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Abstract—As a novel fuzzy covering, fuzzy β covering has
attracted considerable attention. However, traditional fuzzy β
covering based rough sets and most of its extended models can not
well fit the distribution of samples in real data, which limits their
application in classification learning and decision making. First,
the upper and lower approximations of these models have no
inclusion relation, so they can not characterize a given objective
concept accurately. Moreover, most of these models are hard to
resist the influence of noise data, resulting in poor robustness in
feature learning. For these reasons, a robust rough set model is set
forth by combining fuzzy rough sets, covering based rough sets,
and multigranulation rough sets. To this end, the optimistic and
pessimistic lower and upper approximations of a target concept
is reconstructed by means of the fuzzy β neighborhood related
to a family of fuzzy coverings, and a new multigranulation fuzzy
rough set model is presented. Furthermore, fuzzy dependency
function is introduced to evaluate the classification ability of a
family of fuzzy β coverings at different granularity level. The
dimensionality reduction of a given fuzzy covering decision table
is carried out from the perspective of maintaining the discrim-
ination power, and a forward algorithm for feature selection
is developed by using the optimistic significance of candidate
features as heuristic information. Three groups of numerical
experiments on 16 different types of data sets demonstrate
that the proposed model exhibits good robustness on data sets
contaminated with noise, and outperforms some state-of-the-art
feature learning algorithms in terms of classification accuracy
and the size of selected feature subset.

Index Terms—Fuzzy β covering, multigranulation rough sets,
covering rough sets, feature selection.

I. INTRODUCTION

FEATURE selection is an effective technique for knowl-
edge reduction in the fields of machine learning and

granular computing [1]-[4]. By reducing redundant features,
it can improve the generalization ability of learning model,
and simplify the complexity of computation [5]-[7].
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A. Related works

As an important tool of feature selection, rough set the-
ory [8] has attracted considerable attention in classification
learning. However, classical rough sets can only deal with
symbolic datasets. Continuous and numerical attributes must
be discretized before data reduction, which may lead to the
loss of classification information [9],[10]. In view of this
observation, some researchers focused on the combination of
rough sets and fuzzy sets. Fuzzy rough sets (FRS), as proposed
by Dubois and Prade [11], provides an effective means for
overcoming the puzzle of data discretization and can handle
continuous or numerical datasets without preprocessing. Over
the past decade, considerable efforts have been devoted to pro-
pose various FRS-based feature selection models by following
the remarkable work of Dubois and prade [12]-[17]. In these
models, fuzzy dependency functions were used to characterize
the distinguishing ability of a given feature subset. However,
the fuzzy dependency function is always calculated using
the nearest sample, which will lead to unstable classification
performance for datasets with noise.

At present, most of FRS-based feature selection models
are based on a single granulation [21],[22], which may limit
their applications and lead to an increase in complexity
[23],[24]. Qian et al. [25] generalized Pawlak’s rough sets
to multigranulation rough sets (MGRS), in which the upper
and lower approximations were characterized under multiple
equivalence relations. In MGRS, a target concept can be de-
scribed by a family of combined relations from the perspective
of optimism and pessimism. Up to now, MGRS has attracted
much attention and a variety of new MGRS models have been
reported, including decision-theoretic MGRS [26],[27], fuzzy
MGRS [28]-[30], intuitionistic fuzzy MGRS [31], covering
based MGRS [32], neighborhood-based MGRS [33], variable
precision MGRS [34], and so on.

In addition, considering that FRS-based feature selection
models are hard to deal with the information fusion of fuzzy
granularity induced by coverings, several proposals have been
made to generalize FRS by using the notion of fuzzy cover-
ing [35]-[42]. These models and methods can be viewed as
bridges between FRS and covering rough sets. Li et al. [35]
proposed fuzzy covering-based rough sets, where an implicator
norm and a triangular norm were employed to construct
approximation operators. Feng et al. [36] investigated the
information fusion for multi-fuzzy covering systems by means
of a pair of belief and plausibility functions. D’eer et al.
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[37],[38] discussed the relationship between sixteen covering
based fuzzy neighborhood operators. Liu et al. [39] proposed
covering based multigranulation fuzzy rough sets. Zhang et
al. [40] designed a novel procedure for making decisions with
covering-based intuitionistic fuzzy rough sets.

Ma [43],[44] generalized the notion of fuzzy covering to
fuzzy β covering by replacing 1 with a parameter β (0 <
β ≤ 1). Yang and Hu [45],[46] presented several fuzzy β
covering based rough sets. By following the ideas of Ma [43],
Zhan et al. [47] put forth a covering based multigranulation
fuzzy rough sets model by means of fuzzy β neighborhoods.
In recent years, some generalized rough set models related to
fuzzy β covering have been proposed and applied to multi-
attribute decision making [48],[49].

B. Our work

Most of fuzzy β covering based rough set models con-
tain only a single granulation structure, which limits their
application in multi-source datasets and high dimensional
datasets [23]. More promising, multigranulation data analysis
provides a more flexible and effective means for evaluating
the distinguishing ability of a family of coverings. First, mul-
tiple granulation structures can characterize the distinguishing
information at different granularity levels, which is beneficial
to classification learning. Second, multigranulation rough sets
are able to transform the issue of information fusion into
multigranulation fusion from multiple views and levels. How-
ever, a review of the aforementioned studies shows the current
research on fuzzy covering based multigranulation rough sets
mainly focuses on model generalization [47], rarely involving
feature selection and classification learning for real-world data.
We illustrate the possible reasons from three aspects.

(1) For most of fuzzy β covering based rough set models
[43],[47],[49], the upper and lower approximation operators
have no inclusion relation, i.e., the lower approximation is not
included in the upper approximation when β 6= 1. They can
not describe the differences between objects accurately, which
will lead to unstable performance in classification learning.

(2) As well as FRS model, the fuzzy dependency functions
of these models are obtained by the nearest objects. This leads
to the sensitivity to noisy data in classification learning. When
the condition attributes are with noise (attribute noise) or the
decision attribute contains errors (category noise), the training
model can not ideally fit the data.

(3) Fuzzy β neighborhood is severed as the basic granularity
for fuzzy β covering based rough set model. However, most of
these models are usually constructed directly by a single fuzzy
covering, which can not reflect the information fusion among
multiple fuzzy coverings. In multigranulation applications
cases, it is necessary to construct fuzzy β neighborhood by
using one or more fuzzy β covering families.

These gaps inspires our investigation on a new fitting model
with fuzzy covering based multigranulation rough set models,
as well as their applicability to feature selection.

The main contributions of this article are stated as follow.
First, a new fuzzy β covering based multigranulation rough
sets is introduced. It can overcome the defect of fuzzy β

covering based rough set models that there is no inclusion re-
lation between upper and lower approximations, and describe
the differences between samples more accurately. Meanwhile,
it has a certain resistance to noisy data and provides a
more robust manner for feature selection. Second, fuzzy β
neighborhood with respect to a family of fuzzy β coverings is
used as basic information granules to formulate fuzzy decision
of samples, and optimistic and pessimistic fuzzy dependency
functions are proposed. Finally, the dimensionality reduction
is carried out by view of maintaining the discriminatory power,
and a forward algorithm for feature selection is developed by
means of the optimistic significance function.

The rest is organized as follows. In Section 2, we briefly
review some covering based rough set models and multi-
granulation rough set models. In Section 3, a new fuzzy β
covering based multigranulation rough set model is introduced.
A heuristic feature selection algorithm based on the optimistic
dependency function is designed in Section 4. Finally, some
experimental tests and conclusions are presented.

II. BASIC NOTIONS AND RESULTS

In this section, we review some basic notions related to
fuzzy β covering based rough sets and and multigranulation
rough sets. Throughout this paper, U denotes a finite and non-
empty set, and F(U) means all fuzzy sets of U .

A. Fuzzy β covering based rough sets
Let C = {K1,K2, · · · ,Km} be a nonempty subset of

F(U). We call C a fuzzy β covering of U if (
m⋃
i=1

Ki)(x) ≥ β
for each x ∈ U .

The fuzzy β neighborhood of x ∈ U is formulated as

[x]βC =
⋂
{K|K ∈ C,K(x) ≥ β}.

Definition 1. [43] Suppose C is a fuzzy β covering of U .
For any X ∈ F(U), the lower and upper approximations of
X w.r.t. C are defined, respectively.

C(X)(x) =
∧
y∈U
{(1− [x]βC(y)) ∨X(y)},

C(X)(x) =
∨
y∈U
{[x]βC(y) ∧X(y)},

for all x ∈ U , where “
∨

” means “max” and “
∧

” means
“min”.

When β = 1, then the above fuzzy β covering based rough
sets becomes a general covering based fuzzy rough sets.

Definition 2. [49] Suppose C is a fuzzy β covering of U . For
any X ∈ F(U), the fuzzy lower and upper approximations of
X with a variable precision k ∈ [0, 1] are defined, respectively.

