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Abstract.13

OBJECTIVES: This work aims to explore more accurate pixel-driven projection methods for iterative image reconstructions14

in order to reduce high-frequency artifacts in the generated projection image.15

METHODS: Three new pixel-driven projection methods namely, small-pixel-large-detector (SPLD), linear interpolation16

based (LIB) and distance anterpolation based (DAB), were proposed and applied to reconstruct images. The performance of17

these methods was evaluated in both two-dimensional (2D) computed tomography (CT) images via the modified FORBILD18

phantom and three-dimensional (3D) electron paramagnetic resonance (EPR) images via the 6-spheres phantom. Specifi-19

cally, two evaluations based on projection generation and image reconstruction were performed. For projection generation,20

evaluation was using a 2D disc phantom, the modified FORBILD phantom and the 6-spheres phantom. For image recon-21

struction, evaluations were performed using the FORBILD and 6-spheres phantom. During evaluation, 2 quantitative indices22

of root-mean-square-error (RMSE) and contrast-to-noise-ratio (CNR) were used.23

RESULTS: Comparing to the use of ordinary pixel-driven projection method, RMSE of the SPLD based least-square24

algorithm was reduced from 0.0701 to 0.0384 and CNR was increased from 5.6 to 19.47 for 2D FORBILD phantom25

reconstruction. For 3D EPRI, RMSE of SPLD was also reduced from 0.0594 to 0.0498 and CNR was increased from 3.8826

to 11.58. In addition, visual evaluation showed that images reconstructed in both 2D and 3D images suffered from high-27

frequency line-shape artifacts when using the ordinary pixel-driven projection method. However, using 3 new methods all28

suppressed the artifacts significantly and yielded more accurate reconstructions.29

CONCLUSIONS: Three proposed pixel-driven projection methods achieved more accurate iterative image reconstruction30

results. These new and more accurate methods can also be easily extended to other imaging modalities. Among them, SPLD31

method should be recommended to 3D and four dimensional (4D) EPR imaging.32

Keywords: Accurate pixel-driven projection, iterative image reconstruction, computed tomography, electron paramagnetic33

resonance imaging34

1. Introduction34

Computed tomography (CT), magnetic resonance imaging (MRI) and electron paramagnetic res-35

onance (EPR) imaging (EPRI) [1] are all imaging modalities that rely on some form of image36

reconstruction algorithms to generate images from acquired data. EPRI has similar physics with MRI,37
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but has similar image reconstruction algorithms with CT for the data for EPRI is also spatial-projection38

data rather than K-space data. So, knowledge and insights obtained in CT reconstruction algorithms39

may be explicitly and easily extended to EPRI. 2D parallel beam CT reconstruction is the problem of40

2D inverse Radon transform; 3D and 4D EPRI reconstruction are the problems of 3D and 4D inverse41

Radon transform, respectively; So EPRI reconstruction may be regarded as the high dimensional42

extension of 2D parallel beam CT as per reconstruction algorithm.43

For discrete-to-discrete 3D EPRI imaging model, the key problem for modeling the forward process,44

i.e. the projection process, is the calculation of the imaged object area integral on a plane [2]. The45

projection method we used in our previous total variation (TV) minimization algorithm for EPRI [3]46

is plane-driven which is the 3D extension of ray-driven technic in 2D CT. This method is exact but47

overly complicated, requiring the calculation of the intersecting area of a plane with a cube in 3D48

space [2]. For 4D EPRI, the key will be the calculation of the intersecting volume of a 4D-hyperplane49

with a 4D-hypercube [4, 5]. Clearly, the plane-driven or the hyperplane-driven methods extended from50

the ray-driven projection method in 2D CT are too complicated to be efficient and practical. Thus51

it is reasonable to turn to back to 2D parallel beam CT, to find a simpler yet accurate approach for52

computing projections that can be later easily extended to EPRI.53

Now that ray-driven is not suitable for extended use in EPRI, we should investigate the other pro-54

jection methods in CT and evaluate their extension capabilities in EPRI. To our knowledge, there55

are 3 main types of projection method in 2D CT: pixel-driven [6], ray-driven [7–10] and distance-56

driven [11–13]. Pixel-driven projection method tends to be simpler in principle and is potentially easy57

to extend to high dimensional problems but often result in high-frequency artifacts in the generated58

projections [3, 11, 14]. Ray-driven and distance-driven methods generate projections very accurately59

and avoid these high-frequency artifacts. However, these methods are difficult to be extended to 3D60

or 4D EPR imaging. Difficulty of the extension of distance-driven is that it still needs to calculate61

the intersection area of a plane and a cuboid for 3D case and to calculate the intersection volume62

of a hyper-plane and a hyper-cuboid for 4D case. Thus, the optimal choice appears to be developing63

accurate pixel-driven projection methods to fully employ their property of easy-to extend.64

A so-called splatting technique may help to reduce the artifacts [15, 16] for pixel-driven method but65

this technique is computationally complex and cannot be readily extended to other imaging modalities.66

