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a b s t r a c t 

The key strategy of the three-way decisions theory is to consider a decision-making prob- 

lem as a ternary classification one (i.e. acceptance, rejection and non-commitment). Re- 

cently, this theory has been introduced into formal concept analysis for mining three-way 

concepts to support three-way decisions in formal contexts. That is, the three-way de- 

cisions have been performed by incorporating the idea of ternary classification into the 

design of extension or intension of a concept. However, the existing methods on the stud- 

ies of three-way concepts are constructive, which means that the three-way concepts had 

been formed by defining certain concept-forming operators in advance. In order to reveal 

the essential characteristics of three-way concepts in making decisions from the perspec- 

tive of cognition, it is necessary to reconsider three-way concepts under the framework of 

general concept-forming operators. In other words, axiomatic approaches are required to 

characterize three-way concepts. Motivated by this problem, this study mainly focuses on 

three-way concept learning via multi-granularity from the viewpoint of cognition. Specif- 

ically, we firstly put forward an axiomatic approach to describe three-way concepts by 

means of multi-granularity. Then, we design a three-way cognitive computing system to 

find composite three-way cognitive concepts. Furthermore, we use the idea of set approx- 

imation to simulate cognitive processes for learning three-way cognitive concepts from a 

given clue. Finally, numerical experiments are conducted to evaluate the performance of 

the proposed learning methods. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

Three-way decisions are one of the important ways in solving decision-making problems. Their key strategy is to con- 2 

sider a decision-making problem as a ternary classification one label ed by acceptance, rejection and non-commitment 3 

[60] . Up to now, substantial contributions have been made to the development of the theory of three-way decisions 4 

from various aspects. For instance, Yao [58] discussed the induction of three-way decision rules using the classical 5 

and decision-theoretic rough set models, and he also expounded the superiority of three-way decisions from the per- 6 

spective of miss-classification cost [59] . Yang and Yao [53] employed the decision-theoretic rough set to model multi- 7 

agent three-way decisions. Deng and Yao [6] proposed a three-way approximation of a fuzzy set by means of the two 8 
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parameters in the fuzzy membership function. Hu [9] established axiomatic approaches for three-way decisions and their 9 

corresponding spaces. Liang and Liu [19] built three-way decisions for the purpose of solving single-period and multi- 10 

period decision-making problems under intuitionistic fuzzy environment. Liu et al. [51] derived three-way decisions from 11 

investment decision-making problem for maximizing profit. In addition, three-way decisions have been applied to spam 12 

e-mail filtering [12] , cost-sensitive face recognition [18] , recommender system design [65] , clustering analysis [67] , and 13 

so on [68] . 14 

Cognitive computing is known as a computer system modeled on the human brain [42] . Its main purpose is to simulate 15 

human thought processes (e.g. perception, attention and learning) by computers. Cognitive learning is the function used to 16 

simulate cognitive processes such as the operations of thinking and remembering something. Generally speaking, cognitive 17 

learning can be viewed as a mathematical tool for the realization of cognitive computing. Moreover, both cognitive comput- 18 

ing and cognitive learning have absorbed many novel methods from psychology, information theory and mathematics in the 19 

process of their development [41] . 20 

A concept, generally constituted by its extension and intension parts, is the basic unit of human cognition in philos- 21 

ophy [41] , and is commonly used to recognize a real-world concrete entity or model a perceived-world abstract subject 22 

[42] . Up to now, many types of concepts such as abstract concepts [41] , Wille’s concepts [46] , property-oriented concepts 23 

[7] , object-oriented concepts [55,56] , AFS-concepts [43] and approximate concepts [15] have been presented to meet dif- 24 

ferent requirements of cognitive knowledge discovery. These well defined concepts can be distinguished from one another 25 

according to the characteristics of their intensions whose forms may be conjunctive, disjunctive or mixed. Very recently, 26 

by combining the theory of three-way decisions with formal concept analysis, Qi et al. [31,32] proposed the notion of a 27 

three-way concept to support three-way decisions in formal contexts, in which the main strategy is to incorporate the idea 28 

of ternary classification into the design of extension or intension of a concept. However, the existing methods on the studies 29 

of three-way concepts are constructive, which means that the three-way concepts were generated by introducing certain 30 

concept-forming operators in advance. In other words, researchers may define different three-way concepts with different 31 

properties, which results in a problem that which properties are the intrinsic ones of characterizing three-way concepts. The 32 

answers on this problem are important because they can help to understand the most basic decision-making mechanism of 33 

three-way concepts. So, axiomatic methods are required to look beyond appearance for the essence of three-way concepts 34 

in making decisions. The main theme of our paper is to address this problem. 35 

Concept learning is to adopt certain approaches to learn unknown concepts from a given clue such as concept algebra 36 

system [41] , queries [1] , cognitive system [66] , cloud model [44] , set approximation [16] , iteration [35] , etc. According to 37 

Yao’s information processing triangle [57] , concept learning can be investigated from three aspects: the abstract level, brain 38 

level and machine level. More specifically, concept learning in the abstract level is to be analyzed in philosophy, mathematics 39 

and logics. For example, the formalization of the notion of a concept often refers to the principles from philosophy [14] , the 40 

establishment of general concept-forming operators needs axiomatic methods [23] , and logics are beneficial to the design 41 

of coherent cognitive systems. Concept learning in the brain level is to be discussed in psychology and neuroscience. For 42 

instance, the principles for perception, attention and thinking in cognitive psychology must be appropriately taken into 43 

consideration in exploring axiomatic methods [14,16] . Moreover, bi-directional recall between neurons can help to define 44 

reasonable mappings between the extension and intension parts of a concept [2] . Concept learning in the machine level is 45 

to be studied in computer science and information science. More attention has been attracted on this aspect because many 46 

kinds of effective methods [1,14,35,49,50] were developed to learn concepts from a given clue. In fact, concept learning in 47 

the abstract, brain and machine levels are relatively independent and closely related to one another. That is to say, on one 48 

hand, each of them can be researched independently. On the other hand, results from any one of them are beneficial to the 49 

better understanding of the other two. In our opinion, only by considering these three aspects in a unified framework can 50 

we have a comprehensive understanding of concept learning. The current work has an interest in the study of three-way 51 
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concept learning from the abstract and machine levels. 

Granular computing [63] has emerged as a unified and coherent platform of constructing, describing, and processin

information granules. Currently, all kinds of models have been designed for information granules [3,4,26–30,36,45,54] . Gen

erally speaking, the collection of information granules induced by a (resemblance, proximity, functional, etc.) relation ca

form a single granularity of the universe of discourse. In many practical applications, however, multiple granularities (of

ten termed as multi-granularity) are also needed for problem-solving. For example, in a classification problem with severa

experts, it is a common situation that different experts have different views on dividing samples into classes. Under suc

a circumstance, each expert may give an independent granularity of the samples according to his or her personal pref

erence. Then the final classification result can be obtained by effectively combining the multiple granularities from thes

experts. In fact, the multi-granularity view has been widely used in rough set theory. For instance, considering that multipl
granularities will be generated in multi-scale datasets [47] , Wu and Leung [48] studied how to select optimal granularity 

for optimization of the granulated information. Optimal granularity selection was also investigated from the viewpoint of 

local approaches [40] . Liang et al. [20] adopted the multi-granularity view to accelerate the speed of finding an approxi- 

mate reduct. Based on multi-granularity, Qian et al. [33,34] put forward two novel rough set models (i.e. pessimistic and 

optimistic multi-granulation rough sets) for information fusion, and they designed a classifier based on these two kinds of 

multi-granulation rough sets. Moreover, multi-granularity has further been integrated into neighborhood-based, tolerance, 

covering and fuzzy rough set models [11,21,22] for complex information fusion. Also, the classical and generalized rough set 

models based on multi-granularity have been compared and connected with other theories such as formal concept analy- 
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s and cost-sensitive classification [17,39,52,62] . In this paper, multi-granularity will be used to discuss three-way concept 

arning. 

The cognitive viewpoint has been commonly adopted in the study of concept learning [2,14,16,49,50,57,66] because it has 

 wide application background in simulating intelligence behaviors of the brain including thinking, learning and reasoning. 

or this reason, this idea will also be incorporated into three-way concept learning in this paper. In summary, three-way 

gnitive concept learning via multi-granularity deserves to be studied, which is the main issue that our current work 

cuses on. Specifically, we propose an axiomatic approach to describe three-way concepts based on multi-granularity, es- 

blish a three-way cognitive computing system for finding composite three-way cognitive concepts, and simulate cognitive 

rocesses for learning three-way concepts from a given clue. Besides, some numerical experiments are conducted to assess 

e performance of the proposed learning methods. The main contribution of this paper is to reveal the essential idea of 

ree-way concepts in solving decision-making problems from the aspect of cognition, meaning that we will clarify which 

roperties of three-way concepts are intrinsic. 

The remainder of this paper is organized as follows. Section 2 analyzes cognitive mechanism of forming three-way con- 

pts based on multi-granularity and three-way-decision-making principles. Moreover, the notions of three-way cognitive 

perators, three-way cognitive concepts and three-way granular concepts are proposed. Some important properties are also 

iscussed. Section 3 designs a three-way cognitive computing system which is in fact a dynamic process to update three-way 

ranular concepts. Section 4 employs the idea of set approximation to simulate cognitive processes for learning three-way 

gnitive concepts from a given clue. Section 5 conducts some numerical experiments to evaluate the performance of the 

roposed learning methods. The paper is then concluded with a brief summary and an outlook for further research. 

. Cognitive mechanism of forming three-way concepts 

In this section, we analyze cognitive mechanism of forming three-way concepts based on multi-granularity and three- 

ay-decision-making principles. Throughout the paper, we denote by U a nonempty object set, i.e., the universe of discourse, 

nd A an attribute set. 

.1. Basic notions 

We first introduce the notions of three-way decisions, three-way quotient set and its power set. 

In accordance with the notations in rough set theory [25] , we still call the sets inducing three-way decisions (i.e., accep- 

nce, rejection and non-commitment [60] ) as positive, negative and boundary regions [5,10,64,69] . Moreover, the positive, 

egative and boundary regions are not distinguished from their respective three-way decisions in the subsequent discus- 

ons. 

For x ∈ U and A i ⊆ A , let f A i (x ) be an evaluation function associated to A i . Then, given two parameters α and β with 

< α, the positive, negative and boundary regions can be formalized as follows: 

(i) positive region: X i = { x ∈ U | f A i (x ) ≥ α} , 
(ii) negative region: Y i = { x ∈ U | f A i (x ) ≤ β} , 
(iii) boundary region: Z i = U − X i − Y i . 

It should be pointed out that the evaluation function f A i can be defined according to the practical background of the 

roblem to be solved. In addition, the assignment of values to the parameters α and β is performed by an expert based on 

is or her experience in the field that the problem belongs to. 

Furthermore, we say that X i , Y i and Z i are three-way decisions induced by A i with the help of α and β . In fact, from 

ranular computing, three-way decisions X i , Y i and Z i form a granularity of U by eliminating empty sets. Note that these 

ree-way decisions satisfy X i ∪ Y i ∪ Z i = U . So, it is sufficient to describe three-way decisions by any two of them. Here- 

after, we choose ( X i , Y i ) to represent three-way decisions when no confusion is caused. 

