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Formal concept analysis and rough set are two kinds of efficient mathematical tools for 
data analysis and knowledge discovery. By combining these two theories, object-oriented 
and property-oriented concept lattices are proposed. Interval set theory is proposed to 
describe a partially-known concept by a lower bound and a upper bound. In order to obtain 
the more accurate extension and intension for a partially-known object-oriented concept, 
we introduce the theory of interval sets into the object-oriented concept lattice, and 
propose an object-oriented interval-set concept lattice. Properties of them are investigated. 
Relationships among interval-set concept lattices, object-oriented interval-set concept 
lattices and property-oriented interval-set concept lattices are discussed. By discussing the 
relationships between the object-oriented concept lattice and the object-oriented interval-
set concept lattice, an approach to construct object-oriented interval-set concept lattices 
are established.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Formal concept analysis is proposed as one of the effective mathematical tools for data analysis and knowledge discovery 
[30]. This theory reflects the information and knowledge hidden in the data through the formal concepts and the hierarchical 
structure among them. Formal concepts together with a partial relation form a complete lattice, called a concept lattice [6,
30]. Formal concepts and the concept lattice are the central notions in formal concept analysis, and the corresponding Hasse 
diagram realizes the visualization of data. It has been widely applied to many fields such as expert system, data mining, 
information search, knowledge engineering and software engineering [1,5,11–13,16,17,27,29] in recent years.

Rough set [22–24], proposed by Pawlak, and formal concept analysis are two different tools of analyzing data and dealing 
with uncertainty. Many scholars pay much attention to the study of these two theories and provide new methods for 
data analysis. Dubois [2], Düntsch [3,4], Kent [9], Saquer [25] and Yao [32–35] discuss four kinds of operators in data 
analysis by comparing concept lattices and rough sets, and propose dual concept lattices, object-oriented concept lattices and 
property-oriented concept lattices. Ma and Zhang [19] discuss the axiomatic characterizations of dual concept lattices. The 
approach to acquire object-oriented concept lattices by dividing the power set of attributes into layered sets is investigated 
in [21]. Shen et al. [26] show the relationship between contexts, closure spaces, and complete lattices according to the 
concept lattice functors. Tan et al. [28] study the connections between covering-based rough sets and concept lattices. 
Guo et al. [7] examine the categorical representation of algebraic domains by using rough approximate concepts. Hu et 
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al. [8] introduce the approximation concepts in concept lattices. Block relations are also established for a fuzzy formal 
context in [10]. Furthermore, Li et al. depict the approximate concept and rule acquisition in incomplete decision contexts 
[15], investigate the rule acquisition and rule-preserved compression [16,17] and compare the reductions for the decision 
contexts [18].

For an incomplete or uncertain data, it is difficult to obtain completely known extensions or intensions of all concepts. 
In order to describe the partially-known concepts more clearly, interval sets are defined by Yao [31,36] to display the pos-
sible ranges of the extension and the intension for a partially-known concept. An interval set is a closed interval with the 
endpoints being two subsets, called the lower and upper bounds, respectively. The family of subsets between the lower 
and upper bounds constructs an interval set. Objects in the lower bound must be the elements of the real extension of the 
partially-known concept, and objects in the complement of the upper bound are not the elements of the extension of the 
concept. There exist many ranges to describe the extension and the intension of a partially-known concept. Which one is 
the best? How can we make the range more accurate to denote the concept? Since the extension and the intension of a 
formal concept determine each other uniquely, in order to depict the partially-known concept more accurately, Ma et al. 
[20] introduce the interval set into formal concept analysis, and define a pair of sufficient operators between the interval-
set power sets of objects and attributes. Then interval-set concepts and interval-set concept lattices are constructed to get 
the ranges of the extension and intension of a partially-known concept. Possible concepts related to the partially-known 
concept are then obtained. Yao [37] discusses the interval sets and three-way concept analysis for incomplete contexts. And 
Li et al. [14] investigate an interval set model for learning rules for an incomplete information table. For a partially-known 
object-oriented (OO, for short) concept, on the basis of the ideas of interval sets, we can show the possible ranges of the OO 
extension and OO intension. In order to make the lower and upper bounds more clearly, we introduce the object-oriented 
interval-set concept lattice (OOIS concept lattice, for short). Based on the relationships between the concept lattice and the 
object-oriented concept lattice, it is possible to discuss the relationships between interval-set concept lattices and object-
oriented interval-set concept lattices. According to the definitions of the sufficiency operators, the necessity operators and 
the possibility operators, the relationships among the interval-set concept lattice, the object-oriented interval-set concept 
lattice and the property-oriented interval-set concept lattice are worth to discussed.

In this paper, we introduce the notion of an interval set into the object-oriented concept lattice, and construct an object-
oriented interval-set concept lattice. We first propose two pairs of operators between the interval-set power sets of objects 
and attributes. Then the object-oriented interval-set concept and a partial relation on them are depicted. The object-oriented 
interval-set concept lattice is then obtained. Related properties are shown. Relationships among the interval-set concept lat-
tice, the object-oriented interval-set concept lattice and the property-oriented interval-set concept lattice are studied. By 
studying the relationships between object-oriented concept lattices and object-oriented interval-set concept lattices, we 
show an approach to construct object-oriented interval-set concept lattice by using the object-oriented concept lattice.

In Section 2, we first review some basic notions and results about interval sets, concept lattices and interval-set con-
cept lattices. In Section 3, we propose the object-oriented interval-set concept, and construct object-oriented interval-set 
concept lattice. Relationships among the interval-set concept lattice, the object-oriented interval-set concept lattice and the 
property-oriented interval-set concept lattice are discussed. In Section 4, by dividing the object-oriented interval-set con-
cept lattice into four parts, and the relationships among them are investigated. Applying the relationships, an approach to 
construct the object-oriented interval-set concept lattice are proposed. We then conclude the paper with a summary in 
Section 5.

2. Interval-set concept lattices

In this section, basic notions and properties of interval sets, concept lattices and interval-set concept lattices are intro-
duced [6,20,30,31,36].

2.1. Interval sets and its operations

An interval set is a family of subsets of a universe, which is used to denote a range of the extension for a partially-known 
concept by using a lower bound and an upper bound [31,36]. It is introduced as follows:

Let U be a universe of discourse, and 2U the power set of U . For the power set lattice (2U , ⊆), a closed interval set X
is defined by

X = [Xl, Xu] = {X ∈ 2U | Xl ⊆ X ⊆ Xu, Xl, Xu ⊆ U } (2.1)

with Xl ⊆ Xu . Xl and Xu show the lower bound and the upper bound, respectively, of the interval set X .
Obviously, any interval set X is a subset of 2U , i.e. X ⊆ 2U . The set of all interval sets of U is denoted by

I(2U ) = {X = [Xl, Xu] | Xl, Xu ⊆ U , Xl ⊆ Xu},
called the interval-set power set of U .

For any subset X ∈ 2U , let

̂X = [X, X].
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̂X is also an interval set with Xl = Xu = X , called a degenerated interval set, or a single interval set. Then the single interval 
set ̂X is actually a single set with one set X , i.e. ̂X = {X}. Furthermore, the two sets

̂ØU = [ØU ,ØU ], ̂U = [U , U ]
are also interval sets in I(2U ).

Corresponding to the set operations of the intersection ∩, the union ∪, the difference − and the complement c on 2U , 
Yao introduces the similar operations on I(2U ) [31,36]: for any two interval sets X = [Xl, Xu], Y = [Yl, Yu] ∈ I(2U ),

X �Y = [Xl ∩ Yl, Xu ∩ Yu] = {X ∩ Y | X ∈ X , Y ∈ Y},
X �Y = [Xl ∪ Yl, Xu ∪ Yu] = {X ∪ Y | X ∈ X , Y ∈ Y},
X −Y = [Xl − Yu, Xu − Yl] = {X − Y | X ∈ X , Y ∈ Y},

¬X = [U , U ] − [Xl, Xu] = [Xc
u, Xc

l ].
(2.2)

Obviously,

¬ ̂ØU = ̂U , ¬ ̂U = ̂ØU , and ̂Xc = ¬ ̂X

for any subset X ∈P(U ).
For the interval-set power set I(2U ), a binary relation 	 is defined as follows: for any X = [Xl, Xu], Y = [Yl, Yu] ∈ I(2U ),

[Xl, Xu] 	 [Yl, Yu] ⇔ Xl ⊆ Yl, Xu ⊆ Yu . (2.3)

Then 	 is a partial relation on I(2U ), and (I(2U ), 	) is a partial set. Applying Eq. (2.3) we can get that, for any interval 
sets X = [Xl, Xu], Y = [Yl, Yu] ∈ I(2U ),

X = Y ⇔ X 	 Y and Y 	 X ⇔ Xl = Yl, Xu = Yu . (2.4)

The partial relation 	 satisfies the following properties [31]: for any X , Y, X 1, Y1 ∈ I(2U ),
(1) X 	 Y ⇔X �Y =X ⇔X �Y = Y ;
(2) X 	 Y, X1 	 Y1 ⇒X �X1 	 Y �Y1, X �X1 	Y �Y1,
(3) X �Y 	X , X �Y 	 Y, X 	X �Y, Y 	X �Y .