The general approach to splatting is calculating the analytical footprint of a pixel (voxel) and then67

distributing or splatting the footprint to the detector cells. The calculation of the pixel footprints is68

time-consuming. Some approaches involve pre-calculating and storing the footprint [16] and some69

use separable footprints [15] to speed up the calculation. However, these approaches may require70

huge amounts of memory to store pre-calculated footprints or may introduce additional errors by71

approximating the footprint as a combination of separable footprints. In addition, the use of an analytical72

footprint requires imaging modality specific formalisms and thus lowers the extension capability of73

these methods. In 4D EPRI, the key would be to calculate the footprint of a hypercube, which is74

exceedingly complex.75

In this work, we analyze the root reason of high-frequency artifacts introduced by the ordinary76

pixel-driven projection method firstly. And then we propose 3 new, simple and accurate pixel-driven77

projection methods that can be easily extended to other imaging modalities, such as EPRI. These78

methods include small-pixel-large-detector (SPLD), linear interpolation based (LIB) and distance79

anterpolation based (DAB) projection methods.80

In Section 2, we begin by introducing 2 interpolation and 2 anterpolation approaches that will be81

used in the proposed methods. We analyze the producing reason of high-frequency artifacts introduced82

by the ordinary pixel-driven method and then propose the 3 new accurate pixel-driven projection83

methods specifically designed to avoid such artifacts. In Section 3, we verify and evaluate the 384

new pixel-driven projection methods in 2D CT by comparisons of the generated projections and the85
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corresponding iterative reconstructions. We also extend the first proposed pixel-driven method, i.e.86

SPLD to 3D EPRI and perform evaluation studies. Finally, brief discussions and conclusions are given87

in Section 4.88

2. Methods89

In this section, we propose and discuss 3 new accurate pixel-driven projection methods. Since these90

methods rely on interpolation or anterpolation techniques, we present these concepts firstly.91

2.1. Interpolation VS anterpolation92

Interpolation is a method for estimating unknown values of a function based on known values of93

the function near the point of interest. In projection and backprojection operations, interpolation is94

frequently used. Usually, linear interpolation is extensively used for it is simple but accurate enough.95

The opposite operation of linear interpolation is the distribution of a known function value to the two96

adjacent unknown function values. In [11], the authors named such an operation linear anterpolation.97

For distance-driven projection methods, a special interpolation approach is used. A pixel and a ray98

are treated as a square and a strip, respectively. A 1D kernel operation [11] is used to determine the99

value of the intersection of a ray and an image-row-centerline based on the overlap length of the ray and100

the pixels on the image-row-centerline. The kernel operation is a special interpolation approach based101

on the assumption that each function value is from a line-segment rather than a point. We will refer to102

this as distance interpolation and the opposite operation will be referred to as distance anterpolation.103

2.1.1. Linear interpolation104

If there is a function f (x), for which two adjacent values are known to be f (a) and f (b), then f (c)
may be estimated by linear interpolation as shown in Equation (1).

f (c) = b − c

b − a
f (a) + c − a

b − a
f (b) (1)

2.1.2. Linear anterpolation105

The main idea is to distribute a known value to the two adjacent points, which is expressed mathemat-
ically in Equation (2). Here, symbol ‘+ = ’ means to add the right-hand-side vaule to the left-hand-side
variable (the same below).

⎧⎨
⎩

f (a)+ = b−c
b−a

f (c)

f (b)+ = c−a
b−a

f (c)
(2)

2.1.3. Distance interpolation106

Conceptually, distance interpolation and anterpolation assume that a function-value comes from a107

line segment rather than a single point, i.e. the function is piecewise constant. For standard linear108

interpolation, the estimated intermediate value is derived from the value at two adjacent points, but109

for distance interpolation, the estimated sample value may be derived from one, two or more sam-110

ples, depending on the length of the line segment corresponding to the unknown sample. Figure 1111

is the schematic representation for three distance interpolation cases. The corresponding distance112

interpolation expressions are shown in Equations (3)–(5).113
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Fig. 1. Three cases of distance interpolations: the case in which the width of the unknown sample (a) belongs to one known
sample, (b) crosses two known samples and (c) crosses three samples. d1 and d2 are the boundaries of the unknown sample
S. bi and bi+1 are the boundaries of the known sample xi.

f (s) = f (xn) (3)

f (s) = bn+1 − d1

d2 − d1
f (xn) + d2 − bn+1

d2 − d1
f (xn+1) (4)

f (s) = bn − d1

d2 − d1
f (xn−1) + bn+1 − bn

d2 − d1
f (xn) + d2 − bn+1

d2 − d1
f (xn+1) (5)

