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Abstract
Link prediction has received a great deal of attention from researchers. Most of the existing researches are based on the net-
work topology but ignore the importance of its preference; for aggregating multiple pieces of information, they normally sum 
up them directly. In this paper, a path-based probabilistic model is proposed to estimate the potential connectivity between 
any two nodes. It takes carefully the effective influence of nodes and the dependency among paths between two fixed nodes 
into account. Furthermore, we formulate the connectivity of two inner-community nodes and that of two inter-community 
nodes. The qualitative analysis shows that the links between inner-community nodes are more likely to be predicted by 
the proposed model. The performance is verified on both the multi-barbell network and Lesmis network. Considering the 
proposed model’s practicability, we develop an algorithm that iterates over the adjacent matrix to simulate paths of differ-
ent lengths, with the parameters automatically grid-searched. The results of the experiments show that the proposed model 
outperforms competitive methods.

Keywords Link prediction · Preferential attachment · Community structure

1 Introduction

Complex model has been widely used to represent complex 
systems, where nodes and edges represent the entities of 
the system and their connections, respectively. One of the 
important issues in analyzing such complex networks is link 
prediction, which studies how nodes potentially link to each 
other [26]. By means of link prediction, we may ultimately 

find out the reason and power of why links arise [31]; in 
practice, link prediction has been applied to personalized 
recommendation [50], community detection [7, 24, 55], web 
search [37], and so on.

Link prediction methods developed in the past decades 
are mostly topology-based and learning-based [45]. The rep-
resentatives of topology-based methods are neighbor-based, 
path-based and random walk. Neighbor-based methods 
assume that neighboring information indirectly reflect user 
behavior or implicitly affect user’s choices, they are simple 
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but effective. However, This class of methods only capture 
the local topological information. In contrast, path-based 
or random walk methods are capable of taking the quasi-
local information into account [53]; they are time consuming 
but accurate. Note that the random walk methods may be 
considered as the extension of the path-based. Other than 
the topology-based model, advanced machine learning tech-
niques are applied in link prediction as well, to list a few, 
feature-based classification [30], matrix factorization [47], 
and deep learning [57]; it takes time to train these models.

In essence, path-based, random walk and GCN [11] 
depend on propagation: they aggregate the neighbor-
hood features to represent that of the target nodes. 
When the information from multiple paths (or neigh-
bors) is available, addition is the most regular aggrega-
tion mechanism, which leads to imprecise estimation. 
Taking a simple circuit diagram as an example. The 
circuit has a power source, one bulb on the bus, and 
three switches on three parallel lines. The probability 
of closing each switch is assumed to be 1/2, and if we 
want to switch on the bulb, one switch must be closed 
at least. So the probability of switching on the bulb is 
1 − (1 − 1∕2) × (1 − 1∕2) × (1 − 1∕2) = 7∕8 rather than 
3/2 ( 1 = 1∕2 + 1∕2 + 1∕2 ). The latter result, analogous 
to that of previous methods in calculating the connection 
probability in the case of multiple paths, is greater than 1 
and cannot be a reasonable probability value, moreover 
the links predicted are generated by comparing all links.

In fact, this phenomenon is widespread in the world. 
For telecom networks, when a message is sent from the 
source to the target, there are many paths to choose, 
and only one path is valid for the task. The power net-
work, when transmitting power to a terminal consumer, 
choose only one path to operate. Thus, we are motivated 
to explore a better method to avoid all of these deficien-
cies. Had these values been manipulated more carefully, 
the model would have achieved a higher accuracy. So 
we propose an estimation formula which pays attention 
to the dependency between paths, and study its prefer-
ence in terms of the community structure. The paper also 
designs an algorithm to approximate the formula to boost 
the computational efficiency. Our main contributions are: 

(1) Unlike the aggregation method in previous works, the 
probability of two nodes being never connected is used 
to estimate the connection probability of a pair nodes. 
And the final connection probability is a probability 
value, which range from 0 to 1. Two typical graph are 
used as examples to made a lucid explanation for the 
property of PEPS.

(2) Previous researches neglected to study the preference 
of the method, thus their studies may be more reason-

able if they had considered this situation. In this paper, 
the connection probability of inner-community links 
and inter-community links are calculated respectively 
through theoretical analysis. In general, PEPS prefers 
to predict links of two nodes that belong to the same 
community; and it also leverages the effective influ-
ence of nodes to predict the probability of a node being 
connected to the same community. Moreover, PEPS 
provides an alternative method for the preference of 
prediction.

(3) A developed method Iterative PEPS (IPEPS) is pro-
posed to reduce the computational burden, and the 
results of the experiments show that it outperforms the 
state-of-the-art methods.

The remainder of this paper is structured as follows: some 
related works are briefly reviewed in Sect. 2. In Sect. 3, we 
establish the estimation formula for connections between 
nodes and analyze the prediction preferences with respect 
to community structure. Then an algorithm for efficiently 
approximating the formula is given. Section 4 details the 
experiments, including the experimental results and discus-
sions. At last, the conclusion is drawn in Sect. 5.

