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Abstract— Regression-based methods have been widely applied
in face identification, which attempts to approximately represent
a query sample as a linear combination of all training samples.
Recently, a matrix regression model based on nuclear norm
has been proposed and shown strong robustness to structural
noises. However, it may ignore two important issues: the label
information and local relationship of data. In this article, a novel
robust representation method called locality-constrained discrim-
inative matrix regression (LDMR) is proposed, which takes
label information and locality structure into account. Instead
of focusing on the representation coefficients, LDMR directly
imposes constraints on representation components by fully con-
sidering the label information, which has a closer connection
to identification process. The locality structure characterized by
subspace distances is used to learn class weights, and the correct
class is forced to make more contribution to representation.
Furthermore, the class weights are also incorporated into a
competitive constraint on the representation components, which
reduces the pairwise correlations between different classes and
enhances the competitive relationships among all classes. An iter-
ative optimization algorithm is presented to solve LDMR. Exper-
iments on several benchmark data sets demonstrate that LDMR
outperforms some state-of-the-art regression-based methods.

Index Terms— Class competitions, locality constraints, matrix
regression, robust face identification (FI).

I. INTRODUCTION

FACE identification (FI) is one of the most intensively
investigated topics for researchers in the fields of pattern

recognition and computer vision. In the past 20 years, we have
witnessed emerging FI methods, including subspace analy-
sis methods [1]–[3], regression-based methods [4]–[6], and
convolutional neural network (CNN)-based methods [7]–[13].
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The CNN-based methods have recently captured much atten-
tion [14]–[16], and many successful deep CNNs are proposed
for face recognition, such as FaceNet [7], CosFace [8], and
ArcFace [9]–[11]. However, deep learning methods generally
require a large amount of training data and high computational
power. Besides, the unclear theoretical understanding of deep
learning models makes it difficult to determine the optimal
architecture and optimization algorithm. The subspace analysis
methods can learn discriminative information in data, but they
are incapable to well deal with the complex variations in
images such as facial occlusions [3], which are commonplace
in epidemic.

Recently, regression-based approaches attracted much
interests due to the mathematically interpretability and great
success in FI [17]–[21], image processing [22], visual track-
ing [23], and so on. Regression-based methods on FI assume
that a query sample can be approximately represented by a
linear combination of all training samples, and it is clas-
sified into the class that yields the minimal reconstruction
residual. Wright et al. [18] presented a sparse representation
classification (SRC) method. SRC aims at using a sparse
linear combination of all training samples to represent the
query sample. The �1-norm regularizer is applied in SRC to
achieve the sparsity of representation coefficients and sparsity
models attracted broad interests [24], [25]. Zhang et al. [20]
believed that the underlying reason, which truly improves
the recognition performance, is the collaboration between
classes rather than sparsity. They proposed a collaborative
representation classifier (CRC) using an �2-norm regularizer,
which achieved much lower computational costs than SRC.
To further improve the robustness to noises and occlusions,
Naseem et al. [26] and Cai et al. [27] proposed robust linear
regression classification (RLRC) and robust collaborative rep-
resentation classification (RCRC), which are the extensions
of LRC and CRC, respectively. Xu et al. [28] presented a
two-phase test sample representation (TPTSR) method for
face recognition. TPTSR performs twice linear representation
for FI, which selects some neighbors of test sample in the
first phase and performs identification using these neigh-
bors. To alleviate the influence of outlier features or pixels,
Yang et al. [29] proposed a novel regularized robust cod-
ing (RRC) method by introducing adaptive and iterative pixel
weights learning mechanism. Cai et al. [27] presented a prob-
abilistic CRC (ProCRC) based on the maximum likelihood of
each class.
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It should be noted that all these abovementioned methods
belong to the 1-D regression model, which measures the
representation error in vector. They have a common underlying
assumption that the pixelwise errors are independent [30], [31].
However, the true distribution of representation error is much
sophisticated in real world. Yang et al. [30] preserved the 2-D
structure of error image and proposed a nuclear norm-based
matrix regression (NMR) method. Based on the observa-
tion that the error caused by contiguous noises is generally
low-rank or approximately low-rank, NMR uses the nuclear
norm as loss metric, which has shown robustness and effi-
ciency for FI, especially to structural noises. Based on NMR,
Luo et al. [32] took the sparse and low-rank structure of
representation error into account simultaneously to handle the
mixed noises. In [33] and [34], different nonconvex relaxations
of the rank minimization problem are used to describe the
low-rank structure of error image. However, NMR may have
two disadvantages: the important label information is not
utilized, and the locality structure of data is ignored, which
are two important issues in FI.

Many researchers tried to search approaches to exploit
the label information and local structure to improve the
FI performance. In [35]–[38], group sparse representation
methods are proposed to utilize the label information of
training samples and enforce the sparsity of representation
coefficients at the group level. Lai and Jiang [38] focused on
the interclass sparsity of coefficients and proposed a classwise
sparse classifier (CSC). Wang et al. [39] proposed a hierarchal
images classification method, called locality-constrained linear
coding (LLC) by using the distance information between data.
Fan et al. [40] determined the weights of training sam-
ples by the Euclidean distance from query sample to all
training samples and presented a weighted SRC (WSRC)
method. Similarly, many other research works use the prior
knowledge of distance information to characterize the locality
structure of data, such as weighted CRC (WCRC) [41],
locality-constrained least-squares regression [42], and so
on [43]–[45]. All these locality involved approaches use
the prior knowledge, which is derived from the nearest
neighbor (NN) method, to learn the locality constraints.
Peng et al. [46] proposed a locality-constrained collaborative
representation for image classification. It is based on the
observation that samples and their neighbors have similar
codes and also use the distance information. Wen et al. [47]
imposed an adaptive weighted constraint upon representa-
tion error to select important features in representation.
Zheng et al. [37] proposed an Iterative Re-constrained Group
Sparse Classifier (IRGSC), which combines the locality struc-
ture of data and features selection mechanism. These research
works demonstrate that the label information and locality
constraints generally improve the FI performance.