From Equations (3) to (5), it can be seen that distance interpolation computes the sum of all the114

known samples overlapping with the unknown weighted by the overlap length divided by the length115

of the unknown sample.116

2.1.4. Distance anterpolation117

Distance anterpolation distributes a known function value to the overlapping unknown function
values. The most important point is that distance anterpolation may distribute a known value to more
than 2 samples if the length of the known sample is long enough to across more than 2 samples. Figure 1
can also be the schematic representation of the three distance anterpolation cases. Now, the problem is
to distribute the known sample f (s) to the function f (x). For the 3 different cases depicted in Fig. 1,
the known sample may be distributed over 1, 2 and 3 samples, respectively. Equations (6)–(8) are the
mathematical expressions for the 3 cases of distance anterpolation.

f (xn)+ = d2 − d1

bn+1 − bn

f (s) (6)

f (xn)+ = bn+1 − d1

bn+1 − bn

f (s) f (xn+1)+ = d2 − bn+1

bn+2 − bn+1
f (s) (7)

f (xn−1)+ = bn − d1

bn − bn−1
f (s) f (xn)+ = f (s) f (xn+1)+ = d2 − bn+1

bn+2 − bn+1
f (s) (8)

From Equations (6) to (8), it can be seen that distance anterpolation is the distribution of the known118

sample value to the unknown sample values weighted by the overlap length divided by the length of119

the unknown sample.120
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2.1.5. Interpolation and anterpolation operators121

We name some operators corresponding to the interpolation or anterpolation approaches discussed122

above. We refer to linear interpolation, anterpolation, distance interpolation and anterpolation as123

interp lin, anterp lin, interp dis and anterp dis, respectively.124

2.2. The ordinary pixel-driven projection method125

Here we present the ordinary pixel-driven projection method. Take 2D parallel beam CT to be126

example. The 2D pixel grid is f (m, n) with size N × N; the projection at a specific angle is p(k) with127

size N × 1; the size of each pixel and detector cell both has unit length. The schematic diagram of128

pixel-driven projection is shown in Fig. 2. The algorithm is summarized in Algorithm 1.129

Algorithm 1: The ordinary pixel-driven.

1: for m = 1: N
2: for n = 1: N
3: Calculate the coordinates (x, y) of pixel (m, n) in the imaging coordinate system
4: Calculate the projection address t using the equation: t = x cos θ + y sin θ

5: Anterpolate the projected pixel value to adjacent detector elements, i.e. p+ = anterp lin(t, p)
6: end for n
7: end for m

2.3. Three new accurate pixel-driven projection methods130

It is known that pixel-driven projection method introduces artifacts in projections. Pixel-driven131

projection relies on linear anterpolation. This suggests that the reason for producing these artifacts132

may be related to the use of linear anterpolation. Nyquist sampling theory requires that the sampling133

frequency should be equal to or more than double the highest frequency contained in the signal.134

Supposing that the projection signal is the destination signal and that the image is the source signal,135

the high frequency artifacts arising when using pixel-driven projection methods may be removed by136

ensuring that the pixel size is less than or equal to 1/2 of the detector element size, in order to satisfy the137

Nyquist condition. Therefore, re-sampling the image and applying appropriate pixel weighting factors138

should prevent loss of accuracy and avoid high-frequency artifacts. This is the basis of the first new139

accurate small-pixel-large-detector (SPLD) pixel-driven method.140

Since linear anterpolation introduces artifacts, making use of linear interpolation instead for pixel-141

driven projection may be advantageous. Rather than projecting the pixels one by one and anterpolating142

Fig. 2. The ordinary pixel-driven projection: each pixel value is projected to the detector by linear anterpolation.
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the projected value to nearby detector elements, we propose to project the pixels row by row (or column143

by column). Projecting all of the pixels in a row to the detector gives signal values at all of the projection144

addresses for these pixels. Signal values at the actual detector cells can then be obtained using linear145

interpolation. The final projection can be obtained by repeating the process row by row and calculating146

the weighted summation of the intermediate projections coming from the row-actions. Thus we arrive147

at the second new accurate pixel-driven method: linear interpolation based (LIB) pixel-driven method.148

Motivated by the concept of distance anterpolation, we implement pixel-driven projection but replace149

the standard linear anterpolation with distance anterpolation. This is the third new accurate pixel-driven150

method: distance anterpolation based (DAB) pixel-driven method.151

The algorithms for these three new methods are summarized below in algorithms 2–4. Figure 3 is152

the schematic diagrams of the 3 new accurate pixel-driven projection methods.153

Algorithm 2: SPLD pixel-driven. Each pixel subdivided into 4 sub-pixels.