Remark 2.1. For any subsets X, Y ⊆ U , X ∩ (∼ X) = ØU , X ∪ (∼ X) = U , X − X = ØU , and X ⊆ Y implies that X − Y = ØU . 
However, these results may not be true for interval sets. Actually, for any interval sets X = [Xl, Xu], Y = [Yl, Yu] ∈ I(2U ),

X � ¬X = [ØU , Xu − Xl], X � ¬X = [Xl ∪ Xc
u, Xu ∪ Xc

l ],
X −X = [ØU , Xu − Xl],
X 	 Y ⇒ X −Y = [ØU , Xu − Yl].

2.2. Interval-set concept lattices

A formal context is a triplet (U , A, I), where U = {x1, x2, · · · , xn} is a non-empty finite set of objects called a universe of 
discourse, A = {a1, a2, · · · , am} is a non-empty finite set of properties or attributes, and I ⊆ U × A is a binary relation, which 
is used to describe the relationships between objects and attributes. For any x ∈ U and a ∈ A, (x, a) ∈ I , also written as xIa, 
means that the object x has the attribute a, or the attribute a is possessed by the object x. The complement Ic ⊆ U × A of the 
binary relation I satisfies: (x, a) ∈ Ic ⇔ (x, a) /∈ I . Then the triple (U , A, Ic) is also a formal context, called the complement 
formal context of (U , A, I). If we denote (x, a) ∈ I by 1 and (x, a) /∈ I by 0, a formal context and its complement formal 
context can be represented by a table with 0 and 1 [6,30].

For a formal context (U , A, I), 2U and 2A denote the power sets of U and A, respectively. For any X ∈ 2U and B ∈ 2A , a 
pair of operators ↑ : 2U → 2A and ↓ : 2A → 2U , called sufficiency operators [6,30], is defined by

X↑ = {a ∈ A | (x,a) ∈ I, ∀x ∈ X},
B↓ = {x ∈ U | (x,a) ∈ I, ∀a ∈ B}. (2.5)

X↑ is the set of attributes shared by all objects in X , and B↓ is the set of objects which possess all attributes in B .
For any x ∈ U and a ∈ A, by Eq. (2.5), we have

{x}↑ = {a ∈ A | (x,a) ∈ I}, {a}↓ = {x ∈ U | (x,a) ∈ I}. (2.6)

For simplicity, we use x↑ and a↓ to denote the sets {x}↑ and {a}↓ , respectively. Therefore,

(x,a) ∈ I ⇔ x ∈ a↓ ⇔ a ∈ x↑. (2.7)
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Table 2.1
The formal context (U , A, I) of 
Example 2.1.

U a b c d e

1 1 0 1 1 1
2 1 0 1 0 0
3 0 1 0 0 1
4 0 1 0 0 1
5 1 0 0 0 0
6 1 1 0 0 1

Fig. 1. Concept lattice L(U , A, I).

A formal context (U , A, I) is regular if for any x ∈ U and a ∈ A, x↑ �= ØA , x↑ �= A, a↓ �= ØU and a↓ �= U . In this paper, the 
formal context (U , A, I) we discussed is always regular. According to Eqs. (2.5), (2.6) and (2.7), one can obtain that:

X↑ = { a ∈ A | ∀x ∈ U [ x ∈ X ⇒ x ∈ a↓] }
= { a ∈ A | X ⊆ a↓ },

B↓ = { x ∈ U | ∀a ∈ A [ a ∈ A ⇒ a ∈ x↑] }
= { x ∈ U | B ⊆ x↑ }.

(2.8)

The sufficiency operators have the following properties [6,30]: for any X, X1, X2 ∈ 2U and B, B1, B2 ∈ 2A ,
(1) X1 ⊆ X2 ⇒ X↑

2 ⊆ X↑
1 , B1 ⊆ B2 ⇒ B↓

2 ⊆ B↓
1 ;

(2) X ⊆ X↑↓, B ⊆ B↓↑;
(3) X↑ = X↑↓↑, B↓ = B↓↑↓;
(4) (X1 ∪ X2)

↑ = X↑
1 ∩ X↑

2 , (B1 ∪ B2)
↓ = B↓

1 ∩ B↓
2 ;

(5) X ⊆ B↓ ⇔ B ⊆ X↑ .
A pair (X, B) with X ⊆ U and B ⊆ A is called a formal concept (for short, a concept), if X↑ = B and B↓ = X . X is called 

the extension and B the intension of the concept (X, B). The set of all concepts of the formal context (U , A, I), denoted by 
L(U , A, I), forms a complete lattice, called a concept lattice [6,30], where the partial order ≤ is defined as follows: for any 
(X1, B1), (X2, B2) ∈ L(U , A, I),

(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2 ⇔ B2 ⊆ B1.

And the meet and join are given by:

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∪ B2)
↓↑),

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)
↑↓, B1 ∩ B2).

Example 2.1. Table 2.1 depicts a formal context (U , A, I) with U = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e}.

In the following description, for simplicity, a set is denoted by listing its elements. For example, the set {1, 2, 3, 4} is 
denoted by 1234. Fig. 1 shows the concept lattice L(U , A, I) of the formal context (U , A, I) given in Table 2.1.

For an uncertain concept (X, B), we cannot get the exact extension X and the intension B . Suppose the interval set 
X = [Xl, Xu] shows the possible range of X , that is, Xl ⊆ X ⊆ Xu . However, Xl and Xu may not be the extensions of some 
formal concepts in (U , A, I). How can we get the lower and upper bounds of the interval set X ? And how can we show the 
more accurate ranges of extension and intension for the uncertain concept (X, B)?

Definition 2.1. [20] Let (U , A, I) be a formal context. For any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A), a 
pair of operators ( f , g) between I(2U ) and I(2A) are defined as follows:
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f (X ) = [X↑
u , X↑

l ] = {B ∈ 2A | X↑
u ⊆ B ⊆ X↑

l },
g(B) = [B↓

u , B↓
l ] = {X ∈ 2U | B↓

u ⊆ X ⊆ B↓
l }. (2.9)

f (X ) is the set of the possible intensions for some concept with the intension X↑
u of the concept (X↑↓

u , X↑
u ) being its lower 

bound, and X↑
l of the concept (X↑↓

l , X↑
l ) being its upper bound; and g(B) shows the set of all possible extensions for 

some concept, where the lower bound of it is the extension B↓
u of the concept (B↓

u , B↓↑
u ), and the upper bound of it is the 

extension B↓
l of the concept (B↓

l , B↓↑
l ).

An interval set X = [Xl, Xu] is used to describe the possible range of the extension of a partially-known concept. Any 
possible extension set X ∈ X satisfies Xl ⊆ X ⊆ Xu . Since X↑

l is the intension of the concept (X↑↓
l , X↑

l ) generated by the 
lower bound Xl , and X↑

u is the intension of the concept (X↑↓
u , X↑

u ) constructed by the upper bound Xu , the sufficient 
operator f : I(2U ) → I(2A) produces the possible range of the intensions for some concept with the intension X↑

u being 
the lower bound and the intension X↑

l being the upper bound. It is obvious that X↑
u ⊆ X↑ ⊆ X↑

l . Similarly, the sufficient 
operator g : I(2A) → I(2U ) discusses the set of all possible range of the extensions for some concept with the extension 
B↓

u being the lower bound and the extension B↓
l being the upper bound.

Remark 2.2. For any interval set X = [Xl, Xu] ∈ I(2U ), the lower bound Xl and the upper bound Xu may not be the 
extensions of some concepts. Applying Definition 2.1, the interval set f (X ) = [X↑

u , X↑
l ] shows the range of the intension of 

another concept. The lower bound X↑
u and the upper bound X↑

l are actually the intensions of the formal concepts (X↑↓
u , X↑

u )

and (X↑↓
l , X↑

l ), respectively. And for any possible extension X ∈ X , X↑
u and X↑

l are the corresponding lower and upper 
bounds of the intension X↑ of the possible extension X .

Example 2.2. The formal context (U , A, I) in Example 2.1 has 9 formal concepts

L(U , A, I) = {(U ,ØA), (1256,a), (1346, e), (12,ac), (16,ae), (346,be), (1,acde), (6,abe), (ØU , A)}.
For the interval set X = [12, 12456], the lower bound {1, 2} is the extension of the formal concept (12, ac), but the upper 
bound {1, 2, 4, 5, 6} is not the extension of any formal concept. Applying Definition 2.1 we can get that f (X ) = [ØA, ac], 
where the lower bound ØA is the intension of the concept (U , ØA), and the upper bound {a, c} is the intension of the 
concept (12, ac). Since

X = [12,12456] = {12,124,125,126,1245,1246,1256,12456},
we can get the corresponding intensions for any set in the interval set X :

12↑ = ac, 124↑ = ØA, 125↑ = a, 126↑ = 1, 1245↑ = ØA, 1246↑ = ØA, 1256↑ = a, 12456↑ = ØA .