Ck(X)(x) = inf
X(y)≤k

{(1− [x]βC(y)) ∨ k}

∧ inf
X(y)>k

{(1− [x]βC(y)) ∨X(y)},

C
k
(X)(x) = inf

X(y)≥1−k
{[x]βC(y) ∧ (1− k)}

∨ inf
X(y)<1−k

{[x]βC(y) ∧X(y)},

for all x ∈ U .
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B. Multigranulation rough sets

Definition 3. [25] Let (U,A) be an information system and
A1, A2, · · · , An ⊆ A. The optimistic multigranulation lower
and upper approximations of X ⊆ U w.r.t. A1, A2, · · · , An
are denoted by

ROn∑
i=1

Ai

(X) = {x ∈ U |[x]A1
⊆ X ∨ [x]A2

⊆ X

∨ · · · ∨ [x]An
⊆ X},

R
O
n∑

i=1

Ai
(X) = {x ∈ U |[x]A1

∩X 6= ∅ ∧ [x]A2
∩X 6= ∅

∧ · · · ∧ [x]An
∩X 6= ∅}.

The pessimistic multigranulation lower and upper approxi-
mations of X ⊆ U w.r.t. A1, A2, · · · , An are denoted by

RPn∑
i=1

Ai

(X) = {x ∈ U |[x]A1
⊆ X ∧ [x]A2

⊆ X

∧ · · · ∧ [x]An
⊆ X},

R
P
n∑

i=1
Ai

(X) = {x ∈ U |[x]A1
∩X 6= ∅ ∨ [x]A2

∩X 6= ∅

∨ · · · ∨ [x]An
∩X 6= ∅}.

Definition 4. [47] Let ∆ = {Ci, C2, · · · , Cn} be a family of
fuzzy β coverings of U . For any X ⊆ U , denote

RO,βn∑
i=1

Ci

(X)(x) =

n∨
i=1

∧
y∈U
{(1− [x]βCi

(y)) ∨X(y)},

R
O,β
n∑

i=1

Ci

(X)(x) =
n∧
i=1

∨
y∈U
{[x]βCi

(y)
∧
X(y)}.

for all x ∈ U .

Then (RO,βn∑
i=1

Ci

(X), R
O,β
n∑

i=1

Ci

(X)) is called a pair of covering

based optimistic multigranulation operators of X .
Similarly, the fuzzy pessimistic multigranulation approxi-

mation operators are denoted by

RP,βn∑
i=1

Ci

(X)(x) =
n∧
i=1

∧
y∈U
{(1− [x]βCi

(y)) ∨X(y)},

R
P,β
n∑

i=1

Ci

(X)(x) =
n∨
i=1

∨
y∈U
{[x]βCi

(y)
∧
X(y)}.

for all x ∈ U .

III. FUZZY β COVERING BASED MULTIGRANULATION
ROUGH SETS

In this section, the shortcoming of some existing fuzzy β
covering based rough sets are first illustrated. To break through
these limitations, a novel fuzzy covering based multigranula-
tion rough set model is then presented.

A. The defects of fuzzy β covering and some of its extended
models

The inclusion between upper and lower approximations is
an important property of rough set models, which can be used
to characterize and approximate a given target concept. Most
of rough set models and their variants have the property of
inclusion. However, fuzzy β covering based rough sets are
obviously different, most of them don’t have the property of
inclusion when β 6= 1, such as: Ma et. al. [43], Yang et. al.
[45],[46], Zhan et. al. [47], and Jiang et. al. [49].

An example below is employed to illustrate the problem.

Example 1. Let U = {x1, x2, x3} and C1 =
{K11,K12,K13}, C2 = {K21,K22,K23} be a family of fuzzy
sets of U , where

K11 =
0.6

x1
+

0.5

x2
+

0.6

x3
, K12 =

0.7

x1
+

0.2

x2
+

0.3

x3
,

K13 =
0.2

x1
+

0.6

x2
+

0.7

x3
, K21 =

0.5

x1
+

0.7

x2
+

0.3

x3
,

K22 =
0.3

x1
+

0.5

x2
+

0.6

x3
, K23 =

0.7

x1
+

0.2

x2
+

0.8

x3
.

Let β = 0.5 and X =
0.7

x1
+

0.5

x2
+

0.6

x3
.

By the definition of fuzzy β neighborhood, we have

[x1]
β
C1

=
0.6

x1
+

0.2

x2
+

0.3

x3
, [x2]

β
C1

=
0.2

x1
+

0.5

x2
+

0.6

x3
,

[x3]
β
C1

=
0.2

x1
+

0.5

x2
+

0.6

x3
, [x1]

β
C2

=
0.5

x1
+

0.2

x2
+

0.3

x3
,

[x2]
β
C2

=
0.3

x1
+

0.5

x2
+

0.3

x3
, [x3]

β
C2

=
0.3

x1
+

0.2

x2
+

0.6

x3
.

By Definition 1, we compute that

C1(X) =
0.7

x1
+

0.5

x2
+

0.5

x3
, C1(X) =

0.6

x1
+

0.6

x2
+

0.6

x3
,

C2(X) =
0.7

x1
+

0.5

x2
+

0.6

x3
, C2(X) =

0.5

x1
+

0.5

x2
+

0.6

x3
.

Obviously, we have that
C1(X) 6⊆ C1(X) and C2(X) 6⊆ C2(X).

Hence, the upper and lower approximations defined by Ma
[43] have no inclusion relation.

Let k = 0.6. By Definition 2, we obtain that

Ck1(X) =
0.7

x1
+

0.6

x2
+

0.6

x3
, C

k

1(X) =
0.6

x1
+

0.6

x2
+

0.6

x3
,

Ck2(X) =
0.7

x1
+

0.6

x2
+

0.6

x3
, C

k

2(X) =
0.5

x1
+

0.5

x2
+

0.6

x3
.

It is clear that Ck1(X) 6⊆ Ck1(X) and Ck2(X) 6⊆ Ck2(X).

Hence, the variable precision upper and lower approxima-
tions defined by Jiang et al. [49] have no inclusion relation.

By Definition 4, we compute that

RO,βC1+C2
(X)=

0.7

x1
+

0.5

x2
+

0.6

x3
, R

O,β

C1+C2
(X)=

0.5

x1
+

0.5

x2
+

0.6

x3
,

RP,βC1+C2
(X)=

0.7

x1
+

0.5

x2
+

0.5

x3
, R

P,β

C1+C2
(X)=

0.6

x1
+

0.6

x2
+

0.6

x3
.
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Obviously, we have RO,βC1+C2
(X) 6⊆ R

O,β

C1+C2
(X) and

RP,βC1+C2
(X) 6⊆ RP,βC1+C2

(X).
Hence, the multigranulation upper and lower approxima-

tions defined by Zhan et al. [47] have no inclusion relation.
It is worth noting that some researchers try to solve this

problem by constructing new covering neighborhood. Zhang
et al. [50] presented a new type of fuzzy α neighborhood by
combing fuzzy β covering and the fuzzy covering neighbor-
hoods proposed by D’eer et al. [37]. However, the computation
of multiple neighborhoods will greatly increase the computa-
tional complexity.

B. Fuzzy β covering based multigranulation rough sets

In this subsection, a novel multigranulation fuzzy rough set
model is presented, and some relative properties are explored.

Definition 5. Let ∆ = {C1, C2, · · · , Cm} be a family of fuzzy
β coverings of U . The pair (U,∆) is called a fuzzy β covering
approximation space. Furthermore, (U,∆, d) is called a fuzzy
β covering decision table, where d is a decision attribute.

Next, we define a pair of multigranulation approximation
operators by means of fuzzy β neighborhood. The new
proposed model has two advantages. On the one hand, it
can guarantee the inclusion relation between the lower and
upper approximations, so as to characterize a given objective
concept accurately. On the other hand, considering that the
weak membership of a sample to the target concept may be
caused by noisy data [55], it is reasonable to set the lower
approximation as zero when the membership degree is less
than 1 − β. Thus, it can reduce the influence of noisy data,
and better fit the distribution of a given data set.

Definition 6. Let (U,∆) be a fuzzy β covering approximation
space, and P1,P2, · · · ,Pn ⊆ ∆. For each X ∈ F(U), the
fuzzy lower approximation and upper approximation of X are
denoted by

RO,βn∑
i=1
Pi

(X)(x)=


n∨
i=1

∧
y∈U
{(1−[x]βPi

(y))∨X(y)}, X(x)≥1−β

0, otherwise
,

(1)

R
O,β
n∑

i=1
Pi

(X)(x) =


n∧
i=1

∨
y∈U
{[x]βPi

(y) ∧X(y)}, X(x) ≤ β

1, otherwise
,

(2)

where [x]βPi
= ∩
C∈Pi

[x]βC , for all x ∈ U .

If RO,βn∑
i=1

Pi

(X) 6= R
O,β
n∑

i=1

Pi

(X), then X is called an optimistic

fuzzy β covering based multigranulation rough sets, otherwise
it is optimistic definable.