1: for m = 1: N
2: for n = 1: N
3: Divide the pixel into 4 small pixels, f1, f2, f3, f4 with the same value f (m, n)
4: for i = 1 : 4
5: Calculate the coordinates (x, y) of pixel fi in the imaging coordinate system
6: Calculate the projection address t using the equation: t = x cos θ + y sin θ

7: Anterpolate the pixel value fi to adjacent detector elements, multiply by
weighting factor and add to projection, i.e. p+ = anterp lin(t, p) × 1/4

8: end for i
9: end for n
10: end for m

2.4. The ordinary pixel-driven backprojection method154

In the Result part, we will use the least square algorithm to evaluate the three proposed projection155

methods. For the other iteratively used operation is the backprojection operation, we present the156

ordinary pixel-driven backprojection method in Algorithm 5. Note that pixel-driven backprojection157

method is accurate. Take 2D parallel beam CT to be example. The 2D pixel grid is f (m, n) with size158

s

(a) (b) (c)

Fig. 3. The schematic diagrams of the 3 new accurate pixel-driven projection methods using a 4 × 4 image example. (a)
SPLD pixel-driven: Each pixel is subdivided into 4 small pixels, which are projected to the detector. The projection is updated
by use of linear anterpolation to the projection point of every small pixel. (b) LIB pixel-driven: Every row is projected onto
the detector to get the values on the small triangle positions. Then the values on the detector cells, i.e. the dot positions may
be obtained by linear interpolation. (c) DAB pixel-driven: Using the distance anterpolation approach on every pixel during
the traditional pixel-driven projection process. Here, s is the projected sample of a pixel.
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Algorithm 3: LIB pixel-driven.

1: Calculate the coordinates of the projection-measurement indices hk, k = 1, 2, 3, . . . , N

2: for m = 1:N
3: Calculate all the projection addresses t1, t2, . . . , tN of the mth row pixels, getting a

projection signalpt(ti) = f (m, i), i = 1, 2, . . . , N

4: for k = 1:N
5: Linearly interpolate to obtain the row-projection: p0(hk) = int erp lin(hk, pt)
6: end for k, p0 represents the contribution to the final projection from a single row.
7: Update the projection p with the weighted row-projection, p = p + p0 × wlen

8: end for m

Algorithm 4: DAB pixel-driven. Using row-action.

1: for m = 1: N
2: for n = 1: N
3: Calculate the coordinates (x1, y1) and (x2, y2) of the two boundary points of pixel (m, n)

in the imaging coordinate system
4: Calculate the projection addresses t1 and t2 of the two boundary points using the

equation: t = x cos θ + y sin θ.
5: Define a sample s that spans the line segment [t1, t2] with a value p(s) = f (m, n).
5: Anterpolate the sample value p(s) to projection p using the distance anterpolation approach

and weight its contribution using the length-weighted factor, p+ = anterp dis(s, p) × wlen

6: end for n
7: end for m

Algorithm 5: The ordinary pixel-driven backprojection.

1: for m = 1: N
2: for n = 1: N
3: Calculate the coordinates (x, y) of pixel (m, n) in the imaging coordinate system
4: Calculate the projection address t using the equation: t = x cos θ + y sin θ

5: Get the value at the projection address, i.e. f (m, n) = int erp lin (t, p).
6: end for n
7: end for m

N × N; the projection at a specific angle is p(k) with size N × 1; the size of each pixel and detector159

cell both has unit length. The algorithm is summarized in Algorithm 5.160

2.5. Accuracy-evaluation metrics161

In order to verify, evaluate and compare the 3 new accurate pixel-driven projection methods integrally,
we use root-mean-square-error (RMSE) as the metric. The RMSE is expressed in Equation (9).

RMSE =

√√√√√
N∑

i=1
(pi − gi)2

N
(9)
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where, p and g are the generated (reconstructed) signal and the ideal signal, respectively. The signals162

both have N points indexed by i. We will use the metric to measure the projection error and the163

reconstruction error.164

To quantitatively evaluate the reconstruction quality focusing on several region of interest (ROI),
we use the contrast-to-noise ratio (CNR) as metric [17] expressed in Equation (10).

CNR =
2 |ms − mb|

δs + δb

(10)

where, ms and mb are the mean values of the vectorized signal-image s and background-image b,
respectively. δs and δb are the standard deviation values of the vectorized sinal-image and background-
image, respectively. Generally, if there is a vectorized image f of N pixels (voxels), the mean value
mf and standard deviation δf are expressed in Equations (11) and (12), respectively.

mf = 1

N

N∑
n = 1

fn (11)

δf =
√√√√ 1

N − 1

N∑
n=1

(fn − mf)
2 (12)

where, f = [
f1, f2, . . . , fN

]
is the vectorized image-vector.165

In the next section, we will use RMSE to evaluate the projection-generation accuracy and use RMSE166

and CNR to evaluate the reconstructed objects by use of the ordinary projection method and the SPLD,167

LIB and DAB methods.168

2.5. Forward model for 3D EPR imaging169

3D pulsed EPR imaging may be modeled as a 3D Radon transform [18]. Similar to the CT imaging170

model, the EPRI imaging model may also be separated into 2 types: continuous to continuous (C2C)171

and discrete to discrete (D2D) models.172

2.5.1. C2C model173

The 3D EPRI forward C2C model is the 3D Radon transform, shown in Equation (13) and174