Let S be an index set. Suppose that ( X i , Y i ) ( i ∈ S ) are a series of three-way decisions induced by multiple subsets A i ( i ∈ 

 ) of A . Then, for each i ∈ S , three-way decisions ( X i , Y i ) can form a granularity of U by eliminating empty sets. Therefore, 

 i , Y i ) ( i ∈ S ) can be viewed as a result of multi-granularity of U . 

Moreover, if the multiple subsets A i ( i ∈ S ) constitute a partition of A , then Q (A ) = { A i | i ∈ S} is called a three-way 

uotient set of A . For convenience, we denote the power set of Q (A ) by 2 Q (A ) . Here, every B ∈ 2 Q (A ) can be considered as a 

roup of knowledge jointly inducing three-way decisions. 

.2. Three-way cognitive operators induced by multi-granularity and three-way-decision-making principles 

For two three-way decisions ( X i , Y i ) and ( X j , Y j ) of U , if X i ⊆ X j and Y i ⊆ Y j , then ( X j , Y j ) is said to be more effective than 

 i , Y i ), which we denote by ( X i , Y i ) �( X j , Y j ). Moreover, if ( X i , Y i ) �( X j , Y j ), we also say that ( X i , Y i ) is decision-consistent with 

spect to ( X j , Y j ). 

The set of three-way decisions, induced by multi-granularity of U , is denoted by T (U) . Furthermore, the intersection and 

nion in T (U) are respectively defined as 

(X i , Y i ) ∩ (X j , Y j ) = (X i ∩ X j , Y i ∩ Y j ) , 

(X i , Y i ) ∪ (X j , Y j ) = (X i ∪ X j , Y i ∪ Y j ) . 
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Table 1 

A reviewing dataset. 

Manuscript Domain 1 Domain 2 Domain 3 

Reviewer r 1 Reviewer r 2 Reviewer r 3 Reviewer r 4 Reviewer r 5 Reviewer r 6 Reviewer r 7 

x 1 Accept Accept 

x 2 Accept Reject 

x 3 Reject Accept 

x 4 Accept Reject 

x 5 Accept Accept 

x 6 Reject Reject 

x 7 Accept Reject Accept 

x 8 Accept Accept Accept 

x 9 Reject Reject Accept 

Now, we discuss what the mappings H : 2 Q (A ) → T (U) and L : T (U) → 2 Q (A ) need to obey when they are used to form

three-way concepts? 

Three-way-decision-making principle I: According to sequential or dynamic three-way decisions [9,18,61] , the mor

knowledge we use to induce three-way decisions, the more effective the induced three-way decisions are. From this princi

ple, we have 

B i ⊆ B j ⇒ H(B i ) � H(B j ) . (1

Three-way-decision-making principle II: Three-way decisions made by the whole group are less effective than or a

effective as the combination of those made by its sub-groups. From this principle, we have 

H(B i ∪ B j ) � H(B i ) ∪ H(B j ) . (2

Three-way-decision-making principle III: Whether or not the knowledge is selected depends on how decision

consistent its induced three-way decisions are with respect to the target three-way decisions ( X , Y ). From this principle

we obtain 

L (X, Y ) = { A i ∈ Q (A ) | H({ A i } ) � (X, Y ) } . (3

In what follows, Eqs. (1) –(3) are used as conditions to define three-way cognitive operators based on the mappings H
and L . 

Definition 1. Given two mappings H : 2 Q (A ) → T (U) and L : T (U) → 2 Q (A ) , if for any B i , B j ∈ 2 Q (A ) and (X, Y ) ∈ T (U) , th

following properties hold: 

(i) B i ⊆ B j ⇒ H(B i ) � H(B j ) , 

(ii) H(B i ∪ B j ) � H(B i ) ∪ H(B j ) , 

(iii) L (X, Y ) = { A i ∈ Q (A ) | H({ A i } ) � (X, Y ) } , then H and L are called three-way cognitive operators. 

Note that the reason of calling H and L as three-way cognitive operators is as follows: 

(1) both H and L involve three-way decisions, i.e., the co-domain of H and the domain of L ; 

(2) H and L can be jointly used to form concepts, i.e., recognition of concepts. 

In addition, it should be pointed out that the properties (i), (ii) and (iii) used to define three-way cognitive operators ar

from three-way-decision-making principles I, II and III, respectively. In other words, there are explicit semantics for thes

properties. In fact, the properties (i) –(iii) are very important because they can be jointly used as axioms to characteriz

three-way concepts. So, these properties can be considered as the intrinsic ones of characterizing three-way concepts. 

Remark 1. For three-way cognitive operators H and L , we say that three-way decisions ( X , Y ) induced by a nonempty se

B ∈ 2 Q (A ) (i.e. H(B ) = (X, Y ) ) are trivial if X and Y are empty simultaneously. Hereinafter, three-way decisions induced b

any nonempty set B ∈ 2 Q (A ) are assumed to be not trivial. 

Remark 2. For three-way decisions ( X i , Y i ) and ( X j , Y j ) induced by two nonempty sets B i , B j ∈ 2 Q (A ) , if X i ∩ Y j = ∅ and Y i 
X j = ∅ , we say that ( X i , Y i ) and ( X j , Y j ) are uncontradictory with each other. In the rest of this paper, three-way decision

induced by any two nonempty sets B i , B j ∈ 2 Q (A ) are assumed to be uncontradictory with each other. 

For conciseness, we also write H({ A i } ) as H(A i ) when no confusion is caused. 

Example 1. Table 1 depicts a dataset of nine manuscripts evaluated by seven reviewers who are from three domains. Tha

is, the first two reviewers are from Domain 1, the second two from Domain 2, and the remainder from Domain 3. In th

table, null value in the cross of a row and a column means that the manuscript in this row was not assigned to be evaluate

by the reviewer from this column. It is easy to observe that the manuscripts 1 –3 fall into the first domain, the manuscript

4 –6 the second domain, and the manuscripts 7 –9 the third domain. 

Let U = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 } be the set of nine manuscripts, and A = { r 1 , r 2 , r 3 , r 4 , r 5 , r 6 , r 7 } be the set of seve

reviewers. Then, A 1 = { r 1 , r 2 } , A 2 = { r 3 , r 4 } and A 3 = { r 5 , r 6 , r 7 } are just the reviewers from three domains, respectively. Sinc
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A 1 , A 2 and A 3 form a partition of A , then Q (A ) = { A 1 , A 2 , A 3 } is a three-way quotient set of A . Moreover, its power set is as 161 

follows: 162 

2 

Q (A ) = {∅ , { A 1 } , { A 2 } , { A 3 } , { A 1 , A 2 } , { A 1 , A 3 } , { A 2 , A 3 } , { A 1 , A 2 , A 3 }} . 
Take α = 

2 
3 and β = 

1 
3 . Suppose the evaluation function f B i (x ) ( B i ∈ 2 Q (A ) , x ∈ U ) is the ratio of the number of Accepts 163 

given to x to that of reviewers assigned to x under the columns ∪ B i . Note that x will be put into the boundary region 164 

directly if the total number of Accepts and Rejects given to x under the columns ∪ B i is less than or equal to 1. In other 165 

words, a non-commitment decision will be made to x if it does not receive enough evaluations. Then we can generate the 166 

following three-way decisions: 167 

• positive region induced by { A 1 }: X 1 = { x ∈ U | f { A 1 } (x ) ≥ α} = { x 1 } , 168 

• negative region induced by { A 1 }: Y 1 = { x ∈ U | f { A 1 } (x ) ≤ β} = ∅ , 169 

• positive region induced by { A 2 }: X 2 = { x ∈ U | f { A 2 } (x ) ≥ α} = { x 5 } , 170 

• negative region induced by { A 2 }: Y 2 = { x ∈ U | f { A 2 } (x ) ≤ β} = { x 6 } , 171 

• positive region induced by { A 3 }: X 3 = { x ∈ U | f { A 3 } (x ) ≥ α} = { x 7 , x 8 } , 172 
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• negative region induced by { A 3 }: Y 3 = { x ∈ U | f { A 3 } (x ) ≤ β} = { x 9 } , 
• positive region induced by { A 1 , A 2 }: X 4 = { x ∈ U | f { A 1 ,A 2 } (x ) ≥ α} = { x 1 , x 5 } , 
• negative region induced by { A 1 , A 2 }: Y 4 = { x ∈ U | f { A 1 ,A 2 } (x ) ≤ β} = { x 6 } , 
• positive region induced by { A 1 , A 3 }: X 5 = { x ∈ U | f { A 1 ,A 3 } (x ) ≥ α} = { x 1 , x 7 , x 8 } , 
• negative region induced by { A 1 , A 3 }: Y 5 = { x ∈ U | f { A 1 ,A 3 } (x ) ≤ β} = { x 9 } , 
• positive region induced by { A 2 , A 3 }: X 6 = { x ∈ U | f { A 2 ,A 3 } (x ) ≥ α} = { x 5 , x 7 , x 8 } , 
• negative region induced by { A 2 , A 3 }: Y 6 = { x ∈ U | f { A 2 ,A 3 } (x ) ≤ β} = { x 6 , x 9 } , 
• positive region induced by { A 1 , A 2 , A 3 }: X 7 = { x ∈ U | f { A 1 ,A 2 ,A 3 } (x ) ≥ α} = { x 1 , x 5 , x 7 , x 8 } , 
• negative region induced by { A 1 , A 2 , A 3 }: Y 7 = { x ∈ U | f { A 1 ,A 2 ,A 3 } (x ) ≤ β} = { x 6 , x 9 } . 

Thus, T (U) = { (∅ , ∅ ) , (X 1 , Y 1 ) , (X 2 , Y 2 ) , (X 3 , Y 3 ) , (X 4 , Y 4 ) , (X 5 , Y 5 ) , (X 6 , Y 6 ) , (X 7 , Y 7 ) } is the set of three-way decisions in- 

uced by multi-granularity of U . It should be pointed out that the trivial three-way decisions ( ∅ , ∅ ) is forcibly included 

 T (U) in order to establish the following mappings: 

H : ∅ 
→ (∅ , ∅ ) , { A 1 } 
→ (X 1 , Y 1 ) , { A 2 } 
→ (X 2 , Y 2 ) , { A 3 } 
→ (X 3 , Y 3 ) , 

{ A 1 , A 2 } 
→ (X 4 , Y 4 ) , { A 1 , A 3 } 
→ (X 5 , Y 5 ) , { A 2 , A 3 } 
→ (X 6 , Y 6 ) , { A 1 , A 2 , A 3 } 
→ (X 7 , Y 7 ) 

nd 

L : (∅ , ∅ ) 
→ ∅ , (X 1 , Y 1 ) 
→ { A 1 } , (X 2 , Y 2 ) 
→ { A 2 } , (X 3 , Y 3 ) 
→ { A 3 } , 
(X 4 , Y 4 ) 
→ { A 1 , A 2 } , (X 5 , Y 5 ) 
→ { A 1 , A 3 } , (X 6 , Y 6 ) 
→ { A 2 , A 3 } , (X 7 , Y 7 ) 
→ { A 1 , A 2 , A 3 } . 