Remark:
(1) If Pi is a single point set consisting of a single covering

for any 1 ≤ i ≤ n, and β = 1, then the above formulas
become as

RO,βn∑
i=1
Pi

(X)(x) =
n∨
i=1

∧
y∈U
{(1− [x]1Pi

(y)) ∨X(y)}, (3)

R
O,β
n∑

i=1
Pi

(X)(x) =
n∧
i=1

∨
y∈U
{[x]1Pi

(y) ∧X(y)}. (4)

This means that (RO,βn∑
i=1

Pi

(X), R
O,β
n∑

i=1

Pi

(X)) can be viewed as

a special case of covering based multigranulation rough sets
proposed by zhan et al. [47] ( β = 1).

In particular, if P1 = P2 = · · · = Pn, then formulas (3)
and (4) become as follow:

RO,βn∑
i=1
Pi

(X)(x) =
∧
y∈U
{(1− [x]1Pi

(y)) ∨X(y)}, (5)

R
O,β
n∑

i=1
Pi

(X)(x) =
∨
y∈U
{[x]1Pi

(y) ∧X(y)}. (6)

This means that (RO,βn∑
i=1

Pi

(X), R
O,β
n∑

i=1
Pi

(X)) will degenerate

into a fuzzy covering based rough set proposed by Ma [43] (
β = 1).

If a fuzzy relation Ri on U is denoted by Ri(x, y) =
[x]1Pi

(y) for any x, y ∈ U , then formula (5) and (6) become

RO,βn∑
i=1

Pi

(X)(x) =
∧
y∈U
{(1−Ri(x, y)) ∨X(y)}, (7)

R
O,β
n∑

i=1
Pi

(X)(x) =
∨
y∈U
{Ri(x, y) ∧X(y)}. (8)

This means that (RO,βn∑
i=1

Pi

(X), R
O,β
n∑

i=1

Pi

(X)) can be regarded

as a fuzzy rough set proposed by Dubois and Prade [11].

(2) If P1 = P2 = · · · = Pn, then the above formulas (1)
and (2) become as

RβPi
(X)(x)=


∧
y∈U
{(1−[x]βPi

(y))∨X(y)}, X(x)≥1−β

0, otherwise
,

(9)

R
β

Pi
(X)(x) =


∨
y∈U
{[x]βPi

(y) ∧X(y)}, X(x) ≤ β

1, otherwise
. (10)

This means that (RO,βn∑
i=1
Pi

(X), R
O,β
n∑

i=1
Pi

(X)) will degenerate

into a single-granulation fuzzy covering based rough sets
proposed by Huang et al. [4].

We then discuss the inclusion relation between the new
approximation operators.

Theorem 1. Let P1,P2 · · · ,Pn ⊆ ∆ and X ∈ F(U), then
RO,βn∑

i=1
Pi

(X) ⊆ RO,βn∑
i=1
Pi

(X).

Proof. We prove Theorem 1 in two cases.
(1) β < 1− β
For any x∈U , if X(x)<1−β, we have RO,βn∑

i=1

Pi

(X)(x)=0,

thus RO,βn∑
i=1
Pi

(X)(x) ≤ RO,βn∑
i=1

Pi

(X)(x).
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If X(x) ≥ 1− β, then X(x) > β, we have
R
O,β
n∑

i=1

Pi

(X)(x) = 1. Hence, RO,βn∑
i=1
Pi

(X)(x) ≤ RO,βn∑
i=1

Pi

(X)(x).

(2) β ≥ 1− β
For any x ∈ U , if X(x) < 1−β, then RO,βn∑

i=1
Pi

(X)(x) = 0.

Since R
O,β
n∑

i=1
Pi

(X)(x)≥0, we have

RO,βn∑
i=1

Pi

(X)(x)≤RO,βn∑
i=1
Pi

(X)(x).

If 1 − β ≤ X(x) ≤ β, we know that [x]βPi
(x) ≥ β, which

implies that 1− [x]βPi
(x) ≤ X(x).

Thus,∧
y∈U
{(1− [x]βPi

(y))∨X(y)} ≤ (1− [x]βPi
(x))∨X(x) = X(x).

It follows that

RO,βn∑
i=1

Pi

(X)(x) =
n∨
i=1

∧
y∈U
{(1− [x]βPi

(y)) ∨X(y)} ≤ X(x).

Moreover,∨
y∈U
{[x]βPi

(y) ∧X(y)} ≥ [x]βPi
(x) ∧X(x) = X(x),

We obtain that
R
O,β
n∑

i=1

Pi

(X)(x) =
n∧
i=1

∨
y∈U
{[x]βPi

(y) ∧X(y)} ≥ X(x).

Hence, RO,βn∑
i=1

Pi

(X) ⊆ RO,βn∑
i=1

Pi

(X).

If X(x) > β, R
O,β
n∑

i=1

Pi

(X)(x) = 1, we have

RO,βn∑
i=1

Pi

(X)(x) ≤ RO,βn∑
i=1

Pi

(X)(x).

In summary, we obtain that RO,βn∑
i=1

Pi

(X) ⊆ RO,βn∑
i=1

Pi

(X).

Proposition 1. Let P1,P2 · · · ,Pn ⊆ ∆ and X,Y ∈ F(U).
The following properties hold:
(1L) If X ⊆ Y , then RO,βn∑

i=1

Pi

(X) ⊆ RO,βn∑
i=1

Pi

(Y );

(1H) If X ⊆ Y , then R
O,β
n∑

i=1
Pi

(X) ⊆ RO,βn∑
i=1
Pi

(Y );

(2L) RO,βn∑
i=1
Pi

(X ∩ Y ) = RO,βn∑
i=1
Pi

(X) ∩RO,βn∑
i=1
Pi

(Y );

(2H) R
O,β
n∑

i=1
Pi

(X ∪ Y ) = R
O,β
n∑

i=1
Pi

(X) ∪RO,βn∑
i=1
Pi

(Y ).

Proof. (1L) If X ⊆ Y , then X(y) ≤ Y (y) for any y ∈ U .
If X(x) ≥ 1− β,

RO,βn∑
i=1
Pi

(X)(x) =
n∨
i=1

∧
y∈U
{(1− [x]βPi

(y)) ∨X(y)}

≤
n∨
i=1

∧
y∈U
{(1− [x]βPi

(y)) ∨ Y (y)}

= RO,βn∑
i=1

Pi

(Y )(x).

If X(x) < 1− β, RO,βn∑
i=1

Pi

(X)(x) = 0 ≤ RO,βn∑
i=1

Pi

(Y )(x),

Hence, RO,βn∑
i=1
Pi

(X) ⊆ RO,βn∑
i=1
Pi

(Y ).

(1H) The proof is similar to (1L)
(2L) If X(x) ≥ 1− β and Y (x) ≥ 1− β, then

RO,βn∑
i=1
Pi

(X ∩ Y )(x)

=
n∨
i=1

∧
y∈U
{(1− [x]βPi

(y)) ∨ (X ∩ Y )(y)}

=
n∨
i=1

∧
y∈U
{((1− [x]βPi

(y)) ∨X(y)) ∧ ((1− [x]βPi
(y)) ∨ Y (y))}

=
n∨
i=1

∧
y∈U
{(1−[x]βPi

(y))∨X(y)} ∧
n∨
i=1

∧
y∈U
{(1−[x]βPi

(y))∨Y (y)}

=RO,βn∑
i=1
Pi

(X)(x) ∧RO,βn∑
i=1
Pi

(Y )(x)

=(RO,βn∑
i=1

Pi

(X) ∩RO,βn∑
i=1

Pi

(Y ))(x)

If X(x) < 1−β or Y (x) < 1−β, then (X∩Y )(x) < 1−β,
yield RO,βn∑

i=1

Pi

(X ∩ Y )(x) = 0, and hence,

RO,βn∑
i=1
Pi

(X ∩ Y )(x) = (RO,βn∑
i=1
Pi

(X) ∩RO,βn∑
i=1
Pi

(Y ))(x) = 0.

(2H) The proof is similar to to (2L).

From Definition 6 and formula (9), (10), we can easily
obtain the following results.

Proposition 2.
(1) RO,βn∑

i=1

Pi

(X) =
n⋃
i=1

RβPi
(X);

(2) R
O,β
n∑

i=1

Pi

(X) =
n⋂
i=1

R
β

Pi
(X).

The first item demonstrates that the optimistic multigranu-
lation lower approximation of a target concept is the union of
single granulation lower approximations. On the one hand,
it shows that the optimistic lower approximation increases
monotonically with the size of granularity. The introduction of
new fuzzy coverings is beneficial to the accurate description
of the target concept. On the other hand, it provides a good
way for us to incrementally calculate the optimistic lower
approximation. The second item indicates the pessimistic
upper approximation of a target concept is the intersection
of the single granulation upper approximations.

Definition 7. Let (U,∆) be a fuzzy β covering approximation
space, P1,P2, · · · ,Pn ⊆ ∆. For each X ∈ F(U), the
pessimistic lower and upper approximations of X are denoted
by

RP,βn∑
i=1
Pi

(X)(x)=


n∧
i=1

∧
y∈U
{(1−[x]βPi

(y))∨X(y)}, X(x)≥1−β

0, otherwise
,

R
P,β
n∑

i=1

Pi

(X)(x) =


n∨
i=1

∨
y∈U
{[x]βPi

(y) ∧X(y)}, X(x) ≤ β

1, otherwise
.
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IV. FEATURE SELECTION WITH COVERING BASED
MULTIGRANULATION ROUGH FUZZY SETS

In this section, the dimensionality reduction of fuzzy β
covering decision tables is explored. In order to allow more
samples to enter the positive domain, Wang et al. [55] pro-
posed the concept of fuzzy decision. Next, we extend this
idea to fuzzy covering decision table by means of fuzzy β
neighborhood.