Then the sets ØA and {b, c}, respectively, are also the lower and upper bounds of the intension of any possible extension 
set X ∈X .

Take an interval set Y = [4, 3456]. The lower bound {4} and the upper bound {3456} of the interval set Y are not the 
extensions of any formal concepts in L(U , A, I). According to Definition 2.1 we get that f (Y) = [ØA, be] with the lower 
bound ØA being the intension of the corresponding formal concept (U , ØA), and the upper bound {b, e} being the intension 
of the corresponding formal concept (346, be). Furthermore, for the interval set

Y = [4,3456] = {4,34,45,46,345,346,456,3456}
we have

4↑ = be, 34↑ = be, 45↑ = ØA, 46↑ = be,
345↑ = ØA, 346↑ = be, 456↑ = ØA, 3456↑ = ØA .

The sets ØA and {b, e} are also the lower and upper bounds, respectively, of the intension of any possible extension set 
X ∈ Y . That is to say, for any Y ∈ Y , ØA ⊆ Y ↑ ⊆ {b, e}.

Similarly, for the interval set B = [b, bcd], the sets {b} and {b, c, d} are not the intensions of any formal concepts in 
L(U , A, I). According to Definition 2.1, g(B) = [ØU , 346]. The lower bound ØU is the extension of the formal concept (ØU , A), 
and the upper bound {3, 4, 6} is the extension of the formal concept (346, be). Since B = [b, bcd] = {b, bc, bd, bcd}, we can 
get the corresponding extension sets of the elements in B:

b↓ = 346, bc↓ = ØU , bd↓ = ØU , bcd↓ = ØU .
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It is obvious that the extension of any element in the interval set B belongs to the interval set g(B).
For any X ⊆ U and B ⊆ A,

f (̂X) = [X↑, X↑] = ̂X↑, g(̂B) = [B↓, B↓] = ̂B↓.

Definition 2.2. [20] Let (U , A, I) be a formal context. For any X ∈ I(2U ) and B ∈ I(2A), if f (X ) = B and g(B) =X , we call 
(X , B) an interval-set formal concept (for short, an IS concept). X is called the IS extension, and B the IS intension of the 
IS concept (X , B).

For a partially-known concept, the interval set X = [Xl, Xu] shows the range of the extension for the partially-known 
concept with Xl being the lower bound and Xu being the upper bound. f (X ) shows the possible range of the intension of 
the concept with the intension set X↑

u being the lower bound and the intension set X↑
l being the upper bound.

Remark 2.3. For the partially-known concept C = (X, B), X↑ = B and B↓ = X with X and B uncertain or partially-known.
(1) The interval set X = [Xl, Xu] shows a range of the extension X with Xl ⊆ X ⊆ Xu , and the interval set B = [Bl, Bu]

displays a range of the intension B with Bl ⊆ B ⊆ Bu .
(2) Xl ⊆ X ⊆ Xu and Bl ⊆ B ⊆ Bu imply that X↑

u ⊆ X↑ ⊆ X↑
l and B↓

u ⊆ B↓ ⊆ B↓
l , respectively. Together with X↑ = B and 

B↓ = X we get that f (X ) = [X↑
u , X↑

l ] shows a range of the intension B , and g(B) = [B↓
u , B↓

l ] shows a range of the extension 
X of the concept C = (X, B).

(3) According to (1) and (2) we know that, B = [Bl, Bu] is a range of the intension B of the partially-known concept 
C = (X, B). Meanwhile, f (X ) = [X↑

u , X↑
l ] also shows a range of the intension B of the concept C = (X, B). However,

[Bl, Bu] = [X↑
u , X↑

l ]
may not be true. That is to say, B = [Bl, Bu] and f (X ) = [X↑

u , X↑
l ] provide two ranges of the intension B . Similarly, X =

[Xl, Xu] and g(B) = [B↓
u , B↓

l ] give two ranges of the extension X of the concept C = (X, B). But these two ranges may not 
be the same one. That is,

[Xl, Xu] = [B↓
u , B↓

l ]
may not hold.

It is well-known that a concept consists of an extension and an intension, which determines each other uniquely. Based 
on it,

f (X ) = [X↑
u , X↑

l ] = [Bl, Bu] = B

denotes that the given range of the intension B equals to the range of the intensions obtained by the given range of the 
extension X . Meanwhile,

g(B) = [B↓
u , B↓

l ] = [Xl, Xu] = X
shows that the given range of the extension X equals to the range of the extensions obtained by the given range of the 
intension B . Combining these two equations, the two ranges of the intension B and the extension X determines each other. 
Then we can get the more accurate ranges for the extension X and intension B for the partially-known concept, which 
produces an interval-set formal concept (X , B).

Example 2.3. Considering the formal context (U , A, I) given in Example 2.1.
(1) For a partially-known concept C = (X, B), the interval set X = [1, 125] and B = [a, ade] display the ranges of the 

extension and the intension, respectively, of the concept. The extension X of the concept must include the object 1, and 
may consist of the objects 2 or 5. {1} is the lower bound, and {1, 2, 5} is the upper bound of the extension X for the 
concept. The intension B of the concept must include the attribute a, and may consist of the attributes d or e. {a} is the 
lower bound, and {a, d, e} is the upper bound of the intension B for the concept. Thus,

X = [1,125] = {1,12,15,125}, B = [a,ade] = {a,ad,ae,ade}.
Applying Definition 2.1 we can get that

f (X ) = [125↑,1↑] = [a,acde] = {a,ac,ad,ae,acd,ace,ade,acde},
g(B) = [ade↓,a↓] = [1,1256] = {1,12,15,16,125,126,156,1256}.

f (X ) �= B denotes that the interval set f (X ), the range of the intensions with X↑
u being the lower bound and X↑

l being the 
upper bound, does not equal to the interval set B, the range of the intension of the partially-known concept. And g(B) �= X
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tells us that the interval set g(B), the range of the extension obtained by the lower bound B↓
u and the upper bound B↓

l is 
not the interval set X with Xl being the lower bound and Xu being the upper bound.

Furthermore, we also get that for any possible extensions in X and any possible intensions in B,

1↑ = acde /∈ B, 12↑ = ac /∈ B, 15↑ = 125↑ = a ∈ B,

a↓ = 1256 /∈ X , ae↓ = 16 /∈ X , ad↓ = ade↓ = 1 ∈ X .
(2.10)

Any set in the interval set X may be the extension of the partially-known concept, and f (X ) includes all intensions with 
X↑

u and X↑
l being the lower and upper bounds, respectively. Applying Eq. (2.5), we just get two formal concepts (1, acde)

and (12, ac), where the extensions {1} and {1, 2} belong to X but the intensions {a, c, d, e} and {a, c} are not in B. Similarly, 
B consists of the possible intensions of the partially-known concept, and g(B) shows the range of extensions with the lower 
bound B↓

u and the upper bound B↓
l . According to Eq. (2.5) we just obtain the formal concepts (16, ae) and (1256, a). It is 

obvious that the intensions {a} ∈ B, {a, e} ∈B, but the extensions {1, 6} /∈X , {1, 2, 5, 6} /∈X .
That is to say, for a partially-known concept C = (X, B), we choose the range X of the extension X and the range B of 

the intension. It is still difficult to get the more exact extension X and intension B .
(2) Now we take the interval set Y = [1, 1256] including the extension X and the interval set C = [a, acde] consisting of 

the intension B the partially-known concept C = (X, B). Then

Y = [1,1256] = {1,12,15,16,125,126,156,1256},
C = [a,acde] = {a,ac,ad,ae,acd,ace,acde}.

Applying Definition 2.1 we can get that

f (Y) = [1256↑,1↑] = [a,acde] = {a,ac,ad,ae,acd,ace,ade,acde} = C,

g(C) = [acde↓,a↓] = [1,1256] = {1,12,15,16,125,126,156,1256} = Y.

Then f (Y) = C and g(C) = Y . Meanwhile, we also obtain that for any possible extensions in X and any possible intensions 
in B,

1↑ = acde ∈ C, 12↑ = ac ∈ C, 15↑ = a ∈ C, 16∗ = ae ∈ C, 125↑ = 126↑ = 156↑ = 1256↑ = a ∈ C,

a↓ = 1256 ∈ Y, ac↓ = 12 ∈ Y, ad↓ = 1 ∈ Y, ae↓ = 16 ∈ Y, acd↓ = ace↓ = ade↓ = acde↓ = 1 ∈ Y.

From these we can get four formal concepts (12, ac), (16, ae) and (1256, a) with the extensions coming from the interval set 
Y and the intensions belonging to the interval set C . Therefore, one of the four formal concepts (1, acde), (12, ac), (16, ae)
and (1256, a) must be the partially-known concept.