In this work, we take the label information, locality structure
of samples, and class competition into account simultane-
ously and propose a locality-constrained discriminative matrix
regression (LDMR) method to deal with structural noises in
face images, such as masks, sunglasses, and scarves occlusion.
Instead of regularizing on the representation coefficients [36],
[39], [40], [42], LDMR directly constrains the classwise

representation components, which has a closer connection to
the identification process. The locality structure is charac-
terized by the distances between test sample and subspaces
spanned by multiclass training samples. Different classes are
assigned with different weights, and the training samples in
the same class are treated equally. This mechanism enforces
the representation model to pay more attention to interclass
difference and less sensitive to outliers. To further improve
the discrimination of representation, a weighted pairwise class
competition term is incorporated into LDMR, which reduces
the correlations and enhances the competitions among all
classes. The main contributions of this article are summarized
as follows.

1) LDMR directly constrains the representation compo-
nents instead of representation coefficients by fully
considering the label information, which bridges the
representation and identification phases. The locality
structure of data characterized by the distances between
test sample and different classes is utilized to learn more
discriminative representation.

2) To further improve the discrimination of representation,
a weighted pairwise class competitive constraint is incor-
porated into LDMR. This constraint has an impact on
all pairs of classes, which reduces the correlations and
enhances the competitions among all classes.

3) An iterative optimization based on alternating direction
method of multipliers (ADMM) framework is presented
to solve the LDMR model efficiently. Extensive experi-
ments are performed on several popular face data sets to
demonstrate the effectiveness and robustness of LDMR
compared with some state-of-the-art regression-based
methods.

The rest of this article is organized as follows. Section II
introduces the linear representation-based models and NMR
method briefly. Section III illustrates our proposed method in
detail. Section IV reports the experiment results and analysis.
Section V concludes this article.

II. REGRESSION-BASED MODELS

In this section, we recall the linear representation-based
models and NMR model in brief, which are the most-related
foundations of our work.

A. Linear Representation-Based Models

Given a training data matrix D ∈ Rm×n with n samples
and a query sample y ∈ Rm . Denote x ∈ Rn as the
target representation vector. The basic framework of linear
representation-based models can be unified as follows:

min
x

�y − Dx�2
2 + α�x�p

p (1)

where α is a balance parameter and p = 1, 2 in SRC [18]
and CRC [20], respectively. Problem (1) with p = 1 is called
Lasso regression [48] and Ridge regression with p = 2 [30].
Solving the Lasso regression is not easy and time-
consuming [18], whereas Ridge regression be solved effi-
ciently by a closed-form solution.
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Based on the basic framework (1), sample weights learning,
also called locality constraints, and feature weights learning
are introduced to learn more discriminative representation.
Generally, these models can be described as

min
x

�s � (y − Dx)�q
q + α�w � x�p

p (2)

where � denotes the elementwise product. Vector s and
w can be induced from prior knowledge, which use the locality
structure of data to learn a discriminative representation vector.
When s = w = 1, problem (2) is degraded to SRC with
p = 1 and CRC with p = 2. In WSRC [40], s = 1 and
w is determined by the distances from test sample to all
training samples, which encourages the neighbors to contribute
more to representation. In [29], RRC adaptively learns the
feature weights s to improve the role of important features and
eliminate the influence of outliers. IRGSC combines iterative
sample weights learning and feature weights learning together
to learns a more flexible s [37].

B. Nuclear Norm-Based Matrix Regression

Different from the 1-D linear representation methods that
measure the regression error in vector, NMR directly estimates
the 2-D error matrix [30]. Given a set of training image
matrices, B = {B1, B2, . . . , Bc} from c classes and a query
image matrix Y ∈ Ru×v , where Bi denotes the training samples
of the i th class. Bi j ∈ Ru×v is the j th image matrix of
class i . The i th class contains ni training samples, and the
total number of training samples is n = �c

i=1 ni . NMR also
assumes that the query sample Y can be linearly represented
by all training samples, i.e.,

Y = B1(x1) + B2(x2) + · · · + Bc(xc) + E (3)

where E ∈ Ru×v is an error matrix, Bi (xi) is the representation
component of the i th class, i.e.,

Bi(xi) = xi1Bi1 + xi2Bi2 + · · · + xini Bini . (4)

Let x = [x1, x2, . . . , xc]T denote the representation vector
with xi = (xi1, xi2, . . . , xini ). Equation (3) can be compactly
expressed as:

Y = B(x) + E. (5)

Focusing on the low-rank information of error matrix E,
NMR solves the following rank function minimization prob-
lem [30]:

min
x

rank(E) s.t. E = Y − B(x). (6)

Since problem (6) is NP-hard, it is relaxed to the following
tractable formulation:

min
x

�E�∗ + α�x�p
p s.t. E = Y − B(x). (7)

In problem (7), nuclear norm is used to estimate the
regression error to capture its low-rank characteristics. For the
convenience of derivation, let D = [Vec(B11), Vec(B12), . . . ,
Vec(Bcnc )] ∈ R

(uv)×n , where Vec(·) is an operator that
stretches a matrix to vector, and y = Vec(Y) ∈ R

(uv)×1.
The representation result B(x) can be transformed into vector

Fig. 1. (a) Representation coefficients and (b) representation components
of SRC. (c) Representation coefficients and (d) representation components
of CRC. The red marker in (b) and (d) correspond to the correct class.

form Dx, i.e., Dx = Vec(B(x)). NMR model (7) can be unified
as follows:

min
x

�Mat(y − Dx)�∗ + α�x�p
p (8)

where Mat(·) is an operator that converts a vector into matrix,
i.e., the inverse operator of Vec(·). In problem (8), p = 1
and p = 2 correspond to NMR_L1 [31] and NMR [30],
respectively.

III. PROPOSED METHOD

In this section, we present the formulation, optimization,
and discussions about convergence and complexity issues of
our proposed LDMR method in detail.