Definition 8. Given a fuzzy β covering decision table
(U,∆, d) with U/Rd = {D1, D2, · · · , Dr}. For any x ∈ U ,
denote

D̃i(x) =

∣∣∣[x]β∆ ∩Di

∣∣∣∣∣∣[x]β∆

∣∣∣ , i = 1, 2, · · · , r, (11)

where D̃i is a fuzzy set, and D̃i(x) means the membership
degree of x to Di. Then {D̃1, D̃2, · · · , D̃r} is called the fuzzy
decision of samples induced by d.

Definition 9. Given a fuzzy β covering decision table
(U,∆, d), and {D̃1, D̃2, · · · , D̃r} is the fuzzy decision of ob-
jects induced by d. The optimistic fuzzy multigranulation lower
and upper approximations of decision d w.r.t. P1,P2, · · · ,Pn
are defined as

RO,βn∑
i=1

Pi

(D̃i)(x)=


n∨
i=1

∧
y∈U
{(1−[x]βPi

(y))∨D̃i(y)}, D̃i(x)≥1−β

0, otherwise

R
O,β
n∑

i=1

Pi

(D̃i)(x)=


n∧
i=1

∨
y∈U
{[x]βPi

(y) ∧ D̃i(y)}, D̃i(x) ≤ β

1, otherwise
.

Accordingly, the pessimistic fuzzy multigranulation approx-
imations w.r.t P1,P2, · · · ,Pn are defined as

RP,βn∑
i=1

Pi

(D̃i)(x)=


n∧
i=1

∧
y∈U
{(1−[x]βPi

(y))∨D̃i(y)}, D̃i(x)≥1−β

0, otherwise

R
P,β
n∑

i=1
Pi

(D̃i)(x) =


n∨
i=1

∨
y∈U
{[x]βPi

(y) ∧ D̃i(y)}, D̃i(x) ≤ β

1, otherwise
.

Then the optimistic fuzzy positive domain and dependency
function of d are formulated as

POSO,βn∑
i=1
Pi

(d̃) =
r⋃
i=1

RO,βn∑
i=1

Pi

(D̃i), (12)

∂O,βn∑
i=1

Pi

(d̃) =

∑
x∈U

POSO,βn∑
i=1

Pi

(d̃)(x)

|U |
. (13)

Similarly, the pessimistic fuzzy positive domain and depen-
dency function are denoted by

POSP,βn∑
i=1
Pi

(d̃) =
r⋃
i=1

RP,βn∑
i=1
Pi

(D̃i), (14)

∂P,βn∑
i=1

Pi

(d̃) =

∑
x∈U

POSP,βn∑
i=1

Pi

(d̃)(x)

|U |
. (15)

Remark: In formulas (12) and (13), the fuzzy multigran-
ulation low approximation is used to construct the fuzzy
dependency function to evaluate the distinguishing ability of
a family of coverings. Although it doesn’t use the property of
inclusion between upper and lower approximations directly,
the approximation operators in Definition 9 can fit a given
data set well. It overcomes the shortcoming that traditional
fuzzy rough set can’t guarantee that the maximal membership
of an object to its own category [55], and provides an effective
means of preventing the misclassification of training samples.
Moreover, the property of inclusion is an important property
for a rough set model, which can be used to characterize and
approximate a given target concept.

Example 2. Let (U,∆, d) be a fuzzy β covering decision table,
where U = {x1, x2, x3}, ∆ = {C1, C2, C3, C4} be a family of
fuzzy β coverings of U , Ci = {Ki1,Ki2,Ki3}, i = 1, 2, 3, 4,
P1 = {C1, C2}, P2 = {C3, C4}, U/Rd = {D1, D2}, D1 =
{x1, x2}, D2 = {x3} and

K11 =
0.8

x1
+

0.6

x2
+

0

x3
, K12 =

0.7

x1
+

1

x2
+

0.2

x3
,

K13 =
0.1

x1
+

0.8

x2
+

0.9

x3
, K21 =

0.8

x1
+

0.7

x2
+

0.3

x3
,

K22 =
0.7

x1
+

1

x2
+

0.3

x3
, K23 =

0.3

x1
+

0.8

x2
+

1

x3
,

K31 =
0.9

x1
+

1

x2
+

0.3

x3
, K32 =

1

x1
+

1

x2
+

0.3

x3
,

K33 =
0.3

x1
+

0.8

x2
+

1

x3
, K41 =

0.8

x1
+

0.3

x2
+

0

x3
,

K42 =
0

x1
+

1

x2
+

0.8

x3
, K43 =

0

x1
+

0.8

x2
+

1

x3
.

Let β = 0.5, we would like to find ∂O,βP1+P2
(d̃) and

∂P,βP1+P2
(d̃).

By the definition of fuzzy β neighborhood, we compute that

[x1]
β
C1

=
0.7

x1
+

0.6

x2
+

0

x3
, [x2]

β
C1

=
0.1

x1
+

0.6

x2
+

0

x3
,

[x3]
β
C1

=
0.1

x1
+

0.8

x2
+

0.9

x3
, [x1]

β
C2

=
0.7

x1
+

0.7

x2
+

0.3

x3
,

[x2]
β
C2

=
0.3

x1
+

0.7

x2
+

0.3

x3
, [x3]

β
C2

=
0.3

x1
+

0.8

x2
+

1

x3
,

[x1]
β
C3

=
0.9

x1
+

1

x2
+

0.3

x3
, [x2]

β
C3

=
0.3

x1
+

0.8

x2
+

0.3

x3
,

[x3]
β
C3

=
0.3

x1
+

0.8

x2
+

1

x3
, [x1]

β
C4

=
0.8

x1
+

0.3

x2
+

0

x3
,

[x2]
β
C4

=
0

x1
+

0.8

x2
+

0.8

x3
, [x3]

β
C4

=
0

x1
+

0.8

x2
+

0.8

x3
.

Subsequently,

[x1]
β
∆ =

0.7

x1
+

0.3

x2
+

0

x3
, [x2]

β
∆ =

0

x1
+

0.6

x2
+

0

x3
,

[x3]
β
∆ =

0

x1
+

0.8

x2
+

0.8

x3
.
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By Definition 8, we have

D̃1 =
1

x1
+

1

x2
+

0.5

x3
, D2 =

0

x1
+

0

x2
+

0.5

x3
.

We then compute that

[x1]
β
P1

=
0.7

x1
+

0.6

x2
+

0

x3
, [x2]

β
P1

=
0.1

x1
+

0.6

x2
+

0

x3
,

[x3]
β
P1

=
0.1

x1
+

0.8

x2
+

0.9

x3
, [x1]

β
P2

=
0.8

x1
+

0.3

x2
+

0

x3
,

[x2]
β
P2

=
0

x1
+

0.8

x2
+

0.3

x3
, [x3]

β
P2

=
0

x1
+

0.8

x2
+

0.8

x3
.

It is calculated by Definition 9 that

RβP1

(
D̃1

)
=

1

x1
+

1

x2
+

0.5

x3
, RβP1

(
D̃2

)
=

0.3

x1
+

0.4

x2
+

0.2

x3
,

RβP2

(
D̃1

)
=

1

x1
+

0.7

x2
+

0.5

x3
, RβP2

(
D̃2

)
=

0.2

x1
+

0.2

x2
+

0.2

x3
.

It follows that

RO,βP1+P2

(
D̃1

)
=

1

x1
+

1

x2
+

0.5

x3
, RO,βP1+P2

(
D̃2

)
=

0.3

x1
+

0.4

x2
+

0.2

x3
,

RP,βP1+P2

(
D̃1

)
=

1

x1
+

0.7

x2
+

0.5

x3
, RP,βP1+P2

(
D̃2

)
=

0.2

x1
+

0.2

x2
+

0.2

x3
,

From formula (13), we can determine that

∂O,βP1+P2
(d̃) ≈ 0.83, ∂P,βP1+P2

(d̃) ≈ 0.73.

Theorem 2. Let (U,∆, d) be a fuzzy β covering decision table,
F(∆) be the power set of ∆, and P ⊆ Q ⊆ F(∆), then
(1) ∂O,β∑

Pi∈P
Pi

(d̃) ≤ ∂O,β∑
Pi∈Q

Pi
(d̃);

(2) ∂P,β∑
Pi∈Q

Pi
(d̃) ≥ ∂P,β∑

Pi∈P
Pi

(d̃).

Proof. (1) If D̃i(x) ≥ 1− β, since P ⊆ Q, we have

RO,β∑
Pi∈Q

Pi

(D̃i)(x) =
∨
Pi∈Q

∧
y∈U
{(1− [x]βPi

(y)) ∨ D̃i(y)}

= {
∨
Pi∈P

∧
y∈U
{(1− [x]βPi

(y)) ∨ D̃i(y)}}

∨{
∨

Pi∈Q−P

∧
y∈U
{(1− [x]βPi

(y)) ∨ D̃i(y)}}

≥
∨
Pi∈P

∧
y∈U
{(1− [x]βPi

(y)) ∨ D̃i(y)}

= RO,β∑
Pi∈P

Pi

(D̃i)(x).