2  Related works

In this section, a briefly review of topological-based and 
learning-based link prediction methods are present.

2.1  Topological‑based methods

The most fundamental methods of topology based meth-
ods are neighbor-based, which quantify the similarities 
of nodes based on their common neighbors, such as com-
mon neighbors (CN) [25], adamic-adar (AA) [1], resource 
allocation (RA) [51], preferential attachment (PA) [4]; but 
they are only quantifying the number of common neigh-
bors. Liu et al. extended the RA index by considering 
all the resources being transferred through neighbors and 
the amount of resources transferred by different neigh-
bors being different. With the important observation that 
nodes preferentially link to other nodes with weak clique 
structure, Ma et al. [28] proposed the local friend rec-
ommendation (FR) that predicts the missing links better. 
Guo et al. [14] took the clustering coefficient of neighbor 
nodes into account in similarity estimation. The indices 
mentioned above are simple and effective.

Some models focus on path similarity, such as the 
local path index [27] and the Katz index [10], which 
measure the path similarity by the number of paths con-
necting them. A similarity index [2] calculate the local 
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information of the fixed distance between any pair of 
nodes, and it combines the advantages of neighbor-based 
methods and path-based methods. However, they have to 
tune one or more parameters for weighing paths with dif-
ferent lengths and neglect the heterogeneity in paths [58]. 
To address the above problem, Zhu et al. [58] proposed 
significant path (SP) to leverage the effective influence 
of endpoints and strong connectivity in calculating the 
similarity value, where they summed up the discounted 
degrees of all intermediate nodes over all local paths con-
necting two non-adjacent nodes. By assuming the huge 
influence of the hub nodes, Yang et al. [40] proposed a 
model to combined influence of endpoints and the trans-
mission capability of quasi-local path, it achieves excel-
lent performances. Inspired by the resource-traffic flow 
mechanism on networks, Yao et al. [53] hold that the more 
the intermediate nodes of a path receive resources from 
nodes on short paths, the more contribution of this path 
is, a path-dependent link predictor based on the Resource 
receiving process from Short Paths (RSP) is proposed. To 
overcome the difficulty of finding all paths between two 
nodes, various efficient methods with shortest paths or 
top-k shortest paths as the similarity measure is applied 
to predict potential links [20].

Random walk can capture global topological information 
with less computational resources. The basic idea of random 
walk [8] is that one particle starts at an arbitrary node in 
the network and randomly moves to its neighbors. Klein 
and Randic [19] hold that the particle may jump to the start 
node, so they proposed random walk with restart (RWR) 
method. Mahalanobis distance [9], a dissimilarity measure-
ment between two vectors, was taken into account. Brin and 
Page [6] asserted that the particle may return to the starting 
point in web search, their proposed Page-rank based method 
achieve higher accuracy on link prediction. PropFlow [22] is 
similar to Rooted PageRank, but it is more localized due to 
fixed breadth-first search step and no restart mechanism. Jeh 
and Widom [18] claimed that the similarity of two nodes can 
be interpreted as their neighbors’ similarity. Liu et al. [23] 
considered the limited steps of random walk and proposed 
local random walk (LRW). Based on the LRW index, they 
integrated the results of LRW into the superposed random 
walk (SRW) index. the former index considers the process of 
the limited number of steps, while the latter emphasizes the 
importance of the nodes closest to the target node. Among 
the link prediction methods published, RWR is still one of 
the most accurate methods at the time of this writing.

2.2  Learning‑based methods

The link prediction can be treated as a supervised clas-
sification problem [16], which can be solved by classical 

learning models such as support vector machines [17], 
K-nearest neighbors [29] and logistic regression [21]. 
Furthermore, as the nodal features are intractable, that 
is, the adjacency matrix is too sparse and the additional 
attributes of the nodes cannot speak for the network 
topology, researchers studied the network representation 
learning to find low-dimensional vector representation of 
nodes automatically. Wang et al. [43] and Ou et al. [34] 
predicted links from the learned representations of nodes 
in publicly available collaborative social networks. How-
ever, when Goyal and Ferrara [12] compared a collection 
of latest network embedding methods of link prediction, 
such as Node2vec [13], HOPE [34], and SDNE [43], 
they found that the performance of such types depends 
more on the datasets and the dimension of embedding 
vectors. Zhang [54] proposed SEAL based on graph neu-
ral networks, and it achieved unprecedentedly competi-
tive performance. Motif as the basic network blocks, it is 
applied in capture the higher order structures [44]. How-
ever, network representation learning aims to preserve the 
structure and inherent properties of the networks [46], it 
performs not so well in link prediction. Moreover these 
methods require a lot of training time.

