825 ± 0.0049 0.0884 ± 0.0050 0.0914 ± 0.0117 

Delicious 

AP 
(↑) 

1 0.3230 ± 0.0027 0.2746 ± 0.0135 0.3089 ± 0.0043 0.3027 ± 0.0035 0.2547 ± 0.0017 0.3288 ± 0.0026 0.3300 ± 0.0093 
2 0.3200 ± 0.0025 0.2724 ± 0.0139 0.3035 ± 0.0033 0.2991 ± 0.0029 0.2590 ± 0.0024 0.3256 ± 0.0025 0.3264 ± 0.0102 
3 0.3169 ± 0.0025 0.2704 ± 0.0136 0.3003 ± 0.0031 0.2952 ± 0.0034 0.2525 ± 0.0016 0.3226 ± 0.0029 0.3009 ± 0.0130 

CV 
(↓) 

1 606.01 ± 0.7518 638.72 ± 0.0479 625.28 ± 3.6584 629.77 ± 3.7979 654.66 ± 2.9751 608.76 ± 3.1202 607.57 ± 2.3586 
2 610.87 ± 0.5807 642.05 ± 5.4990 630.01 ± 3.5864 633.48 ± 3.3993 656.10 ± 2.4705 613.15 ± 3.2041 612.28 ± 4.2212 
3 615.92 ± 0.7199 645.09 ± 2.4013 634.14 ± 3.4401 637.24 ± 2.63425 657.99 ± 2.9015 618.11 ± 3.1157 616.68 ± 3.5524 

OE 
(↓) 

1 0.3980 ± 0.0050 0.4629 ± 0.0226 0.4242 ± 0.0110 0.4359 ± 0.0048 0.5135 ± 0.0055 0.3868 ± 0.0092 0.3866 ± 0.0171 
2 0.4039 ± 0.0077 0.4697 ± 0.0200 0.4349 ± 0.0084 0.4415 ± 0.0097 0.5165 ± 0.0077 0.3963 ± 0.0067 0.4067 ± 0.0181 
3 0.4109 ± 0.0061 0.4750 ± 0.0205 0.4408 ± 0.0100 0.4480 ± 0.0086 0.5202 ± 0.0072 0.4028 ± 0.0080 0.4097 ± 0.0154 

RL 
(↓) 

1 0.1277 ± 0.0012 0.1424 ± 0.0035 0.1343 ± 0.0013 0.1365 ± 0.0015 0.1497 ± 0.0010 0.1270 ± 0.0009 0.1268 ±0.0069 
2 0.1287 ± 0.0011 0.1437 ± 0.0037 0.1361 ± 0.0012 0.1377 ± 0.0014 0.1501 ± 0.0009 0.1280 ± 0.0008 0.1300 ± 0.0074 
3 0.1298 ± 0.0011 0.1441 ± 0.0036 0.1372 ± 0.0012 0.1390 ± 0.0014 0.1506 ± 0.0009 0.1292 ± 0.0009 0.1306 ± 0.0090 

MacF1 
(↑) 

1 0.1034 ± 0.0020 0.0585 ± 0.0079 0.0878 ± 0.0022 0.0841 ± 0.0027 0.0511 ± 0.0019 0.1040 ± 0.0015 0.1339 ± 0.0016 
2 0.1017 ± 0.0016 0.0570 ± 0.0077 0.0851 ± 0.0025 0.0825 ± 0.0026 0.0504 ± 0.0019 0.1017 ± 0.0012 0.1097 ± 0.0092 
3 0.1001 ± 0.0014 0.0561 ± 0.0073 0.0835 ± 0.0018 0.0802 ± 0.0023 0.0502 ± 0.0016 0.1004 ± 0.0024 0.0992 ± 0.0133 

Enron 

AP 
(↑) 

1 0.5577 ± 0.0104 0.5634 ± 0.0102 0.5327 ± 0.0155 0.5343 ± 0.0099 0.5368 ± 0.0097 0.5891 ± 0.0110 0.6270 ± 0.0215 
2 0.5446 ± 0.0122 0.5466 ± 0.0126 0.5202 ± 0.0165 0.5237 ± 0.0089 0.5250 ± 0.0209 0.5668 ± 0.0099 0.6008 ± 0.0187 
3 0.5386 ± 0.0120 0.5372 ± 0.0115 0.5207 ± 0.0105 0.5239 ± 0.0104 0.5206 ± 0.0124 0.5592 ± 0.0124 0.5884 ± 0.0255 