Fig. 4 [18].175

p(t, ϕ, θ) =
∫∫∫

�

f (x, y, z)δ(x cos ϕ sin θ + y sin ϕ sin θ + z cos θ − t)dxdydz (13)

where, p(t, ϕ, θ) is a 1D spatial projection signal at angle (ϕ, θ), f (x, y, z) is a 3D object, δ is the176

standard Dirac function and � = R3. Using this formalism, a projection is the area integral of the 3D177

object on the corresponding plane: t = x cos ϕ sin θ + y sin ϕ sin θ + z cos θ.178

2.5.2. D2D model179

The 3D Radon transform is modeled using the D2D model by treating the object as a 3D voxel180

grid. The projections are also considered to be discrete. Suppose that the object is t = x cos ϕ sin θ +181

y sin ϕ sin θ + z cos θ. Then a measurement p(i) may be denoted by Equation (14).182
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0t
z

( , , )

y

t

x

t

Fig. 4. The schematic diagram of 3D Radon transform. p(t, ϕ, θ) is a 1D spatial projection signal at angle (ϕ, θ), f (x, y, z)
is a 3D object, the δ function is the standard Dirac function and � = R3. The shaded parallelogram represents the plane
t0 = x cos ϕ sin θ + y sin ϕ sin θ + z cos θ. A measurement on the projection p(t0, ϕ, θ) is the area integral of the function
f (x, y, z) on the plane represented by the parallelogram.

p(i) =
∑
m

∑
n

∑
k

f (m, n, k)l(m, n, k) (14)

where, l(m, n, k) is the intersection area of the ith plane with the voxel f (m, n, k) that projects to183

p(i). Using Equation (14) results in the plane-driven method for 3D EPRI, which analogous to the184

ray-driven method in 2D CT.185

3. Results186

In this section, we perform 2 studies. One is for the evaluation of the 3 proposed pixel-driven187

methods in 2D CT. The other is for the evaluation of the SPLD projection method in 3D EPRI. In188

each study, we perform 2 evaluations: one to compare the projection accuracy and the other one189

to compare the accuracy of the corresponding iterative reconstruction. RMSE and CNR are used to190

perform quantitative evaluations, whereas the qualitative evaluations may be performed by visual191

observations of the signal-curves or images.192

3.1. Application of the 3 new pixel-driven methods in 2D CT193

3.1.1. Evaluation of projection methods on the simulated disc phantom194

The mathematical phantom used is a large circle containing 4 smaller circles of different intensity195

(Fig. 5 (a)). The 2D pixel grid is of size 256 × 256 with each pixel being of unit area. The projection196

at a specific angle has 256 points with the sampling interval or detector cell being of unit length.197

The rotational center, i.e. the origin of the imaging coordinate system, is located at [128, 128]. To198

demonstrate the accuracy of these methods, we focus on the projection at the angle of 45◦. We use the199

ordinary pixel-driven projection method and the 3 new pixel-driven projection methods to calculate the200

projection at 45◦ and compare them to the analytic projection which is regarded as the truth. The result201

of using the ordinary pixel-driven is shown in Fig. 5 (b). This method introduces obvious artifacts that202

resembling high-frequency noise. This phenomenon has been observed in previous studies [12]. Due203

to these artifacts, the traditional pixel-driven projection method is rarely used in image reconstruction.204
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Fig. 5. (a) The mathematical phantom. (b) The projection at 45◦ generated by use of the ordinary pixel-driven projection
method and the analytic method.
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Fig. 6. Projections calculated using the 3 new pixel-driven projection methods (red) compared to the ideal analytic projection
(blue). (a) to (d) show projections calculated using the SPLD method with re-sampling factors of 2,3,4 and 5, respectively.
(e) shows the projection calculated using the LIB method and (f) shows the projection calculated using the DAB method.

The results of the 3 new pixel-driven projection methods are shown in Fig. 6. For the SPLD method,205

we used 4 different pixel re-sampling factors (2, 3, 4 and 5) to calculate the projections, the results of206

which are shown in Fig. 6 (a)-(d), respectively. A re-sampling factor of 2 means that we re-sampled207

image, so that the size of each pixel is reduced to 1/2 of the original size (i.e., half of the size of a208

detector element). Figure 6 (e) and (f) are projections calculated using the LIB and DAB projection209

methods, respectively.210
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Figure 6 shows that all of the new pixel-driven methods presented in this work are capable of211

yielding accurate projections. It can also be seen that, for the SPLD method, the higher the re-sampling212

factor is, the more accurate the projection is. This is depicted visually in Fig. 6 (a)-(d) as well as213

quantitatively using the RMSE (RMSE = 0.82, 0.67, 0.64 and 0.50 for re-sampling factors of 2, 3, 4,214

and 5, respectively). The RMSEs for the LIB and DAB methods are very close and are smaller than the215