A. Formulation

Although those regression methods mentioned earlier are
various in representation learning, they all use class-specific
representation losses, i.e., {Loss(y − Di xi)}c

i=1, where Di and
xi denote the training matrix and coefficients of the i th class
respectively, to predict the label of test sample y. From the
view of classification, it is expected that Loss(y − Dkxk) can
be small, whereas {Loss(y − Di xi)}c

i=1,i �=k can be as large
as possible if the ground-truth label of y is k. In linear
representation methods, the test sample y is collaboratively
represented as y ≈ Dx. Most existing approaches focus on the
coefficients x, and various regularization terms are designed to
learn discriminative representation. Actually, compared with
representation coefficients x, the representation components
{Di xi}c

i=1 have a direct connection with final identification
process. For example, Fig. 1 shows the representation coef-
ficients and components of SRC and CRC when a given test
sample is identified correctly. �2-norm is used to measure
the representation components. It can be clearly seen that the
correct class takes most responsibility for final representation
result, whereas other irrelevant classes make little contribution.
Thus, it is reasonable to penalize the representation compo-
nents of irrelevant classes (i.e., {D j x j} j �=k). However, the class
information k is unknown. Under this observation, all the
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representation components are penalized here. The preliminary
objective function of LDMR can be described as follows:

min
x

�Mat(y − Dx)�∗ + α

2

c�
i=1

�Di xi�2
2. (9)

In (9), we adopt nuclear norm to measure representation losses
and penalize all c representation components, which directly
bridges representation and classification.

Problem (9) treats all representation components equally,
which ignores the locality structure of data. It is known that the
samples of multiclasses lie in multiple subspaces [49]. Gen-
erally, the probability that a test sample comes from a close
subspace is higher than those far subspaces. In TPTSR [28],
linear regression is performed in advance to select the NNs.
Inspired by this issue, we first solve the following problem:

x̂ = arg min
x

�y − Dx�2
2 = (DT D)−1DT y. (10)

If DT D is singular, we can solve x by (DT D + λI)−1DT y,
where λ is a small positive constant and I is an identity matrix.
To reveal the local structure of test sample, we can use the
classwise representation errors to characterize the distances
between y and subspaces Si . The representation error of the
i th class can be computed by

ri = �y − Di x̂i�2. (11)

Then, we define the weight wi of the i th class by

wi = exp

�
dist(y, Si )

δ

�
, dist(y, Si ) = ri − rmin

rmax − rmin
(12)

where δ is a bandwidth parameter and rmin and rmax denote
the minimum and maximum of errors {ri}c

i=1, respectively.
dist(y, Si ) characterizes the distance from y to the subspace Si

spanned by training samples Di . It can be easily obtained that
dist(y, Si ) lies in the interval [0, 1].

By incorporating the class weights (12), the LDMR model
becomes

min
x

�Mat(y − Dx)�∗ + α

2

c�
i=1

wi�Di xi�2
2. (13)

In problem (13), different classes are assigned with different
prior weights. The classes that are far from test sample y
are imposed more penalization in representation. On the other
hand, problem (13) pays more attention to interclass difference
since the c representation components are directly constrained
rather than representation coefficients. The difference between
training samples in the same class is not much concerned,
which alleviates the influence of outliers. To further reduce
the correlation of different classes and improve the discrimi-
nation of representation, we integrate the pairwise competition
relationships among all classes into LDMR. The final LDMR
model can be written as follows:

min
x

�Mat(y − Dx)�∗ + α

2

c�
i=1

wi�Di xi�2
2

+β

2

c�
i=1

c�
j=1

(wi Di xi)
T (w j D j x j). (14)

Fig. 2. Framework of LDMR. LDMR directly constrains the representation
component of each class, and locality structure and pairwise class competition
are integrated to enhance the discrimination of representation.

Fig. 3. Representation components of all classes of (a) NMR and (b) LDMR.
The red marker corresponds to the correct class.

The LDMR model (14) takes the label information, locality
structure, and pairwise class competition into consideration
simultaneously. Compared with (13), the third term in (14)
impacts all pairs of classes, which enhances the competition
among them and further improves the discrimination of rep-
resentation. Fig. 2 shows the overall framework of LDMR,
which seamlessly integrate the class competitions and locality
structure into representation learning. Since NMR is closely
related to LDMR, we make a comparison between the two
methods. We select a face image from subset 4 of Extended
Yale B database for testing and subset 1 for training. Fig. 3
shows the representation components of all classes produced
by NMR and LDMR. Though both NMR and LDMR give
correct identification results, LDMR significantly depresses the
irrelevant classes and achieves more discriminative represen-
tation, which is beneficial for identification.

B. Optimization

For solving problem (14), we first introduce an auxiliary
variable e and rewrite the original problem as follows:

min
e,x

�Mat(e)�∗ + α

2

c�
i=1

wi�Di xi�2
2

+ β

2

c�
i=1

c�
j=1

(wi Di xi)
T (w j D j x j )

s.t. e = y − Dx. (15)
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Solving (15) is equivalent to solve the augmented Lagrange
function Lρ that is defined as

Lρ = �Mat(e)�∗ + α

2

c�
i=1

wi�Di xi�2
2

+ β

2

c�
i=1

c�
j=1

(wi Di xi)
T (w j D j x j)

+ zT (y − Dx − e) + ρ

2
�y − Dx − e�2

2 (16)

where z is the Lagrange multiplier vector and ρ > 0 is
a penalty factor. The augmented Lagrange function can be
minimized by solving the subproblems with respect to each
unknown variable iteratively.

Step 1 (Update e): With x and z fixed, e can be updated by
solving the following problem:

min
e

�Mat(e)�∗ + ρ

2

����y − Dx − e + 1

ρ
z

����
2

2
(17)

which is equivalent to

min
e

�Mat(e)�∗ + ρ

2

����Mat(e) − Mat(y − Dx + 1

ρ
z)

����
2

F

(18)

where � · �F is the Frobenius norm. Problem (18) has a
closed-form solution, i.e.,

Mat(ẽ) = �1/ρ(Mat(y − Dx + z/ρ)) (19)

where �1/ρ(·) is the singular value shrinkage operator [50].
Thus, the optimum of problem (17) is

ẽ = Vec(�1/ρ(G)) (20)

where G = Mat(y − Dx + z/ρ).
Step 2 (Update x): With e and z fixed, x can be updated by

solving the following problem:

min
x

α

2

c�
i=1

wi�Di xi�2
2 + ρ

2
�y − Dx − e + 1

ρ
z�2

2

+β

2

c�
i=1

c�
j=1

(wi Di xi)
T (w j D j x j). (21)

It can be easily obtained that the above objective func-
tion is convex and smooth, and therefore, we can get the
optimum by setting its derivative with respect to x to
zero.