CV 
(↓) 

1 14.039 ± 0.3801 14.221 ± 0.3766 14.875 ± 0.3517 14.926 ± 0.3486 14.751 ± 0.2796 13.781 ± 0.4453 13.334 ± 0.3295 
2 14.387 ± 0.3980 14.6295 ± 0.382 15.113 ± 0.5018 15.317 ± 0.3789 15.034 ± 0.3942 14.261 ± 0.4565 13.661 ± 0.5258 
3 14.678 ± 0.4034 14.930 ± 0.3940 15.215 ± 0.3982 15.350 ± 0.4335 15.227 ± 0.2661 14.684 ± 0.4261 14.129 ± 0.7115 

OE 
(↓) 

1 0.3826 ± 0.0202 0.3761 ± 0.0190 0.4168 ± 0.0215 0.4074 ± 0.0192 0.4168 ± 0.0245 0.3585 ± 0.0146 0.3026 ± 0.0286 
2 0.4070 ± 0.0305 0.3978 ± 0.0221 0.4419 ± 0.0323 0.4192 ± 0.0233 0.4444 ± 0.0452 0.3810 ± 0.0234 0.3324 ± 0.0193 
3 0.4211 ± 0.0301 0.4082 ± 0.0308 0.4554 ± 0.0256 0.4323 ± 0.0425 0.4595 ± 0.0442 0.3781 ± 0.0180 0.3516 ± 0.0261 

RL 
(↓) 

1 0.1036 ± 0.0046 0.1047 ± 0.0048 0.1122 ± 0.0048 0.1125 ± 0.0050 0.1106 ± 0.0038 0.0985 ± 0.0065 0.0963 ± 0.0033 
2 0.1071 ± 0.0050 0.1090 ± 0.0050 0.1148 ± 0.0066 0.1165 ± 0.0042 0.1140 ± 0.0060 0.1041 ± 0.0054 0.0993 ± 0.0056 
3 0.1089 ± 0.0053 0.1118 ± 0.0057 0.1152 ± 0.0052 0.1166 ± 0.0054 0.1152 ± 0.0043 0.1076 ± 0.0059 0.1044 ± 0.0073 

MacF1 
(↑) 

1 0.1095 ± 0.0080 0.1076 ± 0.0091 0.0832 ± 0.0044 0.0753 ± 0.0034 0.0905 ± 0.0084 0.1243 ± 0.0085 0.1454 ± 0.0106 
2 0.1097 ± 0.0115 0.0987 ± 0.0060 0.0818 ± 0.0078 0.0709 ± 0.0023 0.0884 ± 0.0092 0.1158 ± 0.0073 0.1272 ± 0.0136 
3 0.1030 ± 0.0130 0.0962 ± 0.0110 0.0835 ± 0.0099 0.0717 ± 0.0056 0.0849 ± 0.0051 0.1135 ± 0.0056 0.1186 ± 0.0147 

 

E. Statistical analysis 
To analyse the statistical performance among all the 

compared algorithms on each evaluation metrics, the Friedman 
test and Nemenyi test [52] were employed for performance 
analysis. The Friedman statistic is expressed as follows: 
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where T and s are the numbers of datasets and methods, 
respectively; Ri (i = 1, 2, ···, s) represents the mean rank of the 
i-th methods on all datasets. At significance level α = 0.1, the 
null hypothesis that all the compared methods perform 
equivalently is rejected in terms of each evaluation index. The 
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critical difference among these methods is described as 
( 1) ,
6

s sCD q
Tα α
+

=
 
where qα denotes the critical tabulated value. 

Following the statistical tests in [5], [18], CD diagrams are 
employed to visually display the correlation among all the 
methods. If the average rank of the any compared algorithm and 
our proposed methods is within one CD, they will be connected. 
Otherwise, any algorithm not connected with the proposed 
methods is deemed to be significantly different.  