SPLD method unless a re-sampling factor 5 is used. The SPLD method is more similar than the LIB216

and DAB methods to the traditional pixel-driven projection method. As discussed above, the traditional217

pixel-driven projection method is easily extended to other applications; therefore it is reasonable to218

suggest that SPLD is the optimal method to adopt for image reconstruction in other imaging modalities,219

such as 3D EPRI and 3D cone beam CT. Generally speaking, a re-sampling factor of 2 is sufficient for220

most image reconstruction applications. However, one may choose to use a higher factor to achieve221

higher accuracy in the calculated projections if necessary.222

3.1.2. Evaluation of projection methods and the corresponding iterative image reconstruction via223

the modified FORBILD phantom224

For further validating the performances of these projection methods, we perform two studies on the225

modified FORBILD phantom [19]. Firstly, we compute the projections via the ordinary, SPLD with226

re-sampling factors of 2, LIB and DAB pixel-driven projection methods and compare the projection227

accuracy with the truth being projections generated by use of the Radon function in Matlab. Secondly,228

we use them in the iterative image reconstruction of the phantom and compare the corresponding229

reconstruction accuracy. The size of the phantom is 256 × 256. The size of projection set is 256 ×230

180, meaning that there are 180 uniformly distributed projections from 0◦ to 179◦ and there are 256231

measurement points on each spatial projection. The sampling pattern is parallel-beam. For the iteration232

reconstruction, we use the 4 projection methods to calculate the guessed projection in the Chambolle-233

Pock based least square algorithm (Algorithm 2 in [20]). The measured projection set is simulated by234

use of the Radon function of Matlab.235

Figure 7 shows the projections at angle 45◦ generated by the 4 projection methods and the corre-236

sponding RMSE. It may be clearly seen that the ordinary pixel-driven projection method introduces237

high-frequency artifact, whereas the proposed 3 new pixel-driven projection methods may generate238

accurate projections. The intuitive quantitative comparison of the projection-set RMSE is shown in239

Fig. 8 (a), which shows that the 3 new projection methods achieve lower RMSE, whereas the ordinary240

pixel-driven has very high error, indicating that use of the method in iterative reconstruction may not241

lead to high accuracy. Note that, the projection RMSE of SPLD shown in Fig. 8 (a) is much lower242

than that of LIB and DAB because the reference projection generated by function Radon in Matlab,243

maybe, comes from projection method similar to SPLD. So it is not reasonable to think that SPLD is244

much better than LIB and DAB.245

Figure 9 shows the reconstructed images. It may be seen that the image reconstructed by use of the246

ordinary pixel driven projection method suffer from high-frequency line-shape artifacts, whereas the 3247

new pixel-driven projection methods may achieve higher accuracy because of their accurate projection248

calculation. The quantitative RMSE comparison is shown in the second row of Table 1 and Fig. 8 (b),249

which indicates the same statement, observing that the RMSE of the ordinary pixel-driven projection250

method is the maximum one.251

From Fig. 10, we may see that the central-column-profile reconstructed by use of the ordinary pixel-252

driven projection method has higher bias compared to the truth. However, the profiles reconstructed253

by use of SPLD, LIB and DAB method may achieve higher accuracy. The number of projections254

is 180, thus the system of linear equations modelling the discrete-to-discrete imaging problem is255

underdetermined. The sparseness radio is 256×180
256×256 = 70.31 %. So the reconstructions by use of the 3256

accurate pixel-driven projection methods still has a certain degree of bias which may be seen form257
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Fig. 7. Projection comparisons at angle 45◦. (a) to (d) compares the ordinary, SPLD, LIB and DAB pixel-driven-generated
projection with the reference projection by use of Radon function in Matlab.
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Fig. 8. (a) and (b) are the bar comparisons of the projection RMSE and reconstruction RMSE of the 4 pixel-driven projection
methods: ordinary, SPLD, LIB and DAB, respectively.

Fig. 10 (b) to (d). With the increase of number of projections and (or) the use of compressed sensing,258

the 3 new methods may achieve higher accuracy, however the ordinary pixel-driven method cannot259

eliminate the high-frequency artifacts because of its inherent disadvantage. For the conciseness, we260

do not show more evaluations for the reconstructions by use of more projections or use of compressed261

sensing.262

Also, we use another metric, contrast-to-noise (CNR), to evaluate the reconstructions. The signal263

image is ROI 2 and the background image is ROI 3, which are shown in Fig. 11. The bar comparison264
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Table 1
Image reconstruction accuracy of the modified FORBILD phantom

Ordinary SPLD LIB DAB
pixel-driven

RMSE 0.0701 0.0384 0.0437 0.0422
CNR 5.6 19.47 14.59 15.71

Truth          Ordinary           SPLD           LIB           DAB

Fig. 9. Comparison of the reconstructed images by use of the 4 pixel-driven projection methods via Chambolle-Pock based
least square algorithm. The text above the images indicate the projection method used. The first row shows the whole images;
the second and third rows show the images in ROI 1 and 3, respectively. The ROIs are shown in Fig. 10. The display window
is [0, 1].