First, for f1(x) = (ρ/2)�y − Dx − e + z/ρ�2
2, its derivative

over x can be easily computed by

∂ f1(x)/∂x = −ρDT (y − Dx − e + z/ρ). (22)

Then, we need to determine the derivative of the other two
terms in (21) with respect to x.

For f2(x) = (α/2)
�c

i=1 wi�Di xi�2
2, since it does not

explicitly contain x, we construct a diagonal matrix Hi =
diag(0, . . . , 0, 1, . . . , 1, 0, . . . , 0) ∈ R

n×n in which the ele-
ments corresponding to the i th class are 1 and others are 0.

With the help of Hi , it has �Di xi�2
2 = �DHi x�2

2, and we can
obtain the derivative of f2(x) as follows:

∂

∂x

�
α

2

c�
i=1

wi�Di xi�2
2

�
= ∂

∂x

�
α

2

c�
i=1

wi�DHi x�2
2

�

= α

c�
i=1

wi Hi DT DHi x. (23)

For f3(x) = (β/2)
�c

i=1

�c
j=1(wi Di xi)

T (w j D j x j), we first
obtain the partial derivatives ∂ f3/∂xk and then exploit all
∂ f3/∂xk (k = 1, 2, . . . , c) to achieve ∂ f3/∂x

(wi Di xi)
T (w j D j x j) = 1

2

	�wi Di xi + w j D j x j�2
2

− �wi Di xi�2
2 − �w j D j x j�2

2



. (24)

It is noted that wi Di can be merged by transforming original
data Di to weighted data Dw

i , i.e., Dw
i = wi Di and Dw

j =
w j D j . For clarity, we give the following definition on weighted
data.

Definition 1: Given a matrix A = [a1, a2, . . . , an] ∈ R
m×n

whose each column represents a training sample, the weighted
matrix Aw is defined as Aw = [aw

1 , aw
2 , . . . , aw

n ] with

aw
i = wi ai , i = 1, 2, . . . , n

where wi is the weight of the class to which ai belongs.
Based on (24) and Definition 1, we rewrite f3(x) as

f3(x)

= β

2

c�
i=1

c�
j=1

(wi Di xi )
T (w j D j x j)

= β

4

� c�
i=1
i �=k

	�Dw
i xi + Dw

k xk�2
2 − �Dw

i xi�2
2 − �Dw

k xk�2
2




+
c�

j=1
j �=k

	�Dw
k xk + Dw

j x j�2
2 − �Dw

k xk�2
2 − �Dw

j x j�2
2




+
c�

i=1
i �=k

c�
j=1
j �=k

	�Dw
i xi + Dw

j x j�2
2 − �Dw

i xi�2
2 − �Dw

j x j�2
2


�

= β

2

c�
i=1
i �=k

	�Dw
i xi + Dw

k xk�2
2 − �Dw

i xi�2
2 − �Dw

k xk�2
2




+ β

4

c�
i=1
i �=k

c�
j=1
j �=k

	�Dw
i xi + Dw

j x j�2
2 − �Dw

i xi�2
2 − �Dw

j x j�2
2



.

Since we consider the partial derivatives ∂ f3/∂xk , based on
the above equation, we can obtain

∂ f3(x)

∂xk
= ∂

∂xk

⎛
⎜⎝β

2

c�
i=1
i �=k

	�Dw
i xi + Dw

k xk�2
2 − �Dw

k xk�2
2



⎞
⎟⎠

= β

c�
i=1
i �=k

		
Dw

k


T 	
Dw

i xi + Dw
k xk


 − 	
Dw

k


T
Dw

k xk
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= β

��
c�

i=1

	
Dw

k


T
Dw

i xi

�
− 	

Dw
k


T
Dw

k xk

�

= β
	
Dw

k


T
Dwx − β

	
Dw

k


T
Dw

k xk .

Thus, the derivative of f3(x) over x is

∂ f3(x)

∂x
=

⎡
⎢⎢⎢⎢⎣

∂ f3

∂x1
...

∂ f3

∂xc

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

β
	
Dw

1


T
Dwx − β

	
Dw

1


T
Dw

1 x1
...

β
	
Dw

c


T
Dwx − β

	
Dw

c


T
Dw

c xc

⎤
⎥⎥⎦

= β(Dw)T Dwx − βMx (25)

where M =
⎛
⎜⎝

(Dw
1 )T Dw

1 . . . 0
...

. . .
...

0 · · · (Dw
c )T Dw

c

⎞
⎟⎠.

Now, we have calculated all the derivatives of the three
terms, i.e., f1(x), f2(x), and f3(x), in objective function (21)
over x. Combining Eqs. (22), (23), and (25), the derivative
over x of objective function (21) [denoted as f (·)] is

∂ f

∂x
= −ρDT (y − Dx − e + z/ρ) + α

c�
i=1

wi Hi DT DHi x

+ β(Dw)T Dwx − βMx. (26)

If ∂ f/∂x = 0, we can obtain the optimal solution x̃ for
objective function (21) as follows:

x̃ = P(y − e + z/ρ) (27)

where

P =
�

DT D + α

ρ

�
c�

i=1

wi Hi DT DHi

�

+β

ρ
((Dw)T Dw − M)

�−1

DT . (28)

Step 3 (Update z): Fix e and x, and we can update the
Lagrange multiplier vector z by

z = z + ρ(y − Dx − e). (29)

Stopping Criteria: ADMM is an iterative algorithm and it is
necessary to adopt appropriate stopping criteria. Following the
direction of [30] and [51], the convergence criteria of LDMR
can be described as follows:

�rk�2 ≤ 
pri and �sk�2 ≤ 
dual (30)

where rk and sk , respectively, represent the primal and dual
residual defined as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
rk = y − Dxk − e

sk = ρDT (ek − ek−1)


dual = √
n
abs + 
rel�DT zk�2


pri = √
pq
abs + 
rel max{�Dxk�2, �y�2, �e�2}.