Then, based on Definition 1 , the mappings H and L are three-way cognitive operators. 

roposition 1. Let H and L be three-way cognitive operators. Then for any nonempty set B ∈ 2 Q (A ) , we have 

H(B ) = 

⋃ 

A i ∈ B 
H(A i ) . (4) 

roof. To complete the proof, it is sufficient to show H({ A i , A j } ) = H(A i ) ∪ H(A j ) , where A i , A j ∈ B . By Eq. (1) , we have 

(A i ) ∪ H(A j ) � H({ A i , A j } ) due to H(A i ) � H({ A i , A j } ) and H(A j ) � H({ A i , A j } ) . By combining H(A i ) ∪ H(A j ) � H({ A i , A j } ) 
ith Eq. (2) , we conclude H({ A i , A j } ) = H(A i ) ∪ H(A j ) . �

roposition 2. Let H and L be three-way cognitive operators. For any B ∈ 2 Q (A ) and (X, Y ) , (X i , Y i ) , (X j , Y j ) ∈ T (U) , we have the 

llowing properties: 

B ⊆ LH(B ) ; (5) 

HL (X, Y ) � (X, Y ) ; (6) 

(X i , Y i ) � (X j , Y j ) ⇒ L (X i , Y i ) ⊆ L (X j , Y j ) , (7) 

here HL (•) and LH(•) represent the composite mappings H(L (•)) and L (H(•)) , respectively. 

roof. Firstly, we prove Eq. (5) . For any A i ∈ B , we have H(A i ) � H(B ) according to Eq. (1) . Based on Eq. (3) , we obtain 

 i ∈ LH(B ) . As a result, B ⊆ LH(B ) is true. 

Secondly, we prove Eq. (6) . For any A i ∈ L (X, Y ) , by Eq. (3) , we get H(A i ) � (X, Y ) . It can be seen from Proposition 1 that 

L (X, Y ) = 

⋃ 

A i ∈L (X,Y ) H(A i ) � (X, Y ) . 

Finally, we prove Eq. (7) . Suppose ( X i , Y i ) �( X j , Y j ). Then, for any A i ∈ L (X i , Y i ) , we know from Eq. (3) that H(A i ) � (X i , Y i ) 

 true. Moreover, we have H(A i ) � (X j , Y j ) . Consequently, A i ∈ L (X j , Y j ) is proved. �

It deserves to point out that based on Eqs. (1) , (5) , (6) and (7) , the pair (H, L ) forms an isotone Galois connection 

4,46] between 2 Q (A ) and T (U) . This means that the mappings H and L can be jointly used to induce concepts. By the 

ay, three-way cognitive operators H and L are completely different from the classical ones [16] which form an antitone 

alois connection between 2 A and 2 U . 
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2.3. Three-way cognitive concepts and three-way granular concepts 

In this subsection, we put forward the notion of a three-way cognitive concept and discuss information granules fo

three-way cognitive concepts. 

Definition 2. Let H and L be three-way cognitive operators. For B ∈ 2 Q (A ) and (X, Y ) ∈ T (U) , if H(B ) = (X, Y ) and L (X, Y ) =
B, we say that 〈 ( X , Y ), B 〉 is a three-way concept under the cognitive operators H and L (or simply a three-way cognitiv

concept). In this case, ( X , Y ) and B are called the extent and intent of the three-way cognitive concept 〈 ( X , Y ), B 〉 , respectively

Henceforth, the set of all three-way cognitive concepts is denoted by B (2 Q (A ) , T (U) , H, L ) . 

Three-way cognitive concepts are different from triadic concepts [13] which consist of extent, intent and modus. Th

reasons are as follows: 

(i) The extent of a three-way cognitive concept is constituted by positive region, negative region and boundary region

while that of a triadic concept is only a subset of the universe of discourse. 

(ii) The attribute sets A i ( i ∈ S ) used to induce basic three-way decisions are pairwise disjoint (see, e.g., those unde

Domains 1 –3 in Table 1 ), while the attribute sets under conditions of a triadic context are the same. That is to say, th

relationship between the extent and intent of a three-way cognitive concept is different from that of a triadic concept. Mor

specifically, the former claims that the intent is considered as an evaluation function to partition the universe of discours

into positive, negative and boundary regions for generating extent, while the latter emphasizes that each object in exten

has all the attributes in intent under every condition in modus. 

The infimum ( 
∧ 

) and supremum ( 
∨ 

) among three-way cognitive concepts B (2 Q (A ) , T (U) , H, L ) are respectively define

as: 

〈 (X i , Y i ) , B i 〉 
∧ 〈 (X j , Y j ) , B j 〉 = 〈HL ((X i , Y i ) ∩ (X j , Y j )) , B i ∩ B j 〉 , 

〈 (X i , Y i ) , B i 〉 
∨ 〈 (X j , Y j ) , B j 〉 = 〈 (X i , Y i ) ∪ (X j , Y j ) , LH(B i ∪ B j ) 〉 . (8

Example 2 (Continued with Example 1 ) . Based on Definition 2 , we can obtain the following three-way cognitive concept

for Example 1 : 

〈 ({ x 1 , x 5 , x 7 , x 8 } , { x 6 , x 9 } ) , Q (A ) 〉 , 〈 (∅ , ∅ ) , ∅〉 , 〈 ({ x 1 , x 5 } , { x 6 } ) , { A 1 , A 2 }〉 , 〈 ({ x 1 , x 7 , x 8 } , { x 9 } ) , { A 1 , A 3 }〉 ,
〈 ({ x 5 , x 7 , x 8 } , { x 6 , x 9 } ) , { A 2 , A 3 }〉 , 〈 ({ x 1 } , ∅ ) , { A 1 }〉 , 〈 ({ x 5 } , { x 6 } ) , { A 2 }〉 , 〈 ({ x 7 , x 8 } , { x 9 } ) , { A 3 }〉 , 

where A 1 = { r 1 , r 2 } , A 2 = { r 3 , r 4 } and A 3 = { r 5 , r 6 , r 7 } . 
Definition 3. Let H and L be three-way cognitive operators. Then H 

G = {{ A i } → H(A i ) | A i ∈ Q (A ) } is called informatio

granules of H. 

According to Eq. (4) , the information granules H 

G can be used to generate the mapping H. 

Proposition 3. Let H and L be three-way cognitive operators. Then for any B ∈ 2 Q (A ) , 〈H(B ) , LH(B ) 〉 is a three-way cognitiv

concept. 

Proof. The conclusion is immediate from Definition 2 and Proposition 2 . �

Proposition 3 is further used to define the notion of a three-way granular concept by taking B = { A i } and the formaliza

tion is given below. 

Definition 4. Let H and L be three-way cognitive operators. Then for any singleton set { A i } ∈ 2 Q (A ) , we say tha

〈H(A i ) , LH(A i ) 〉 is a three-way granular concept. 

Proposition 4. Let H and L be three-way cognitive operators. Then for any 〈 (X, Y ) , B 〉 ∈ B (2 Q (A ) , T (U) , H, L ) , we have 

〈 (X, Y ) , B 〉 = 

∨ 

A i ∈ B 
〈H(A i ) , LH(A i ) 〉 . (9

Proof. The conclusion can be obtained directly from Eqs. (4) and (8) . �

Proposition 4 indicates that any three-way cognitive concept can be induced by integrating three-way granular con

cepts. Thus, from granular computing, three-way granular concepts can be considered as the information granules o

B (2 Q (A ) , T (U) , H, L ) . Hereinafter, we denote the collection of the information granules by G HL . That is, 

G HL = {〈H(A i ) , LH(A i ) 〉 | A i ∈ Q (A ) } . (10

Example 3 (Continued with Example 2 ) . Note that the following equations hold for Example 2 : 

H(A 1 ) = ({ x 1 } , ∅ ) , LH(A 1 ) = L ({ x 1 } , ∅ ) = { A 1 } , 
H(A 2 ) = ({ x 5 } , { x 6 } ) , LH(A 2 ) = L ({ x 5 } , { x 6 } ) = { A 2 } , 

H(A 3 ) = ({ x 7 , x 8 } , { x 9 } ) , LH(A 3 ) = L ({ x 7 , x 8 } , { x 9 } ) = { A 3 } , 
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Fig. 1. The graph of H i −1 . 

here A 1 = { r 1 , r 2 } , A 2 = { r 3 , r 4 } and A 3 = { r 5 , r 6 , r 7 } . Thus, based on Definition 4 , we know that 〈 ({ x 1 }, ∅ ), { A 1 } 〉 , 〈 ({ x 5 }, { x 6 }), 

 2 } 〉 and 〈 ({ x 7 , x 8 }, { x 9 }), { A 3 } 〉 are three-way granular concepts. That is, 

G HL = {〈 ({ x 1 } , ∅ ) , { A 1 }〉 , 〈 ({ x 5 } , { x 6 } ) , { A 2 }〉 , 〈 ({ x 7 , x 8 } , { x 9 } ) , { A 3 }〉} , 
hich can be further used to induce other three-way cognitive concepts. 

. Three-way cognitive computing system 

From cognitive computing, concepts should be updated to simulate intelligence behaviors of the brain when information 

 updated periodically. For instance, in Example 1 , nine manuscripts were evaluated by seven reviewers. As time goes by, 

n one hand, new manuscripts will arrive. On the other hand, those falling into the boundary regions need to be evaluated 

y inviting additional reviewers. In this case, it is necessary to update three-way granular concepts for supporting a further 

ecision of the manuscripts with non-commitment decisions. 

Motivated by the above problem, we propose in this section a three-way cognitive computing system to update three- 

ay granular concepts as objects and/or attributes increase in batches. Before embarking on this issue, we introduce some 

otations. 

To facilitate our subsequent discussion, n attribute sets A 1 , A 2 , . . . , A n with A 1 ⊆ A 2 ⊆ ��� ⊆ A n are denoted by { A t | t ∈ 

 }, where S = { 1 , 2 , . . . , n } . Similarly, n object sets U 1 , U 2 , . . . , U n with U 1 ⊆ U 2 ⊆ ��� ⊆ U n are denoted by { U t | t ∈ S }. Let 

A i −1 = A i − A i −1 and �U i −1 = U i − U i −1 . Moreover, for any i ∈ S , we denote by 2 Q (A i ) the power set of three-way quotient 

t of A i , and by T (U i ) the set of three-way decisions of U i . 

For any A i −1 s ∈ Q (A i −1 ) , if there exists A it ∈ Q (A i ) such that A i −1 s ⊆ A it , then Q (A i ) is called a generalization of Q (A i −1 ) 

r equivalently Q (A i −1 ) is a specification of Q (A i ) , where i − 1 , s , i and t are subscript indices. We denote this generaliza- 

on/specification relation by Q (A i −1 ) ≤ Q (A i ) . Such a relation is easy to be understood in the real world. For instance, in 

xample 1 , new invited reviewers for evaluating the manuscripts falling into the boundary regions must be from Domain 1, 

omain 2, Domain 3 or a new domain. 