If D̃i(x) < 1− β, we obtain
RO,β∑
Pi∈Q

Pi

(D̃i)(x) = RO,β∑
Pi∈P

Pi

(D̃i)(x) = 0.

Thus, RO,β∑
Pi∈P

Pi

(D̃i) ⊆ RO,β∑
Pi∈Q

Pi

(D̃i).

By formula (12), we have
POSO,β∑

Pi∈P
Pi

(d̃) ⊆ POSO,β∑
Pi∈Q

Pi
(d̃).

Hence, ∂O,β∑
Pi∈P

Pi
(d̃) ≤ ∂O,β∑

Pi∈Q
Pi

(d̃).

(2) The proof is similar to (1).

The first item reveals that the optimistic fuzzy dependent
function monotonically increases with the size of the feature

subset. It ensures that adding new features to the existing
feature set will not reduce the dependency function, which
provides a basis for us to design a forward algorithm for fea-
ture selection. If the dependent function is no longer increased,
the search for candidate features will stop. The second item
indicates that pessimistic fuzzy dependent function decreases
monotonously with the numbers of features.

Theorem 3. Let (U,∆, d) be a fuzzy β covering decision table,
β1 < β2 and P ⊆ F(∆), then

(1) ∂O,β1∑
Pi∈P

Pi
(d̃) ≥ ∂O,β2∑

Pi∈P
Pi

(d̃);

(2) ∂P,β1∑
Pi∈P

Pi
(d̃) ≥ ∂P,β2∑

Pi∈P
Pi

(d̃).

Proof. (1) As β1 < β2, we have [x]β1

P ⊆ [x]β2

P . If D̃i(x) ≥
1 − β, for any y ∈ U , we can obtain that 1 − [x]β2

P (y) ≤
1− [x]β1

P (y). From the definition of optimistic lower approxi-
mation, we have RO,β2∑

Pi∈P
Pi

(D̃i) ⊆ RO,β1∑
Pi∈P

Pi
(D̃i).

It follows that POSO,β2∑
Pi∈P

Pi
(d̃) ⊆ POSO,β1∑

Pi∈P
Pi

(d̃).

Hence, ∂O,β2∑
Pi∈P

Pi
(d̃) ≤ ∂O,β1∑

Pi∈P
Pi

(d̃).

(2) The proof is similar to (1).

Theorem 3 demonstrates that the optimistic and pessimistic
fuzzy dependent functions monotonically change with the
value of parameter β.

Next, we discuss the knowledge reduction of fuzzy β
covering decision tables.

Definition 10. Let (U,∆, d) be a fuzzy β covering decision
table, and P ⊆ F(∆). For any P ′ ∈ P , if ∂O,β∑

Pi∈P−{P′}
Pi

(d̃) =

∂O,β∑
Pi∈P

Pi
(d̃), we say P ′ is optimistic redundant in P . Other-

wise, we say P ′ is optimistic indispensable. If any P ′ in P is
optimistic indispensable, we call P is optimistic independent.

Redundant fuzzy coverings can not improve the discrim-
inatory power of covering families, and even interfere with
classification learning. Therefore, they must be reduced before
the training of classifiers.

Definition 11. Let (U,∆, d) be a fuzzy β covering decision
table, and P ⊆ Q ⊆ F(∆). We say P is an optimistic reduct
of Q, if it satisfies

1) ∂O,β∑
Pi∈P

Pi
(d̃) = ∂O,β∑

Pi∈Q
Pi

(d̃);

2) ∂O,β∑
Pi∈P−{P′}

Pi
(d̃) < ∂O,β∑

Pi∈P
Pi

(d̃), ∀P ′ ∈ P .

By Definition 11, we know that the reducts refer to the
minimum fuzzy β covering families, which has the same
discriminatory power as the whole covering family.

Definition 12. Let (U,∆, d) be a fuzzy β covering decision
table, P ⊆ F(∆), and P ′ ∈ F(∆) − P . The optimistic
significance degree of P ′ with respect to P is defined as

SDO,β(P ′,P, d) = ∂O,β∑
Pi∈P∪{P′}

Pi
(d̃)− ∂O,β∑

Pi∈P
Pi

(d̃).
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Based on the aforementioned discussion, we formulate a
heuristic feature selection algorithm by means of the optimistic
significance degree.

Algorithm 1 A heuristic algorithm for feature selection with
fuzzy β covering based multigranulation rough sets (FBCMG)

Input: S = (U,∆, d) and Q ⊆ F(∆)
Output: A reduct P

1: Initialize P = ∅;
2: for P ′ ∈ Q− P do
3: Calculate RβP′(D̃j), for 1 ≤ j ≤ r
4: Calculate RO,β∑

Pi∈P∪{P′}
Pi

(D̃j), for 1 ≤ j ≤ r,

5: Obtain ∂O,β∑
Pi∈P∪{P′}

Pi
(d̃) by formula (13);

6: Obtain the optimistic significance degree
SDO,β(P ′,P, d) by Definition 12;

7: end for
8: Find P ′ maximizing SDO,β(P ′,P, d);
9: if SDO,β(P ′,P, d) > 0 then

10: P ← P ∪ {P ′};
11: Q ← Q− {P ′};
12: Goto Step 2;
13: else
14: Return the reduct P;
15: end if

Next, the time complexity of the new algorithm is dis-
cussed. In Step 3, RβP′(D̃j) is calculated for each D̃j

with the time complexity O((
∑
P∈P′

|P |)|U |2). In Step 4,

RO,β∑
Pi∈P∪{P′}

Pi
(D̃j) can be computed by using an incremental

strategy. RO,β∑
Pi∈P

Pi
(D̃j) is stored in the previous cycle. By

Proposition 2, we just need to find the union between it and
RβP′(D̃j). So the time complexity of Step 4 is O(|U |2). In
Step 5, the optimistic multigranulation dependency function
can be obtained within O(|U |2). In Steps 9–15, the opti-
mistic significance of each fuzzy covering family in Q can
be measured with the complexity O((

∑
P′∈Q

∑
P∈P′

|P |)|U |2).

Thus, the overall computational complexity of the algorithm
is O((

∑
P′∈Q

∑
P∈P′

|P |)|U |2).

V. NUMERICAL EXPERIMENT

The main goal of feature selection includes two aspects, one
is to select the optimal feature subset in a more robust case;
the other is to obtain higher classification performance on the
reduced data. In this section, three groups of simulation exper-
iments are employed to verify the effectiveness and feasibility
of the proposed model. First, we evaluated the robustness of
five fuzzy β covering based rough set models against noisy
data. Second, the dependency functions were constructed from
different granularity levels by selecting different neighborhood
parameters, so as to obtain optimal feature subsets. Finally,
the classification performance of the proposed model was
evaluated by comparing with some state-of-the-art feature
selection algorithms.

TABLE I: DESCRIPTION OF DATA SETS

No Data sets Instances Features Classes
1 Wdbc 569 30 2
2 Ionos 351 30 2
3 Sonar 208 60 2
4 Cleve 296 13 2
5 WBC 683 9 2
6 Appendicitis 106 7 2
7 German 1000 24 2
8 Breast 277 9 2
9 Vote 435 16 2
10 Wine 178 13 3
11 DLBCLTumor 77 7129 2
12 DLBCLOutcome 58 7129 2
13 ColonTumor 62 2000 2
14 AMLALL-Total 72 7129 2
15 DLBCLStanford 47 4026 2
16 NervousSystem 60 7229 2

These experiments are conducted on 16 real-word data
sets, including ten UCI data sets [51] (Wdbc, Ionos,
Sonar, Cleve, WBC, Appendicitis, German, Breast, Vote
and Wine) and six high-dimensional gene data sets [52]
( DLBCLTumor, DLBCLOutcome, ColonTumor, AMLALL-
Total, DLBCLStanford and NervousSystem). The detailed
information are displayed in Table I. These UCI datasets
can be obtained from UCI machine learning repository
(https://archive.ics.uci.edu/ml/index.php), and the gene data
sets can be downloaded from the Elvira biomedical data set
repository (http://leo.ugr.es/elvira/DBCRepository/).

All experiments are implemented by MATLAB 2016b simu-
lation environment, which is installed in a mobile workstation
with windows 10 operating system, i7 CPU and 16GB RAM.
Three classical machine learning classifiers including K-
nearest neighbors (KNN, K=10), Classification and regression
trees (CART) and Naive bayes classifier (NBC), are employed
to demonstrate the classification performance. These classifiers
are provided by the machine learning toolbox of MATLAB.
The comparison experiment of reduced data is realized by
using 10-fold cross validation, in which each data set is
randomly divided into ten parts of the same size. Then, each
part is used in rotation as the test dataset, and the other as
the train dataset. The 10-fold cross validation experiment is
repeated ten times, and the mean and variance of accuracy are
taken as evaluation index.

