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a b s t r a c t 

Multifocus image fusion techniques primarily emphasize human vision and machine perception to eval- 

uate an image, which often ignore depth information contained in the focus regions. In this paper, a 

novel 3D shape reconstruction algorithm based on nonsubsampled shearlet transform (NSST) microscopic 

multifocus image fusion method is proposed to mine 3D depth information from the fusion process. The 

shift-invariant property of NSST guarantees the spatial corresponding relationship between the image se- 

quence and its high-frequency subbands. Since the high-frequency components of an image represent the 

focus level of the image, a new multidirectional modified Laplacian (MDML) as the focus measure maps 

the high-frequency subbands to images of various levels of depth. Next, the initial 3D reconstruction re- 

sult is obtained by using an optimal level selection strategy based on the summation of the multiscale 

Laplace responses to exploit these depth maps. Finally, an iterative edge repair method is implemented 

to refine the reconstruction result. The experimental results show that the proposed method has better 

performance, especially when the source images have low-contrast regions. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Digital imaging of real scenes is usually a two-dimensional (2D)

iscretization process of three-dimensional (3D) scenes. Since the

epth information is lost in this process, mining 3D information

rom 2D images is crucial in computer vision. In recent years, var-

ous 3D information recovery techniques have been proposed, and

hey are roughly divided into three categories: multiview stereo vi-

ion, depth camera and monocular vision. Three-dimensional re-

onstruction based on multiview stereo vision tends to fuse fea-

ures from different views of the same scene. Some representative

xamples are multiview information fusion [1] and convolutional

eural network [2] . Depth cameras provide explicit 3D information

hat can significantly reduce the difficulty of depth information

cquisition. Lately, some advanced techniques such as multitask

earning [3,4] and 3D convolutional neural networks [5] have been

ntroduced into 3D scene recognition. In addition, depth maps can

e recovered by capturing one or several images with a monocular

ision system. These methods are referred to as shape from x [6] ,

here x denotes a crucial factor of the depth information acqui-

ition, such as shading [7] , contours [8] and motion [9] . The focus
∗ Corresponding author. 
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evel of the image is another important element for depth informa-

ion recovery, on which a passive method named shape from focus

SFF) [10] has been developed for 3D shape reconstruction from 2D

mages. 

SFF methods obtain the depth map from a sequence of images

aptured by changing the focus setting of the single-view cam-

ra. Because various focus settings correspond to different depth

f field, only a part of the area is focused during the imaging pro-

ess of the object in the 3D scene, while the rest is defocused. If

he image sequence is sufficient to cover the entire depth range in

he 3D scene by adjusting the distance between the camera and

he object, the depth image can be obtained by the position in the

mage sequence in which each pixel has the highest focus level.

ost SFF methods are run by mapping image sequences through

n appropriate focus measure (FM) function followed by a recon-

truction scheme to obtain 3D reconstruction results. FM is a kind

f function evaluating the focus level of each pixel in an image.

ome FM functions, such as 3D Laplacian [11] , curvelet [12] and

ptical-based [13] have been proposed in relevant studies. The ini-

ial depth map can be obtained from maximizing these focus mea-

ure values. After that, some reconstruction schemes, such as the

aussian model [14] and genetic programming [15] , will make use

f the focus information in the image sequence to find the accurate

epth map. 

https://doi.org/10.1016/j.patcog.2019.107065
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107065&domain=pdf
mailto:hongyanyutian@126.com
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Fig. 1. Columns represent images with various levels of focus. 
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Optical microscopy is an important tool for high precision anal-

ysis and measurement of microscale objects due to its high magni-

fication. However, as the resolution increases, the depth of field be-

comes shallower, leaving more regions out of focus, subsequently

leading to inefficiencies when capturing the 3D structural infor-

mation of the observed objects. Therefore, it is very necessary to

develop a 3D reconstruction method based on optical microscopy.

Multiview stereo vision has a complex image registration process,

which may have higher complexity and increase the probability of

incorrect reconstruction results in 3D reconstruction of optical mi-

croscopy [16] . Depth cameras are susceptible to the interference

of ambient light in the process of microscopic imaging, leading to

noise, occlusion and loss of depth information [17] . Fortunately, no

special hardware assistance is needed in SFF. Low hardware com-

plexity makes this algorithm easy to apply to 3D shape reconstruc-

tion in optical microscopy [18] . The SFF methods are undeniably

efficient, but the following issues deserve further investigation. 

(1) The effect of noises in the real scene on the reconstruction

results. Typically, experiments examine the effectiveness of

the SFF algorithms on simulated objects, and then these al-

gorithms are transferred onto real cases. However, the re-

construction results always suffer from performance deterio-

ration due to noises that are difficult to reproduce in a simu-

lation. For example, a large number of highly reflective areas

in the images are inevitably produced in the optical imaging

process of reflective objects. 

(2) The effect of weak contrast regions on reconstruction results.

When imaging a concave object with a great depth, it is dif-

ficult for light to enter the inside of the object, resulting in

low-contrast and low-texture areas. Fig. 1 shows image se-

quences of a concave object with different lens settings. It is

clear that the details are difficult to detect and that the con-

trast declines in regions with small red rectangular windows

due to the weak light. The traditional SFF methods might fail

to recognize changes in focus in low-contrast areas, leading

to a significant deviation in estimating the depth informa-

tion [12] . 

(3) Additionally, in many application scenarios, for example in

microscopy for printed circuit board defects detection, depth

information of the object obtained by SFF methods cannot

accurately judge the type of defect, and auxiliary gray in-

formation is needed as well. Unfortunately, capturing gray

information from source images leads to fusion discreteness

and then produces more discontinuous regions in fused im-

ages, ultimately resulting in low-quality fusion results. 