Suppose that 

H i −1 : 2 

Q (A i −1 ) → T (U i −1 ) (11) 

 a mapping from 2 Q (A i −1 ) to T (U i −1 ) and 

H �U i −1 
: 2 

Q (A i −1 ) → T (�U i −1 ) (12) 

 a mapping from 2 Q (A i −1 ) to T (�U i −1 ) . In what follows, H i −1 and H �U i −1 
are further explained by graphs for better under- 

anding of their decision-making mechanisms. 

First of all, let us begin with the mapping H i −1 . Note that H i −1 can be completely determined by its information granules 

 

G 
i −1 

. So, Fig. 1 shows the graph of H i −1 , where each attribute set A i −1 j ( j = 1 , 2 , . . . , n i −1 ) partitions U i −1 into three-way 

ecisions X i −1 j , Y i −1 j and Z i −1 j . Obviously, the boundary regions Z i −1 j ( j = 1 , 2 , . . . , n i −1 ) need additional information to make 

ecision. 
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Fig. 2. The graph of H �U i −1 
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H �U i −1 
with certainty. Thus, Fig. 2 in fact depicts the graph of H �U i −1 

, where each attribute set A i −1 j ( j = 1 , 2 , . . . , n i −1

partitions �U i −1 into three-way decisions �X i −1 j , �Y i −1 j and �Z i −1 j . Undoubtedly, the boundary regions �Z i −1 j ( j =
1 , 2 , . . . , n i −1 ) also need additional information to make decision. 

Furthermore, suppose that 

H �A i −1 
: 2 

Q (A i ) → T (U 

∗) (13

is a mapping from 2 Q (A i ) to T (U 

∗) , where Q (A i −1 ) ≤ Q (A i ) and U 

∗ = 

⋃ n i −1 

j=1 
(Z i −1 j ∪ �Z i −1 j ) . The boundary regions Z i −1 j an

�Z i −1 j can be found in Figs. 1 and 2 , respectively. In other words, the attribute set �A i −1 is combined with A i −1 for sup

porting a further decision to the objects in the boundary regions. This is in accordance with the idea of sequential o

dynamic three-way decisions [9,18,61] . In addition, the graph of H �A i −1 
is shown in Fig. 3 . In the figure, each attribut

set A ij ( j = 1 , 2 , . . . , n i −1 ) partitions U 

∗ into three-way decisions (X Z 
i −1 j 

∪ �X �Z 
i −1 j 

, Y Z 
i −1 j 

∪ �Y �Z 
i −1 j 

) , while each attribute set A

( j = n i −1 + 1 , . . . , n i ) partitions U 

∗ into three-way decisions ( X ij , Y ij ). 

Finally, Eqs. (11) –(13) are jointly used to construct a new mapping 

H i : 2 

Q (A i ) → T (U i ) (14

in which the information granules of H i are defined as 

H i (A it ) = 

{
H i −1 (A i −1 s ) ∪ H �U i −1 

(A i −1 s ) ∪ H �A i −1 
(A it ) , if ∃ A i −1 s ∈ Q (A i −1 ) s.t. A i −1 s ⊆ A it , 

H �A i −1 
(A it ) , otherwise. 

(15

Here, H �U i −1 
(A i −1 s ) is set to be empty when �U i −1 = ∅ , so is H �A i −1 

(A it ) set when �A i −1 = ∅ . 
Fig. 4 shows how to obtain the graph of H i based on those of H i −1 , H �U i −1 

and H �A i −1 
. In the figure, each attribute se

A ij ( j = 1 , 2 , . . . , n i −1 ) partitions U i into three-way decisions (
X i −1 j ∪ X 

Z 
i −1 j ∪ �X i −1 j ∪ �X 

�Z 
i −1 j , Y i −1 j ∪ Y Z i −1 j ∪ �Y i −1 j ∪ �Y �Z 

i −1 j 

)
, 

while each attribute set A ij ( j = n i −1 + 1 , . . . , n i ) partitions U i into three-way decisions ( X ij , Y ij ). 

Definition 5. Let A i −1 , A i be the attribute sets of { A t | t ∈ S }, U i −1 , U i be the object sets of { U t | t ∈ S } and Q (A i −1 ) ≤ Q (A i ) . De

note �A i −1 = A i − A i −1 and �U i −1 = U i − U i −1 . Suppose that H i −1 , L i −1 and H i , L i are three-way cognitive operators, wher

H i is constructed by H i −1 , H �U i −1 
and H �A i −1 

based on Eq. (14) . Then, we say that H i and L i are extended three-way cog

nitive operators of H i −1 and L i −1 by combining the information H �U i −1 
and H �A i −1 

. 

Definition 6. Let A i −1 , A i be the attribute sets of { A t | t ∈ S }, U i −1 , U i be the object sets of { U t | t ∈ S } and Q (A i −1 ) ≤ Q (A i 

Denote �A i −1 = A i − A i −1 and �U i −1 = U i − U i −1 . Suppose that H i and L i are extended three-way cognitive operators of H i −
and L i −1 by combining H �U i −1 

and H �A i −1 
. Then, we call F H i L i = (G H i −1 L i −1 

, H �U i −1 
, H �A i −1 

) a three-way cognitive computin

state, where G H i −1 L i −1 
is the set of three-way granular concepts under H i −1 and L i −1 . Moreover, a collection of three-wa

cognitive computing states, denoted by F = 

⋃ n {F } , is called a three-way cognitive computing system. 
i =2 H i L i 
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Fig. 3. The graph of H �A i −1 
. 

Note that the objective of designing a three-way cognitive computing system is to update three-way granular concepts 

s objects and/or attributes increase in batches. This is in accordance with our common sense that in the real world, recog- 

ition of concepts will be gradually improved under the circumstance of information updating until it maintains relative 

ability. In order to achieve this task, it is necessary to analyze the transformation mechanism between three-way granular 

ncepts from one three-way cognitive computing state to another. 

roposition 5. Let F H i L i = (G H i −1 L i −1 
, H �U i −1 

, H �A i −1 
) be a three-way cognitive computing state and Q (A i −1 ) ≤ Q (A i ) . For any 

 it ∈ Q (A i ) , if there exists A i −1 s ∈ Q (A i −1 ) such that A i −1 s ⊆ A it , we have 

H i (A it ) = H i −1 (A i −1 s ) ∪ H �U i −1 
(A i −1 s ) ∪ H �A i −1 

(A it ) ; (16) 

therwise, 

H i (A it ) = H �A i −1 
(A it ) . (17) 

roof. The proof is immediate from Eqs. (14) and (15) . �

emark 3. Based on (iii) of Definition 1 , we have 

L i H i (A it ) = { A is ∈ Q (A i ) | H i (A is ) � H i (A it ) } . (18) 

ince every H i (A it ) ( A it ∈ Q (A i ) ) can be obtained by Proposition 5 , it is easy to compute each L i H i (A it ) according to 

qs. (16) –(18) . 

Proposition 5 and Remark 3 can be jointly used to achieve the task of transforming the information granules G H i −1 L i −1 
to 

 H i L i . 
Note that for a given three-way cognitive computing system F = 

⋃ n 
i =2 {F H i L i } , all information granules G H 1 L 1 , G H 2 L 2 , . . . , 

 H n L n are unknown in advance. Their sequential computation processes are described below: 

(i) three-way cognitive operators H 1 and L 1 are used to compute G H 1 L 1 according to Eq. (10) , 

(ii) and then recursive strategy is adopted to generate G H 2 L 2 , . . . , G H n L n in sequence based on Proposition 5 and Remark 3 . 
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Moreover, Algorithm 1 describes the detailed procedure of solving this problem. The time complexity is analyzed a

follows. Suppose that F = 

⋃ n 
i =2 {F H i L i } is the input three-way cognitive computing system. Running Step 1 takes O (| A 1 | 

2 | U 1 

based on Eqs. (10) and (18) . The time complexity of Steps 3–11 is O (| A i | (| A i | 2 + | U i | )) , and that of Steps 12–24 is O (| A i | 
2 | U i |

As a result, the time complexity of Algorithm 1 is O (n | A n | 2 (| A n | + | U n | )) , where n is the number of three-way cognitiv

computing states. Obviously, its time complexity is polynomial. 

Finally, we use an example to illustrate Algorithm 1 . In order to make the example better understood, we give below 

sufficient and necessary condition to the preparatory work of generating G H i L i . 
A three-way cognitive computing state F H i L i = (G H i −1 L i −1 

, H �U i −1 
, H �A i −1 

) can be constructed to obtain three-way granu

lar concepts G H i L i via Eqs. (16) –(18) if and only if the following conditions are prepared: 

(a) objects and attributes are updated; 

(b) the evaluation function f A i and the thresholds α and β are properly defined; 

(c) Q (A i −1 ) ≤ Q (A i ) is satisfied; 

(d) three-way granular concepts G H i −1 L i −1 
of the previous state are known; 

(e) information granules of H i −1 , H �U i −1 
and H �A i −1 

are computed. 

Example 4. In Example 1 , nine manuscripts were evaluated by seven reviewers. As time goes by, on one hand, new

manuscripts will arrive. On the other hand, those falling into the boundary regions need to be further evaluated by invitin

additional reviewers. It is supposed that the information updating on the manuscripts and reviewers is shown in Table 2

That is, new manuscripts x 10 , x 11 , x 12 , x 13 and x 14 were submitted to the reviewing dataset, and at the same time, new

reviewers r 8 , r 9 , r 10 and r 11 were invited to evaluate the manuscripts falling into the boundary regions. It can be observe

from Table 2 that the manuscript x 10 falls into Domain 2, the manuscript x 11 Domain 1, the manuscript x 12 Domain 3, an

others a new domain (i.e. Domain 4). Among these newly invited reviewers, r 8 is from Domain 1, r 9 is from Domain 2

and r 10 and r 11 are from Domain 4. Since new manuscripts and reviewers have been added, it is necessary to update th

three-way granular concepts which can be found in Example 3 . 
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Algorithm 1 Computing three-way granular concepts of a three-way cognitive computing system. 

Require: F = 

n ⋃ 

i =2 

{F H i L i } , where F H i L i = (G H i −1 L i −1 
, H �U i −1 

, H �A i −1 
) is a three-way cognitive computing state with Q (A i −1 ) ≤

Q (A i ) . 

Ensure: Three-way granular concepts G H n L n of F . 

1: Initialize G H 1 L 1 = {〈H 1 (A 1 s ) , L 1 H 1 (A 1 s ) 〉 | A 1 s ∈ Q (A 1 ) } and i = 2 ; 

2: While i ≤ n 

3: Set �1 = ∅ ; 
4: For each A it ∈ Q (A i ) 

5: If there exists A i −1 s ∈ Q (A i −1 ) such that A i −1 s ⊆ A it 

6: let H i (A it ) = H i −1 (A i −1 s ) ∪ H �U i −1 
(A i −1 s ) ∪ H �A i −1 

(A it ) ; 

7: Else 

8: let H i (A it ) = H �A i −1 
(A it ) ; 

9: End If 

10: Set �1 ← �1 ∪ {H i (A it ) } ; 
11: End For 

12: Set �2 = ∅ ; 
13: For each A it ∈ Q (A i ) 

14: Let B = ∅ 
15: For each H i (A is ) ∈ �1 

16: If H i (A is ) � H i (A it ) 

17: do B ← B ∪ { A is } ; 
18: End If 

19: End For 

20: Set L i H i (A it ) = B ; 

21: Do �2 ← �2 ∪ {L i H i (A it ) } ; 
22: End For 

23: Compute G H i L i based on �1 and �2 ; 

24: i ← i + 1 ; 

25: End While 

26: Return G L n H n . 