A. Robustness comparison

In some security-sensitive practical applications, the success
of rough set models depend on their resistance to noisy data.
For a robust rough set model, we wish that the positive region
or dependent function should not be greatly affected by the
data disturbance, that is, when some values of attributes change
slightly, the positive region should not change dramatically. In
[53], D’eer et al. presented an error index by means of positive
region, using which what extent a given rough set model is
sensitive to noise can be evaluated. If one membership of n%
fuzzy coverings changes to random value in the range, the
noise level is called as n. By following the idea of D’eer et
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al., we give an evaluation index to examine the robustness of
fuzzy β covering based rough sets.

Let β ∈ (0, 1], the change degree of positive region when
n% noise is imposed on a given data set is defined as

errornβ =

∑
x∈U

∣∣POSβ(x)− POSnβ(x)
∣∣

|U |
,

where POSnβ(x) and POSβ(x) mean the altered positive
domain and the raw positive domain under a given β, respec-
tively. Obviously, the change degree can reflect the anti-noise
ability of a given model. The smaller the change degree is,
the stronger the robustness of the model becomes.
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(a) Wdbc dataset
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(b) Ionos dataset
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(c) Sonar dataset
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(d) Cleve dataset
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(e) WBC dataset
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(f) Appendicitis dataset
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(g) German dataset
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(h) Breast dataset
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(i) Vote dataset
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(j) Wine dataset

Fig. 1: Robustness test on UCI data sets

TABLE II: The average change degree of positive region on
UCI datasets (%)

Data sets FBC CMFRS CVPFRS FRSFN FBCMG

Wdbc 0.821 0.796 0.309 1.448 0.308
Ionos 1.721 1.358 0.904 0.758 0.045
Sonar 1.570 2.601 1.006 2.396 0.231
Cleve 6.501 8.278 6.410 7.232 5.614
WBC 1.759 2.381 1.431 2.251 2.383

Appendicitis 1.867 1.564 0.413 2.707 0.240
German 5.782 12.707 4.611 5.986 6.579
Breast 5.795 7.585 3.008 6.939 2.529
Vote 0.191 2.214 0.150 0.148 1.047
Wine 0.920 1.129 0.856 1.523 0.640

We compare the proposed model (FBCMG) with some
state-of-the-art fuzzy covering based rough set models, which
have been discussed in Section III (A). These models include
fuzzy β covering based rough sets (FBC) [43], covering based
multigranulation fuzzy rough sets (CMFRS) [47], covering
based variable precision fuzzy rough sets (CVPFRS) [49],
and fuzzy rough sets with fuzzy neighborhood (FRSFN) [50].
These models are all constructed on the basis of fuzzy β neigh-
borhood. In the experiment, we set the parameter β = 0.75.
In multigranulation rough sets, one granularity may have one
or more attributes. In order to simulate the multigranulation
scene, each granularity is composed of two attributes. If the
number of condition attributes cannot be divisible by 2, the
last attribute constitutes a granularity.

The noise level n is set to vary from 1 to 30 with a step of
1. Fig. 1 shows the variation curve of error index on different
data sets. All values are the mean of ten repeated runs. The
X-aixs shows the noise level n, and the error is indicated in
Y-axis. Accordingly, the less the curve varies is, the better
the robustness becomes. It is clear that FBCMG outperforms
the other three models for most cases. In particular, FBCMG
performs remarkably better for Ionos, Sonar and Appendicitis
datasets.

Table II presents the average change degree of positive
region, where the data in bold means the minimum of change
degree. Out of the total ten datasets, FBCMG achieves the
lowest change degree in 7 cases, CVPFRS and FRSFN attain it
for 2 cases and 1 case, respectively. It is clear that the FBCMG
is more robust against noise than the other three models.

One of the advantages of multigranulation data analysis lies
in its ability to characterize knowledge at different granularity
levels. To reflect the influence of knowledge at different
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(a) DLBCLTumor dataset
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(b) DLBCLOutcome dataset
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(c) ColonTumor dataset
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(d) AMLALL-Total dataset
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(e) DLBCLStanford dataset
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(f) NervousSystem dataset

Fig. 2: Robustness test on high-dimension data sets with
different granularity

granularity on the robustness, we construct granularity with
different sizes for high-dimensional datasets. Suppose that the
number of attributes in each granularity is gm, we set gm to
a value between 10 to 50 in a step of 10. Fig. 2 shows the
varied curve of positive region under different granularity. We
can choose the appropriate granularity level based on these
figures. Table III lists the average change degree of positive
region with four different models. For the total six datasets,
FBCMG obtains the lowest change degree in 5 cases. This
shows that our model is more robust for high dimensional
data sets which are more sensitive to attribute noise.

TABLE III: The average change degree of positive region on
high-dimension datasets (%)

Data sets FBC CMFRS CVPFRS FRSFN FBCMG
(gm=50)

DLBCLTumor 0.612 1.073 0.026 0.902 0.165
DLBCLOutcome 0.095 1.039 0.086 0.609 0.075

ColonTumor 0.892 1.263 0.865 1.852 0.832
AMLALL-Total 0.001 0.001 0.00 0.019 0.00

DLBCL-Stanford 0.182 0.00 0.173 0.501 0.00
NervousSystem 0.583 1.435 0.577 0.783 0.229

B. Effect of covering neighborhood parameter β

We know the size of fuzzy β neighborhood is closely
related to the size of β. Different β means that the data
can be observed from different granularity levels. In order to
discuss the influence of different parameters on classification
performance, the notion of reduction rate is given.

Definition 13. Let β ∈ (0, 1], the reduction rate of FBCMG
with respect to β is denoted by

rateβ = 1−
∣∣Cβ∣∣
|C|

,

where |C| and
∣∣Cβ∣∣ are the number of all features and

the number of selected features under a given β, respectively.
Obviously, a higher reduction rate means fewer features are
selected.

It is well known that the size of selected feature sub-
sets and classification accuracy are two important aspects to
evaluate the reduction quality of feature selection models.
Therefore, it is necessary to select appropriate value of β to
obtain the optimal reduction performance. In the experiment,
to simulate the multigranulation scene, each granularity is
composed of two attributes. The feature subset and reduction
rate of FBCMG model under different parameters are first
obtained. The classification accuracy on the reduced data is
then computed by 10-fold cross validation under KNN, CART
and NBC.

TABLE IV: The optimal value of β with different classifiers

Data sets KNN CART NBC

Wdbc 0.5 0.5 0.75
Ionos 0.5 0.9 0.6
Sonar 0.75 0.7 0.65
Cleve 0.75 0.75 0.80
WBC 0.95 0.8 0.90

Appendicitis 0.85 0.8 0.85
German 0.6 0.7 0.65
Breast 0.6 0.5 0.95
Vote 0.85 0.55 0.65
Wine 0.95 0.85 0.6

DLBCLTumor 0.9 0.95 0.7
DLBCLOutcome 1 0.85 0.9

ColonTumor 0.6 0.5 0.55
AMLALL-Total 1 0.55 1

DLBCL-Stanford 1 0.7 0.65
NervousSystem 0.75 0.7 0.95

For FBCMG, β is set to a value between 0.5 and 1 with
a step of 0.05. The changes of classification accuracy and
reduction rate are shown in Fig. 3, where, the x-axis shows
different values of β, and the left and right y-axis, indicate the
classification accuracy and reduction rate, respectively. We can
find an optimal parameter for each dataset in Fig. 3. Table IV
lists the optimal β of different datasets when FBCMG attains
the highest classification accuracy.

For example, Fig. 3 (a) shows the classification accuracy
of Wdbc dataset under different classifiers, and the value of
β can be set as 0.5, 0.5, 0.75 under KNN, CART and NBC,
respectively. From Fig. 3 (b), the classification accuracy varies
with the increase of β, and it can achieve the highest accuracy
for Ionos dataset when β is set to 0.5, 0.9, 0.6 under KNN,
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(a) Wdbc dataset
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(b) Ionos dataset
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(c) Sonar dataset
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(d) Cleve dataset
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(e) WBC dataset
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(f) Appendicitis dataset
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(g) German dataset
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(h) Breast dataset
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(i) Vote dataset

0.5 0.6 0.7 0.8 0.9 1

 

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

d
u

c
ti
o

n
 r

a
te

KNN

CART

NBC

Reduction rate

(j) Wine dataset
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(k) DLBCLTumor dataset
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(l) DLBCLOutcome dataset
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(m) ColonTumor dataset

0.5 0.6 0.7 0.8 0.9 1

 

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

d
u

c
ti
o

n
 r

a
te

KNN

CART

NBC

Reduction rate

(n) AMLALL-Total dataset
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(o) DLBCLStanford dataset
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(p) NervousSystem dataset

Fig. 3: The classification accuracy varying with β

CART and NBC, respectively. For FBCMG, all the results in
the following tables of Section V(C) were obtained with the
optimal parameters shown in Table IV.

C. Classification results of different models

In this subsection, we compare the FBCMG model with
several popular feature selection methods, including (1) multi-
granulation entropy based feature selection (MGEFS) [54];
(2) Covering based optimistic multigranulation fuzzy rough
sets (CMFRS) [47]; (3) Fitting model with fuzzy rough sets
(FMFRS) [55].