Property 2.1. [20] Let (U , A, I) be a formal context. For any X , Y ∈ I(2U ) and B, C ∈ I(2A), the following properties hold:
(1) X 	 Y ⇒ f (Y) 	 f (X ), B 	 C ⇒ g(C) 	 g(B);
(2) X 	 g f (X ), B 	 f g(B);
(3) f (X �Y) = f (X ) � f (Y), g(B � C) = g(B) � g(C);
(4) f (X ) = f g f (X ), g(B) = g f g(B);
(5) X 	 g(B) ⇔ B 	 f (X );
(6) f (X �Y) � f (X ) � f (Y), g(B � C) � g(B) � g(C);
(7) (g f (X ), f (X )), (g(B), f g(B)) are both IS concepts.

Proof. Applying properties of operators (↑,↓ ), Definition 2.1 and Definition 2.2, one can get these results. �
Theorem 2.1. Let (U , A, I) be a formal context. For any X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A),

(X ,B) ∈ I L(U , A, I) ⇔ (Xl, Bu), (Xu, Bl) ∈ L(U , A, I) and (Xl, Bu) ≤ (Xu, Bl).

Proof. Suppose X = [Xl, Xu] ∈ I(2U ), B = [Bl, Bu] ∈ I(2A) and (X , B) ∈ I L(U , A, I). Applying Definition 2.2 we can get that

f (X ) = [X↑
u , X↑

l ] = [Bl, Bu] = B and g(B) = [B↓
u , B↓

l ] = [Xl, Xu] = X .

According to Eq. (2.4) we can get that X↑
u = Bl , X↑

l = Bu and B↓
u = Xl , B↓

l = Xu . Therefore, X↑
u = Bl and B↓

l = Xu imply 
(Xu, Bl) ∈ L(U , A, I), and X↑

l = Bu and B↓
u = Xl produce (Xl, Bu) ∈ L(U , A, I). Furthermore, the interval set X = [Xl, Xu]

with Xl ⊆ Xu implies that (Xl, Bu) ≤ (Xu, Bl).
Assume that for any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A), (Xl, Bu), (Xu, Bl) ∈ L(U , A, I) and 

(Xl, Bu) ≤ (Xu, Bl). (Xl, Bu) ≤ (Xu, Bl) implies that Xl ⊆ Xu and Bl ⊆ Bu . (Xl, Bu), (Xu, Bl) ∈ L(U , A, I) shows that X↑
l = Bu , 

B↓
u = Xl , and X↑

u = Bl , B↓ = Xu . Together with Definition 2.1 we can obtain that
l
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f (X ) = f ([Xl, Xu]) = [X↑
u , X↑

l ] = [Bl, Bu] = B,

g(B) = g([Bl, Bu]) = [B↓
u , B↓

l ] = [Xl, Xu] = X .

According to Definition 2.2 we know that (X , B) is an IS concept.
For a formal context (U , A, I), we denote by I L(U , A, I) the set of all IS concepts. Then for any two IS concepts (X1, B1), 

(X2, B2) ∈ I L(U , A, I), a binary relation � is defined as follows:

(X1,B1) � (X2,B2) ⇔ X1 	 X2 ⇔ B2 	 B1. (2.11)

The binary relation � is a partial order, and the set I L(U , A, I) with the partial order � forms a complete lattice, called an 
interval-set concept lattice (for short, IS concept lattice) ([22]), in which, the supremum and infimum are defined as follows:

(X1,B1) ∨ (X2,B2) = (g f (X1 �X2),B1 � B2),

(X1,B1) ∧ (X2,B2) = (X1 �X2, f g(B1 � B2)).

Obviously, (̂U , ̂ØA), (̂ØU , ̂A) are both the IS concepts for the formal context (U , A, I). �
3. Object-oriented interval-set concept lattices

By introducing the idea of lower and upper approximations in rough set theory into formal concept analysis, Yao [32,
33] proposes the object-oriented and property-oriented concept lattices. Incomplete information makes the object-oriented 
concept uncertain or partially-known. Interval sets are used to describe the possible ranges of the extension and intension 
of the partially-known object-oriented concept. Since the lower and upper bounds of an interval set may not be the accurate 
extensions or intensions of some object-oriented concepts, it is difficult to obtain more precise object-oriented concept. In 
order to resolve it, a pair of approximate operators are defined between the two interval-set power sets, and object-oriented 
interval-set concept lattices are proposed to get the more accurate or certain object-oriented concepts.

3.1. Object-oriented concept lattices

For a formal context (U , A, I), Duntsch [3,4] and Yao [32,33] define the necessity and possibility operators �,♦ : 2U →
2A as follows: for any X ⊆ U ,

X� = {a ∈ A | a↓ ⊆ X},
X♦ = {a ∈ A | a↓ ∩ X �= Ø}. (3.1)

Similarly, the necessity and possibility operators �,♦ : 2A → 2U are defined by: for any B ⊆ A,

B� = {x ∈ U | x↑ ⊆ B},
B♦ = {x ∈ U | x↑ ∩ B �= Ø}. (3.2)

Let (U , A, I) be a formal context. For any X, X1, X2 ⊆ U and B, B1, B2 ⊆ A, the following properties hold [3,4,32–34]:
(1) X1 ⊆ X2 ⇒ X�

1 ⊆ X�
2 , X♦

1 ⊆ X♦
2 , B1 ⊆ B2 ⇒ B�

1 ⊆ B�
2 , B♦

1 ⊆ B♦
2 ;

(2) X�♦ ⊆ X ⊆ X♦�, B�♦ ⊆ B ⊆ B♦�;
(3) X♦�♦ = X♦, X�♦� = X� , B♦�♦ = B♦, B�♦� = B�;
(4) (X1 ∩ X2)

� = X�
1 ∩ X�

2 , (X1 ∪ X2)
♦ = X♦

1 ∪ X♦
2 ,

(B1 ∩ B2)
� = B�

1 ∩ B�
2 , (B1 ∪ B2)

♦ = B♦
1 ∪ B♦

2 ;
(5) B♦ ⊆ X ⇔ B ⊆ X� , X ⊆ B� ⇔ X♦ ⊆ B .
A pair (X, B) with X ⊆ U and B ⊆ A is called an object-oriented formal concept (for short, an OO concept), if X = B♦

and B = X� . X is called the OO extension and B is called the OO intension of the OO concept (X, B). Then for any X ⊆ U
and B ⊆ A, (X�♦, X�) and (B♦, B♦�) are both OO concepts. Since (U , A, I) is regular, (U , A) and (ØU , ØA) are OO concepts. 
The set of all OO concepts is denoted by

Lo(U , A, I) = {(X, B) | X = B♦, B = X�}.
For any OO concepts (X1, B1), (X2, B2) ∈ Lo(U , A, I), a partial relation ≤o is defined by:

(X1, B1) ≤o (X2, B2) ⇔ X1 ⊆ X2 ⇔ B1 ⊆ B2.

Then (Lo(U , A, I), ≤o) is a partial order set, called an OO concept lattice [32,33], in which the meet ∧o and join ∨o opera-
tions are defined as follows:

(X1, B1) ∧o (X2, B2) = ((X1 ∩ X2)
��, B1 ∩ B2),

(X , B ) ∨ (X , B ) = (X ∪ X , (B ∪ B )��).
(3.3)
1 1 o 2 2 1 2 1 2
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Table 3.1
The formal concept (U , A, I) of Example 3.1.

U a b c d e

1 Frog 1 1 0 0 0
2 Dog 0 1 0 0 0
3 Spike-weed 1 0 1 0 1
4 Reed 1 1 1 0 1
5 Bean 0 1 1 1 0

Fig. 2. Object-oriented concept lattice Lo(U , A, I).

That is, for any OO concepts (X1, B1), (X2, B2) ∈ Lo(U , A, I), there exists an OO concept smaller than (X1, B1) and (X2, B2), 
such that its intension is the meet of the two OO intensions of (X1, B1) and (X2, B2). On the other hand, there also exists 
a larger OO concept such that its extension is the join of the two OO extensions of (X1, B1) and (X2, B2). Then Lo(U , A, I)
is a complete lattice, called an OO concept lattice.

Similarly, for any subsets X ⊆ U and B ⊆ A, the pair (X, B) is called a property-oriented formal concept (for short, an 
PO concept), if X = B� and B = X♦ . X is called the PO extension and B is called the PO intension of the PO concept (X, B). 
Then for any X ⊆ U and B ⊆ A, (X♦�, X♦) and (B�, B♦�) are both PO concepts. The set of all PO concepts is denoted by

Lp(U , A, I) = {(X, B) | X = B�, B = X♦}.
For any PO concepts (X1, B1), (X2, B2) ∈ Lp(U , A, I), a partial relation ≤p is defined by:

(X1, B1) ≤p (X2, B2) ⇔ X1 ⊆ X2 ⇔ B1 ⊆ B2.