With (20), (27), and (29), we can efficiently solve the
proposed LDMR model. Algorithm 1 summarizes the opti-
mization strategy for LDMR. Finally, we present a detailed
explanation to Algorithm 1. Instead of initializing x to 0 in

Algorithm 1 Algorithm for Solving LDMR
Input: Training matrix D and test sample y, parameters λ, δ,
α, β and ρ, stopping criteria parameters 
abs and 
rel .
Output: Optimal coefficients vector xk .
1: Compute x̂: x̂ = (DT D + λI)−1DT y.
2: Compute class weights {wi}c

i=1:

wi = exp(dist(y, Si )/δ), dist(y, Si ) ∝ �y − Di x̂i�,
where dist(y, Si ) is defined in equation (12).

3: Compute P:

P =
�

DT D + G + β

ρ

�
(Dw)T Dw − M

 �−1

DT ,

where G = (α/ρ)
	�c

i=1 wi Hi DT DHi


, and M =

diag[(Dw
1 )T Dw

1 , . . . , (Dw
c )T Dw

c ].
4: Initialization: x0 = x̂, e0 = y − Dx0.
5: while not converged do
6: Update e: ek+1 = Vec(� 1

ρ
(Mat(y − Dxk + zk/ρ)).

7: Update x: xk+1 = P(y − ek+1 + zk/ρ).
8: Update z: zk+1 = zk + ρ(y − Dxk+1 − ek+1).
9: k := k + 1.

10: end while
11: return xk .

some previous works [30], [31], [37], [47], we use x̂, the coef-
ficients vector of Ridge regression [i.e., (10)], as a starting
point to accelerate the convergence of Algorithm 1, which
will be illustrated in Section IV. The penalty parameter ρ is
fixed in our algorithm to achieve better efficiency. In (28),
P is fixed in iterations, and we can compute and store it in
advance. Once the optimal regression coefficients x† for a test
sample y are obtained by Algorithm 1, we use the classwise
residuals to identify y, i.e., identity(y) = arg mini (ei), where
ei = �Mat(Dx† − Di x

†
i )�∗.

C. Convergence and Computational Complexity Analysis

Problem (14) is typical nonconvex, and it is difficult to
guarantee a global optimal solution. However, a local opti-
mal solution can be obtained by using the ADMM frame-
work. The classical two-block problem can be described as
follows [51], [52]:

min
X∈�X,Y∈�Y

f (X) + g(Y) s.t. UX + VY = L (31)

where �X and �Y are the domains of X and Y, respectively,
and f (·) and g(·) are convex functions. ADMM converts
the original constrained problem (31) into its augmented
Lagrangian function

L = f (X) + g(Y) + ρ

2
�UX + VY − L + 1

ρ
Z�2

F − 1

2ρ
�Z�2

F .

Then, ADMM iteratively updates variables as follows to
minimize the objective function, i.e.,⎧⎪⎪⎨

⎪⎪⎩
Xk+1 = arg min

X∈�X

Lρ(X, Yk, Zk)

Yk+1 = arg min
Y∈�Y

Lρ(Xk+1, Y, Zk)

Zk+1 = Zk + ρ(UXk+1 + VYk+1 − L).

(32)
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Fig. 4. Convergence curves of the proposed algorithm on different data sets.

From Algorithm 1, it is obvious that our optimization problem
is consistent with classical two-block ADMM. Specifically,
optimizing e is equivalent to optimize X in (32), and the
optimization of x is equivalent to optimize Y in (32). For
two-block ADMM, the convergence property has been the-
oretically proved in [51]. We experimentally illustrate the
convergence property of the proposed algorithm in Fig. 4.
It can be observed that the objective function value obviously
decrease to a stable value, which indicates that our algorithm
can converge fast, usually within several tens of iterations.

Computational complexity is another important issue
when estimating the performance of an algorithm. From
Algorithm 1, the major computational complexity of LDMR
consists of two parts: the matrix inverse computation outside
and the singular value decomposition (SVD) inside iterations.
Given the image size u × v and the number of training
samples n, let m = u×v denote the dimension of each sample.
It takes O(mn2) on the computation of DT D and (Dw)T Dw.
The cost for HT

i DT DHi and M in (25) is O(mt2), assuming
that each class has average t training samples. Thus, the total
consumption of computing P is O(mn2 + n3), where O(n3)
is the cost of matrix inverse operation. For SVD in step 6,
the computational complexity is O(uv2) assuming that u > v,
which is relevant to the image size. For step 7, the compu-
tational complexity is O(mn). Thus, the total complexity of
LDMR is about O(mn2 + n3 + τ (uv2 + mn)) if there are
τ iterations.

IV. EXPERIMENTS

A. Experimental Settings

Several popular face data sets are used in our experi-
ments, including the Extended Yale B,1 Multi-PIE,2 AR,3

CAS-PEAL,4 EURECOM Kinect,5 LFW,6 PubFig,7 and Dis-
guised and Makeup Faces (DMF)8 data sets, to evaluate the
effectiveness and robustness of the proposed method against

1http://vision.ucsd.edu/content/extended-yale-face-database-b-b
2http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
3http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
4http://www.jdl.ac.cn/peal/home.htm
5http://www.rgb-d.eurecom.fr/
6http://vis-www.cs.umass.edu/lfw/
7https://www.cs.columbia.edu/CAVE/databases/pubfig/
8http://www4.comp.polyu.edu.hk/~csajaykr/DMFaces.htm

illumination changes, random occlusion, and real-world
disguises.

The Extended Yale B (YaleB) data set contains 2414 frontal
face images over 38 individuals in different illumination con-
ditions. The whole data set is divided into five subsets. From
subsets 1 to 5, the face images characterize slight-moderate-
severe illumination changes. All face images are resized to
48 × 42 pixels [38].

The Multi-PIE data set contains face images over
337 individuals under 15 poses and 19 illumination conditions.
We utilize total 4470 images of 149 individuals with different
illumination and pose changes in Session 1. All the images
are resized to 50 × 40 pixels [38].