3  Probability estimation of path similarity

We consider unweighted undirected network G(V, E), where 
V is the set of nodes in the graph G, and E is the set of links. 
Multiple links and self-connections are not allowed in G. 
Then, i, j is the node of G, ki is the degree of node i, dij is the 
distance between node i and j, Qij is the set of all paths 
between i and j, and Qd

ij
 is the set of paths in which length is 

d from i to j, Ci is the community in which node i is located, 
qij and qd

ij
 are the elements of Qij and Qd

ij
 respectively. lij and 

ld
ij
 are the lengths of the path qij and qd

ij
 respectively.

Inspired by the connectivity in parallel circuits, a new link 
prediction method—path-based estimation on path similar-
ity (PEPS) is proposed and its iterative algorithm (IPEPS) 
to predict link existence in complex networks.

3.1  Path‑based estimation on path similarity (PEPS)

Definition 1 On an undirected unweighted network 
G(V, E), based on random walk, the probability of a parti-
cle starting from i and reaching j through the path [58] qij 
( qij = {v0 = i, v1,… , vl−1, vl = j} ) is:

(1)p
qij

ij
=

lij−1∏
m=1

p(vm+1|vm) =
lij−1∏
m=1

1

kvm

,
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where p(vm+1|vm) = 1

kvm
 is the transfer probability from vm to 

vm+1 , and kvm is the degree of vm.

Then, we consider all paths between i and j and assume s is 
the longest path between i and j. The probability of a particle 
failing to travel from i to j is:

It is easy to see that the connection probability of i and j is 
1 − p

Qij

ij
.

Definition 2 On an undirected unweighted network G(V, E), 
if all paths are counted, the connection probability of i and 
j is

For example, in Fig. 1, there are three paths between 
x and y, x − a − b − y , x − c − y , and x − d − e − y . So 
the probabilities of particle moving from x to y through 
these paths are 1∕2 × 1∕2 = 1∕4 , 1/2 and 1∕5 × 1∕3 = 1∕15 
respectively. Finally, the connection probability of x and 
y is 1 − (1 − 1∕4) × (1 − 1∕2) × (1 − 1∕15) = 39∕60 . How-
ever, in other link prediction indices, these probabilities 
are added directly, so the final connection probability is 
1∕4 + 1∕2 + 1∕15 = 49∕60 . For general networks, we can 
fix a threshold valued between 0 and 1 in our model. The 
links with probabilities higher than the threshold are pre-
dicted to appear in the future. Furthermore, in this way, the 

(2)p
Qij

ij
=

s�
d=1

⎛⎜⎜⎝
�
qd
ij
∈Qd

ij

⎛⎜⎜⎝
1 −

ld
ij
−1�

m=1

1

kvm

⎞⎟⎟⎠

⎞⎟⎟⎠
.

(3)pij = 1 −

s�
d=1

⎛⎜⎜⎝
�
qd
ij
∈Qd

ij

⎛⎜⎜⎝
1 −

ld
ij
−1�

m=1

1

kvm

⎞⎟⎟⎠

⎞⎟⎟⎠
.

effective influence [58] of nodes can be captured. And the 
pseudocode of PEPS is described in Algorithm 1. 

The index of PEPS is not only a probability value, but 
also can measure the influence of both the numbers and 
lengths of paths for each pair of nodes. Here, two special 
networks are used as examples to explain this character-
istic. Firstly, in the path graph, except for the head and 
tail nodes, the degree of other nodes is 2, and with the 
increase of path length, the values of head and tail nodes 
should be smaller.

Property 1 Let qij be a Path-graph and its length is l, and i 
and j are the head node and tail node respectively. Then, the 
connection probability of i and j is:

This definition of connection probability has the fol-
lowing property:

So our model is able to reflect the decrease of connection 
probability as the path length increases. And in this case, 
if � is 1/2, PEPS yields same similarity between i and j as 
that measured by the Katz index (formulated as Sxy = �l−1).

As the number of nodes increases, the number of paths 
of each pair of nodes in the complete graph (a commu-
nity) grows, so the connection probability of each pair of 
nodes should increase. And in a community, if all nodes 
are connected to each other, the more nodes this commu-
nity contains, the higher the probability of connections 
between nodes will be.

Property 2 In a complete graph with n nodes, the connection 
probability of each pair nodes i, j can be written as

where Am−1
n−2

 is the permutations, and n is the number of 
nodes in G ranging from 3.

(4)p = 1 −

(
1 −

(
1

2

)(l−1
)

=
1

2

(l−1)

.

{
p → 0 l → ∞,

p = 1 l = 1.

(5)pij = 1 −

n−1∏
m=2

(
1 −

1

(n − 1)m−1

)Am−1
n−2

,

Fig. 1  An example network (colour figure online)
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Theorem 1 Let G(N, E) be a complete graph, and n is the 
number of nodes. If n → ∞ , then pij → 1.