Then (Lp(U , A, I), ≤p) is a partial order set, called an PO concept lattice [32,33], in which the meet ∧p and join ∨p opera-
tions are defined as follows:

(X1, B1) ∧p (X2, B2) = (X1 ∩ X2, (B1 ∩ B2)
��),

(X1, B1) ∨p (X2, B2) = ((X1 ∪ X2)
��, B1 ∪ B2).

(3.4)

For a formal context (U , A, I), applying Eqs. (3.1) and (3.2) we can get that [32,33]

X♦ = [(Xc)�]c = Xc�c, X� = [(Xc)♦]c = Xc♦c, B♦ = [(Bc)�]c = Bc�c, B� = [(Bc)♦]c = Bc♦c, (3.5)

where Xc denotes the complement of X . Furthermore, for the complement formal context (U , A, Ic) of (U , A, I) with (x, a) ∈
Ic ⇔ (x, a) /∈ I , we denote by ↑c , ↓c , �c and ♦c , respectively, the operators ↑ , ↓ , � and ♦ in the complement formal context 
(U , A, Ic). Therefore,

(x,a) ∈ Ic ⇔ (x,a) /∈ I ⇔ x ∈ a↓c ⇔ a ∈ x↑c .

According to Eqs. (2.8), (3.1) and (3.2) we also can obtain that [32,33]

X� = (Xc)↑c , X↑ = (Xc)�c , B♦ = (B↓c )c, B↓ = (B♦c )c. (3.6)

Example 3.1. Table 3.1 shows a formal context with U = {1, 2, 3, 4, 5} and A = {a, b, c, d, e}, which is extracted from 
the context in the reference [30] to plan a Hungarian educational film entitled “Living Beings and Water”. The objects in 
this table are the living beings mentioned in the film: 1: Frog, 2: Dog, 3:Spike-weed, 4: Reed, 5: Bean, and the attributes 
are the properties which the film emphasize: a: living in water, b: living on land, c: using chlorophyll to produce food, d: 
two seed leaves, e: one seed leaf.

The OO concept lattice of the formal context (U , A, I) given in Table 3.1 can be shown in Fig. 2.
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3.2. Object-oriented interval-set concept lattices

For a partially-known OO concept, we give an interval set of objects to denote the possible range of the OO extension, 
and an interval set of attributes to depict the possible range of the OO intension. Since the OO extension and OO intension 
of any OO concept determine each other uniquely, a pair of operators is defined on the two interval sets to get the more 
accurate ranges of the OO extension and OO intension.

Definition 3.1. Let (U , A, I) be a formal context. For any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A), a pair 
( f , f ) of operators between I(2U ) and I(2A) is defined as follows:

f (X ) = [X�
l , X�

u ] = {B ∈ 2A | X�
l ⊆ B ⊆ X�

u },
f (X ) = [X♦

l , X♦
u ] = {B ∈ 2A | X♦

l ⊆ B ⊆ X♦
u }. (3.7)

If X is the range of an extension of a partially-known OO (OP, respectively) concept, f (X ) shows the range of the intension 
with X�

l being the lower bound and X�
u being the upper bound, and f (X ) shows another range of the intension with X♦

l

being the lower bound and X♦
u being the upper bound. And these two ranges of the intensions satisfy f (X ) 	 f (X ).

And a pair (g, g) of operators between I(2A) to I(2U ) is defined as follows:

g(B) = [B�
l , B�

u ] = {X ∈ 2U | B�
l ⊆ X ⊆ B�

u },
g(B) = [B♦

l , B♦
u ] = {X ∈ 2U | B♦

l ⊆ X ⊆ B♦
u }. (3.8)

If B is the range of the intension of a partially-known OO (PO, respectively) concept, g(B) shows the range of the extension 
by using B�

l as the lower bound and B�
u as the upper bound, and g(B) shows another range of the extension by taking B♦

l

as the lower bound and B♦
u as the upper bound. Furthermore, these two ranges of the extensions generated by the interval 

set B satisfy g(B) 	 g(B).

Definition 3.2. Let (U , A, I) be a formal context. For any interval sets X ∈ I(2U ) and B ∈ I(2A), if f (X ) = B and g(B) =X , 
we call the pair (X , B) an object-oriented interval-set formal concept (for short, an OOIS concept), where X is called the 
OOIS extension and B the OOIS intension of the OOIS concept (X , B). If f (X ) = B and g(B) = X , we call the pair (X , B)

an property-oriented interval-set formal concept (for short, an POIS concept), where X is called the POIS extension and B
the OOIS intension of the POIS concept (X , B).

Example 3.2. Let us consider the formal context (U , A, I) mentioned in Example 3.1. For a partially-known OOIS concept 
Co = (X, B), there exist many sets to denote the possible ranges of the OO extension X and the OO intension B , respectively.

(1) Take the interval set X = [3, 134] as the possible range of the OO extension X , and the interval set B = [e, cde] as 
the possible range of the OO intension B . The OO extension X must include the object 3, and may consist of the objects 1 
or 4, and the OO intension B must include the attribute e, and may include the attributes c and e. That is,

X = [3, 134] = {3,13,34,134}, B = [e, cde] = {e, ce,de, cde}.
Any subset in X may be the OO extension, and any subset in B may be the OO intension. According to Definition 3.1 we 
can get that

f (X ) = [3�, 134�] = [ØA, ae] = {ØA, a, e, ae}, g(B) = [e♦, cde♦] = [34, 345] = {34,345}.
f (X ) �= B makes the interval set B cannot include the OO intensions of some OO extensions in X , and g(B) �= X shows 
that some OO intensions in B cannot find the corresponding OO extensions in X . That is to say, the ranges for the OO 
extension and the OO intension are not accurate.

(2) Choose another range Y = [34, 1345] for the OO extension X , and the range C = [e, acde] for the OO intension B . 
Then

Y = [34, 1345] = {34,134,345,1345}, C = [e, acde] = {e,ae, ce,de,ace,ade, cde,acde}.
Applying Definition 3.1 we can get that

f (Y) = [34�, 1345�] = [e, acde] = C, g(C) = [e♦, acde♦] = [34, 1345] = Y.

Therefore, f (Y) = C and g(C) = Y , and (Y, C) is an OOIS concept. Since (34, e), (134, ae) and (1345, acde) are both OO 
concepts, and 34, 134, 1345 are the elements in the interval set Y and e, ae and acde belong to the interval set C , we know 
that (34, e), (134, ae) or (1345, acde) may be the OO concept Co = (X, B).
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This example shows that, the real OO extension and OO intension of a partially-known OO concept exist in the OOIS 
extension and OOIS intension, respectively.

Property 3.1. Let (U , A, I) be a formal context. For any X , X1, X2 ∈ I(2U ) and B, B1, B2 ∈ I(2A), the following properties 
hold:

(1) X1 	X2 ⇒ f (X1) 	 f (X2), f (X1) 	 f (X2),
B1 	 B2 ⇒ g(B1) 	 g(B2), g(B1) 	 g(B2);

(2) f f (X ) 	X 	 f f (X ), g g(B) 	 B 	 g g(B);

(3) f g f (X ) = f (X ), f g f (X ) = f (X ),

g f g(B) = g(B), g f g(B) = g(B);

(4) f (X1 �X2) = f (X1) � f (X2), f (X1 �X2) = f (X1) � f (X2),
g(B1 �B2) = g(B1) � g(B2), g(B1 �B2) = g(B1) � g(B2);

(5) g(B) 	X ⇔ B 	 f (X ), X 	 g(B) ⇔ f (X ) 	 B.

Proof. According to the properties of the operators � and ♦ on 2U and 2A , respectively, and Definition 3.1 we can directly 
obtain these results.

We denote by I Lo(U , A, I) the set of all OOIS concepts of the formal context (U , A, I). A binary relation �o on I Lo(U , A, I)
is defined as follows: for any (X1, B1), (X2, B2) ∈ I Lo(U , A, I),

(X1,B1) �o (X2,B2) ⇔ X1 	 X2 ⇔ B1 	 B2. (3.9)

�o is a partial relation on I Lo(U , A, I), and the partial set (I Lo(U , A, I), �o) forms a complete lattice, called an object-
oriented interval-set concept lattice (for short, OOIS concept lattice). The meet and join operations on it are defined by: for 
any OOIS concepts (X1, B1), (X2, B2) ∈ I Lo(U , A, I),

(X1,B1) ∧o (X2,B2) = (g f (X1 �X2),B1 � B2),

(X1,B1) ∨o (X2,B2) = (X1 �X2, f g(B1 � B2)).
(3.10)

I Lp(U , A, I) is the set of all POIS concepts for the formal context (U , A, I). For any (X1, B1), (X2, B2) ∈ I Lp(U , A, I), a 
binary relation �p on I Lp(U , A, I) is defined by:

(X1,B1) �p (X2,B2) ⇔ X1 	 X2 ⇔ B1 	 B2. (3.11)

Then �p is a partial relation on I Lp(U , A, I). The partial set (I Lp(U , A, I), �p) forms a complete lattice, called a property-
oriented interval-set concept lattice (for short, POIS concept lattice). And the meet and join operations on it are defined as 
follows: for any POIS concepts (X1, B1), (X2, B2) ∈ I Lp(U , A, I),

(X1,B1) ∧p (X2,B2) = (X1 �X2, f g(B1 � B2)),

(X1,B1) ∨p (X2,B2) = (g f (X1 �X2),B1 � B2).
(3.12)

Applying Property 3.1 (3) we can get that, for any interval sets X ∈ I(2U ) and B ∈ I(2A), (g f (X ) f (X )) and 
(g(B), f g(B)) are both OOIS concepts. Furthermore, since the formal context (U , A, I) is regular, one can get that 
(U , A), (ØU , ØA) ∈ Lo(U , A, I). And for any (X, B) ∈ Lo(U , A, I),

(ØU ,ØA) ≤o (X, B) ≤o (U , A),

which implies that (̂U , ̂A), (̂ØU , ̂ØA) ∈ I Lo(U , A, I), and for any OOIS concept (X , B) ∈ I Lo(U , A, I),

(̂ØU , ̂ØA) �o (X ,B) �o (̂U ,̂A).