The AR face data set contains over 4000 face images
of 126 individuals with different illumination, expression, and
occlusion (i.e., sunglasses and scarves) changes. The whole
data set consists of two sessions. Total 3120 face images
of 120 individuals are used in our experiments. All images
are cropped and resized to 50 × 40 pixels [38].

The whole CAS-PEAL database contains over
90 000 images of 1040 individuals with varying poses,
expressions, illumination, accessories, and so on. We choose
438 individuals from Accessory category for testing, and their
corresponding neutral face images from Normal category for
training. All the images are resized to 32 × 32 pixels [53].

The EURECOM Kinect face data set contains images
of 52 individuals with different facial variations. In our exper-
iment, we select 18 images per person, including 12 nonoc-
cluded images and six images with sunglasses, hands, and
paper occlusions. All images are resized to 50×40 pixels [30].

LFW, PubFig, and DMF are wild face data sets in which
the photographs are captured in uncontrolled scenarios. We use
the LFW-a data set, a revised version of LFW, which consists
of 1580 images over 158 individuals. For each individual, five
images are randomly selected for training and the rest for test-
ing. All images are cropped and resized to 32×32 pixels [37].
For PubFig, we randomly select 20 images for each person
and total 100 individuals are used for our experiments. Ten
images for each person are randomly selected for training and
the rest for testing. All the images are cropped and resized
to 64 × 64 pixels [37]. The DMF data set contains 2460 face
images from 410 different subjects. We randomly select five
images per person for training and the rest for testing. The
images are resized to 64 × 64 pixels.

Several state-of-the-art regression-based FI methods are
tested as comparisons, including SRC [18], CRC [20],
CSC [38], RRC [29], SLRC [54], TPTSR [28], RCRC [27],
WSRC [40], WCRC [41], ProCRC [27], IRGSC [37], and
NMR [30]. Furthermore, CNN-based methods are also tested
for comparison, which will be illustrated in Section IV-F. The
l1-norm minimization problem in SRC and WSRC is solved
by the homotopy algorithm [18]. The balance parameter of
CRC is fine-tuned to report their best results. RRC adopts
the l1-norm regularizer due to its relatively better performance
than the l2-norm regularizer. The parameter settings of other
methods follow the authors’ suggestions. For LDMR, we set
the parameter λ = 0.01, 
abs = 10−3, and 
rel = 10−3.
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Fig. 5. Identification rates (%) of different methods on the YaleB data set.

The selection of other parameters in LDMR will be analyzed
in Section IV-G.

B. FI With Illumination Changes

We first evaluate the performance of LDMR against illu-
mination changes on the YaleB data set. We use subset 1 for
training and subsets 4 and 5 for testing. Fig. 5 shows some
test images and identification rates of all competing methods
on two subsets. It can be clearly seen that LDMR is superior
to other regression methods. Since the test images are severely
contaminated by the shadows and reflections, SRC, CRC, and
CSC seem not very robust to extreme illumination conditions.
NMR, which ranks the second in all methods, shows robust-
ness to illumination changes and obtains comparable perfor-
mance due to its advantage in structural information exploring.
However, LDMR achieves 8.99% and 13.44% improvements
over NMR on subsets 4 and 5, respectively. On the other hand,
the weighted methods WSRC and WCRC perform better than
their nonweighted version SRC and CRC, respectively, which
demonstrates locality structure and label information impact
on the improvement of identification performance.

In the second experiment, we evaluate our method on the
Multi-PIE data set. We randomly select T (=1, 3, 5, 8) face
images per person for training and the rest for testing. Table I
lists the average identification rates of ten runs of different
methods in all cases. It can be observed that the identification
rates of all methods get improved with the increasing number
of training samples. Our LDMR method outperforms most of
the other compared methods except for the case of T = 3,
in which the performance of CSC is slightly better than
LDMR. Since the illumination conditions in the images of
Multi-PIE data set are better than those in YaleB, RRC,
RCRC, and ProCRC also achieve competitive results. These
experimental results demonstrate the robustness of LDMR to
extreme illumination conditions.

C. FI With Random Block Occlusion

In this section, we design four random block occlusions
on the YaleB data set. We use subset 1 for training and

TABLE I

AVERAGE IDENTIFICATION RATES (%) OF DIFFERENT
METHODS ON THE MULTI-PIE DATA SET

subset 3 for testing [30]. Different types and levels of square
block occlusion are randomly imposed on test images, and the
locations of occlusion are unknown to algorithms. Fig. 6(a)
shows some test samples.

In the first experiment, following the settings
in [4], [18], [29], and [30], we randomly impose a
baboon image on each test image as occlusion. Fig. 7(a)
shows the identification rates of different methods on the
YaleB data set with increasing level of occlusion. As is
presented, LDMR is always superior to other methods and
the difference becomes significant with the increment of
occlusion. When the occlusion level is no more than 30%,
RRC, RCRC, IRGSC, and NMR can achieve competitive
accuracy. With the increase of occlusion level, the accuracies
of other methods drop fast except for NMR. NMR achieves
competitive results when the occlusion level is below 40%.
However, the robustness of LDMR becomes outstanding
when the occlusion level goes up, and the identification rate
of LDMR is 6.47% and 9.15% higher than that of NMR
under 50% and 60% occlusion level, respectively.

In the second experiment, each test image is occluded by
a randomly selected face image from training images. The
identification performance of all competitive methods is shown
in Fig. 7(b). Generally, the experiment results of each method
are consistent with those in Fig. 7(a). Under each level of
occlusion, LDMR always achieves the best identification per-
formance. When the occlusion level is small, the gap between
other robust methods and LDMR is not significant. When the
occlusion ratio goes up to 60%, the identification accuracy of
LDMR is 9.91% higher than NMR. The experiment results
demonstrate that LDMR is more robust and powerful to
complicated contiguous occlusion compared with the other
regression FI methods.