Proof If we want to prove that the limit of Eq. (5) is 1, it 
is equivalent to verifying that the limit of the latter part of 
Eq. (5) is 0, which can be written as:

When � =
1

2e
 , there exists N1 , such that n > N1 , 

|
(
1 −

1

(n−1)i

)(n−1)i

−
1

e
| < 𝜀,

so,

Using Stirling formula, we show D → 0 , if n → ∞ . Setting 
a =

1

2
 , there exists i such that A

i
n

ni
> a =

1

2
 . According to the 

trial, when i = n

2
 , A

i
n

ni
∼ (

1

e
)
√
n is calculated, so we guess i is 

much smaller than n—hence we assume i ∈ o(n) , then

Since A
i
n

ni
 is a value decreasing as m increases,

in the approximation, ln(1 + x) ∼ x is applied in Eq. (10), so

The approximation in Eq. (6) is of the following form:

(6)

D =

n−1∏
m=2

(
1 −

1

(n − 1)m−1

)Am−1
n−2

=

n−2∏
m=1

(
1 −

1

(n − 1)m

)(n−1)m⋅
Am
n−2

(n−1)m

.

(7)i.e.,
1

2e
<

(
1 −

1

(n − 1)i

)(n−1)i

<
3

2e
,

(8)
�
1

2e

�∑n−2

i=1

Ai
n−2

(n−1)i

< D <

�
3

2e

�∑n−2

i=1

Ai
n−2

(n−1)i

.

(9)

Ai+1
n

ni+1
=

Ai
n−1

ni
,

Ai
n
=

n!

(n − i)!
∼

nne−n
√
2�n

(n − i)n−ie−(n−i)
√
2�(n − i)

,

Ai
n

ni
∼
�
1 +

i

n − i

�n−i+
1

2

⋅ e−i.

(10)

ln

(
Ai
n

ni

)
= ln

(
1 +

i

n − i

)
⋅

(
n − i +

1

2

)
− i

∼

(
i

n − i
−

i2

(n − i)2

)
⋅

(
n − i +

1

2

)
− i

∼
1

2
,

(11)i2

n
∼ ln 2, i ∼

√
n ⋅ ln2.

So, 
∑n

i=2

Ai
n

(n)i
≥

√
(ln 2)n

2
 , which converges to infinity when n 

tends to be infinity. Therefore, as n → ∞ , D → 0 , pij → 1 .  
 ◻

Then we check the connection probability of any two 
nodes in the above complete graphs with the number of nodes 
ranging from 3 to 15 respectively, and the connection prob-
ability is shown in Fig. 2. In the 15-node complete graph, the 
connection probability is 0.9672, which is very close to 1.

3.2  The link prediction of PEPS

In this section, we investigate the relationship between 
link prediction preference of the proposed model and 
community [39], with the assumption [52, 56] that a 
community is a subgraph C,EC of G in which each node 
is more densely linked to others than to the nodes in 
N⧵C,E⧵EC . For the simplicity of the following analy-
sis, we suppose that the community is approximately a 
complete subgraph of G. To check the validity of these 
two types of connections (properties 1&2), we assume 
node a in community C1 , with probability P of the con-
nection to any other in the same community; and node B 
in another community C2 , with probability P′ . If there is 
only one path l bridging C1 and C2 , it has probability P1 
based on property 1, and the link always prefers inner-
community (i.e., P > PP1P

′ ). If there is more than one 
path of property 1, we take two non-crossing paths con-
necting the two communities into account at first. The 
probability PInt of A to c2 ∈ C2 is given by

(12)ln(1 + x) ∼ x −
x2

2
.

Fig. 2  The connection probability of K
n
 complete graph
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A n d  PInner  o f  A  t o  c1 ∈ C1  b y 
PInner = 1 − (1 − P)(1 − PP1P2P

�) , then

The generalized formula for the k paths situation is com-
plicated, so that we had better consider general k’s paths 
(allowing for crossing each other) under property 2, and 
PInner = 1 − (1 − P)(1 − PPlP

�) , while PInter = PPlP
� . In 

this case, Δ > 0 , for any Pl which has 1 as its peak when 
the graph of G − E(C1 ∪ C2) is a complete graph. For most 
real networks that contain community structure, Pl is much 
smaller than 1, meaning that the same community may have 
much higher link preferences.

For example, as shown in Fig. 3,1 the barbell graph can 
be seen as a combination of multiple barbell graphs, and 
each pair of the barbell subgraphs is connected by a path 
graph. When two nodes are the endpoints of the bridge 
between two different complete subgraphs respectively, 
it is obvious that the similarity is smaller than two nodes 
in a complete subgraph. As long as the similarity of two 
endpoints on the bridge edge is less than 1, the similarity 
of two nodes in two different complete subgraphs is less 
than that of any two nodes in one complete subgraph. In 

(13)PInter = 1 − (1 − PP2P
�)(1 − PP1P

�).

(14)
Δ = PInner − PInter

= P(1 − P2P
�)(1 − P1P

�) > 0.

this sense, we say the connection probability in one com-
plete subgraph is stronger than that of two nodes from two 
different complete subgraphs. Our definition relies on a 
complete graph structure, so if there are communities that 
are close to a complete shape, our prediction will predict 
well, no matter how small the size of the community is.