Mitigation of the noises in the real scene will be achieved by

an image acquisition device in Section 2 . In this paper, for amend-

ing the shortcomings of (2) and (3), multifocus image fusion tech-

niques are considered. 
Like in SFF, the key step in multifocus image fusion is to se-

ect an effective focus measure [19] . Therefore, we expect multi-

ocus image fusion algorithms to provide more potential solutions

or SFF. There are two types of multifocus image fusion algorithms:

patial domain methods and transform domain methods. Spatial

omain methods directly pick pixels, blocks or regions to construct

used images linearly or nonlinearly. Nevertheless, these methods

ely heavily on the accuracy of the pixels, blocks and regions [20] .

herefore, when these spatial domain methods are applied to SFF,

hey might cause spatial distortions and ghosting artifacts, which

esult in shape inconsistency in reconstruction results. To over-

ome the above disadvantages of spatial domain fusion methods,

ransform domain fusion methods should be considered. 

Transform domain fusion methods decompose images into high

nd low frequency coefficients and employ the fusion rules to han-

le these coefficients. In recent years, decomposition tools, such as

avelet transform [21] and discrete cosine harmonic wavelet trans-

orm [22] , have been applied in multifocus image fusion. However,

oor directionality and shift variance that lead to unsatisfactory so-

utions is a common deficiency in these tools. Nonsubsampled con-

ourlet transform (NSCT) [23] is regarded as an expedient remedy

o these problems, but it suffers from large computational burdens.

he recently proposed nonsubsampled shearlet transform (NSST)

vercomes the above mentioned shortcomings [24] . By avoiding

ownsampling operations, NSST has better performance in terms

f shift invariance. It yields decomposition subimages all having

he same size of source images and facilitates tracking the depth

nformation during the decomposition process. In addition, com-

ared to other transform domain methods, NSST not only has ex-

ellent properties such as anisotropy and multiscale but also pro-

ides better direction sensitivity to capture the intrinsic geomet-

ical structure of images. The abundant detailed information ob-

ained by using these properties can provide a more accurate basis

or depth information evaluation. Therefore, it is feasible to capture

epth information in the process of NSST-based multifocus image

usion. 

The main contributions of this paper include three aspects. (1)

his paper proposes a new framework for embedding SFF method

nto multifocus image fusion algorithm, in which the fused image

nd depth map of an object in the 3D scene can be obtained simul-

aneously. (2) A new multidirectional modified Laplacian (MDML)

s a focus measure to realize the mapping from high-frequency

ubbands to depth maps is analyzed and discussed. (3) An itera-

ive edge repair method that can automatically detect and repair

he error areas in the depth maps is proposed, and in the end, this

ethod can effectively improve reconstruction accuracy of the low

ontrast regions. 

The structure of this paper is as follows. Section 2 describes

he problems inherent in applying the SFF technique to the 3D

econstruction of microscales and designs an image capture de-

ice. Section 3 shows the proposed algorithm in detail, and
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Fig. 2. Schematic illustration of microscopic imaging. 

Fig. 3. Image acquisition device with the coaxial optical illumination system. 
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ection 4 presents several experimental settings, comparative anal-

sis. Conclusions and future work are discussed in Section 5 . 

. Background 

To generate the depth image of an object, it is necessary to

stimate the distance between every point of the object and the

amera. Fig. 2 illustrates the schematic illustration of microscopic

maging, where f 1 and f 2 indicate the focal lengths of the lenses

 1 and L 2 , u is the distance of the object from the lens, and v

s the distance of the magnified image from the lens. The rela-

ionship between f 1 , u and v is given by the Gaussian lens law:

 / f 1 = 1 /u + 1 / v . The object AB is located near the front focus of

he objective lens. A magnified image A 

′ B ′ is formed near the front

ocus of the eyepiece, which is in turn enlarged into the virtual

mage A 

′′ B ′′ as an object of the eyepiece. 

If the image detector (ID) is placed at exact distance v ′ , a well-

ocused image A 

′′ B ′′ will be formed. Otherwise, if the ID is at a dis-

ance s − v ′ from the focus plane, point A 

′′ will be projected onto a

lurry circle of diameter 2 r . Therefore, only some parts of the im-

ge are in focus during imaging, whereas other parts are blurred. 

Presume there is a microscale object with larger depth, it is im-

ossible to have a focal plane to cover the entire depth of the ob-

ect. Therefore, it is necessary to design an image acquisition de-

ice that can retain different focal points in an image sequence.

he image sequence of a given object was obtained by a moving

amera. As shown in Fig. 3 , the top parts of the object are well

ocused when the focus plane is at level 1, whereas the other re-

ions are blurred due to their distance far from the focus plane.

he camera then moves downward until the bottom parts of the

bject are focused and the focus plane reaches the level n . The

wo reasons we avoid moving the object are: (a) the object ′ s vibra-
ion when moving results in inaccuracy of focus information, and

b) for 3D reconstruction of small regions in large-format samples,

he expense of moving the objects is huge. In addition, for metal

bject imaging in this paper, it is easy to produce a large num-

er of exposure areas in the use of the traditional optical imaging

ethod, and the loss of detailed information in these exposure ar-

as will lead to inaccurate judgment of the focus level. Therefore,

n optical microscopy imaging device based on a coaxial optical il-

umination system is designed in Fig. 3 . This illumination system

ot only provides more uniform lighting than traditional optical il-

umination systems, but it also effectively overcomes the impact of

bject reflectivity. 