Table 2 

A reviewing dataset with information updating on manuscripts and reviewers. 

U 2 Domain 1 Domain 2 Domain 3 Domain 4 

340 

o341 

342 

{ r343 

{ r344 

{ A345 

A346 

347 

P

(

r 1 r 2 r 8 r 3 r 4 r 9 r 5 r 6 r 7 r 10 r 11 

x 1 Accept Accept 

x 2 Accept Reject Reject 

x 3 Reject Accept Reject 

x 4 Accept Reject Accept 

x 5 Accept Accept 

x 6 Reject Reject 

x 7 Accept Reject Accept 

x 8 Accept Accept Accept 

x 9 Reject Reject Accept 

x 10 Accept Accept 

x 11 Reject Reject 

x 12 Reject Accept Reject 

x 13 Reject Accept 

x 14 Accept Accept 

Similar to the case in Example 1 , we also take α = 

2 
3 and β = 

1 
3 . The evaluation function f A it (x ) ( A it ∈ Q (A i ) ) is the ratio 

f the number of Accepts given to x to that of reviewers assigned to x under the columns A it . 

From Example 1 , it follows U 1 = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 } , A 1 = { r 1 , r 2 , r 3 , r 4 , r 5 , r 6 , r 7 } , A 11 = { r 1 , r 2 } , A 12 = 

 3 , r 4 } , A 13 = { r 5 , r 6 , r 7 } and Q (A 1 ) = { A 11 , A 12 , A 13 } . Let U 2 = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 11 , x 12 , x 13 , x 14 } , A 2 = 

 1 , r 2 , r 3 , r 4 , r 5 , r 6 , r 7 , r 8 , r 9 , r 10 , r 11 } , A 21 = { r 1 , r 2 , r 8 } , A 22 = { r 3 , r 4 , r 9 } , A 23 = { r 5 , r 6 , r 7 } , A 24 = { r 10 , r 11 } and Q (A 2 ) = 

 21 , A 22 , A 23 , A 24 } . Then, Q (A 1 ) ≤ Q (A 2 ) is satisfied. Moreover, we denote �U 1 = U 2 − U 1 = { x 10 , x 11 , x 12 , x 13 , x 14 } and �A 1 = 

 2 − A 1 = { r 8 , r 9 , r 10 , r 11 } . 
It can be seen from Example 3 that three-way granular concepts under H 1 and L 1 are as follows: 

G H L = {〈 ({ x 1 } , ∅ ) , { A 11 }〉 , 〈 ({ x 5 } , { x 6 } ) , { A 12 }〉 , 〈 ({ x 7 , x 8 } , { x 9 } ) , { A 13 }〉} 
1 1 
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from which we can obtain the information granules of H 1 . 348 

Furthermore, we know from Table 2 that the information granules of H �U 1 
are 349 

H 

G 
�U 1 

= {{ A 11 } 
→ (∅ , { x 11 } ) , { A 12 } 
→ ({ x 10 } , ∅ ) , { A 13 } 
→ (∅ , { x 12 } ) } , 
and those of H �A 1 

are 350 

H 

G 
�A 1 

= {{ A 21 } 
→ (∅ , { x 2 , x 3 } ) , { A 22 } 
→ ({ x 4 } , ∅ ) , { A 23 } 
→ (∅ , ∅ ) , { A 24 } 
→ ({ x 14 } , ∅ ) } . 
To sum up, all the conditions (a) –(e) have been satisfied. According to the statement in the paragraph above Example 4 , a 351 

three-way cognitive computing state F H 2 L 2 = (G H 1 L 1 , H �U 1 
, H �A 1 

) can be constructed to obtain three-way granular concepts 352 

G H 2 L 2 based on Eqs. (16) –(18) . The detailed computations are given below: 353 

H 2 (A 21 ) = H 1 (A 11 ) ∪ H �U 1 (A 11 ) ∪ H �A 1 (A 21 ) = ({ x 1 } , { x 2 , x 3 , x 11 } ) due to A 11 ⊆ A 21 , 

H 2 (A 22 ) = H 1 (A 12 ) ∪ H �U 1 (A 12 ) ∪ H �A 1 (A 22 ) = ({ x 4 , x 5 , x 10 } , { x 6 } ) due to A 12 ⊆ A 22 , 

H 2 (A 23 ) = H 1 (A 13 ) ∪ H �U 1 (A 13 ) ∪ H �A 1 (A 23 ) = ({ x 7 , x 8 } , { x 9 , x 12 } ) due to A 13 ⊆ A 23 , 

H 2 (A 24 ) = H �A 1 (A 24 ) = ({ x 14 } , ∅ ) since there does not exist A 1 s ⊆ A 24 such that A 1 s ⊆ A 24 , 

and 354 

L 2 H 2 (A 21 ) = { A 21 } , L 2 H 2 (A 22 ) = { A 22 } , L 2 H 2 (A 23 ) = { A 23 } , L 2 H 2 (A 24 ) = { A 24 } . 
Consequently, we have 355 

G H 2 L 2 = {〈 ({ x 1 } , { x 2 , x 3 , x 11 } ) , { A 21 }〉 , 〈 ({ x 4 , x 5 , x 10 } , { x 6 } ) , { A 22 }〉 , 〈 ({ x 7 , x 8 } , { x 9 , x 12 } ) , { A 23 }〉 , 〈 ({ x 14 } , ∅ ) , { A 24 }〉} . 
Three-way decisions derived by the granular concepts G H 2 L 2 are as follows: 356 

• 〈 ({ x 1 }, { x 2 , x 3 , x 11 }), { A 21 } 〉 : according to the reviewers r 1 , r 2 and r 8 from Domain 1, manuscript x 1 is accepted, while x 2 , 357 

x 3 and x 11 are rejected; 358 

• 〈 ({ x 4 , x 5 , x 10 }, { x 6 }), { A 22 } 〉 : according to the reviewers r 3 , r 4 and r 9 from Domain 2, manuscripts x 4 , x 5 and x 10 are 359 

accepted, while x 6 is rejected; 360 

• 〈 ({ x 7 , x 8 }, { x 9 , x 12 }), { A 23 } 〉 : according to the reviewers r 5 , r 6 and r 7 from Domain 3, manuscripts x 7 and x 8 are accepted, 361 

while x 9 and x 12 are rejected; 362 

• 〈 ({ x 14 }, ∅ ), { A 24 } 〉 : according to the reviewers r 10 and r 11 from Domain 4, manuscript x 14 is accepted. 363 

Furthermore, we point out that these three-way granular concepts can also be used in cognitive concept learning (see 364 

Examples 5 and 6 in the next section for details). 365 

4. Cognitive processes 366 

From cognitive computing [42] , the obtained three-way granular concepts of a three-way cognitive computing system 367 

can be further used to learn three-way cognitive concepts from a given clue. Note that the clue may be three-way decisions, 368 

a set of attribute classes or both of them. Generally speaking, deriving new cognitive concepts from a given clue by induc- 369 

tion, approximation or reasoning is called the cognitive process. For instance, we take Example 4 to describe the scenarios. 370 

Suppose that ({ x 1 , x 4 , x 5 , x 7 , x 10 }, { x 2 , x 3 , x 6 , x 9 , x 11 }) is an available clue. Then what knowledge are such three-way deci- 371 

sions induced by? It is easy to observe from Example 4 that there is no a direct answer to this question since no extent of 372 

a three-way granular concept is exactly ({ x 1 , x 4 , x 5 , x 7 , x 10 }, { x 2 , x 3 , x 6 , x 9 , x 11 }). In what follows, we try to find the answers 373 

for this kind of questions. 374 

Considering that the idea of lower and upper approximations in rough set theory has been widely applied to concept 375 

approximation [14,37,38] , we use this idea to simulate cognitive processes. 376 

In rough set theory [25] , an information system is represented as I = (U, A ) in which each object x ∈ U has a value a ( x ) 377 

under every attribute a ∈ A . 378 

For a nonempty subset A i ⊆ A , an equivalence relation IND ( A i ) is defined by 379 

 } . 380 

y 381 

382 

r 383 

384 
IND (A i ) = { (x, y ) ∈ U × U | a (x ) = a (y ) for all a ∈ A i } . 
In fact, IND ( A i ) can induce a partition U / IND ( A i ) of U by taking each equivalence class as [ x ] A i = { y ∈ U | (x, y ) ∈ IND (A i )

That is, U/IND (A i ) = { [ x ] A i | x ∈ U} . Then, for any target set X ⊆ U , its lower and upper approximations are respectivel

defined as 

A i (X ) = 

⋃ 

Y ∈ U/IND (A i ) ,Y ⊆X 

Y and A i (X ) = 

⋃ 

Y ∈ U/IND (A i ) ,Y ∩ X � = ∅ 
Y, 

and the pair [ A i (X ) , A i (X )] is called a rough set of X with respect to A i . The relationship between X and its lower and uppe

approximations is shown in Fig. 5 . 
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Fig. 5. The relationship among X , A i ( X ) and A i (X ) . 

.1. Three-way cognitive concept learning from three-way decisions 

Based on the idea of lower and upper approximations, we put forward below an approach to learn an exact or two 

pproximate three-way cognitive concepts from three-way decisions. 

efinition 7. Let F = 

⋃ n 
i =2 {F H i L i } be a three-way cognitive computing system and G H n L n be three-way granular concepts of 

. Then, the lower and upper approximations of three-way decisions ( X 0 , Y 0 ) are respectively defined as 

Apr (X 0 , Y 0 ) = 

⋃ 

〈 (X,Y ) ,B 〉∈ G H n L n , (X,Y ) � (X 0 ,Y 0 ) 

(X, Y ) and Apr (X 0 , Y 0 ) = 

⋃ 

〈 (X,Y ) ,B 〉∈ G H n L n , (X,Y ) ∩ (X 0 ,Y 0 ) � =(∅ , ∅ ) 
(X, Y ) . (19) 

roposition 6. Both Apr ( X 0 , Y 0 ) and Apr (X 0 , Y 0 ) are extents of three-way cognitive concepts. 

roof. Let 〈 (X i , Y i ) , B i 〉 , 〈 (X j , Y j ) , B j 〉 ∈ G H n L n . Then, by Eq. (8) , 〈 (X i , Y i ) ∪ (X j , Y j ) , L n H n (B i ∪ B j ) 〉 is a three-way cognitive con- 

pt, which means that ( X i , Y i ) ∪ ( X j , Y j ) must be an extent of a three-way cognitive concept. Furthermore, by mathematical 

duction, we can prove that both Apr ( X 0 , Y 0 ) and Apr (X 0 , Y 0 ) are extents of three-way cognitive concepts. �

efinition 8. For three-way decisions ( X 0 , Y 0 ), we call 

〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 and 〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 
e learnt three-way cognitive concepts from ( X 0 , Y 0 ). Moreover, the learning accuracy is defined as 

α(X 0 , Y 0 ) = 1 − | Apr (X 0 , Y 0 ) − Apr (X 0 , Y 0 ) | 
2 | U n | , 

here |( • , • )| is the total number of elements in the first and the second sets. 