Similarly, we can get that (̂U , ̂A), (̂ØU , ̂ØA) ∈ I Lp(U , A, I), and for any POIS concept (X , B) ∈ I Lp(U , A, I),

(̂ØU , ̂ØA) �p (X ,B) �p (̂U ,̂A). �
Theorem 3.1. Let (U , A, I) be a formal context. For any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A),

(1) (X , B) ∈ I Lo(U , A, I) ⇔ (Xl, Bl), (Xu, Bu) ∈ Lo(U , A, I) and (Xl, Bl) ≤o (Xu, Bu);
(2) (X , B) ∈ I Lp(U , A, I) ⇔ (Xl, Bl), (Xu, Bu) ∈ Lp(U , A, I) and (Xl, Bl) ≤p (Xu, Bu).

Proof. Take any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A). If (X , B) ∈ I Lo(U , A, I) is an OOIS concept, we 
can get that f (X ) = B and g(B) =X . Then
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f (X ) = [X�
l , X�

u ] = B = [Bl, Bu],
g(B) = [B♦

l , B♦
u ] = X = [Xl, Xu].

Applying Eq. (2.4) for the equality of two interval sets, one has that X�
l = Bl, X�

u = Bu and B♦
l = Xl, B♦

u = Xu . Thus, 
(Xl, Bl), (Xu, Bu) ∈ Lo(U , A, I). Meanwhile, [Xl, Xu] ∈ I(2U ) implies that Xl ⊆ Xu , and then (Xl, Bl) ≤o (Xu, Bu).

Suppose (Xl, Bl), (Xu, Bu) ∈ Lo(U , A, I) and (Xl, Bl) ≤o (Xu, Bu). Then Xl ⊆ Xu , Bl ⊆ Bu , and [Xl, Xu] ∈ I(2U ) and 
[Bl, Bu] ∈ I(2A). According to (Xl, Bl) ∈ Lo(U , A, I) we can get that X�

l = Bl and B♦
l = Xl . (Xu, Bu) ∈ Lo(U , A, I) implies that 

X�
u = Bu and B♦

u = Xu . From which we can get that f (X ) = [X�
l , X�

u ] = [Bl, Bu] = B, and g(B) = [B♦
l , B♦

u ] = [Xl, Xu] = X . 
By Definition 3.2 we get that (X , B) ∈ I Lo(U , A, I).

Analogously, applying Eq. (2.4) and Definition 3.2 we can prove that (2) is true. �
Theorem 3.1 shows that any OOIS (POIS, respectively) concept constructs two OO (PO, respectively) concepts with a 

partial relation ≤o (≤p , respectively). Conversely, any two OO (PO, respectively) concepts with the partial order ≤o (≤p , 
respectively) can also produce an OOIS (POIS, respectively) concept.

For a formal context (U , A, I), we use the pair ( f c, gc) to denote the operators f and g between I(2U ) and I(2A) in 
the complement formal context (U , A, Ic). Then for any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A),

f c(X ) = f c([Xl, Xu]) = [X↑c
u , X↑c

l ], gc(B) = gc([Bl, Bu]) = [B↓c
u , B↓c

l ]. (3.13)

Thus, we get the following relationships among the IS concept lattices, OOIS concept lattices and POIS concept lattices:

Theorem 3.2. Let (U , A, I) be a formal context. For any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A),
(1) (X , B) ∈ I Lo(U , A, I) ⇔ (¬X , ¬B) ∈ I Lp(U , A, I);
(2) (X , B) ∈ I L(U , A, Ic) ⇔ (¬X , B) ∈ I Lo(U , A, I) ⇔ (X , ¬B) ∈ I Lp(U , A, I).

Proof. (1) For any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A), we have ¬X = [Xc
u, Xc

l ] and ¬B = [Bc
u, Bc

l ]. 
Applying Eqs. (3.5), (3.7) and (3.8) we can get that

f (¬X ) = f ([Xc
u, Xc

l ]) = [Xc♦
u , Xc♦

l ] = [(Xc♦c
u )c, (Xc♦c

l )c]
= [(X�

u )c, (X�
l )c] = ¬[X�

l , X�
u ] = ¬ f ([Xl, Xu]) = ¬ f (X ),

g(¬B) = g([Bc
u, Bc

l ]) = [Bc�
u , Bc�

l ] = [(Bc�c
u )c, (Bc�c

l )c]
= [(B♦

u )c, (B♦
l )c] = ¬[B♦

l , B♦
u ] = ¬g([Bl, Bu]) = ¬g(B).

By Definition 3.2 we get that

(X , B) ∈ I Lo(U , A, I) ⇔ f (X ) = B, g(B) = X
⇔ f (¬X ) = ¬ f (X ) = ¬B, g(¬B) = ¬g(B) = ¬X
⇔ (¬X , ¬B) ∈ I Lp(U , A, I).

(2) According to Eqs. (3.6), (3.7), (3.8), and (3.13) we have

f (X ) = [X�
l , X�

u ] = [(Xc
l )

↑c , (Xc
u)↑c ] = f c([Xc

u, Xc
l ]) = f c(¬[Xl, Xu]) = f c(¬X ),

g(B) = [B♦
l , B♦

u ] = [(B↓c
l )c, (B↓c

u )c] = ¬[B↓c
u , B↓c

l ] = ¬gc([Bl, Bu]) = ¬gc(B).

Thus,

(X , B) ∈ I L(U , A, Ic) ⇔ f c(X ) = B, gc(B) = X
⇔ f (¬X ) = f c(X ) = B, g(B) = ¬gc(B) = ¬X
⇔ (¬X ,B) ∈ I Lo(U , A, I)
⇔ (X ,¬B) ∈ I Lp(U , A, I). �

Theorem 3.2 shows that the OOIS concept lattice I Lo(U , A, I) and POIS concept lattice I Lp(U , A, I) are isomorphic. And 
the IS concept lattice I L(U , A, Ic) of the complement formal context (U , A, Ic) is isomorphic to the OOIS (POIS, respectively) 
concept lattice I Lo(U , A, I) (I Lp(U , A, I), respectively) of the formal context (U , A, I).

4. Approaches to construct OOIS concept lattices

An interval set of objects (attributes, respectively) is used to describe the possible range of the OO extension (OO inten-
sion, respectively) for a partially-known OO concept. Then an OOIS concept describes the more accurate ranges of the OO 
extension and OO intension for the partially-known OO concept. In this section, we investigate the relationships between 
OO concept lattices and OOIS concept lattices, and provide the approaches to generate an OOIS concept lattice.
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Theorem 4.1. Let (U , A, I) be a formal context. Lo(U , A, I) is the OO concept lattice, and I Lo(U , A, I) is the OOIS concept lattice. Then

I Lo(U , A, I) = {([X, Y ], [B, C]) | (X, B), (Y , C) ∈ Lo(U , A, I), X ⊆ Y }.

Proof. It should be noted that L = {([X, Y ], [B, C]) | (X, B), (Y , C) ∈ Lo(U , A, I), X ⊆ Y }. For any (X , B) ∈ I Lo(U , A, I) with 
X = [Xl, Xu] and B = [Bl, Bu], applying Theorem 3.1 we can get that (Xl, Bl), (Xu, Bu) ∈ Lo(U , A, I) and (Xl, Bl) ≤o (Xu, Bu). 
Thus, Xl ⊆ Xu and (X , B) = ([Xl, Xu], [Bl, Bu]) ∈ L. By the arbitrariness of (X , B) we can get that I Lo(U , A, I) ⊆ L.