. The proposed approach 

Most established multifocus image fusion methods provide bet-

er visual perception and quality. However, these methods usually

se a large number of image processing techniques, which are not

onducive to accurately extract the depth information of image se-

uences. In this paper, a new 3D shape reconstruction scheme is

roposed to search the depth maps that represent the best-focused

mage during the image fusion process. Briefly, it takes three steps

o implement the proposed method. First, we apply NSST to an

mage sequence to obtain the low-frequency subbands and high-

requency subbands. Then, the low-frequency fused coefficients are

btained by an averaging method, and the high-frequency fused

oefficients are obtained by a new MDML fusion approach. The all-

n-focus image is finally obtained by inverse NSST on these fused

oefficients. Second, pixels in the same position of the image se-

uence that exhibit the highest value of MDML are mapped to var-

ous levels of depth maps. However, not all levels of depth maps

re suitable to reconstruct the depth image. Then, the optimal level

election principle is used to choose the appropriate level for ini-

ial 3D reconstruction. Finally, in order to remedy the less accurate

epth points, an iterative edge repair algorithm is implemented to

btain more accurate 3D reconstruction results. The real 3D re-

onstruction results can be obtained by joining fused images and

D reconstruction results. The schematic diagram of the proposed

ethod is given in Fig. 4 . 

.1. Fusion rules 

Fusion rules are an important part of NSST-based multifo-

us image fusion. Each source image can be decomposed into a

ow-frequency subband and a series of high-frequency subbands.

n this paper, the high-frequency subbands have a key influence

n the performance of the 3D reconstruction. Therefore, in or-

er to reduce the computational cost, we employ the weighted-

verage based method on low frequency subbands. The fused low-

requency subbands L F ( x, y ) are given by the following: 

 F (x, y ) = 

1 

n 

n ∑ 

i =1 

C i (x, y ) (1)

here C i ( x, y ) is the coefficients of the position ( x, y ) in the i sub-

and, and L F ( x, y ) represents the fused low-frequency subbands. 

As a counterpart, significant coefficients of high-frequency sub-

ands should be selected for fusion. To make full use of the strong

orrelation among adjacent pixels and to mine detail information

rom various directions accurately, we propose a new multidirec-

ional modified Laplacian (MDML), in which the standard stencil of

aplacian is rotated on eight angles and the maximum value from

ll eight directions of the current position is chosen as the focus

easure and high frequency fusion rule. 

DML j , l 
i 

= MAX 

(ξ ,η) ∈ U(x,y )) 
{ cos ((n − 1) θ ) L x + sin ((n − 1) θ ) L y } 8 n =1 
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Fig. 4. Schematic diagram of the proposed 3D shape reconstruction approach. 
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L x = | C j,l 
i 

(ξ − 2 s, η) + 4 C j,l 
i 

(ξ − s, η) − 10 C j,l 
i 

(ξ , η) 

+ 4 C j,l 
i 

(ξ + s, η) + C j,l 
i 

(ξ + 2 s, η) | 
L y = | C j,l 

i 
(ξ , η − 2 s ) + 4 C j,l 

i 
(ξ , η − s ) − 10 C j,l 

i 
(ξ , η) 

+ 4 C j,l 
i 

(ξ , η + s ) + C j,l 
i 

(ξ , η + 2 s ) | (2)

where U ( x, y ) is a square pixel neighborhood of ( x, y ) and where

the parameter s denotes the characteristic size of the square win-

dow. θ as the step of angle is set 22.5 ◦ in this paper. The coeffi-

cients with maximum MDML values are selected as the fused high-

frequency coefficients: 

H 

j,l 
F 

(x, y ) = C j,l 
k 

(x, y ) , k = arg max 
1 ≤i ≤n 

MDML j,l 
i 

(x, y ) (3)

where j and l denote the level and direction, respectively. Thus, the

fused image is obtained by taking inverse NSST on the fused high-

frequency subbands H 

j,l 
F 

and fused low-frequency subbands L F . 

3.2. Relationship between image sequence and depth maps 

In this section, we will find the relationship between the image

sequence and the depth map using NSST. The process of NSST in

image sequence decomposition consists of the following four steps.

First, consider an image sequence { f i (x, y ) } M −1 ,M −1 
x,y =0 

, 1 ≤ i ≤ N

consists of N images with the size of M × M . For the level j , per-

form the nonsubsampled Laplacian pyramid transform [23] on the

approximation of the image sequence { f j−1 
ai 

(x, y ) } N 
i =1 

with a low-

pass filter h j−1 (1) and a highpass filter h j−1 (0) to obtain their
ow frequency subbands and high frequency subbands. Where

h j−1 (1) , h j−1 (0) 
)

are the pyramid filters for the 2D nonsubsam-

led filter bank: {
f j 
ai 
(x, y ) 

}N 

i =1 
= 

{
f j−1 
ai 

(x, y ) ∗ h j−1 (1) 
}N 

i =1 

f j 
di 
(x, y ) 

}N 

i =1 
= 

{
f j−1 
ai 

(x, y ) ∗ h j−1 (0) 
}N 

i =1 
(4)

here ∗ denotes the convolution operator. It is noticeable that

oth low frequency subband f 
j 

ai 
(x, y ) and high frequency subband

f 
j 

di 
(x, y ) have the same image size f 

j−1 

di 
(x, y ) , and the shift invari-

nt is implemented by upsampling on the filters 
{

h j−1 (0) , h j−1 (1) 
}

nstead of image downsampling. In particular, f 0 
ai 
(x, y ) = f i (x, y ) . 