When n  approaches  inf ini ty,  A
n
2
n

ni
≈

1

e

√
n
 ,  so ∏i=n

i=
n

2
+1

Ai
n

ni
≤

n

2
e
√
n , and this indicates that in specific cases, 

complete connection may be relaxed to a sparser structure. 
For instance, we can ask for a community to be a bunch of 
nodes that connect to each other within a link order smaller 
than the average on the whole network.

3.3  Iterative approximation to PEPS (IPEPS)

Though we only consider the second-order or third-order 
paths, it is too slow to find all paths in each network using 
Eq. (3). In order to reduce the time of computation [35], 
we adapt Eq. (3) to be an iterative algorithm. It is assumed 
that each node is not affected by its neighbors, and it is not 
assumed that each path between two nodes must be inde-
pendent in the network. Let a, b, and c be three nodes where 
b is a neighbor of c, Lab is the set of paths from a to b, m 
is the distance from a to b. Therefore m + 1 is the shortest 
distance between a and c. Then the probability that a particle 
starts from a and arrives at c through b is

So, the probability of a not passing through b or not arriv-
ing at c is

Let N = {b|lab = m, lbc = 1, lac = m + 1} , so the probability 
of a having at least one path end to c is

If pab is known, as well all nodes in N , the probability of a 
reaching c can be calculated. Then, we model PEPS into an 
iterative form (IPEPS) depicted as follows:

(15)p(a → b → c) = pa→b × pb→c = pa→b ×
1

kb
.

(16)pa→b→c = 1 − pa→b→c.

(17)

pac = 1 −
∏
v∈N

(1 − px(a → v → c))

= 1 −
∏
v∈N

(
1 − pa→v ×

1

kv

)
.

(18)

p
(1)

ij
= 1 −

n∏
u=1

(
1 − miu × zuj

)
,

⋯

p
(t+1)

ij
= 1 −

n∏
k=1

(
1 − p

(t)

iu
× zuj

)
,

Fig. 3  A multi-barbell network contains five complete graphs, and 
each complete graph is connected to other complete subgraphs by a 
path graph, the length of the path graph and the nodes of each com-
plete graph are random from 3 to 10

1 All pictures of networks in this paper are drawn by Gephi which is 
a software for the visualization of graphs and networks (http:// netwo 
rkrep osito ry. com/ index. php). Fruchterman Reingold [32] is used to 
generate the network layout, and the nodes in a network are colored 
by their modularities.

http://networkrepository.com/index.php
http://networkrepository.com/index.php
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where M is an identity matrix representing the initial state of 
the network, and Z is the state transition matrix. The itera-
tion simulates the path length that the particle traverses on 
the network. Inspired by RWR, the restart mechanism is 
introduced to Eq. (18) accordingly, and the IPEPS becomes

where c denotes the probability of the particle returning to 
the initial position, and ei is the value of the initial state. 
Because the random particle may be wiggling between any 
two nodes, this method is not exactly equivalent to PEPS. 
The pseudocode of IPEPS is described in Algorithm 2. In 
terms of algorithmic complexity, the computational com-
plexity of IPEPS is O

(
K ∗ N3

)
 , with K being the number of 

iterations. It can be seen that this algorithm is not complex 
at all, even compared to other simple ones. 

4  Experiments

4.1  Data description

The proposed models PEPS/IPEPS are tested in eight real 
networks, and these networks have been converted into 
unweighted undirected networks, with loops and multi-links 
eliminated on the premise of network connectivity. These 
networks2 are listed as below, and the detailed features are 
listed in Table 1: 

(19)p
(t+1)

ij
= c

(
1 −

n∏
k=1

(1 − p
(t)

ik
× Zkj)

)
+ (1 − c)ei,

(1) Adjnoun ([36]): contains the network of common 
adjectives and noun adjacencies in novel David 
Copperfield by Charles Dickens, as described by 
M. Newman.

(2) Celegansneural ([49]): Neural network of the 
nematode C. elegans Compiled by Duncan Watts 
and Steven Strogatz from original experimental 
data.

(3) Chesapeake ([3]): is a network of carbon flows 
among species living in the Chesapeake Bay. The 
data are collected in three main areas: lower, mid-
dle, and upper bay.

(4) Power ([48]): a network representing the Western 
States Power Grid of the United States, in which 
nodes are transformers or power relay points and 
two nodes are connected if a power line links them.

(5) Usair ([5]): the network of the US air transporta-
tion system.

(6) Yeast ([33]): Interaction detection methods have 
led to the discovery of thousands of interactions 
between proteins, and discerning relevance within 
large-scale data sets is important to present-day 
biology.

(7) Euroroad ([42]): the international E-road net-
work, a road network located mostly in Europe. The 
network is undirected; nodes represent cities and 
an edge between two nodes indicates that they are 
connected by an E-road.