From Definition 8 , we know that α(X 0 , Y 0 ) = 1 if and only if Apr (X 0 , Y 0 ) = Apr (X 0 , Y 0 ) . In this case, we can learn an exact 

ree-way cognitive concept; otherwise, two approximate three-way cognitive concepts are learnt. Algorithm 2 gives the 

etailed procedure to learn cognitive concept(s) from three-way decisions. 

According to Eq. (19) , Steps 2–10 in Algorithm 2 are to compute the lower and upper approximations of three-way 

ecisions ( X 0 , Y 0 ). Furthermore, Step 11 is to find an exact or two approximate three-way cognitive concepts for ( X 0 , Y 0 ) as 

ell as the learning accuracy α( X 0 , Y 0 ). So, the time complexity of Algorithm 2 is O (| U n || A n |). 

xample 5 (Continued with Example 4 ) . Suppose that the manuscripts x 1 , x 4 , x 5 , x 7 and x 10 were accepted, while x 2 , x 3 , x 6 , 

 9 and x 11 were rejected. Then which domain are the reviewers (making such three-way decisions) from? To answer this 

uestion, it needs to learn three-way cognitive concepts from X 0 = { x 1 , x 4 , x 5 , x 7 , x 10 } and Y 0 = { x 2 , x 3 , x 6 , x 9 , x 11 } based on 

e granular concepts G L 2 H 2 
. By Eq. (19) , it follows that: 

Apr (X 0 , Y 0 ) = 

⋃ 

〈 (X,Y ) ,B 〉∈ G H 2 L 2 , (X,Y ) � (X 0 ,Y 0 ) 

(X, Y ) 

= ({ x 1 } , { x 2 , x 3 , x 11 } ) ∪ ({ x 4 , x 5 , x 10 } , { x 6 } ) 
= ({ x 1 , x 4 , x 5 , x 10 } , { x 2 , x 3 , x 6 , x 11 } ) , 

Apr (X 0 , Y 0 ) = 

⋃ 

〈 (X,Y ) ,B 〉∈ G H 2 L 2 , (X,Y ) ∩ (X 0 ,Y 0 ) � =(∅ , ∅ ) 
(X, Y ) 

= ({ x 1 } , { x 2 , x 3 , x 11 } ) ∪ ({ x 4 , x 5 , x 10 } , { x 6 } ) ∪ ({ x 7 , x 8 } , { x 9 , x 12 } ) 
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Algorithm 2 Three-way cognitive concept learning from three-way decisions. 

Require: Three-way granular concepts G L n H n of a three-way cognitive computing system F = 

n ⋃ 

i =2 

{F H i L i } and three-way de- 

cisions (X 0 , Y 0 ) . 

Ensure: An exact or two approximate three-way cognitive concepts with the learning accuracy for (X 0 , Y 0 ) . 

1: Initialize � = ∅ , � = ∅ , and label the elements of G L n H n as 

〈H n (A n 1 ) , L n H n (A n 1 ) 〉 , 〈H n (A n 2 ) , L n H n (A n 2 ) 〉 , . . . , 〈H n (A nt ) , L n H n (A nt ) 〉 ; 
2: For each i ∈ { 1 , 2 , . . . , t} 
3: If H n (A ni ) � (X 0 , Y 0 ) 

4: � ← � ∪ {〈H n (A ni ) , L n H n (A ni ) 〉} ; 
5: End If 

6: If H n (A ni ) ∩ (X 0 , Y 0 ) � = (∅ , ∅ ) 
7: � ← � ∪ {〈H n (A ni ) , L n H n (A ni ) 〉} ; 
8: End If 

9: End For 

10: Set Apr (X 0 , Y 0 ) = 

⋃ 

〈 (X,Y ) ,B 〉∈ �
(X, Y ) and Apr (X 0 , Y 0 ) = 

⋃ 

〈 (X,Y ) ,B 〉∈ �
(X, Y ) ; 

407 

e 408 

y 409 

- 410 

411 

412 

s 413 

414 

f 415 

416 

) 

417 

418 

419 

420 

- 421 

d 422 

423 

, 424 

). 425 

426 
11: Compute B 0 = L n 

(
Apr (X 0 , Y 0 ) 

)
, B 0 = L n 

(
Apr (X 0 , Y 0 ) 

)
and α(X 0 , Y 0 ) = 1 − | Apr (X 0 ,Y 0 ) −Apr (X 0 ,Y 0 ) | 

2 | U n | ; 

12: Return 〈 Apr (X 0 , Y 0 ) , B 0 〉 , 〈 Apr (X 0 , Y 0 ) , B 0 〉 and α(X 0 , Y 0 ) . 

= ({ x 1 , x 4 , x 5 , x 7 , x 8 , x 10 } , { x 2 , x 3 , x 6 , x 9 , x 11 , x 12 } ) . 
So, three-way cognitive concepts 

〈 ({ x 1 , x 4 , x 5 , x 10 } , { x 2 , x 3 , x 6 , x 11 } ) , { A 21 , A 22 }〉 and 〈 ({ x 1 , x 4 , x 5 , x 7 , x 8 , x 10 } , { x 2 , x 3 , x 6 , x 9 , x 11 , x 12 } ) , { A 21 , A 22 , A 23 }〉 
are learnt from ( X 0 , Y 0 ) with the learning accuracy α(X 0 , Y 0 ) = 

6 
7 . As a result, there does not exist any domain that th

reviewers making three-way decisions ( X 0 , Y 0 ) are from. However, the reviewers from Domains 1 and 2 made three-wa

decisions which are decision-consistent with respect to ( X 0 , Y 0 ), and ( X 0 , Y 0 ) is decision-consistent with respect to three

way decisions made by the reviewers from Domains 1 –3. 

4.2. Three-way cognitive concept learning from a set of attribute classes 

Similar to the discussion in Section 4.1 , we continue to learn an exact or two approximate three-way cognitive concept

from a set of attribute classes. 

Definition 9. Let F = 

⋃ n 
i =2 {F H i L i } be a three-way cognitive computing system and G H n L n be three-way granular concepts o

F . Then, the lower and upper approximations of B 0 ∈ 2 Q (A n ) are respectively defined as 

Apr (B 0 ) = L n H n 

( ⋃ 

〈 (X,Y ) ,B 〉∈ G H n L n ,B ⊆B 0 

B 

) 

and Apr (B 0 ) = L n H n 

( ⋃ 

〈 (X,Y ) ,B 〉∈ G H n L n ,B ∩ B 0 � = ∅ 
B 

) 

. (20

Proposition 7. Both Apr ( B 0 ) and Apr (B 0 ) are intents of three-way cognitive concepts. 

Proof. The proof is obvious from Proposition 5 and Eq. (20) . �

Definition 10. For any B 0 ∈ 2 Q (A n ) , we call 

〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 and 〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 
the learnt three-way cognitive concepts from B 0 . Moreover, the learning accuracy is defined as 

β(B 0 ) = 1 − | Apr (B 0 ) − Apr (B 0 ) | 
| A n | . 

From Definition 10 , we know that β(B 0 ) = 1 if and only if Apr (B 0 ) = Apr (B 0 ) . In this case, we can learn an exact three

way cognitive concept; otherwise, two approximate three-way cognitive concepts are learnt. Algorithm 3 gives the detaile

procedure to learn three-way cognitive concept(s) from a set of attribute classes. 

According to Eq. (20) , Steps 2–10 in Algorithm 3 are to compute the lower and upper approximations of B 0 . Furthermore

Step 11 is to find an exact or two approximate three-way cognitive concepts for B 0 as well as the learning accuracy β( B 0 
So, the time complexity of Algorithm 3 is O (| U n || A n |). 
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Algorithm 3 Three-way cognitive concept learning from a set of attribute classes. 

Require: Three-way granular concepts G L n H n of a three-way cognitive computing system F = 

n ⋃ 

i =2 

{F H i L i } and a set of attribute 

classes B 0 . 

Ensure: An exact or two approximate three-way cognitive concepts with the learning accuracy for B 0 . 

1: Initialize � = ∅ , � = ∅ , and label the elements of G L n H n as 

〈H n (A n 1 ) , L n H n (A n 1 ) 〉 , 〈H n (A n 2 ) , L n H n (A n 2 ) 〉 , . . . , 〈H n (A nt ) , L n H n (A nt ) 〉 ; 
2: For each i ∈ { 1 , 2 , . . . , t} 
3: If L n H n (A ni ) ⊆ B 0 
4: � ← � ∪ {〈H n (A ni ) , L n H n (A ni ) 〉} ; 
5: End If 

6: If L n H n (A ni ) ∩ B 0 � = ∅ 
7: � ← � ∪ {〈H n (A ni ) , L n H n (A ni ) 〉} ; 
8: End If 

9: End For 

10: Set Apr (B 0 ) = L n H n 

( ⋃ 

〈 (X,Y ) ,B 〉∈ �
B 

)
and Apr (B 0 ) = L n H n 

( ⋃ 

〈 (X,Y ) ,B 〉∈ �
B 

)
; 

11: Compute ( X 0 , Y 0 ) = H n 

(
Apr (B 0 ) 

)
, ( X 0 , Y 0 ) = H n 

(
Apr (B 0 ) 

)
and β(B 0 ) = 1 − | Apr (B 0 ) −Apr (B 0 ) | 

| A n | ; 

12: Return 〈 ( X 0 , Y 0 ) , Apr (B 0 ) 〉 , 〈 ( X 0 , Y 0 ) , Apr (B 0 ) 〉 and β(B 0 ) . 
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xample 6 (Continued with Example 4 ) . Which manuscripts were accepted and which ones were rejected by the reviewers 

 

, r 2 , r 3 , r 4 , r 8 and r 9 from Domains 1 and 2? Since A 21 = { r 1 , r 2 , r 8 } and A 22 = { r 3 , r 4 , r 9 } , then B 0 = { A 21 , A 22 } represents 

e reviewers under consideration. Moreover, to answer the above question, it needs to learn three-way cognitive concept(s) 

om B 0 because there is no granular concept in G L 2 H 2 
with its intent being B 0 exactly. By Eq. (20) , we have 

Apr (B 0 ) = L 2 H 2 

( ⋃ 

〈 (X,Y ) ,B 〉∈ G H 2 L 2 ,B ⊆B 0 

B 

) 

= L 2 H 2 ({ A 21 } ∪ { A 22 } ) 
= { A 21 , A 22 } , 

Apr (B 0 ) = L 2 H 2 

( ⋃ 

〈 (X,Y ) ,B 〉∈ G H 2 L 2 ,B ∩ B 0 � = ∅ 
B 

) 

= L 2 H 2 ({ A 21 } ∪ { A 22 } ) 
= { A 21 , A 22 } . 