From the aforementioned Table II and Tables I–V in the 
supplementary file, the FF and 2

Fχ  results are list in Table V. 
Comparison of MFSMR against the other algorithms with the 
Nemenyi test is displayed in Fig. 6, where qα = 2.693 at a 
significance level α = 0.1, and the CD = 2.2818 (s = 7, T = 13). 
As show in Fig. 6, MLAPG performs significantly better than 
the other algorithms on each index. For all evaluation metrics, 
MLAPG outperforms MLKNN, MLNB, CDN-LR, sCDN-LR, 
and GLOCAL, and obtains comparable results against to 
MLMF. In general, all tested results show that MLAPG 
provides a competitive performance in all compared methods. 
Based on Figs. 1–4, Table VI shows 2

Fχ  and FF in terms of four 
metrics and the null hypothesis at α = 0.1, qα = 2.780, and CD = 
2.3131 (s = 8, T = 8). From Fig. 7, the results for AP, CV, and 
OE show that MFMSR is better than the other methods; for RL, 
MFMSR is statistically better than the other methods, and there 
is no consistent evidence to indicate a statistical equivalence 
among MFMSR, MFML, MDDMspc, MDDMproj, and 
MLFRS. According to the results in Table III and in Tables VI– 
VIII in the supplementary file, for the Nemenyi test, qα = 2.855 
when α = 0.1, and CD = 4.5142 (s = 9, T = 6). As shown in Fig. 
8, MFMSR clearly outperforms MLMLFS (p = 0.1), MLMLFS 
(p = 0.4), MLMLFS (p = 0.6), MLMLFS (p = 0.8), SFUS, 
MDMR, PMU, and MDDM in metrics of all evaluation indices. 
Thus, there is no significant difference among MLMLFS (p = 
0.1), MLMLFS (p = 0.4), MLMLFS (p = 0.6), and MLMLFS (p 
= 0.8) based on the statistical test. Based on Table IV, FF for the 
five evaluation indices is given in Table VIII, and for α = 0.1, 
the null hypothesis of equal performance among the seven 
methods is rejected under the Friedman test. qα = 2.693 when α 
= 0.1, and thus, CD = 4.114 (s = 7, T = 4). The Nemenyi test 
results are shown in Fig. 9. For AP, OE, RL, and MacF1, 
MFMSR achieves statistically superior performance compared 
to MSSL, MLKNN, MLMLFS, CMFS, and CSFS. There is no 
consistent evidence for statistical differences between MFMSR 
and FSLCL. Overall, MFMSR obtains excellent performance 
when compared with other six methods. 

TABLE V 
STATISTICAL RESULTS OF SEVEN METHODS IN TERMS OF SIX METRICS 
 AP CV OE RL HL AUC 
2
Fχ  

FF 

70.58 
114.21 

69.68 
100.50 

69.68 
100.50 

53.27 
25.84 

60.59 
41.78 

62.44 
48.15 

MLAPG

MLMF

GLOCAL

sCDN-LR

MLNB

CDN-LR

MLKNN

1 2 3 4 5 6 7

CD

 

MLAPG

MLMF

MLKNN

sCDN-LR

MLNB

CDN-LR

GLOCAL

1 2 3 4 5 6 7

CD

 

MLAPG

MLMF

GLOCAL

sCDN-LR

MLNB

CDN-LR

MLKNN

1 2 3 4 5 6 7

CD

 
(a) AP                               (b) CV                                  (c) OE 

MLAPG

MLMF

sCDN-LR

MLKNN

MLNB

GLOCAL

CDN-LR

1 2 3 4 5 6 7

CD

 

MLAPG

MLMF

MLKNN

sCDN-LR

MLNB

CDN-LR

GLOCAL

1 2 3 4 5 6 7

CD

 

MLAPG

MLMF

sCDN-LR

CDN-LR

MLNB

GLOCAL

MLKNN

1 2 3 4 5 6 7

CD

 
(d) RL                               (e) HL                                  (f) AUC 

Fig. 6.  Comparison between MLAPG and the other six algorithms under the 
Nemenyi test. 

TABLE VI 
STATISTICAL RESULTS OF EIGHT METHODS IN TERMS OF FOUR METRICS 

 AP CV OE RL 
2
Fχ  

FF 

29.91 
8.02 

23.10 
4.92 

27.53 
6.77 

5.90 
 0.82 

MFMSR

MFML

MLNB

MDMR

MLFRS

MDDMproj

PMU

MDDMspc

1 2 3 4 5 6 7 8

CD

         

MFMSR

MFML

MDMR

MLNB

MLFRS

MDDMproj

MDDMspc

PMU

1 2 3 4 5 6 7 8

CD

 
   (a) AP                                                (b) CV 

MFMSR

MFML

MLNB

MDMR

MLFRS

MDDMproj

PMU

MDDMspc

1 2 3 4 5 6 7 8

CD

           

MFMSR

MFML

MDDMspc

MDDMproj

MLNB

MDMR

PMU

MLFRS

1 2 3 4 5 6 7 8

CD

 
(c) OE                                                (d) RL 

Fig. 7.  Comparison between MFMSR and the other eight algorithms under the 
Nemenyi test. 