In the third experiment, two types of extreme occlusions are
imposed on test images: square black block and white block
with increasing level, as shown in Fig. 6(a). Tables II and III
show the identification rates of all methods under two test
protocols, respectively. LDMR is still superior to other meth-
ods in all levels of occlusion. When the occlusion level
is 60%, LDMR can achieve an 86.10% identification rate on
black block occlusion and 79.05% on white block occlusion.
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Fig. 6. Some face images used in our experiments. (a) Face images with six levels (i.e., 10%–60%) and four types (i.e., baboon, human face, black block,
and white block) of occlusion from the YaleB data set. (b) Face images with sunglasses and scarves from the AR data set. (c) Top two rows contain face
images with masks occlusion from the Internet, and the last two rows show some testing images in our experiments.

Fig. 7. Identification rates (%) of different methods on the YaleB data set with increasing level of occlusion. (a) Baboon image occlusion. (b) Face image
occlusion.

TABLE II

IDENTIFICATION RATES (%) OF DIFFERENT METHODS ON THE YALEB
DATA SET WITH DIFFERENT LEVELS OF BLACK BLOCK OCCLUSION

NMR, IRGSC, and RRC also obtain good performance when
the occlusion ratio is below 50%. It is interesting that IRGSC
achieves comparable performance in both types of occlusion,
which is much better than those in the baboon occlusion
and face occlusion experiments. The main reason is that the
differences between occluded and nonoccluded regions are sig-
nificant, and the adaptive feature weights learning mechanism
in IRGSC takes good effect and improves the performance in

TABLE III

IDENTIFICATION RATES (%) OF DIFFERENT METHODS ON THE YALEB
DATA SET WITH DIFFERENT LEVELS OF WHITE BLOCK OCCLUSION

both cases. However, when the black block occlusion level
is 60%, LDMR has an improvement of 4.00% and 12.39%
over NMR and IRGSC, respectively. The performances of
SRC, CRC, and CSC are not desirable in both cases. This
demonstrates that our LDMR is more robust than others to
various occlusions.

D. FI With Real-World Disguise

In the first experiment, AR and YaleB data sets are used
to evaluate the performance of LDMR. For AR, we select
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TABLE IV

IDENTIFICATION RATES (%) OF DIFFERENT METHODS ON THE AR AND YALEB DATA SETS. AR-S1 DENOTES SESSION 1 OF THE AR DATA SET

TABLE V

IDENTIFICATION RATES (%) OF DIFFERENT METHODS ON THE LFW, PUBFIG, AND DMF FACE DATA SETS

Fig. 8. Some samples from (a) EURECOM Kinect and (b) CAS-PEAL data
sets.

the eight nonoccluded face images per person (i.e., the first
four images in two sessions) for training and the occluded
images (with sunglasses and scarf) in Sessions 1 and 2 for
testing [30]. For YaleB, the basic settings are the same as
in Section IV-C, and the test images are occluded by masks.
Fig. 6(b) and (c) shows some face images with different
disguises. In Fig. 6(c), the top two rows show face images
with masks from the Internet, and the last two rows show
some test images in our experiments, which simulates the
real-world mask occlusion. Table IV lists the experiment
results of different methods on the AR and YaleB data sets.
We can clearly observe that LDMR is superior to the others in
all cases. On AR, NMR and IRGSC also achieve competitive
identification rates. Since the occlusion region in the test
images with sunglasses is relatively small, SRC and CRC
can achieve good results. For scarves occlusion, the occluded
region gets larger and the performance gaps between LDMR
and other methods become wide. On YaleB(mask), our
LDMR also significantly outperforms other approaches.

Then, we perform our method on another two data sets with
real-world occlusions: EURECOM Kinect and CAS-PEAL
data sets. Fig. 8 shows some face images of the two data sets.
For EURECOM, we use the 12 images without occlusions for
training, and the rest six images with occlusions caused by
sunglasses, hand, and paper for testing [30]. For CAS-PEAL,
there is only one neutral face image per person for training and
the images with accessories for testing. The identification rates
of different methods on EURECOM Kinect and CAS-PEAL
data sets are shown in Fig. 9. On EURECOM, LDMR is

Fig. 9. Identification rates (%) of different methods on the EURECOM
Kinect and CAS-PEAL data sets.

superior to other regression methods and achieves encouraging
90.38% identification accuracy, which is 3.52% and 4.16%
higher than RCRC and NMR, respectively. On CAS-PEAL,
LDMR still obtains the best performance among all regression
methods. The experiment results on AR, YaleB(mask), EURE-
COM, and CAS-PEAL data sets demonstrate that LDMR is
capable of recognizing faces occluded by various objects in
real world.

E. FI With Uncontrolled Setting

The face images tested in previous experiments are all
captured in strictly controlled environment. In this experiment,
we evaluate our method on three uncontrolled face data sets:
LFW, PubFig, and DMF data sets. Fig. 10 shows some face
images of the three data sets. Table V lists the identification
rates of SRC, CRC, CSC, RRC, SLRC, TPTSR, RCRC,
WSRC, WCRC, ProCRC, IRGSC, NMR, and LDMR on three
data sets. For LFW, it is obvious that LDMR achieves the best
performance: 46.58%. CSC, ProCRC, IRGSC, and NMR also
obtain competitive results. The accuracy of LDMR is 1.77%
higher than CSC, which ranks the second in all methods.
For PubFig and DMF data sets, LDMR still outperforms
other competing methods. It seems that our experimental
results are unsatisfying since many deep learning approaches
have achieved very high accuracies on these wild face data
sets. However, these deep learning models use massive extra
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Fig. 10. Some samples from (a) LFW, (b) PubFig, and (c) DMF data sets.

Fig. 11. Identification rates (%) of five CNN-based methods and LDMR on
(a) YaleB, Multi-PIE, EURECOM, CAS-PEAL, and AR data sets. (b) LFW,
PubFig, and DMF data sets with 30% random black block occlusion.

training data to achieve the excellent performance. On the
other hand, our method is more robust than those deep learning
approaches under contaminated conditions, which will be
illustrated in Section IV-F.