Firstly, the size of feature subsets obtained by the four
models on each dataset is compared. Table V shows the
number of selected features by different models. The average

dimensionality reduction of FBCMG reaches 62.3% for the
first ten UCI datasets, and 99.6% for the other six high
dimensional gene datasets. On the whole, the average number
of attributes selected by FBCMG under different classifiers are
fewer than those of CMFRS and FMFRS model, and slightly
inferior to MGEFS. Table VI lists the optimal feature subset
of FBCMG with three classifiers.

In the following, we compare the classification performance
of FBCMG with MGEFS, CMFRS, and FMFRS. Following
the models and experiments designed in [47],[54],[55], the
average and variance of classification accuracy on KNN,
CART and NBC classifiers are shown in Table VII to Table
IX, respectively. From table V, it can be seen that the fea-
tures selected by different models are quite different. From
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TABLE V: The average sizes of selected feature subsets

Data sets Raw data MGEFS CMFRS FMFRS FBCMG

KNN CART NBC

Wdbc 30 2 14 4 12 12 8
Ionos 30 30 10 1 2 4 4
Sonar 60 37 23 8 18 14 16
Cleve 13 3 4 8 10 10 10
WBC 9 4 5 5 8 8 8

Appendicitis 7 6 3 2 4 4 4
German 24 5 4 17 10 10 10
Breast 9 8 5 5 4 2 4
Vote 16 9 4 9 8 10 10
Wine 13 3 7 8 9 7 9

DLBCLTumor 7129 8 75 26 20 18 14
DLBCLOutcome 7129 8 65 34 28 32 34

ColonTumor 2000 7 51 24 14 10 14
AMLALL-Total 7129 21 69 30 28 18 28

DLBCL-Stanford 4026 3 48 15 14 8 10
NervousSystem 7229 7 66 20 20 22 32

Average 2178.3 10.1 28.3 13.5 13.1 11.8 13.4

Table VII to Table IX, we further analyze the differences in
classification accuracy. It is clear that the classification perfor-
mance of FBCMG outperforms that of other three models on
most of datasets. In total 48 instances, FBCMG achieves the
highest accuracy 30 times, FMFRS 11 times, CMFRS 4 times
and MGEFS 4 times. Furthermore, the average accuracy of
FBCMG is the highest under different classifiers. Compared
with raw data, the average accuracy has been greatly improved,
by 6.4% for KNN, 5.4% for CART , and 6.9% for NBC.

Although MGEFS select few features for some datasets,
the accuracy of MGEFS is far inferior to other models. Some
important features may be deleted in the reduction process,
which leads to the decrease of classification accuracy.

As we know, no model can always better than the others
for different learning tasks. In general, our model can reduce
redundant features and perform better than other three models
for most of datasets.

D. Statistical Analysis

In this subsection, two hypothesis tests i.e., Friedman test
[56] and Bonferoni-Dunn test [57] are used to systematically
explore the classification performance of different algorithms.
For Friedman test, the statistics are expressed as:

FF =
(N−1)χ2

F

N(k−1)−χ2
F

and χ2
F = 12N

k(k+1)

(
k∑
i=1

R2
i −

k(k+1)2

4

)
,

where k and N are the number of algorithms and datasets,
respectively; Ri denotes the mean rank of a given algorithm
in all datasets; and FF follows a Fisher distribution with F (k−
1, k − 1(N − 1)) freedom degrees.

TABLE X: Statistical test of four models with three classifiers

Classifiers
Average ranking

MGEFS CMFRS FMFRS FBCMG χ2
F FF

KNN 3.38 2.88 2.38 1.38 21 11.67
CART 3.13 3.06 2.19 1.63 15.07 6.87
NBC 3.44 2.81 2.22 1.53 19.14 9.95

Following the steps of statistical test in [56], we can obtain
the mean ranking of each algorithm by averaging the ranking
in all datasets. For a given datasets, the best ranking with the
highest accuracy is set as 1, and the second ranking is set as
2, and so on. Then we can compute the values of χ2

F and
FF . Table X lists the mean ranking of four algorithms and the
values of χ2

F and FF under three classifiers. At level α = 0.1,
the critical value of F (3, 45) is 2.21. From Tale X, we can see
that the values of FF under KNN, CART and NBC classifiers
are all larger than F (3, 45). According to Friedman test, the
null hypotheses are rejected, and the classification performance
of four algorithms are clearly different under KNN, CART and
NBC classifiers, respectively.

Therefore, the corresponding post-hoc tests, i.e., Bonferroni-
Dunn test is employed to explore the differences of the
four algorithms. In Bonferroni-Dunn test, the critical value
is described as
CDα = qα

√
k(k+1)

6N .

If the distance of mean ranking between two algorithms is
larger than the critical value CDα, then there is significant
differences in the performance of the two algorithms. To
intuitively exhibit these differences, a special graph with the
critical value is used to connect these algorithms. If there is
a link between the two algorithms, it shows that there is no
significant difference from each other.

1 2 3 4

FBCMGS
FMFRS CMFRS

MGEFS

CD

(a) KNN classifier

1 2 3 4

FBCMGS
FMFRS CMFRS

MGEFS

CD

(b) CART classifier

1 2 3 4

FBCMGS
FMFRS CMFRS

MGEFS

CD

(c) NBC classifier

Fig. 4: Accuracy comparison with four models on three
classifiers

Fig. 4 indicates the comparison of FBCMG with other three
algorithms under different classifiers, where the line at the
top indicates the critical value, and the mean ranking of each
algorithm is shown in the axis. In [57], the critical value can
be obtained that CD0.1 = 1.05 (k = 4, N = 16).

As seen in Fig. 4 (a), FBCMG performs clearly better than
MGEFS and CMFRS at level α = 0.1. At the same time,
there is no obvious difference between MGEFS, CMFRS and
FMFRS. We conclude that the classification performance of
FBCMG is better than the others. In terms of CART classifier
in Fig. 4 (b), FBCMG attains the best mean ranking, and
is significantly better than MGEFS and CMFRS since the
difference of mean ranking is larger than the critical value
1.05. Similarly, as shown in Fig. 4 (c) on NBC classifier,
FBCMG outperforms MGEFS and CMFRS, and is similar to
FMFRS.

To sum up, FBCMG surpasses the other three algorithms
as the whole under the results of the Friedman test and
Bonferroni-Dunn test.
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TABLE VI: The optimal feature subset of FBCMG with three classifiers

Data sets KNN (K=10) CART NBC

Wdbc 27 28 21 22 25 26 9 10 23 24 15 16 27 28 21 22 25 26 9 10 23 24 15 16 27 28 1 2 7 8 21 22
Ionos 25 26 17 18 25 26 25 26 29 30
Sonar 35 36 9 10 15 16 25 26 49 50 11 12 31 32

13 14 5 6
35 36 15 16 45 46 11 12 31 32 49 50 37 38 35 36 11 12 15 16 49 50 31 32 37 38 53 54

33 34
Cleve 3 4 9 10 1 2 11 12 7 8 3 4 9 10 1 2 11 12 7 8 3 4 9 10 7 8 11 12 1 2
WBC 1 2 5 6 3 4 7 8 1 2 5 6 3 4 7 8 1 2 5 6 3 4 7 8

Appendicitis 5 6 3 4 5 6 3 4 5 6 3 4
German 9 10 1 2 3 4 17 18 5 6 3 4 9 10 1 2 5 6 17 18 9 10 3 4 5 6 17 18 1 2
Breast 5 6 3 4 5 6 5 6 7 8
Vote 3 4 11 12 15 16 5 6 3 4 11 12 15 16 5 6 9 10 3 4 11 12 15 16 5 6 9 10
Wine 1 2 13 7 8 11 12 9 10 1 2 13 9 10 7 8 7 8 9 10 1 2 13 11 12

DLBCLTumor 1091 1092 6179 6180 5997 5998 4027 4028
6757 6758 1173 1174 5533 5534 4077 4078
4929 4930

5881 5882 5997 5998 4027 4028 2481 2482
4023 4024 6757 6758 4077 4078 5533 5534
6377 6378

1091 1092 4027 4028 6179 6180 6757 6758
4023 4024 5997 5998 1173 1174

DLBCLOutcome 1323 1324 1395 1396 2139 2140 5463 5464
39 40 4269 4270 1737 1738 405 406 49 50
6705 6706 2257 2258 5847 5848 6013 6014
3271 3272

6641 6642 1395 1396 5993 5994 5847 5848
39 40 49 50 4269 4270 6825 6826 2029 2030
2257 2258 749 750 3271 3272 989 990 1053
1054 4111 4112 2011 2012

5463 5464 749 750 1395 1396 5847 5848
4269 4270 39 40 6825 6826 2029 2030 49
50 2257 2258 6631 6632 989 990 2011 2012
1053 1054 4111 4112 6303 6304 5809 5810