of the CNRs of the ordinary and the 3 proposed projection methods is shown in Fig. 12; the CNR data265

are shown in Table 1.266

From Fig. 12 and the third row of Table 1, we may see that the CNR of the image reconstructed by267

use of the ordinary projection method is much smaller than the others, indicating that its reconstruction268

accuracy is lower than the others. The SPLD method achieves the highest CNR, indicating it has the269

highest accuracy. The conclusion is the consistent with that drawn by analysis of the RMSE metric270

and the visual evaluations.271

All the qualitative and quantitative evaluations consistently indicate that the traditional pixel-driven272

projection method always generate imprecise projections and certainly lead to imprecise reconstruc-273

tions and the 3 new projection methods may generate accurate projections and may achieve accurate274

iterative reconstructions.275

3.2. The SPLD pixel-driven projection method for 3D EPRI and its reconstruction quality276

evaluations277

Here, we evaluate the SPLD pixel-driven (in fact, for the 3D case, it may be more accurate to278

refer to this technique as voxel-driven, but for consistency it will be referred to as a pixel-driven279
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Fig. 10. The central-column profiles comparison of the reconstructed image and the truth FORBILD phantom. (a) to (d) are
for the ordinary, SPLD, LIB and DAB pixel-driven projection methods, respectively.

ROI 3

ROI 1

ROI 2

Fig. 11. The ROIs of the modified FORBILD phantom. ROI 1 and 3 are zoomed in and displayed in Fig. 9 to show the
details. ROI 3 is used to indicate the background image and ROI 2 the signal image for CNR evaluation. Note that ROI 2 is
the pointed white rectangular area.

method) method in 3D EPRI, i.e. 3D inverse Radon transform framework. The 3D voxel grid is of size280

64 × 64 × 64 with each voxel being of unit volume. The projection at a specific angle is composed281

of 64 points with the virtual detector cell being of unit length. The rotation center, i.e. the origin of282

the imaging coordinates system, is located at [32, 32, 32]. The mathematical phantom used is a large283

sphere containing 5 smaller spheres of varying intensity (Fig. 13).284

We use the ordinary pixel-driven method and the SPLD method with re-sampling factor of 2 to285

generate the projections at a specific angle and compare them with the ideal analytic projection (Fig. 14).286
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Fig. 12. The CNR comparison of the reconstructed images by use of the 4 pixel-driven projection methods: ordinary, SPLD,
LIB and DAB.

(a) (b) (c)

Fig. 13. Image slices of the 3D mathematical phantom. (a) The central yz-plane, (b) The central xz-plane and (c) The central
xy-plane.
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Fig. 14. Comparisons of the traditional and SPLD pixel-driven projection methods. (a) is the comparison of the traditional
pixel-driven projection and the analytic projection, regarded as the truth or the standard projection, at a specific angle and
(b) is the comparison of the SPLD projection and the truth.

In Fig. 14 (a), it can be seen that the ordinary pixel-driven method results in serious high-frequency287

artifacts, as evidenced by a very high RMSE of 48.38. However, these artifacts are eliminated when288

the SPLD pixel-driven method is used (shown in Fig. 14 (b)). Using the SPLD method reduces the289

RMSE by over an order of magnitude to 4.44.290

For the validation that SPLD projection method may achieve accurate iterative reconstruction, we291

perform several reconstruction studies. The mathematical phantom is what is shown in Fig. 13; the292
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(a)                (b)                (c)               (d)

Fig. 15. The central slices of the reconstructed 3D objects. (a) to (d) are for the truth, the objects reconstructed by use of the
ordinary and SPLD pixel-driven projection methods via least square algorithm and the object by use of SPLD pixel-driven
projection method via TV algorithm, respectively. The display window is [0, 1].

simulated projections are the analytic projections of the mathematical phantom; the size of the object293

is 64 × 64 × 64; the size of the projection set is 64 × 208, meaning that number of projections is 208294

and number of measurements on a virtual spatial projection is 64; the sampling pattern is equal solid295

angle pattern [20]; the sampling order is Maximally spaced projection sequencing (MSPS) [21].296

The iteration algorithm used are the Chambolle-Pock based least square algorithm [20] and total297

variation (TV)-constrained data-divergence minimization algorithm (it is named as TV algorithm298

below) [22–24]. In the least square algorithm, the ordinary and SPLD projection methods are used to299

implement the forward projection operations, respectively. Thus we may evaluate the reconstruction300

accuracy of the two pixel-driven projection methods. In the TV algorithm, the SPLD is used to imple-301

ment the forward projection operation. Thus we may further demonstrate the accuracy of SPLD. The302

iteration number for each reconstruction is 5000 to ensure the convergence.303

The central slice-images of the reconstructed 3D object and the truth are shown in Fig. 15. It is304

clear that the ordinary pixel-driven projection method suffers from severe line-shape artifacts due to305

the high-frequency artifacts of the forward projection generated by the projection operation during306

the iteration process. The SPLD pixel-driven method may improve the reconstruction quality. Also,307

the SPLD method may get more accurate reconstruction by use of compressed sensing or by increase308

of number of projections. Here, we show the result by use of TV algorithm in Fig. 15 (d), which is309

visually much more accurate than the use of least square algorithm. The aim for showing the TV result310

is to illuminate that the reconstruction error of the SPLD based least square algorithm comes from the311

sparseness of projections sets. In the study, the sparseness radio is 64×208
64×64×64 ≈ 5.1 %, which is too sparse312

for least square algorithm to achieve accurate reconstruction. If the ordinary pixel-driven projection313

method is used, the reconstruction artifacts cannot be avoided even more projections or compressed314

sensing techniques are used. But we do not show more reconstruction results for the briefness.315