(8) Openflight  ([36]) is downloaded from Open-
flights.org, and it contains ties between two non-
US-based airports (Table 1).

Table 1  The basic feature of datasets

|V| denotes the number of nodes, |E| is the number of edges, D is the 
graph density, ⟨k⟩ denotes the average degree, ⟨d⟩ denotes the average 
distance, and C represents the clustering coefficient [38]

Datasets |V| |E| D ⟨k⟩ ⟨d⟩ C

Adjnoun 112 425 0.068 7.589 2.536 0.283
Celegansneural 297 2345 0.053 15 2.455 0.311
Chesapeake 35 118 0.198 6 2.508 0.339
Usair 332 2126 0.039 12.807 2.738 0.749
Yeast 2375 11,693 0.004 9.847 5.096 0.388
Power 4941 6594 0.001 1.335 2.8 0.04
Openflight 2939 30,501 0.004 10.378 4.145 0.435
Euroroad 1174 1417 0.002 2.414 18.371 0.02

2 These real networks can be downloaded at http:// netwo rkrep osito ry. 
com/ index. php.

http://networkrepository.com/index.php
http://networkrepository.com/index.php
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In the experiments, to ensure the network is con-
nected, the training set ET  is constructed from G by 
randomly removing 10% edges in it. Note that in this 
construction process the connectedness of the graph has 
to be preserved. Moreover, the removed edges are added 
to the test set EP . The prediction accuracy is evaluated 
by 100 times with independent random network division 
of the training set and the test set.

4.2  Evaluation metrics

AUC [15] (area under the ROC curve) can be interpreted 
as the probability that a randomly chosen missing link (a 
link in EP ) is given a higher score than a randomly chosen 
non-existent link (a link in U/E , where U denotes the univer-
sal link set). In the algorithmic implementation, we usually 
calculate the score of each non-observed link, then at each 
time a missing link is randomly picked and compared with 
the nonexistent link based on their scores. Among N inde-
pendent comparisons, if there are n′ times that the missing 
link has a higher score, and n′′ times that they have the same 
score, AUC can be calculated as follows:

AUC estimates the accuracy of the index globally, with the 
significance that if all scores are generated from independ-
ent and identical distribution the accuracy should be about 
0.5. Therefore, the degree to which the accuracy exceeds 
0.5 indicates how much the algorithm outperforms the pure 
chance one.

4.3  Baseline

In order to illustrate the performance of our model, it is 
compared with the eight topological methods: CN, AA, RA, 
FR of local-similarity based; LP and Katz the local-path 
based; ACT, RWR random-walk based; and two network 
representation methods: node2vec and SEAL. And they are 
listed as below. 

 (1) Common neighbors (CN) ([25]) index measures 
if two endpoints are similar (the more common neigh-
bors they have, the higher CN value will be). The CN 
index can be calculated as follows: 

 where Γ(x) is the set of nodes which are neighbors of 
endpoint x, and Γ(x)

⋂
Γ(y) denotes the set of com-

mon neighbors of node x and y.
 (2) Adamic-Adar (AA) ([1]) index punishes the 

common neighbors with high degrees by consider-

(20)AUC =
n� + 0.5n��

n
.

(21)Sxy = |Γ(x)⋂Γ(y)|,

ing the logarithm of reciprocal of common neighbors 
degrees: 

k(z) is the degree of node z.
 (3) Resource Allocation (RA) ([51]) index, 

similar to AA, punishes the common neighbors with 
big degrees just by considering the reciprocal of com-
mon neighbors degree: 

 (4) Local Path (LP) ([27]) index counts the contri-
bution of local paths with 3, 

 (5) Katz ([10]) index considers all paths in the network, 
and it can be expressed as: 

 where L is a constant indicating the longest length 
considered in the Katz index, and �path⟨i⟩xy � represents 
a collection of paths that connect vertices vx and vy , A 
is the adjacency matrix, and the parameter � ∈ (0, 1) 
is used to control the weight coefficient of path.

 (6) Average commute time (ACT) ([19]) counts 
the average steps that a random walk particle takes to 
move from A to B, which can be defined as: 

 where l+
xx

 is the element in L+ , which is the pseudo 
inverse of Laplacian matrix L(L = D − A).

 (7) FR index ([28]) is a method which based on friend 
recommendation model, and it can be formula as : 

 where SCN
jl

 is the number of the common neighbors of 
i and j, and k(l) denotes the degree of l.

 (8) Random walk with restart (RWR) ([41]) 
considers a random walk particle may go back to the 
initial location during its walk in network. The prob-
ability vector of a particle reaching every node from 
the initial position in t + 1 is: 

(22)SAA
xy

=
�

z∈(Γ(x)
⋂

Γ(y))

1

log k(z)
.

(23)SRA
xy

=
�

z∈(Γ(x)
⋂

Γ(y))

1

k(z)
.