Thus, we find an exact three-way cognitive concept 〈 ({ x 1 , x 4 , x 5 , x 10 }, { x 2 , x 3 , x 6 , x 11 }), { A 21 , A 22 } 〉 from B 0 with the 

arning accuracy β(B 0 ) = 1 . In other words, the manuscripts x 1 , x 4 , x 5 , x 10 were accepted, while x 2 , x 3 , x 6 and x 11 were 

jected by the reviewers from Domains 1 and 2. 

.3. Three-way cognitive concept learning from three-way decisions and a set of attribute classes 

In the previous Sections 4.1 and 4.2 , we have discussed the case of learning three-way cognitive concepts from three-way 

ecisions as well as a set of attribute classes. In the real world, however, it may be encountered that three-way decisions 

nd a set of attribute classes are available simultaneously. This issue is investigated below. 

efinition 11. Let F = 

⋃ n 
i =2 {F H i L i } be a three-way cognitive computing system and G H n L n be three-way granular concepts 

f F . For three-way decisions ( X 0 , Y 0 ) and B 0 ∈ 2 Q (A n ) , if Apr (X 0 , Y 0 ) � H n (B 0 ) � Apr (X 0 , Y 0 ) and Apr (B 0 ) ⊆ L n (X 0 , Y 0 ) ⊆
pr (B 0 ) , we say that ( X 0 , Y 0 ) and B 0 are jointly concept-inducible; otherwise, we say that they are jointly concept- 

ninducible. 

Definition 11 divides the pairs of ( X i , Y i ) and B i ( i ∈ S ) into two categories: concept-inducible and concept-uninducible 

airs. In what follows, we only discuss concept-inducible pairs since concept-uninducible ones are less related to each other. 

xample 7 (Continued with Examples 5 and 6 ) . In Example 5 , X 0 = { x 1 , x 4 , x 5 , x 7 , x 10 } , Y 0 = { x 2 , x 3 , x 6 , x 9 , x 11 } , Apr (X 0 , Y 0 ) = 

 x 1 , x 4 , x 5 , x 10 } , { x 2 , x 3 , x 6 , x 11 } ) and Apr (X 0 , Y 0 ) = ({ x 1 , x 4 , x 5 , x 7 , x 8 , x 10 } , { x 2 , x 3 , x 6 , x 9 , x 11 , x 12 } ) . By (iii) of Definition 1 , 

e have L 2 (X 0 , Y 0 ) = { A 21 , A 22 } . Moreover, in Example 6 , B 0 = { A 21 , A 22 } , Apr (B 0 ) = { A 21 , A 22 } , Apr (B 0 ) = { A 21 , A 22 } and 

 2 (B 0 ) = ({ x 1 , x 4 , x 5 , x 10 }, { x 2 , x 3 , x 6 , x 11 }). Then, according to Definition 11 , we know that ( X 0 , Y 0 ) and B 0 are jointly concept- 

ducible. 
lease cite this article as: J. Li et al., Three-way cognitive concept learning via multi-granularity, Information Sciences 

2016), http://dx.doi.org/10.1016/j.ins.2016.04.051 

http://dx.doi.org/10.1016/j.ins.2016.04.051


16 J. Li et al. / Information Sciences xxx (2016) xxx–xxx 

ARTICLE IN PRESS 

JID: INS [m3Gsc; May 10, 2016;13:46 ] 

Now, we discuss how to learn three-way cognitive concepts from concept-inducible pairs. 449 

Definition 12. Let F = 

⋃ n 
i =2 {F H i L i } be a three-way cognitive computing system and G H n L n be three-way granular concepts 450 

of F . For three-way decisions ( X 0 , Y 0 ) and B 0 ∈ 2 Q (A n ) , if they are jointly concept-inducible, we call 451 

〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 
∧ 〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 (21) 

and 452 

〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 
∨ 〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 (22) 

the learnt three-way cognitive concepts from the pair of ( X 0 , Y 0 ) and B 0 . Furthermore, the learning accuracy is defined as 453 

γ ((X 0 , Y 0 ) , B 0 ) = min { α(X 0 , Y 0 ) , β(B 0 ) } . 
From Definition 12 , we know that γ ((X 0 , Y 0 ) , B 0 ) = 1 if and only if Apr (X 0 , Y 0 ) = Apr (X 0 , Y 0 ) and Apr (B 0 ) = Apr (B 0 ) . In 454 

this case, we learn an exact three-way cognitive concept; otherwise, two approximate three-way cognitive concepts are 455 

learnt. Algorithm 4 shows the detailed procedure to learn three-way cognitive concept(s) from three-way decisions and a 456 

set of attribute classes. 

Algorithm 4 Cognitive concept learning from three-way decisions and a set of attribute classes. 

Require: Three-way granular concepts G L n H n of a three-way cognitive computing system F = 

n ⋃ 

i =2 

{F H i L i } and the pair of 

(X 0 , Y 0 ) and B 0 . 

Ensure: Three-way cognitive concept(s) learnt from the concept-inducible pair of (X 0 , Y 0 ) and B 0 . 

o 

457 

458 

 

, 459 

 

, 460 

t 461 

 

, 462 

463 

 

, 464 

e 465 

y 466 

e 467 

468 

469 

470 

471 

. 472 

t, 473 

e 474 

n 475 

476 

d 477 

e 478 
1: Call Algorithm 2 to learn 〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 , 〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 and α(X 0 , Y 0 ) , and Algorithm 3 t

learn 〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 , 〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 and β(B 0 ) ; 

2: If Apr (X 0 , Y 0 ) � H n (B 0 ) � Apr (X 0 , Y 0 ) or Apr (B 0 ) ⊆ L n (X 0 , Y 0 ) ⊆ Apr (B 0 ) does not hold 

3: Return “(X 0 , Y 0 ) and B 0 are jointly concept-uninducible”; 

4: Else 

5: do 〈 (X 1 , Y 1 ) , B 1 〉 ← 〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 ∧ 〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 , 
〈 (X 2 , Y 2 ) , B 2 〉 ← 〈 Apr (X 0 , Y 0 ) , L n ( Apr (X 0 , Y 0 )) 〉 ∨ 〈H n ( Apr (B 0 )) , Apr (B 0 ) 〉 , 
γ ((X 0 , Y 0 ) , B 0 ) ← min { α(X 0 , Y 0 ) , β(B 0 ) };

6: End If 

7: Return 〈 (X 1 , Y 1 ) , B 1 〉 , 〈 (X 2 , Y 2 ) , B 2 〉 and γ ((X 0 , Y 0 ) , B 0 ) . 

Based on the time complexity of Algorithms 2 and 3 , we know that the time complexity of Algorithm 4 is O (| U n || A n |). 

Example 8 (Continued with Example 7 ) . It has been known from Example 7 that (X 0 , Y 0 ) = ({ x 1 , x 4 , x 5 , x 7 , x 10 } , { x 2 , x 3 , x 6 , x 9
x 11 }) and B 0 = { A 21 , A 22 } are jointly concept-inducible. Moreover, in Example 5 , two approximate cognitive concepts 〈 ({ x 1
x 4 , x 5 , x 10 }, { x 2 , x 3 , x 6 , x 11 }), { A 21 , A 22 } 〉 and 〈 ({ x 1 , x 4 , x 5 , x 7 , x 8 , x 10 }, { x 2 , x 3 , x 6 , x 9 , x 11 , x 12 }), { A 21 , A 22 , A 23 } 〉 were learn

from ( X 0 , Y 0 ) with the learning accuracy α(X 0 , Y 0 ) = 

6 
7 . Additionally, in Example 6 , an exact cognitive concept 〈 ({ x 1 , x 4 , x 5

x 10 }, { x 2 , x 3 , x 6 , x 11 }), { A 21 , A 22 } 〉 was learnt from B 0 with the learning accuracy β(B 0 ) = 1 . 

Then, based on Eqs. (21) and (22) , we can learn two approximate three-way cognitive concepts 〈 ({ x 1 , x 4 , x 5 , x 10 }, { x 2
x 3 , x 6 , x 11 }), { A 21 , A 22 } 〉 and 〈 ({ x 1 , x 4 , x 5 , x 7 , x 8 , x 10 }, { x 2 , x 3 , x 6 , x 9 , x 11 , x 12 }), { A 21 , A 22 , A 23 } 〉 from ( X 0 , Y 0 ) and B 0 with th

learning accuracy γ ((X 0 , Y 0 ) , B 0 ) = 

6 
7 . That is to say, ( X 0 , Y 0 ) and B 0 are not completely matched with each other, but the

can induce two approximate cognitive concepts with 86% accuracy. Moreover, the following decisions can be made by th

induced approximate cognitive concepts: 

• the reviewers from Domains 1 –3 accepted the manuscripts x 1 , x 4 , x 5 , x 7 , x 8 , x 10 , but rejected x 2 , x 3 , x 6 , x 9 , x 11 and x 12 ; 

• the reviewers from Domains 1 and 2 accepted the manuscripts x 1 , x 4 , x 5 , x 10 , but rejected x 2 , x 3 , x 6 and x 11 . 

5. Numerical experiments 

In this section, we conduct some numerical experiments to evaluate the performance of the proposed learning methods

In the experiments, we chose five datasets from UCI Machine Learning Repository [8] : the Letter Recognition datase

KEGG Metabolic Relation Network dataset, Skin Segmentation dataset, 3D Road Network dataset and Poker Hand dataset. Th

detailed information about these datasets is described in Table 3 . In the experiments, the first attribute “Pathway text” i

KEGG Metabolic Relation Network dataset was excluded since it is symbolic. 

In order to generate standard datasets (i.e., their attributes are all Boolean), a data pre-processing technique was applie

to the five chosen datasets. See Table 4 for the details, where “/” means “taking no action”, “Bisection” means “splitting th
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Table 3 

The detailed information about the five chosen datasets in the experiments. 

Dataset Instances Attributes 

Letter Recognition 20,0 0 0 16 (Discrete, each having 16 values) 

KEGG Metabolic Relation Network 53,414 3 (Boolean), 20 ( continuous) 

Skin Segmentation 245,057 1 (Discrete, 2 values), 3 ( continuous) 

3D Road Network 434,874 4 (Continuous) 

Poker Hand 1,025,010 11 (Discrete) 

Table 4 

Converting the five chosen datasets into standard datasets. 

Dataset Data pre-processing of attributes Scaling 

Letter Recognition / Nominal scale 

KEGG Metabolic Relation Network Bisection except the Boolean ones Nominal scale 

Skin Segmentation Being divided into six equal segments except the discrete one Nominal scale 

3D Road Network Being divided into six equal segments Nominal scale 

Poker Hand Bisection Nominal scale 

Table 5 

Designing three-way cognitive computing systems of the obtained standard datasets. 