Second, compute the 2D discrete Fourier transform of high fre-

uency subband on a pseudo-polar grid [25] . This gives by the ma-

rix P f 
j 

di 
(x, y ) = [ ̂  f 1 ( k 1 , k 2 ) , ˆ f 2 (k 1 , k 2 )] T , where ˆ f 1 ( k 1 , k 2 ) , ˆ f 2 ( k 1 , k 2 )

re given by the following: 

ˆ f 1 ( k 1 , k 2 ) = 

M/ 2 −1 ∑ 

x = −M/ 2 

M/ 2 −1 ∑ 

x = −M/ 2 

f j 
di 
(x, y ) e −ix 

πk 1 
M e −iy 

πk 1 
M 

2 k 2 
M 

ˆ f 2 ( k 1 , k 2 ) = 

M/ 2 −1 ∑ 

x = −M/ 2 

M/ 2 −1 ∑ 

x = −M/ 2 

f j 
di 
(x, y ) e −iy 

πk 2 
M e −ix 

πk 2 
M 

2 k 1 
M (5)

ext, apply a bandpass filtering to the P f 
j 

di 
( x, y ) , let w j, l ( y ) be the

equence whose discrete Fourier transform gives by window func-

ion W (2 j k − l) , we have the following: 

 f j 
di 
( x, y ) W (2 

j k − l) = P f j 
di 
( x, y ) F 1 (w j,l (y )) (6)
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here F 1 is the one-dimensional discrete Fourier transform, and l,

 are direction and shift parameters. 

Finally, the nonsubsampled shearlet coefficients [26] can be ob-

ained by the following: 

f j,l 
di 

(x, y ) = F 

−1 
(
P f j 

di 
( x, y ) · F 1 (w j,l (y )) 

)
(7)

here F 

−1 represent the inverse pseudo-polar discrete Fourier

ransform. 

As a consequence, each pixel ( x, y ) of the image corresponds

o a low frequency subband and to a sequence of high frequency

ubbands of various levels and directions by NSST decomposition:

 

f i (x, y ) } N i =1 ⇒ 

NSST 

{ 

f J 
ai 
(x, y ) , 

{
f j,l 
di 

(x, y ) 
}J,L 

j,l=1 

} N 

i =1 
(8) 

here J and L are the maximum values of the level j and direction

 . 

From the above analysis, each image in image sequence gener-

tes corresponding high frequency subbands. Researchers have fig-

red out that changes in focus mostly affect the high frequency

omponents of an image [12] . Therefore, it is reasonable to estab-

ish the relationship between high frequency subbands and depth

aps via a mapping function, and depth maps can be deduced by

aximizing the mapping function values as below: 

 j,l (x, y ) = arg max 
1 ≤i ≤N 

(M( f j,l 
di 

(x, y ))) (9)

here D j,l ( x, y ) denotes the best focus frame number of the point

 x, y ) at the level j and direction l . M( · ) is a mapping function that

an be regarded as a focus measure in SFF. This mapping function

an also be used as a fusion rule in high frequency subbands as

hown in Section 3.1 . 

Finally, the depth map at a certain level is obtained by merging

epth maps of different directions: 

 j (x, y ) = Merge 

({
D j,l (x, y ) 

}L 

l=1 

)
(10)

here the Merge( · ) represents the operators such as averaging or

hoosing max methods. 

However, some levels are not significant in a representation,

nd their removal has no real impact on the performances of the

epresentation of the depth map. In the next section, we explain

ow the optimal depth levels are chosen. 

.3. Optimal level selection strategy 

A larger scale results in blurring of the local details in the im-

ge, whereas a smaller scale cannot reflect the structural relation-

hips in the image [27] . It is very important to choose the optimal

evel so that the 3D reconstruction result reflects the properties of

he real object. To achieve this goal, first, 3D reconstruction results

ith different levels are obtained, and then, a search for the suit-

ble level is conducted using different scales. 

A Butterworth filter (a maximally flat filter) is a typical scal-

ng function of NSST [26] . The two-dimensional Butterworth filter

unction is defined by the following: 

 ( x, y, s 0 ) = 

1 

1 + [ s 0 /s (x, y ) ] 
2 

(11) 

here s 0 denotes the scale parameter and s ( x, y ) represents the

istance between coordinates s ( x, y ) and image origin. The Laplace

ransformation of the formula is expressed as follows: 

 

2 H = 

∂ 2 H 

∂x 2 
+ 

∂ 2 H 

∂y 2 
(12) 

o remove the influence of scale parameters on the characteristic

esponse, a normalized Butterworth Laplace transform is given by
he following: 

 (s 0 ) = � 

2 
norm 

H = s 2 0 

(
∂ 2 H 

∂x 2 
+ 

∂ 2 H 

∂y 2 

)
(13)

hus 

 (s 0 ) = 

4 s 2 0 (s 2 0 − x 2 − y 2 ) 

(x 2 + y 2 + s 2 
0 
) 3 

(14) 

hen the structure in the image is consistent with the shape

f the Butterworth Laplace function, the Laplace response of the

mage reaches the maximum. Therefore, we can get the extreme

alue points for the normalized Butterworth Laplace function as

ollows: 

∂G (s 0 ) 

∂s 0 
= 0 ⇒ x 2 + y 2 = 2 s 2 0 (15)

e assume that x 2 + y 2 = r 2 . Hence, when s 0 = r/ 
√ 

2 , the structure

ith r radius in the image will reach the peak of the response of

aplace at scale s 0 . 