(24)SLP
xy

= A2 + �A3,

(25)
Sxy =

L�
i=1

�
i�paths⟨i⟩

x,y
�

= �Axy + �
2
�
A2

�
xy
+⋯ + �

L
�
AL

�
xy
,

(26)SACT
xy

=
1

l+
xx
+ l+

yy
− 2l+

xy

,

(27)SFR
xy

=
�

l∈Γ(x)
⋂

Γ(y)

1

k(l) − 1 − SCN
jl

,
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 where ex denotes the initial state, and PT is the prob-
ability transfer matrix. And in the steady state, 

 And the similarity of RWR is: 

 (9) Node2vec ([13]) is an algorithmic framework for 
learning continuous feature representations for the 
nodes and it is a typical representational learning 
method on graphs.

 (10) SEAL ([54]): Based on GNN, it can use the node’s 
feature vector to construct the node information 

(28)�x(t + 1) = c ⋅ PT
�x(t) + (1 − c)ex,

(29)�x = (1 − c)(I − cPT )−1ex.

(30)SRWR
xy

= �xy + �yx.

matrix to predict links, and the information matrix 
has three components: structural node labels, node 
embeddings and node attributes.

4.4  Results and discussion

4.4.1  The preference of the prediction

The preference of link prediction by PEPS is illustrated 
by Lesmis. As shown in Fig. 4a, ten percent of the links 
are randomly selected as a test set which are denoted as 
red lines; while the training network (plotted in Fig. 4b) 
is obtained by removing these red lines. Now, PEPS pre-
dicts the links most likely to appear with s ranging from 
2 to 5, in which the number of the predicted links exactly 
matches the number of links in the test network as shown 

Fig. 4  The result of PEPS prediction in Lesmis, and the nodes with 
different color denote that they are not in a same community. a Is the 
original network of Lesmis; b is the training network with 10predic-
tion results by PEPS with s ranging from 2 to 5 respectively. And 

the red links are intersection of our predictions and the test links, 
the green links exclusively in the prediction and the blue links exclu-
sively in the test links
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in Fig. 4c–f. As shown in Fig. 4c–f, the red links are the 
intersection of our predictions and the test links, the 
green ones are exclusively in the prediction links and the 
blue ones are exclusively in the test links. Some topo-
logical features of these networks are listed in Table 2. 
It can be observed that the modularities of reconstructed 
networks are lower than the original network, and the 
longer the network’s diameter is, the shorter the average 
path is, and the larger the clustering coefficient larger 
will be. It can be found here that PEPS prefers to pre-
dict the links that belong to the same community. Based 
on the reconstructed network of s ranging from 2 to 5, 
it is discovered that with the increase of the length of 
paths, the average length of paths becomes longer, and 
the clustering coefficient decreases. This indicates that 
PEPS can successfully predict shortcuts that can guar-
antee an adequately long path.

To display the predicted preferences of PEPS more 
clearly, a multi-barbell graph is created, which is com-
prised of 10 complete subgraphs connected to each other 
by a path graph with random lengths. To increase com-
putational efficiency, we use IPEPS as a substitute for 
PEPS on this graph. As shown in Fig. 5, the more the 
deleted edges are, the less visible the network’s commu-
nity structure is, thus the accuracy of IPEPS decreases. 
This implies that IPEPS is more likely to predict the 
links which locate within the community. When the 
proportion of deletions in the network is sufficiently 
high (over 80% ), the longer the step is, the higher the 
accuracy is. If the community structure is not obvious, 
or the network is very sparse, the step can be increased 
to predict shortcuts. Therefore, no matter how sparse the 

network or how long the length of a link to be predicted 
is, PEPS and IPEPS will maintain good performance.

4.4.2  The analysis of parameter sensitivity

There are two parameters in this paper—restart probabil-
ity c and steps s. c denotes the probability of the particle 
returning to the initial position. In other words, c is used 
to adjust the importance or quality of target nodes. Fur-
thermore, s is the parameter to tune the weight of local 
topology information and global topology information, 
the small s means that the random walks tend to capture 
the local topology information and vice versa.

Then, the impact of the restart probability c is stud-
ied. In Fig. 6, c is increased from 0.50 to 0.95 with a step 
size of 0.05. It is found that as c increases, the accuracy 
in (a)–(c) tends to be higher; the accuracy is not affected 
in (d); the accuracy tends to decrease in (f); and in the 
last large network, the accuracy fluctuates in a certain 
range.

In small networks, the majority of missing links are 
short paths, and local links are sufficient for predic-
tion. Therefore, the step on the four small real networks 
ranges from 2 to 8, and the performance is demonstrated 

Table 2  The topological features of reconstructed network based on 
Lesmis by PEPS

|M| denotes the modularity of network, |D| is the diameter of network, 
and C represents the clustering coefficient of network, ⟨d⟩ denotes the 
average distance

Datasets M D C ⟨d⟩
Original net 0.546 5 0.736 2.641
train net 0.532 6 0.669 2.739
net of s = 2 0.532 6 0.79 2.658
net of s = 3 0.52 6 0.772 2.674
net of s = 4 0.527 6 0.774 2.673
net of s = 5 0.522 6 0.756 2.663

Fig. 5  The AUC of a multi-barbell network with different numbers 
of deleted edges, which is comprised of 10 complete subgraphs. The 
network structure changes through deletion operations—the more the 
deleted edges are, the sparser the network is
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in Fig. 7. The reason for the fluctuation of accuracy is 
that the particle may wiggle between two nodes.