TABLE VII 
STATISTICAL RESULTS OF EIGHT METHODS IN TERMS OF FOUR METRICS 

 AP OE HL MacF1 
2
Fχ  

FF 

38.67 
20.73 

37.34 
17.51 

37.26 
17.34 

38.49 
20.24 

MFMSR

MLMLFS( p =0.6)

MLMLFS( p =0.8)

MLMLFS( p =0.1)

MLMLFS( p =0.4)

MDDM

PMU

MDMR

SFUS

1 2 3 4 5 6 7 8 9

CD

           

MFMSR

MLMLFS( p =0.8)

MLMLFS( p =0.6)

MLMLFS( p =0.1)

MLMLFS( p =0.4)

MDDM

PMU

SFUS

MDMR

1 2 3 4 5 6 7 8 9

CD

 
         (a) AP                                                  (b) OE 

 

MFMSR

MLMLFS( p =0.1)

MLMLFS( p =0.8)

MLMLFS( p =0.6)

MLMLFS( p =0.4)

MDDM

PMU

MDMR

SFUS

1 2 3 4 5 6 7 8 9

CD

           

MFMSR

MLMLFS( p =0.8)

MLMLFS( p =0.1)

MLMLFS( p =0.6)

MLMLFS( p =0.4)

MDDM

PMU

MDMR

SFUS

1 2 3 4 5 6 7 8 9

CD

 
           (c) HL                                                  (d) MacF1 

Fig. 8.  Comparison between MFMSR and the other nine algorithms under the 
Nemenyi test. 
TABLE VIII 

STATISTICAL RESULTS OF EIGHT METHODS IN TERMS OF FIVE METRICS 
 AP CV OE RL MacF1 
2
Fχ  

FF 

14.49 
4.57 

16.21 
6.24 

17.63 
8.31 

14.84 
4.86 

16.19 
6.22 

   

MFMSR

FSLCL

MSSL

MLKNN

MLMLFS

CMFS

CSFS

1 2 3 4 5 6 7

CD
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1 2 3 4 5 6 7

CD

 

   

MFMSR
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MLKNN
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CSFS

1 2 3 4 5 6 7

CD

 
(a) AP                                    (b) CV                                  (c) OE 

   

FSLCL
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1 2 3 4 5 6 7

CD

            

   

MFMSR
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MLKNN

MSSL
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MLMLFS
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1 2 3 4 5 6 7
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         (d) RL                                                (e) MacF1 

Fig. 9.  Comparison between MFMSR and the other seven algorithms under the 
Nemenyi test. 

V. CONCLUSION 
In this paper, a multilabel feature selection method using 

MFNRS and MRMR was proposed to improve classification 
performance of multilabel data with missing labels. First, in 
combination with the relation coefficient between samples, the 
label complement matrix and label-specific feature matrix 
based on linear regression model were studied, and then the 
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multilabel learning model was presented to recover missing 
labels. Second, a margin-based fuzzy neighborhood radius was 
presented, and the MFNRS model was constructed by 
combining MNRS with FNRS. By integrating algebra and 
information viewpoints, fuzzy neighborhood entropy-based 
uncertainty measures were investigated. Third, the label 
correlation based on the fuzzy similarity within the label set 
was defined, and the new MRMR model was developed to 
evaluate the performance of candidate feature subsets. Finally, 
the multilabel feature selection algorithm with missing labels 
was designed to efficiently eliminate redundant features and 
optimize classification performance on multilabel data. 
Extensive experiments showed that our method can achieve 
competitive and promising results. However, because the 
accelerated proximal gradient strategy is used to solve the 
model optimization of MFSMR and the solution process for the 
Lipschitz constant requires a large number of matrix operations, 
high time cost easily appears. In addition, MFSMR cannot 
achieve better classification performance when the missing 
percentage is very high. To improve classification performance 
and decrease computational cost of our model for multilabel 
data with missing labels, more efficient optimal search 
strategies and uncertainty measures based on multilabel fuzzy 
neighborhood rough sets should be explored in future work. 
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