Reliable reconstruction results take into account the informa-

ion from most of the structures in the object. In this paper, we

pply the maximum method to merge the depth maps of all di-

ections on the same level into a single depth map at first. Then,

y calculating the total response of Laplace of different levels, we

btain depth images in the scale range of s min to s max . The level

 optimal that gets the total of the maximum value is selected as the

nitial 3D reconstruction result. 

 optimal = arg max 
1 ≤ j≤J 

s max ∑ 

s = s min 

G j (s ) (16) 

.4. The iterative edge repair method 

To make the reconstruction results more accurate and reliable,

n iterative edge repair algorithm to gradually export substitute

ixels from the neighboring correct pixels is proposed in this sec-

ion. A generally accepted hypothesis is that error regions tend to

e in the regions with intense changes in the depth image. Hence,

rst the Sobel operator is used to pick up the edge of the error re-

ions. Then, the Otsu method is used to calculate the initial binary

hreshold T otsu , and the minimum percentage p min of the edge de-

ection results I sobel is obtained by Eq. (17) as follows: 

p min = 

1 

MN 

T otsu ∑ 

k =0 

n k (17) 

here M and N are height and width of the image I sobel , and n k is

he number of pixels with a gray level of k . 

Next, increment percentage p step is calculated by maximum per-

entage p max and minimum percentage p min as shown in Eq. (18) ,

here IN is the maximum number of the iterations. To ensure that

he repaired region gradually increases as the iteration process, the

aximum percentage p max is set to 0.99. 

p step = 

1 

IN 

( p max − p min ) (18) 

he binary threshold of the current iteration T current for generating

he inpainting region is searched by Eq. (19) as follows: 

 current ∑ 

k =0 

n k > (p min + p step ) MN (19)

inally, the repaired image of the current iteration is obtained by

he fast marching method (FMM) [28] . It should be noted that the

epaired image serves as the input image to the next iteration until

he maximum iterations are reached. This method uniqueness is

hat erroneous regions can be repaired gradually through a binary

ethod based on percentage. Fig. 5 shows a schematic diagram of

he proposed algorithm. 
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Fig. 5. Iterative edge repair algorithm for postprocessing of 3D shape reconstruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. A portion of the test image sequences. 
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4. Experiments 

4.1. Datasets 

Both simulated and real objects are used to verify the effective-

ness of the proposed 3D shape reconstruction method. The first

simulated sequence consists of 100 images of 360 × 360 pixels, and

the corresponding image generation algorithm of this sequence can

be found in the previous study [16] . There are three other image

sequences with respect to microscopic objects with varying tex-

tures and structures. The second and third sequences, which have

concave structures, come from the intaglio plate, and the fourth se-

quence comes directly from the surface of a coin. These three se-

quences, respectively, contain 100 images at varying focus planes

of the microscopy objects. The size of each image is 1024 × 1024

pixels, and the resolution is about 0.25 μm. The vertical interval

distance between two consecutive image frames is approximately

1 μm. A portion of the test image sequences is shown in Fig. 6 (a)–

(d) represent various image sequences of a simulated object and

three microscopy objects. 

4.2. Parameter setting 

To choose the optimal level for analyzing the 3D shape recon-

struction, the maximum decomposition level of NSST is set from 3

to 6 on the simulated object, and from 3 to 7 on the real objects.

The number of directions from coarser scales to finer scales is set

to 4. Depth maps with different decomposition levels obtained by
electing the best depth result with the largest value at the same

ixel position of different directional subimages. The response of

he normalized Butterworth Laplace results is in the scale range of

 min = 1 . 5 to s max = W ( s min , s max denote minimum and maximum

cale, W denotes the width of the depth map). Four objective eval-

ation criteria are employed to evaluate the performance of our

lgorithm on the simulated object: RMSE (RMSE measures the dis-

repancy between the evaluated depth map and the ground-truth

epth map), PSNR (the value of PSNR is defined as a ratio between

he maximum possible power of a signal and the power of the

oise), correlation (the correlation coefficient quantifies the lin-
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Fig. 7. Performance analysis of different depth maps in total response of the normalized Butterworth Laplace results ((a)–(d)) and the RMSE and PSNR metrics of depth 

maps with different decomposition levels of the simulated object ((e) and (f)). 

Fig. 8. Performance analysis of proposed method on different window size. 
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ar correlation between the evaluated depth map and the ground-

ruth map) and SSIM (SSIM is a measure of similarity between the

valuated depth map and the ground-truth depth map). As shown

n Fig. 7 (a)–(d), with an increase of the maximum decomposition

evel, the strongest response always appears at the former level of

he maximum decomposition level, and this phenomenon is con-

istent with the RMSE and PSNR of the simulated object ( Fig. 7 (e)

nd (f)). Furthermore, it is noticeable that different maximum de-

omposition levels produce comparable results to each other. Thus,

o decrease the computational time of the algorithm, in the follow-

ng experiments, the maximum decomposition level is fixed at 3,

nd the number of directions is set to [1,4,1]. The maximum num-

er of iterations of the postprocess method is set to 10. 

To find an optimum window size to balance the robustness to

he noise and detail preservation. For the real objects, we found

hat a pixel of depth map corresponds to a frame of the in-

ut image sequence. Therefore, the fused image can be obtained

y the depth image, and the gradient-based metric Q 

AB / F , which

valuates the preservation of spatial information from the source

mages to the fused image, is used as the evaluation criterion.

ig. 8 (a) shows that the proposed method performs better for sim-
lated object utilizing the window size 9 × 9 (i.e., smaller RMSE

nd higher PSNR). In Fig. 8 (b), it can be seen that the proposed

ethod preserves more important information within the 15 × 15

o 21 × 21 size. Therefore, in the following experiment, the focus

valuation by other SFF methods is computed by using a fixed win-

ow size 9 × 9 for simulated object and 17 × 17 for real objects,

nd the Gaussian model is used to estimate the depth of the SFF

ethods. The obtained depth maps are denoised by a 9 × 9 mean

lter. 