Take any ([X, Y ], [B, C]) ∈ L. We have (X, B), (Y , C) ∈ Lo(U , A, I) and X ⊆ Y . Thus, (X, B) ≤o (Y , C). Again by using 
Theorem 3.1 we can get that ([X, Y ], [B, C]) ∈ I Lo(U , A, I). The arbitrariness of ([X, Y ], [B, C]) implies that L ⊆ I Lo(U , A, I). 
All these induce that I Lo(U , A, I) = L. �
Theorem 4.2. Let (U , A, I) be a formal context. For any OO concept (X, B) ∈ Lo(U , A, I), we have

(1) (̂X, ̂B) ∈ I Lo(U , A, I);
(2) ([ØU , X], [ØA, B]) ∈ I Lo(U , A, I), ([X, U ], [B, A]) ∈ I Lo(U , A, I), and

(̂ØU ,̂ØA) �o ([ØU , X], [ØA, B]) �o ( ̂X, ̂B ) �o ([X, U ], [B, A])) �o ( ̂U , ̂A).

Proof. For any OO concepts (X, B) ∈ Lo(U , A, I), we have X� = B and B♦ = X .
(1) Since ( ̂X, ̂B ) = ([X, X], [B, B]) and (X, B) ∈ Lo(U , A, I), one has

f ( ̂X ) = f ([X, X]) = [X�, X�] = [B, B] =̂B,

g( ̂B ) = g([B, B]) = [B♦, B♦] = [X, X] = ̂X .

Therefore, ( ̂X, ̂B ) ∈ I Lo(U , A, I).
(2) Since for the formal context (U , A, I), (ØU , ØA), (U , A) ∈ Lo(U , A, I), one has Ø�

U = ØA , Ø♦
A = ØU , U� = A and A♦ =

U . Then for any (X, B) ∈ Lo(U , A, I),

f ([ØU , X]) = [Ø�
U , X�] = [ØA , B], g([ØA, B]) = [Ø♦

A , B♦] = [ØU , X],
f ([X, U ]) = [X�, U�] = [B, A], g([B, A]) = [B♦, A♦] = [X, U ].

That is to say, ([ØU , X], [ØA, B]) and ([X, U ], [B, A]) are both OOIS concepts. Furthermore, ØU ⊆ X ⊆ U , ØA ⊆ B ⊆ A and Eq. 
(3.9) imply that

(̂ØU ,̂ØA) �o ([ØU , X], [ØU , B]) �o (̂X,̂B) �o ( [X, U ], [B, A])) �o (̂U ,̂A). �
Theorem 4.3. Let (U , A, I) be a formal context, and I Lo(U , A, I) the OOIS concept lattice of (U , A, I). It should be noted that:

I Ll
o(U , A, I) = { ( [ØU , X], [ØA, B] ) | (X, B) ∈ Lo(U , A, I) },

I Ls
o(U , A, I) = { ( ̂X,̂B ) | (X, B) ∈ Lo(U , A, I) },

I Lu
o (U , A, I) = { ( [X, U ], [B, A] ) | (X, B) ∈ Lo(U , A, I) },

I Lp
o (U , A, I) = { ( [X, Y ], [B, C] ) | (X, B), (Y , C) ∈ Lo(U , A, I), X ⊆ Y , X �= ØU , Y �= U , X �= Y }.

Then

I Lo(U , A, I) = I Ll
o(U , A, I) ∪ I Ls

o(U , A, I) ∪ I Lu
o (U , A, I) ∪ I Lp

o (U , A, I).

Proof. Take any OOIS concept (X , B) ∈ I Lo(U , A, I) with X = [Xl, Xu] and B = [Bl, Bu]. By Theorem 3.1 we have 
(Xl, Bl), (Xu, Bu) ∈ Lo(U , A, I), ØU ⊆ Xl ⊆ Xu ⊆ U and ØA ⊆ Bl ⊆ Bu ⊆ A.

(1) If Xl = ØU , (Xl, Bl) ∈ Lo(U , A, I) implies that Bl = ØA . And (X , B) = ( [Xl, Xu], [Bl, Bu] ) = ( [ØU , Xu], [ØA, Bu] ) ∈
I Ll

o(U , A, I).
(2) If Xl = U , (Xl, Bl) ∈ Lo(U , A, I) implies that Bl = A. And (X , B) = ( [Xl, Xu], [Bl, Bu] ) = ( [Xl, U ], [Bl, A] ) ∈

I Lu
o (U , A, I).
(3) If Xl = Xu , (Xl, Bl), (Xu, Bu) ∈ Lo(U , A, I) imply that (Xl, Bl) = (Xu, Bu) and (X , B) = ( [Xl, Xl], [Bl, Bl] ) = ( ̂Xl, ̂Bl ) ∈

I Ls
o(U , A, I).
(4) If Xl �= ØU , Xl �= U and Xl �= Xu , we have (Xl, Bl) �= (Xu, Bu). Together with (Xl, Bl), (Xu, Bu) ∈ Lo(U , A, I) and 

Xl ⊆ Xu we can obtain that (X , B) = ( [Xl, Xu], [Bl, Bu] ) ∈ I Lp
o (U , A, I).

All these shows that I Lo(U , A, I) ⊆ I Ll
o(U , A, I) ∪ I Ls

o(U , A, I) ∪ I Lu
o (U , A, I) ∪ I Lp

o (U , A, I). Based on Theorem 4.1 and 
Theorem 4.2 we also obtain I Ll

o(U , A, I) ∪ I Ls
o(U , A, I) ∪ I Lu

o (U , A, I) ∪ I Lp
o (U , A, I) ⊆ I Lo(U , A, I). Therefore, I Lo(U , A, I) =

I Ll
o(U , A, I) ∪ I Ls

o(U , A, I) ∪ I Lu
o (U , A, I) ∪ I Lp

o (U , A, I). �
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Remark 4.1. Theorem 4.3 divides the OOIS concept lattice I Lo(U , A, I) into four parts I Ll
o(U , A, I), I Ls

o(U , A, I), I Lu
o (U , A, I)

and I Lp
o (U , A, I).

(1) I Ll
o(U , A, I) is the set of OOIS concepts generated by the OO concept (ØU , ØA) and any OO concept (X, B) with 

X ⊆ U and B ⊆ A. The lower bounds of the OOIS extension and OOIS intension for any OOIS concept in I Ll
o(U , A, I) are just 

the OO extension and OO intension, respectively, of the OO concept (ØU , ØA).
(2) I Ls

o(U , A, I) is the set of OOIS concepts constructed by all OO concepts. The pair of the single interval sets generated 
by the OO extension and OO intension for any OO concept in Lo(U , A, I) is an OOIS concept in I Ls

o(U , A, I).
(3) I Lu

o (U , A, I) is the set of OOIS concepts constructed by any OO concept (X, B) and the OO concept (U , A) with X ⊆ U
and B ⊆ A. The two upper bounds of the OOIS extension and OOIS intension for any OOIS concept are the OO extension 
and intension, respectively, of the OO concept (U , A).

(4) I Lp
o (U , A, I) is the set of OOIS concepts constructed by any two OO concepts (X, B) and (Y , C) with X ⊆ Y , X �= ØU , 

Y �= U and X �= Y .
According to the definitions of I Ll

o(U , A, I), I Ls
o(U , A, I), I Lu

o (U , A, I) and I Lp
o (U , A, I) given in Theorem 4.3, we can get 

that

I Ll
o(U , A, I) ∩ I Ls

o(U , A, I) = { ( ̂ØU ,̂ØA ) },
I Lu

o (U , A, I) ∩ I Ls
o(U , A, I) = { ( ̂U ,̂A ) },

I Ll
o(U , A, I) ∩ I Lu

o (U , A, I) = { ( [ØU , U ][ØA , A] ) }.
(4.1)

Theorem 4.4. Let (U , A, I) be a formal context, Lo(U , A, I) the OO concept lattice, and I Lo(U , A, I, ) the OOIS concept lattice of 
(U , A, I).

(1) I Ll
o(U , A, I), I Ls

o(U , A, I) and I Lu
o (U , A, I) are all sublattices of I Lo(U , A, I) with the meet ∧o and join ∨o;

(2) I Ll
o(U , A, I) ∼= Lo(U , A, I);

(3) I Ls
o(U , A, I) ∼= Lo(U , A, I);

(4) I Lu
o (U , A, I) ∼= Lo(U , A, I);

Proof. (1) The partial set (I Lo(U , A, I), �o) is a complete lattice with the meet ∧o and join ∨o defined in Eq. (3.10). For any 
OOIS concepts ([ØU , X], [ØA , B]), ([ØU , Y ], [ØA, C]) ∈ I Ll

o(U , A, I) with (X, B), (Y , C) ∈ Lo(U , A, I), according to Eq. (3.10)
we get that

([ØU , X], [ØA, B]) ∧o ([ØU , Y ], [ØA, C]) = ( g f ( [ØU , X] � [ØU , Y ] ), [ØA, B] � [ØA, C] )

= ( g f ( [ØU , X ∩ Y ] ), [ØA, B ∩ C] )

= ( [Ø�♦
U , (X ∩ Y )�♦], [ØA, B ∩ C] ).