On the contrary, the links to be predicted in large 
networks are usually shortcuts. Since short paths are too 
short to be used to predict shortcuts, longer paths are 
needed. With the observations from Table 4, the global 
methods outperform the local ones. When the step is 
gradually increased to 40 in Fig. 8, it can be seen that the 
values of AUC tend to rise, despite fluctuation occurs. In 
Figs. 7 and 8, it is observed that the accuracy of the odd-
numbered steps is higher than that of the even-numbered 
ones—this is because when the iteration number is even, 
the random particle may eventually return to the starting 
position.

4.4.3  Performance

In order to examine the validity of the IPEPS, as shown 
in Table 3, IPEPS and PEPS are used in the experiments 
based on the eight networks with fixed path lengths of 2 
and 3. From Table 3, there are two findings: (1) By using 
more topological information, both IPEPS and PEPS of 
order 3 are more precise than those of order 2; (2) the 
accuracy of IPEPS is similar to that of PEPS for most 
studied networks, and for certain networks, IPEPS is 
slightly more precise than PEPS.

Lastly, the grid parametric search is embedded in the 
IPEPS algorithm (GS-IPEPS). In the grid search pro-
cess, a few links ( ET  ) are added to the development set, 

and the remaining links are kept in the training set. The 
parameters that yield the highest prediction accuracy in 
the development set are automatically selected. A com-
parison with other indices is shown in Table 4, and T test 
is utilized for method comparison. in Table 5. There are 
two hypotheses in the T test. H0 is �1 − �2 ≤ 0 ( � ≥ 0.05 ), 
Ha is 𝜇1 − 𝜇2 > 0 , where �1 denotes PEPS or IPEPS, �2 
refers the other methods. Table 5 shows that H0 should 
be rejected. Moreover, it can be seen that for most data-
sets from Table 4, IPEPS outperforms other indices on 
all networks but Euroroad and Openflight, on which the 
accuracy is still very close to the best ones. In addition, 
the average performance of IPEPS and GS-IPEPS are 
top-2 in all algorithms, and the average performance of 
both algorithms is better than that of SEAL in most data 
sets. On four small networks, IPEPS and GS-IPEPS per-
form excellently. Although IPEPS works subtly better 
than GS-IPEPS on some datasets, GS-IPEPS reduces 
the uncertainty of manual parametric selection and is 
considered a more stable approach.

5  Conclusion

We have proposed a new link prediction model—the 
path-based estimation on path similarity (PEPS). This 
model has three properties: with the increase of the 
number of nodes, the connection probability of each pair 
of nodes will approach 0 in the path graph and approach 

Fig. 6  The AUC of different c in all experimental networks
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1 in the complete graph; moreover, our model prefers 
to predict links of two nodes that belong to the same 
community; and it also leverages the effective influence 
of nodes to predict the probability of a node being con-
nected to the same community. In practice, since PEPS 
computes all paths of each pair of nodes inefficiently, 
the approximation algorithm (IPEPS) and its automatic-
parametric-selection version termed GS-IPEPS are pro-
posed as two efficient surrogates. Then the algorithms 

are tested in eight real networks and achieved good 
performance.

In addition, one of the potential applications of the 
proposed model is community detection. Although in 
Sect. 2.1, Property 2 is derived for complete graphs, the 
following experiments indicate that this property can 
be beneficial in accurately finding the expected links 
in real networks. These links found that PEPS or IPEPS 
tend to be connected nodes in the same “community” 
based on the analysis of prediction preferences. In other 

Fig. 7  The impact of different steps in four small networks
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words, PEPS can detect whether two nodes are contained 
within one community. Although PEPS is only tested on 
unweight undirected networks, it is not limited to these 
types of networks. In the future, PEPS will be generalized 
to directed or weighted networks. Our proposed model is 
an extension of link prediction with respect to dynamic 
networks where nodes may disappear, a formidable task 
few algorithms are adept at so far. In addition, to achieve 
an accurate link prediction in practice, our future study 
will make use of both topological information and net-
work attributes (for example, the account information in 
social networks).

Fig. 8  The impact of different steps in four large networks

Table 3  Experiments of PEPS and IPEPS in four small networks

Dataset PEPS IPEPS

Order 2 Order 3 Order 2 Order 3

Adjnoun 0.6729 0.7471 0.6458 0.7519
Celegansneural 0.8695 0.9071 0.8541 0.9174
Chesapeake 0.7169 0.8188 0.6909 0.8952
Usair 0.97 0.9772 0.9589 0.9729
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