.3. Comparison with SFF methods 

The proposed method is implemented on simulated and real

bjects, and its performance is compared with some SFF methods

ncluding the Laplacian-based operators ( FM LAPE [29] , FM LAPD [30] ,

M LAP3D [11] ), wavelet-based operators ( FM CURVELET [12] , FM WAVELET 

31] , FM WAVV [32] ), gradient-based operators ( FM GDER [33] , FM TEN 

34] , FM SFIL [35] ) and the other miscellaneous operators ( FM SF [36] ,

M DCT [37] ). These methods are the most widely used focus mea-

ure operators to estimate image depth. The related parameters are

et to the recommended values from the corresponding studies. 
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Fig. 9. Depth images computed using various SFF methods for the simulated object. 

Table 1 

Performance comparison of different SFF methods with four ob- 

jective metrics. 

RMSE PSNR Correlation SSIM 

FM LAPE 6.3871 32.0247 0.9626 0.9129 

FM LAPD 12.3869 26.2716 0.9936 0.9449 

FM LAP3D 6.0448 32.5031 0.9558 0.9125 

FM CURVELET 16.1156 23.9859 0.6899 0.7179 

FM WAVELET 9.2984 28.7626 0.9175 0.8926 

FM WAVV 9.6178 28.4693 0.9205 0.8692 

FM GDER 6.2077 32.2722 0.9653 0.9189 

FM TEN 12.1329 26.4515 0.9944 0.9512 

FM SFIL 5.8818 32.7405 0.9660 0.9220 

FM SF 12.2128 26.3945 0.9809 0.9530 

FM DCT 4.3304 35.4002 0.9887 0.9879 

Proposed 2.3172 39.7153 0.9971 0.9896 
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Three-dimensional shape reconstruction results of simulated

object generated using the proposed method and other SFF meth-

ods are shown in Fig. 9 . The result of FM CURVELET generates a large

number of inaccurate depth points ( Fig. 9 (d)), and the results of

FM LAPE , FM LAPD , FM GDER and FM SFIL produce some incorrect depth

estimation results near the boundary regions of the depth maps

( Fig. 9 (a), (b), (g) and (i)). The FM WAVELET and FM WAVV fail to pre-

serve the smooth surface of the four corners of the depth maps.

The reconstruction results of FM LAP3D , FM SF and FM DCT extract the

depth details very well, since the horizontal and vertical gradi-

ent information calculated by these methods coincides with the

circular shape of the simulated object. The proposed algorithm is

successful in the selection of the focus pixels from the image se-

quence, and less discontinuous depth information can be found in

the reconstruction result ( Fig. 9 (l)). 

Table 1 makes a quantitative analysis of the reconstructed 3D

shapes for different algorithms in terms of RMSE, PSNR, correlation
nd SSIM. As seen, the proposed algorithm outperforms the com-

ared methods for all four metrics. It is also observed that FM DCT 

nd FM SFIL produce comparable results for the RMSE and PSNR

etrics, and FM LAPD and FM TEN obtain first place for the correla-

ion metric, and FM DCT achieves better results for the SSIM metric.

The results of the second sequences are displayed in Fig. 10 .

n our experiments, the robustness to noise of the focus measure

perators is assessed by performing 3D shape reconstructions un-

er weak light conditions. It can be observed that the 3D shape of

he second object recovered through the proposed method outper-

orms the compared methods. In addition, FM WAVELET shows a good

esponse to the reconstruction of low contrast regions, such as the

oundary between the plane and the rectangular region. However,

his operator is sensitive to the uniform-distributional noise. By

omparing FM LAP3D , FM GDER , FM TEN , FM SFIL , FM SF and FM DCT , it is

vident that these operators have a high sensitivity to marginal

oise. From the small window, the depth image obtained by these

perations is supposed to be a flat area, but it is actually a dis-

ontinuous region. The reconstructed image obtained by using the

roposed method is shown in Fig. 10 (l). It can be observed that

he depth image is smooth, and it contains fewer discontinuities

nd effectively overcomes the interference of weak light regions

nd halo phenomena. 

The reconstructed images of the third sequences, using SFF

ethods and the proposed method, are shown in Fig. 11 . It is no-

able that the shape reconstructed by the proposed method per-

orms better than the shapes reconstructed by the other methods.

n particular, small changes in the plane are observed from the im-

ge boundary to the ring structure. Additionally, noise is smoothed,

nd the edge structure information is preserved in the results of

he proposed method. It is better adapted to the human visual sys-

em and closely follows the real structure of the object. On the

ther hand, it is important to note that the FM operator ex-
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Fig. 10. Depth images computed using various SFF methods for the second image sequence. 

Fig. 11. Depth images computed using various SFF methods for the third image sequence. 
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Fig. 12. Depth images computed using various SFF methods for the fourth image sequence. 
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hibits good performance on this sequence, but the region of the

slope is still not well reconstructed. The other methods generate

depth images with high fluctuations and low noise suppression,

indicating their unstable behavior in noise and weak-light environ-

ments. 

Fig. 12 shows the reconstructed shapes of the fourth sequence

using the proposed method and the eleven SFF focus measures. It

is noticeable that the 3D shape recovered by the proposed method

is better than those recovered by the other methods. In addition,

the depth image obtained from FM WAVELET presents good results

in this sequence. One explanation is that wavelet-based operators

work well on rich-textured image sequences. On the other hand,

errors in depth images are introduced by noise, and more spikes

can be observed in the 3D shapes of the other focus measures.