TWCCS Design of parameters 

F (1) U 1 = { 1 –20 0 0 } , A 1 = { 1 –25 } , U 2 = { 1 –40 0 0 } , A 2 = { 1 –50 } , U 3 = { 1 –60 0 0 } , A 3 = { 1 –75 } , 
U 4 = { 1 –80 0 0 } , A 4 = { 1 –10 0 } , U 5 = { 1 –10 , 0 0 0 } , A 5 = { 1 –125 } , U 6 = { 1 –12 , 0 0 0 } , A 6 = { 1 –152 } , 
U 7 = { 1 –14 , 0 0 0 } , A 7 = { 1 –178 } , U 8 = { 1 –16 , 0 0 0 } , A 8 = { 1 –204 } , U 9 = { 1 –18 , 0 0 0 } , A 9 = { 1 –230 } , 
U 10 = { 1 –20 , 0 0 0 } , A 10 = { 1 –256 } 

F (2) U 1 = { 1 –8902 } , A 1 = { 1 –15 } , U 2 = { 1 –17 , 804 } , A 2 = { 1 –20 } , U 3 = { 1 –26 , 706 } , A 3 = { 1 –25 } , 
U 4 = { 1 –35 , 608 } , A 4 = { 1 –30 } , U 5 = { 1 –44 , 510 } , A 5 = { 1 –37 } , U 6 = { 1 –53 , 414 } , A 6 = { 1 –43 } 

F (3) U 1 = { 1 –81 , 685 } , A 1 = { 1 –10 } , U 2 = { 1 –163 , 370 } , A 2 = { 1 –15 } , U 3 = { 1 –245 , 057 } , A 3 = { 1 –20 } 
F (4) U 1 = { 1 –144 , 958 } , A 1 = { 1 –12 } , U 2 = { 1 –289 , 916 } , A 2 = { 1 –18 } , U 3 = { 1 –434 , 874 } , A 3 = { 1 –24 } 
F (5) U 1 = { 1 –341 , 670 } , A 1 = { 1 –10 } , U 2 = { 1 –683 , 340 } , A 2 = { 1 –15 } , U 3 = { 1 –1 , 025 , 010 } , A 3 = { 1 –22 } 

alues of each attribute, from small to large, into two disjoint intervals whose lengths are the same”, and “Being divided 

to six equal segments” means “splitting the values of each attribute, from small to large, into six pairwise disjoint intervals 

hose lengths are the same”. Moreover, the scaling approach [46] was used to transform them into standard datasets. Here, 

e denote the obtained standard datasets by Datasets 1 –5 which are in fact formal contexts. 

Furthermore, Datasets 1, 2, 3, 4 and 5 were divided into segments for designing their corresponding three-way 

gnitive computing systems: F 

(1) = 

⋃ 10 
i =2 {F 

(1) 
H i L i 

} , F 

(2) = 

⋃ 6 
i =2 {F 

(2) 
H i L i 

} , F 

(3) = 

⋃ 3 
i =2 {F 

(3) 
H i L i 

} , F 

(4) = 

⋃ 3 
i =2 {F 

(4) 
H i L i 

} and F 

(5) = 

 3 
i =2 {F 

(5) 
H i L i 

} , respectively. See Table 5 for the details, where TWCCS is the abbreviation of “Three-way cognitive computing 

stem”. In the table, U i = { p –q } means that U i is constituted by the objects between the p th and q th objects including 

e endpoints, so does A i . In addition, we show how Q (A i −1 ) ≤ Q (A i ) ( i = 2 , 3 , . . . , 10 ) were designed in F 

(1) . Specifically, 

 (A i −1 ) = { A (i −1)1 , A (i −1)2 , A (i −1)3 , A (i −1)4 , A (i −1)5 , A (i −1)6 } , where the elements of each A (i −1) j were taken from A i −1 in se- 

uence. The cardinality of A (i −1) j ( j = 1 , 2 , 3 , 4 , 5 ) is [ 
| A i −1 | 

5 ] , while that of A (i −1)6 is the remainder of | A i −1 | divided by 5. Sim- 

arly, �A i −1 = A i − A i −1 = { �A (i −1)1 , �A (i −1)2 , �A (i −1)3 , �A (i −1)4 , �A (i −1)5 , �A (i −1)6 } , where the elements of each �A (i −1) j 

ere taken from �A i −1 in sequence. The cardinality of �A (i −1) j ( j = 1 , 2 , 3 , 4 , 5 ) is [ 
| �A i −1 | 

5 ] , while that of �A (i −1)6 is the 

mainder of | �A i −1 | divided by 5. Then Q (A i ) = { A i 1 , A i 2 , A i 3 , A i 4 , A i 5 , A i 6 } was defined by taking A i j = A (i −1) j ∪ �A (i −1) j . As 

 result, Q (A i −1 ) ≤ Q (A i ) is satisfied. The cases of F 

(2) , F 

(3) , F 

(4) and F 

(5) were dealt with in a manner similar to F 

(1) , 

hich is omitted here for convenience of presentation. 

In the experiments, we took α = 

3 
4 and β = 

1 
4 . Notice that the above standard datasets are formal contexts with the 

put data being ones and zeros. Then the evaluation function f B i (x ) ( B i ∈ 2 Q (A i ) ) was set to be the ratio of the number of 

nes given to x to that of ones and zeros given to x under the columns ∪ B i . Moreover, in order to guarantee the successful 

plementation of sequential three-way decisions, the information on the objects which had been classified into positive or 

egative regions in last cognitive computing state, was omitted when it comes into next cognitive computing state. 

Then, Algorithm 1 was applied to Datasets 1 –5. The corresponding running time is reported in Table 6 , where | U | is the 

rdinality of object set, | A | is that of attribute set, and n is the number of three-way cognitive computing states. It can be 

en from Table 6 that Algorithm 1 is reasonably efficient even for the largest dataset. 

Using Algorithm 1 , we have obtained the three-way granular concepts G 

(1) 
L 10 H 10 

, G 

(2) 
L 6 H 6 

, G 

(3) 
L 3 H 3 

, G 

(4) 
L 3 H 3 

and G 

(5) 
L 3 H 3 

of the 

ree-way cognitive computing systems F 

(1) , F 

(2) , F 

(3) , F 

(4) and F 

(5) . So, based on the theoretical results in Section 4 , 

ese granular concepts can be further used to learn three-way cognitive concepts from a given clue. Without loss of gener- 
lease cite this article as: J. Li et al., Three-way cognitive concept learning via multi-granularity, Information Sciences 

2016), http://dx.doi.org/10.1016/j.ins.2016.04.051 

http://dx.doi.org/10.1016/j.ins.2016.04.051


18 J. Li et al. / Information Sciences xxx (2016) xxx–xxx 

ARTICLE IN PRESS 

JID: INS [m3Gsc; May 10, 2016;13:46 ] 

Table 6 

Experimental results. 

Dataset | U | | A | n Running time(s) 

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

Dataset 1 20,0 0 0 256 10 0.6843 0.0019 0.0021 0.0042 

Dataset 2 53,414 43 6 1.1522 0.0022 0.0034 0.0064 

Dataset 3 245,057 20 3 4.2865 0.0172 0.0123 0.2803 

Dataset 4 434,874 24 3 12.8106 0.0180 0.0228 0.7907 

Dataset 5 1,025,010 22 3 199.4306 0.0233 0.0297 0.8136 

ality, we generated 100 clues randomly for Algorithm 2 as well as Algorithms 3 and 4 . Then, Algorithms 2 –4 were applied 506 

to Datasets 1 –5. Here, Algorithms 2 –4 were repeated 100 times since they are only able to achieve the learning task of a 507 

clue each time. The average running time of Algorithms 2 –4 is also reported in Table 6 . It can be observed from the table 508 

that they are all quite fast even for the largest dataset. 509 

6. Final remarks 510 

In this section, we give some remarks to conclude the paper. 511 

(i) A brief summary of our work. To uncover the essential idea of three-way concepts for solving decision-making prob- 512 

lems, we have discussed three-way cognitive concept learning via multi-granularity. Specifically, an axiomatic method of 513 

forming three-way cognitive concepts has firstly been proposed based on multi-granularity and three-way-decision-making 514 

principles. Then, a three-way cognitive computing system has been designed for learning composite three-way granular con- 515 

cepts. Moreover, cognitive processes have been simulated by the idea of low and upper approximations to learn three-way 516 

cognitive concepts from a given clue. Finally, numerical experiments have been conducted to evaluate the performance of 517 

the proposed learning methods. 518 

(ii) The significance of our research. It is noticed that many different types of three-way concepts have been proposed in 519 

the existing literature and each of them has different properties. It is essential to identify which properties are intrinsic 520 

for characterizing three-way concepts in order to understand the basic decision-making mechanism of three-way concepts. 521 

Using multi-granularity and three-way-decision-making principles, our research has successfully clarified three properties 522 

which can be jointly used as axioms to characterize three-way concepts. In addition, as discussed in Section 2.2 , these 523 

intrinsic properties have explicit semantics. 524 

(iii) The advantages of our methods. We have designed a three-way cognitive computing system to learn granular concepts 525 

n 526 

- 527 

d 528 

n 529 

g 530 

531 

s 532 

s 533 

- 534 

e 535 

e 536 

d 537 

538 

s 539 

n 540 

e 541 

f 542 

543 

a 544 

ll 545 

, 546 

- 547 

e 548 

549 

550 

a 551 

a 552 
and proposed concept learning methods for simulating cognitive processes. Our three-way cognitive computing system ca

update three-way granular concepts as objects and attributes increase. What is more, the proposed concept learning meth

ods can help to remember three-way cognitive concepts from a given clue. Besides, as shown by the experiments conducte

in Section 5 , our learning methods are quite efficient; they only take less than 200 seconds for the dataset with more tha

one million instances. Therefore, it seems possible for our methods to be applied in big data if some parallel computin

techniques could be successfully developed. 

(iv) The differences and similarities between our study and the existing ones. The idea of sequential three-way decision

has been adopted in this paper to establish an axiomatic method of forming three-way concepts. Granular computing ha

been incorporated into three-way cognitive concepts for constructing information granules, which guarantees that three

way granular concepts can be defined and used to remember new cognitive concepts from a given clue. What is more, th

proposed three-way cognitive operators H and L form an isotone Galois connection between 2 Q (A ) and T (U) . So, they ar

completely different from the classical cognitive operators [16] which form an antitone Galois connection between 2 A an

2 U . In other words, these two kinds of cognitive operators have different cognitive mechanisms. 

Nevertheless, there are some similarities between our study and the existing ones. For instance, multi-granularity ha

been designed to be monotonous for supporting sequential three-way decisions, which was realized by Q (A i −1 ) ≤ Q (A i ) i

the process of information updating. As usual, our sequential three-way decisions also become more and more effectiv

from last three-way cognitive computing state to the next one. If information can be updated continually, the final result o

our sequential three-way decisions will degenerate into two-way decisions (i.e., boundary regions disappear). 

(v) An outlook for further study. Note that the classical cognitive operators have been reconsidered to fit the big dat

environment [14] . As a matter of fact, such a problem is also encountered in three-way cognitive operators. So, it is sti

necessary to redesign three-way cognitive operators for meeting different requirements of big data such as large-scale

multi-source and heterogeneous data. Moreover, in our opinion, cognitive logic should be introduced into three-way cogni

tive computing system for effectively simulating the human brain behaviors including learning, reasoning and so on. Thes

issues will be investigated in our future work. 
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