Figure 16 shows the RMSE and profile comparisons for the study. It may be seen from Fig. 16316

(a) and the second row of Table 2 that the ordinary pixel-driven projection method has the highest317

RMSE, however the SPLD method may achieve higher accuracy (lower RMSE). Comparing Fig. 16318

(b) and (c), we may see that the profiles reconstructed by use of the ordinary pixel-driven projection319

method suffer from higher bias. The SPLD method may suppress the bias. If regularization technique320

is used, for example TV minimization, the reconstruction accuracy may be higher (see Fig. 16 (d)321

and its RMSE value shown in Fig. 16 (a)). Also, we use CNR to continue evaluate the reconstruction322

accuracy. The signal ROI and the background ROI are shown in Fig. 17 (a). The CNR bar comparison323

is shown in Fig. 17 (b) and the CNR data are shown in Table 2.324

From Fig. 17 (b) and the third row of Table 2, we see that the SPLD pixel-driven projection method325

may outperform the ordinary projection method as per the CNR evaluation on the reconstructed object.326

Here, the CNR of the ordinary method is just 3.88. However, CNR of the SPLD method has increased327

to 11.58. If we use TV algorithm with the use of SPLD projection method, the CNR may achieve very328

high value as 460.95.329
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Fig. 16. (a) is for bar-comparisons of the reconstruction RMSE of the ordinary, SPLD pixel-driven based least square
algorithm and SPLD pixel-driven based TV algorithm. (b) to (d) are for the profile- comparisons of the three cases and the
truth, respectively.

Table 2
Image reconstruction accuracy of 3D EPRI

Ordinary pixel- SPLD based LS SPLD based TV
driven based LS

RMSE 0.0594 0.0498 0.0189
CNR 3.88 11.58 460.95

In summary, both the qualitative and the quantitative evaluations appear to illuminate that the SPLD330

projection method may be used in iterative reconstruction algorithms for 3D EPRI to achieve high331

accuracy; however the ordinary pixel-driven projection method always suffers from high-frequency332

artifacts, confining its application.333

4. Discussion and conclusion334

In iterative image reconstruction algorithms, projection and backprojection are the two most impor-335

tant and frequently used operations. The former calculates a projection from an iteration of the image336

being reconstructed to evaluate the projection residual (difference between calculated projection and337

the measured projection). The latter updates the image by back-distributing the residual.338

In this work, we focus on accurate projection methods for iterative reconstruction. We propose 3339

novel accurate pixel-driven projection methods: SPLD, LIB and DAB pixel-driven methods. Then340

we verified, evaluated and compared the 3 methods performance in 2D CT. We found that all the341

3 methods have yielded accurate projections and reconstructions and rectified the issues associated342

with the ordinary pixel-driven projection methods that are known to result in high-frequency artifacts.343
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ROI 2

ROI 1

(a) (b)

Fig. 17. (a) the slice of the 3D phantom and the ROI area for CNR evaluation. (b) the CNR bar comparison of reconstructed
objects by use of the ordinary and SPLD projection method in least square algorithm and the SPLD method in TV algorithm.

We also extend the SPLD pixel-driven method to 3D EPR imaging. The projection generated from344

a 3D object using SPLD pixel-driven method with a re-sampling factor ≥2 showed an immense345

improvement in projection accuracy and the corresponding reconstruction accuracy compared to the346

ordinary pixel-driven method.347

The SPLD pixel-driven projection methods need to divide each pixel into 4 small pixels (or each348

voxel into 8 small voxels) if re-sampling factor of 2 is used. Thus the projection operation will become349

slower. By the use of graphic processing unit (GPU), the disadvantage may be ignored. Another350

possible disadvantage will come out if the SPLD method is used in divergent beam CT. For example,351

in fan-beam CT, if we use SPLD, the appropriate weighting factor should be well designed and used352

to adapt it to the different magnification times for the different pixels.353

While the motivation of this work was to investigate effective methods for the calculation of354

projections in 3D and 4D EPRI, this work may also be relevant to other imaging modalities. The355

pixel-driven projection methods have certain characteristics that make them particularly versatile as356

far as application across different imaging modalities: simple principle, no sub-classification of row-357

and column-action implementations, simple mathematical assumptions (pixels and detector cells are358

both points), high degree of parallelization, and they are readily extended to different dimensionalities,359

geometries, etc. In the future, these new methods may be further investigated and could be easily360

adapted for use in other medical imaging modalities.361
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Appendix: SPLD pixel-driven projection program in Matlab.416
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