Therefore, reconstruction of objects with high texture by these

methods produces inconsistent surfaces due to poor tradeoffs be-

tween robustness to noise and accuracy. 

In general, although some traditional SFF methods have

achieved better reconstruction results for the simulated object,

they cannot effectively reconstruct the low contrast regions in

real objects. Meanwhile, it is observed not only that the proposed

method can be an effective suppression of noise, but that it can

also better preserve the details of the depth information. There-

fore, the proposed method can yield a good tradeoff between noise

suppression and detail preservation. 

4.4. Comparison with multifocus image fusion methods 

The seven popular multifocus image fusion methods, which

are deep convolutional neural network (CNN) [38] , guided filter-

ing (GFF) [39] , convolutional sparse representation (CSR) [40] , mul-

tiscale weighted gradient (MWGF) [41] , NSCT [42] , sparse rep-

resentation (SR) [43] , and dual-tree complex wavelet transform

(DTCWT) [44] , are used to verify the advantages of the proposed
ethod. In addition, the related parameters in these fusion meth-

ds are set to the recommended values in the corresponding stud-

es. In our experiments, all fusion methods map the focus image to

he corresponding depth image. This operator can verify whether

hese image fusion results correctly reflect their true depth results.

Fig. 13 is a comparison between the reconstruction results of

pplying the proposed method on the simulated object and those

f the other seven methods. In Fig. 13 (d), the shape of the NWGF

ethod produces many erroneous depth estimation results in the

entral regions. For the CSR and SR methods, a large number of

iscontinuous reconstruction results can be found around the bot-

om and slope surface. The CNN and GFF methods fail to retain

he sharp tip in the depth maps. In general, the NSCT and DTCWT

ethods work better than other fusion methods, but the proposed

ethod provides a sharper tip of the depth map. 

The more 3D reconstruction results are close to the real depth

esults, the smaller the RMSE values and the larger the PSNR, cor-

elation and SSIM values will be. The proposed method shows the

owest RMSE and the highest PSNR, correlation and SSIM values in

he simulated object ( Fig. 14 ). Additionally, the result of the NWGF

ethod shows the negative correlation with the ground-truth. The

bove analysis shows that it is feasible to estimate the depth map

y applying image fusion methods. 

Fig. 15 displays the second image sequence of depth images ob-

ained with different fusion methods. The depth result of the CNN

ethod contains some undesirable results on the boundary regions

etween the rectangle and the plate ( Fig. 15 (a)). Moreover, the GFF

ethod suffers from oversmoothness ( Fig. 15 (b)). In the depth re-

ult of the CSR method, we observe false depth results in some flat

egions, indicating that this fusion method cannot extract the right

epth for more than two source multifocus images. The same re-

ult can be observed in the SR and DTCWT methods. The MWGF

ethod produces some artifacts near the boundaries and the NSCT

ethod fails to reconstruct the bottom of the object. 
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Fig. 13. Depth images of the simulated object obtained by different fusion methods. 

Fig. 14. Performance analysis of various depth maps using RMSE, PSNR, correlation and SSIM metrics. 

Fig. 15. Depth images of the second sequence obtained by different fusion methods. 
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The depth results of the third sequences are shown in Fig. 16 .

or the CNN method, the artifacts on the slope areas are caused by

nsufficient focus on low contrast images ( Fig. 16 (a)). For the GFF

ethod, the overmoothness at the edges of the ring are produced,

esulting in the loss of most details of the reconstruction results
 Fig. 16 (b)). The CSR and SR methods are different from other fu-

ion methods in flat areas, in which the depth information of these

reas is not located accurately. From Fig. 16 (d), we observe that the

loped areas are reconstructed as plane areas because the MWGF

ethod is sensitive to the obvious gradient changes. In addition,
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Fig. 16. Depth images of the third sequence obtained by different fusion methods. 

Fig. 17. Depth images of the fourth sequence obtained by different fusion methods. 
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the DTCWT method cannot effectively suppress the disturbance of

discrete noise that derives from the halo artifacts around the con-

tours of the object ( Fig. 16 (g)). 

A real coin image sequence is presented in Fig. 17 . The sur-

face details of the object are rich in this sequence. Many details

on the surface of an object are lost in the CNN and GFF meth-

ods ( Fig. 17 (a) and (b)). The depth images obtained by the CSR and

SR methods contain many false depth results ( Fig. 17 (c) and (f)).

From Fig. 17 (d), MWGF is more robust for richly detailed objects

since the gradient-based saliency measure method performs better

at finding focus areas. NSCT has a high sensitivity to noise because

image noise mostly corresponds to high subbands ( Fig. 17 (e)). As

shown in Fig. 17 (g), the DTCWT method had the worst depth re-

sult performance among these methods. 

From the above analysis, although the CNN method satisfacto-

rily preserves the focus results in small depth regions such as the

plane of the object, the 3D reconstruction results produce inaccu-

rate depth estimates in low contrast areas such as slopes and con-

tours. This poor performance might be due to the lack of train-

ing examples for low contrast images. The guided filter of the GFF

method results in oversmoothness of the depth image, and it can
e explained that the guided filter blurs the source image details.

he CSR and SR methods cause spatial inconsistency in flat areas. A

ossible reason is that the defocused regions have plenty of high-

requency noise, which could impact the accuracy of the recon-

truction results. As a result, the depth information in flat areas

ight originate from false image frames, which lead to a large de-

iation between the 3D reconstruction results and the true depth

esults. The depth map of the MWGF method demonstrates that

he reconstruction quality in the halo regions is lower than that of

he other methods, but the performance in the richly detailed re-

ions improves significantly, since a weighted gradient-based op-

rator is more suitable for catching the saliency of local image

tructures. In addition, the designed strategies in the NSCT and

TCWT methods tend to confuse local details and noise. In sum-

ary, experiments from this section have shown that whether in

he continuity of depth images or in detail preservation, the pro-

osed method has the best overall performance for different ob-

ects. 