ColonTumor 43 44 1771 1772 493 494 1247 1248 1671
1672 1221 1222 1339 1340

1891 1892 1771 1772 493 494 125 126 467
468

43 44 1891 1892 1771 1772 493 494 639 640
1671 1672 1221 1222

NAMLALL-Total 757 758 4049 4050 1881 1882 5171 5172
2013 2014 2401 2402 683 684 51 52 1779
1780 1809 1810 6277 6278 1669 1670 4679
4680 1685 1686

757 758 1881 1882 4049 4050 1685 1686
1779 1780 4679 4680 2401 2402 6277 6278
2013 2014

757 758 4049 4050 1881 1882 5171 5172
2013 2014 2401 2402 683 684 51 52 1779
1780 1809 1810 6277 6278 1669 1670 4679
4680 1685 1686

DLBCL-Stanford 1275 1276 3861 3862 1317 1318 1281 1282
75 76 3085 3086 3313 3314

1275 1276 2463 2464 2439 2440 1205 1206 1281 1282 1317 1318 3861 3862 75 76 1205
1206

NervousSystem 4587 4588 1477 1478 5977 5978 6679 6680
1053 1054 4605 4606 1807 1808 3041 3042
4649 4650 2757 2758

4587 4588 1477 1478 5977 5978 1053 1054
4605 4606 3041 3042 6679 6680 6135 6136
4649 4650 5847 5848 4941 4942

1477 1478 3185 3186 5977 5978 1047 1048
1053 1054 653 654 3041 3042 6077 6078
5847 5848 3239 3240 2495 2496 4605 4606
599 600 3651 3652 4889 4890 6411 6412

TABLE VII: Comparison of classification accuracies of reduced data with KNN (K=10) (%)

Data Sets Raw data MGEFS CMFRS FMFRS FBCMG
Wdbc 96.81±2.42 92.72±3.23 94.30±3.32 94.21±2.53 96.82±2.16
Ionos 89.18±1.13 89.20±1.36 89.18±1.25 89.84±4.22 90.20±4.73
Sonar 74.29±9.51 69.82±9.64 78.43±8.80 79.47±8.76 79.49±8.29
Cleve 78.74±7.73 57.00±8.68 73.59±7.23 79.25±7.07 79.51±8.01
WBC 96.69±2.05 96.58±2.42 95.59±2.16 96.62±2.31 97.16±1.97

Appendicitis 86.75±8.63 87.45±9.15 86.28±8.60 84.77±8.59 87.32±8.07
German 71.18±3.51 70.02±2.73 72.55±3.45 71.26±2.86 76.06±3.25
Breast 72.75±6.11 75.43±5.80 70.65±6.65 73.13±6.89 75.21±5.74
Vote 92.39±3.89 92.42±3.75 94.14±3.01 91.85±3.78 94.53±3.24
Wine 96.56±3.99 90.70±6.87 90.79±6.58 97.01±3.78 97.12±3.99

DLBCLTumor 85.14±8.70 87.09±12.45 93.32±9.06 96.71±5.66 94.32±8.66
DLBCLOutcome 54.48±21.22 56.60±13.87 56.13±18.42 64.61±18.68 65.83±16.69

ColonTumor 72.67±11.10 63.98±15.05 80.57±15.85 79.76±13.44 81.64±16.48
AMLALL-Total 79.73±11.78 60.85±12.34 99.43±1.51 94.76±7.71 98.89±3.50
DLBCLStanford 75.12±18.79 91.35±13.62 94.47±10.13 98.05±5.70 97.92±6.21
NervousSystem 60.79±19.90 58.30±21.15 66.96±17.69 81.11±14.63 74.51±16.25

Average 80.20±8.78 77.47±8.88 83.52±7.73 85.78±7.29 86.66±7.33

TABLE VIII: Comparison of classification accuracies of reduced data with CART (%)

Data Sets Raw data MGEFS CMFRS FMFRS FBCMG
Wdbc 93.12±3.57 90.68±3.71 91.49±3.30 93.23±3.40 94.47±2.99
Ionos 88.89±4.63 88.86±4.59 88.29±4.64 88.69±4.24 91.74±4.49
Sonar 71.52±8.41 73.61±9.54 71.26±10.20 75.09±9.60 77.73±10.29
Cleve 75.79±6.69 53.86±8.46 64.36±8.30 79.36±6.38 76.96±6.77
WBC 95.04±2.37 95.37±2.33 94.41±2.63 95.65±2.37 95.05±2.29

Appendicitis 82.64±9.81 82.84±10.33 82.61±9.89 76.51±11.39 83.02±9.12
German 70.63±4.94 65.05±4.37 67.84±4.36 70.59±4.25 71.28±3.85
Breast 66.29±8.54 68.05±7.59 66.82±6.88 73.76±7.20 76.53±5.79
Vote 95.01±3.55 95.84±3.59 95.36±3.08 93.75±3.56 95.28±3.05
Wine 90.16±6.20 86.97±8.28 91.04±6.31 91.13±6.38 91.92±6.15

DLBCLTumor 85.18±11.41 84.89±13.31 87.38±12.09 90.65±9.54 86.58±11.19
DLBCLOutcome 53.21±18.83 60.88±18.10 70.05±22.93 66.30±19.10 65.70±18.98

ColonTumor 74.62±15.97 67.50±15.38 74.79±16.88 75.19±15.47 84.31±13.20
AMLALL-Total 83.61±11.16 63.47±14.87 87.03±8.98 92.83±8.63 92.77±8.44
DLBCLStanford 78.07±18.17 88.53±15.20 86.35±14.80 84.95±15.26 92.73±11.65
NervousSystem 57.21±16.83 71.45±17.00 61.20±19.77 72.22±20.46 72.25±19.12

Average 78.81±9.44 77.37±9.79 80.02±9.69 82.49±9.20 84.27±8.59
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TABLE IX: Comparison of classification accuracies of reduced data with NBC (%)

Data Sets Raw data MGEFS CMFRS FMFRS FBCMG
Wdbc 93.46±3.11 90.84±3.57 90.91±3.27 93.49±2.97 94.92±3.18
Ionos 85.45±6.81 85.57±6.33 86.15±6.03 89.07±1.37 91.29±4.20
Sonar 67.58±10.00 74.60±10.07 68.22±10.67 74.05±8.44 74.00±9.14
Cleve 81.09±6.59 60.20±8.67 70.03±7.43 80.84±6.64 82.22±7.85
WBC 96.15±2.15 95.86±2.54 95.43±2.22 96.05±2.30 96.55±2.00

Appendicitis 85.30±10.67 87.10±9.35 88.29±8.57 84.88±9.15 86.89±8.90
German 72.75±3.79 71.15±2.93 71.96±3.56 72.82±4.23 75.36±4.19
Breast 72.76±8.14 72.63±6.79 72.33±7.63 73.05±8.19 72.95±6.87
Vote 93.98±3.49 93.68±3.91 94.55±3.13 93.52±3.51 94.75±3.19
Wine 96.84±3.81 90.16±7.23 92.71±6.30 96.92±4.29 95.78±5.01

DLBCLTumor 80.66±13.43 87.30±12.28 87.62±12.38 91.94±9.40 94.31±8.168
DLBCLOutcome 44.17±19.13 61.53±17.90 63.00±17.67 58.30±22.94 74.67±17.94

ColonTumor 57.48±17.17 57.38±18.57 79.33±16.80 88.36±14.00 85.93±14.50
AMLALL-Total 98.48±4.25 62.45±10.71 99.88±0.40 100.00±0.00 100.00±0.00
DLBCLStanford 94.32±10.94 92.75±13.36 96.07±8.85 97.78±7.01 98.22±5.64
NervousSystem 64.24±20.16 60.34±19.77 82.00±14.31 73.16±17.41 78.10±15.89

Average 80.29±8.98 77.72±9.62 83.66±8.08 85.26±7.62 87.25±7.29

VI. CONCLUSION

Fuzzy β covering is an important means that enables
researchers to analyze data in a more general manner. MGRS
has been proved to be a powerful tool for characterizing the
uncertainty information of knowledge at different granularity
levels. In this paper, a novel fitting model for feature selection
has been introduced by combining fuzzy β covering and
MGRS. On the one hand, this new model ensures the inclusion
relationship between the upper and lower approximations, so
as to better fit the real data. On the other hand, it can reduce
the influence of noisy data and select features in a more robust
way. The optimistic fuzzy dependency function is employed
as the importance evaluation index of a given fuzzy covering,
and the data reduction of fuzzy decision tables is carried
out from the perspective of maintaining the discrimination
power of the whole fuzzy covering family. Three groups of
experiments are used to verify the validity and feasibility
of the proposed model. The experimental results show that:
(1) Compared with four state-of-the-art fuzzy β covering
based rough set models, FBCMG is more robust against data
noise. (2) FBCMG performs better than some classical feature
selection algorithms in terms of classification accuracy and the
size of selected feature subset.

However, some problems need to be further investigated.
For example, for FBCMG, the lower approximation is used to
construct the dependency function, so as to evaluate the classi-
fication ability of feature subsets. How to make full use of the
classification information implied in the upper approximation
will be an interesting work. Moreover, the proposed model can
not fully balance the classification accuracy and the number
of selected features for all datasets. We will investigate a more
optimal balance algorithm in the future work.
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