Applying Eq. (3.4), (X, B), (Y , C) ∈ Lo(U , A, I) imply that (X, B) ∧o (Y , C) = ((X ∩ Y )��, B ∩ C) ∈ Lo(U , A, I). And (ØU , ØA) ∈
Lo(U , A, I) implies Ø�♦

U = ØU . Thus,

([ØU , X], [ØA, B]) ∧o ([ØU , Y ], [ØA, C]) = ( [Ø�♦
U , (X ∩ Y )�♦], [ØA, B ∩ C] )

= ( [ØU , (X ∩ Y )�♦], [ØA, B ∩ C] ) ∈ I Ll
o(U , A, I).

Similarly, we can prove

([ØU , X], [ØA, B]) ∨o ([ØU , Y ], [ØA, C]) = ( [ØU , X ∪ Y ], [Ø♦�
A , (B ∪ C)♦�] )

= ( [ØU , X ∪ Y ], [ØA, (B ∪ C)♦�] ) ∈ I Ll
o(U , A, I).

Therefore, I Ll
o(U , A, I) is a sublattice of I Lo(U , A, I) with the meet ∧o and the join ∨o in Eq. (3.10).

Analogously, we can prove that I Ls
o(U , A, I) and I Lu

o (U , A, I) are the sublattices of I Lo(U , A, I) with the meet ∧o and the 
join ∨o in Eq. (3.10).

(2) A mapping ϕ : Lo(U , A, I) → I Ll
o(U , A, I) is defined as follows: for any (X, B) ∈ Lo(U , A, I),

ϕ((X, B)) = ( [ØU , X], [ØA, B]).
It is obvious that ϕ is a bijection mapping. By the proof in (1), Eqs. (3.4) and (3.10) we can get that, for any (X, B), (Y , C) ∈
Lo(U , A, I),

ϕ((X, B) ∧o (Y , C)) = ϕ((X ∩ Y )��, B ∩ C) = ( [ØU , (X ∩ Y )��], [ØA, B ∩ C] ),

ϕ((X, B)) ∧o ϕ((Y , C)) = ([ØU , X], [ØA, B]) ∧o ([ØU , Y ], [ØA, C]) = ( [ØU , (X ∩ Y )��], [ØA, B ∩ C] ).

Then

ϕ((X, B) ∧o (Y , C)) = ϕ((X, B)) ∧o ϕ((Y , C)).

Thus, the mapping ϕ is isomorphic between Lo(U , A, I) and I Ll
o(U , A, I), i.e. Lo(U , A, I) ∼= I Ll

o(U , A, I).
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Fig. 3. Lo(U , A, I) and I Ls
o(U , A, I).

Fig. 4. I Ll
o(U , A, I) and I Ls

o(U , A, I). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Analogously, we can prove (3) and (4) are true.
According to Theorem 3.1, Theorems 4.1, 4.2, 4.3 and 4.4, we can show the approach to construct the OOIS concept 

lattice I Lo(U , A, I) according to the OO concept lattice Lo(U , A, I):

Step 1. Construct I Ls
o(U , A, I) = {(̂X, ̂B) | (X, B) ∈ Lo(U , A, I)} by using the single interval sets ̂X and ̂B instead of the OO 

concept (X, B).

Theorem 4.4 (3) tells us that I Ls
o(U , A, I) is isomorphic to Lo(U , A, I). Changing any OO extension in Lo(U , A, I) to a 

singe interval set, we obtain all corresponding OOIS extensions. For the formal context (U , A, I) given in Table 3.1, Fig. 3
shows Lo(U , A, I) and I Ls

o(U , A, I). For simplicity, we just show the OOIS extensions in the figure of I Ls
o(U , A, I).

Step 2. Construct I Ll
o(U , A, I) = {([ØU , X], [ØA, B]) | (X, B) ∈ Lo(U , A, I)} by using the interval sets [ØU , X] and [ØA, B]

as the OOIS extension and OOIS intension, respectively.

Theorem 4.4 (2) shows that I Ll
o(U , A, I) ∼= Lo(U , A, I). Generating the interval sets [ØU , X] and [ØA, B] for any (X, B) ∈

Lo(U , A, I), we can get all OOIS concepts ([ØU , X], [ØA, B]) in I Ll
o(U , A, I). Theorem 4.4 (2) and (3) show that I Ll

o(U , A, I) ∼=
I Ls

o(U , A, I). Fig. 4 shows I Ll
o(U , A, I) with the green line and I Ls

o(U , A, I) with the black line.

Step 3. Construct I Lu
o (U , A, I) = { ( [X, U ], [B, A] ) | (X, B) ∈ Lo(U , A, I) } with the interval sets [X, U ] and [B, A] being 

the OOIS extension and OOIS intension, respectively.

Theorem 4.4 (4) shows that I Lu
o (U , A, I) ∼= Lo(U , A, I). Producing the interval sets [X, U ] and [B, A] for any (X, B) ∈

Lo(U , A, I), we can get all OOIS concepts ([X, U ], [B, A]) in I Lu
o (U , A, I). Theorem 4.4 (3) and (4) show that I Lu

o (U , A, I) ∼=
I Ls

o(U , A, I). Fig. 5 displays I Ll
o(U , A, I) with the green line, I Ls

o(U , A, I) with the black line and I Lu
o (U , A, I) with the blue 

line.

Step 4. Construct I Lp
o (U , A, I) = {([X, Y ], [B, C]) | (X, B), (Y , C) ∈ Lo(U , A, I), X ⊆ Y , X �= ØU , Y �= U , X �= Y } by choos-

ing the interval sets [X, Y ] and [B, C] being the OOIS extension and OOIS intension, respectively.
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Fig. 5. I Ll
o(U , A, I), I Ls

o(U , A, I) and I Lu
o (U , A, I).

Fig. 6. I Ll
o(U , A, I), I Ls

o(U , A, I), I Lu
o (U , A, I) and I Lp

o (U , A, I).

X �= ØU , Y �= U and X �= Y mean that (̂X, ̂B) �o ([X, Y ], [B, C]) �o (̂Y , ̂C). Then any OOIS ([X, Y ], [B, C]) in I Lp
o (U , A, I)

appears between two different OOIS concepts (̂X, ̂B) and (̂Y , ̂C) in I Ls
o(U , A, I). Fig. 6 shows elements in I Lp

o (U , A, I) with 
the red color.

Step 5. Deleting the OOIS concepts ([U , U ], [A, A]) in I Ls
o(U , A, I) ∩ I Lu

o (U , A, I), ([ØU , ØU ], [ØA, ØA]) in I Ls
o(U , A, I) ∩

I Ll
o(U , A, I), and ([ØU , U ], [ØA, A]) in I Ll

o(U , A, I) ∩ I Lu
o (U , A, I), and reordering all OOIS concepts under the partial order 

�o , we can get the OOIS concept lattice in Fig. 7.

For a formal context (U , A, I), Lo(U , A, I) is the OO concept lattice. And for any X ⊆ U and B ⊆ A, (X, B) ∈ Lo(U , A, I)
is an OO concept if and only if X� = B and B♦ = X . Now, in order to obtain the OOIS concepts lattice I Lo(U , A, I), we 
take any interval sets X = [Xl, Xu] ∈ I(2U ) and B = [Bl, Bu] ∈ I(2A) to verify f (X ) = B and g(B) = X . That is, X�

l = Bl , 
B♦

l = Xl , and X�
u = Bu , B♦

u = Xu . On the other hand, for the formal context (U , A, I), there exist 22|U | interval sets of objects 
in I(2U ), and 22|A| interval sets of attributes in I(2A). Then the complexity of the algorithm to vary the pair of interval sets 
of objects and attributes such as (X , B) is O (22|U | × 22|A|). It is necessity to reduce the process. Theorems 4.1, 4.3 and 4.4
show that we just need to compute I Lp

o (U , A, I), and the other three parts I Ll
o(U , A, I), I Ls

o(U , A, I), and I Lu
o (U , A, I) are 

all isomorphic to I Lo(U , A, I). Then the OOIS concept lattice I Lo(U , A, I) is easily constructed just by the OO concept lattice 
Lo(U , A, I). �
5. Conclusion

It has been argued in this paper that obtaining and constructing object-oriented interval-set concept lattice is essential 
to the knowledge discovery and attribute reduction for a formal context. Based on the theories of object-oriented concept 
lattices and interval sets, a new concept lattice, called object-oriented interval-set concept lattice, has been introduced 
to describe the partially-known OO concepts more accurate. Related properties of them are discussed. According to the 
structures of OO concepts and OOIS concepts, the relationships between OO concept lattices and OOIS concept lattices are 
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Fig. 7. I Lo(U , A, I).

proposed. By dividing the OOIS concept lattice into four different parts, three of them are isomorphic to the OO concept 
lattice. Then the algorithm to construct the OOIS concept lattice according to the OO concept lattice is discussed.

In the future, we will discuss the interval-set concept lattice for a decision formal context, and investigate the related 
rule acquisition.
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