Computational complexity is one of the important indices for

valuating an algorithm 

′ s validity. In our experiments, all algo-

ithms are implemented in MATLAB R2016a using an Intel Core
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Table 2 

Computational complexity of different methods (in seconds). 

Simulated object Real object 1 Real object 2 Real object 3 

FM LAPE 2.13 13.27 13.28 13.28 

FM LAPD 3.36 25.13 24.99 26.09 

FM LAP3D 3.07 23.13 23.19 23.24 

FM CURVELET 21.18 245.84 239.48 226.11 

FM WAVELET 6.68 75.12 79.42 77.17 

FM WAVV 5.18 64.65 71.04 69.98 

FM GDER 3.64 25.55 22.41 27.98 

FM TEN 1.89 20.87 18.84 17.39 

FM SFIL 4.95 61.60 63.14 63.34 

FM SF 2.53 24.95 25.20 29.63 

FM DCT 1 . 09 e + 03 9 . 08 e + 03 8 . 59 e + 03 8 . 56 e + 03 

CNN 5 . 26 e + 03 4 . 85 e + 04 4 . 05 e + 04 4 . 17 e + 04 

GFF 8.26 106.01 104.90 105.31 

CSR 3 . 05 e + 03 2 . 77 e + 04 2 . 77 e + 04 2 . 19 e + 04 

NWGF 119.02 1 . 24 e + 03 1 . 22 e + 03 1 . 18 e + 03 

NSCT 230.53 1 . 91 e + 03 1 . 99 e + 03 1 . 89 e + 03 

SR 3 . 35 e + 03 2 . 88 e + 04 2 . 25 e + 04 2 . 19 e + 04 

DTCWT 15.48 178.41 175.78 176.29 

Proposed 38.18 315.80 318.07 317.15 
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5 processor of 2.5GHz with 8GB RAM. The proposed algorithm

ainly includes two parts: NSST decomposition and postprocess-

ng, in which the complexity of NSST is O (N 

2 log N) [26] , and

he complexity of postprocessing is O ( N 

2 ), so the complexity of

he proposed algorithm is O ( N 

2 log N ), where N × N denotes the

ize of the image. Each algorithm runs 5 times independently to

et the average computational time. From Table 2 , it is evident

hat CNN is the most time-consuming among the compared al-

orithms, whereas FM LAPE has the lowest computational burden.

mong the SFF methods, the computational complexity of the pro-

osed method is equivalent to that of FM CURVELET . Compared to

ther image fusion algorithms, the computational complexity of

ur method is much lower than the majority except for those of

FF and DTCWT. Although the computational complexity of our

roposed method is slightly higher than those of other traditional

FF methods, the results of the proposed method, as described

n this paper, not only achieve higher reconstruction accuracy but

lso obtain the fused image of the object. 

. Conclusion 

The NSST-based microscopic multifocus fusion method for 3D

hape reconstruction has been introduced in this paper. It is based

n the existence of depth information in the fused image. Due to

he combination of depth estimates and fusion processes by us-

ng a novel multidirectional modified Laplacian operator, the pro-

osed method can directly identify the depth map and fused im-

ge simultaneously. Future work on this topic will focus on three

spects: 

(1) SFF scheme based on multifactor collaborative optimizaion. In

this paper, the focus level can be evaluated using fixed win-

dow size, which may sacrifice some accuracy of the recon-

struction results. However, the accuracy of the reconstruc-

tion results in the actual application scenario is affected by

many factors such as the sampling interval of image se-

quence, the window size, the noise level, the image res-

olution, the focus measure operators and the reconstruc-

tion schemes. A feasible method is to convert multiple fac-

tors into different dimensions of an optimization problem

that heuristic algorithms may solve. In this way, the opti-

mal mapping from multifactor to 3D reconstruction results

can be established. 

(2) Multifocus image fusion methods ensemble. Embedding depth

estimation into a NSST-based multifocus image fusion, our
method can directly identify the depth map and fused image

simultaneously. Therefore, it is feasible to mine depth infor-

mation from the image fusion process. In recent years, many

state-of-the-art multifocus image fusion algorithms, such 

as multiscale decomposition-based, sparse representation- 

based and deep learning-based methods, have emerged.

Each type of fusion method has its own advantages. First, we

take depth maps from different fusion algorithms as input.

Next, new depth maps are generated by using replication,

crossover, mutation, competition, selection and reorganiza-

tion operators of genetic algorithms. It is expected to obtain

higher accuracy reconstruction results through iterative op-

timization. 

(3) Future applications. In the future, our method will offer im-

portant reference for increasing the accuracy of the depth

information and reducing consumption in the field of in-

taglio printing in which a full-size plate is usually character-

ized by a large format. A 3D scan of the whole plate is im-

possible because the image file is too large. Therefore, some

critical reference points should be defined for quality checks.

The marked areas on the reference points in each plate will

obtain some 3D results compared with theoretical designed

values. In the end, different check results, such as whether

the plate is ready for production or should be rejected, are

obtained through the above data analysis. 

The main innovation of this paper is a new attempt to bridge

the gap between SFF and multifocus image fusion. A wide

variety of applications in the field of quality inspection of

micromanufacturing processes can benefit from this pro-

posed 3D shape reconstruction method. 
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