F. Compared With CNN-Based Methods

Due to large-scale training data and high computational
power, CNN-based methods have achieved great success in
many computer vision and image analysis tasks in recent
years [55], [56]. Following the directions in [57] and [58],
we adopt the pretrained CNN models to extract features
and classify them by NN with cosine distance metric. Five
popular and publicly available deep learning models on face
recognition are utilized here: VGG-Face [10], FaceNet [7],
SphereFace [11], CosFace [8], and ArcFace [9], which are
well-trained and evaluated on very large wild face databases.
For YaleB, subset 4 is used as test set. For Multi-PIE,
we randomly select five images per person for training. For
AR, the occluded images with sunglasses of Session 1 are
used for testing. The basic experimental settings of YaleB,
Multi-PIE, AR, CAS-PEAL, EURECOM, and YaleB(mask)
are the same as in Sections IV-B and IV-D. We compare
LDMR with deep learning models on these data sets to
investigate their robustness under contaminated conditions,
and the experimental results are shown in Fig. 11(a).

We can observe that LDMR outperforms CNN-based meth-
ods on the YaleB, EURECOM, and AR data sets. The main
reason is that there are significant differences (i.e., severe shad-
ows and occlusions) between training images and test images
in these data sets, and the CNN models fail to work well on test
sets with complex distortions unobserved in training sets [57].
The noises in the test sets of Multi-PIE and CAS-PEAL data
sets are relatively small, and the CNN-based methods can

TABLE VI

IDENTIFICATION RATES (%) COMPARISON OF LDMR AND
ITS VARIATIONS ON THE YALEB AND AR DATA SETS

achieve similar or slightly better performance than LDMR.
On the YaleB(mask) data set, about 50% facial areas are
occluded and deep neural networks perform poor, whereas our
LDMR can obtain over 90% identification accuracy. In addi-
tion to those controlled data sets, we also conduct experiments
on the LFW, PubFig, and DMF data sets. We impose 30%
random black block on the test sets of these data sets, and
the experimental results are shown in Fig. 11(b). We can see
that CNN-based methods perform poor and are sensitive to
the occlusions in test set, whereas LDMR shows robustness
and obtain better performance than deep learning approaches.
The possible reason is that deep learning approaches highly
depend on the training data and cannot generalize well to
other distortions that are scare in training sets. Compared with
CNN-based methods, LDMR performs better in dealing with
the new complex noises in test sets. Besides, our proposed
method requires much less training data and time, and com-
putational power.

G. Ablation Study and Parameter Analysis

As stated before, LDMR incorporates locality structure and
class competitions into consideration simultaneously. To verify
the effectiveness of them separately, we conduct ablation
experiments. LDMR is compared with its three variations,
i.e., LDMR-o, LMDR-s, and LDMR-r. LDMR-o discards the
class weights of LDMR, i.e., wi = 1. LDMR-s and LDMR-r
discard the second term and third term in (14), respectively.
The results of LDMR and its variations on the YaleB and AR
data sets are shown in Table VI. From the results, we can
observe that: 1) LDMR-o and LDMR-r outperform LDMR-s,
which indicates that the representation components constraint
can significantly improve the identification performance and
2) LDMR outperforms LDMR-o and LDMR-r, which verifies
the positive effects of locality structure and class competitions.

From algorithm 1, there are three important tunable para-
meters α, β, and δ in LDMR. α and β make a balance
between regression loss and regularization, and δ controls the
strength of class weights. To analyze the parameter sensitivity,
we first define candidate sets {10−4, 10−3, 10−2, 10−1, 1, 10},
{10−6, 10−5, 10−4, 10−3, 10−2}, and {0.3, 0.5, 1, 2, 5, 10,
20, 50, 100} for α, β, and δ, respectively. Then, LDMR is
performed on the YaleB, AR, EURECOM, and Multi-PIE data
sets with different combinations of the three parameters [47].
For YaleB and AR, subset 4 of YaleB and AR-S2 with scarves
occlusion is used as test sets. The training size per subject
is 5 for Multi-PIE data set. The experimental settings on the
four data sets are the same as in Sections IV-B and IV-D.
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Fig. 12. Identification rates (%) of LDMR versus α, β, and δ on (a) YaleB, (b) AR, (c) EURECOM, and (d) Multi-PIE data sets.

Fig. 12 shows the identification rates of LDMR versus α,
β, and δ on different data sets. All three parameters impact
the performance of algorithm. Generally, when α and β are
selected from [10−2, 1] and [10−5, 10−3], respectively, our
method can achieve relative stable and satisfied identification
performance. It seems that parameter β is less sensitive than
α, and this is also verified in Table VI in which LDMR-s
performs worse than LDMR-r. When δ is small (e.g., 0.3),
the performance is undesirable due to the huge impact of prior
weights, which may be not accurate enough. When δ is large
(e.g., 50), the impact of prior weights is very small and the
performance also degrades, which is also shown in Table VI.
A value in the range of [0.5, 2] is proper for δ.

However, it is still an open problem for optimal parameter
selection for different data sets. In our experiments, we use the
simple grid search method to determine optimal parameters.
From Fig. 12, the proposed method can generally achieve
satisfactory performance when α locates in the range [10−2, 1].
Thus, we can first set α as a fixed value like 0.1 and find
the optimal β and δ by grid searching in their own candidate
set [10−5, 10−3] and [0.5, 2], respectively. After obtaining the
optimal combination of β and δ, we can fix them with optimal
values and find the optimal α. Consequently, all the optimal
parameters can be achieved.

H. Running Time

Computational cost is also an important issue apart from
accuracy in evaluating the performance of an algorithm. In this
section, we make a comparison on the average running time
of LDMR with other algorithms. We conduct experiments
on the YaleB data set with subset 4 as testing set, and the
basic experimental settings are the same as in Section IV-B.
The experiments are performed on a personal computer
with Windows 10 system and Intel Core i7-8550 CPU,
1.80 GHz, and 8.00 GB RAM. The computational platform is
MATLAB R2017b.

As mentioned before, the coefficients vector x̂ of Ridge
regression is used for initialization in Algorithm 1, while

TABLE VII

COMPARISON OF RUNNING TIME (s), ITERATIONS, AND

IDENTIFICATION ACCURACY (%) UNDER DIFFERENT
INITIALIZATIONS AND IMAGE SIZES

many research works initialize it as 0 [30], [31], [40], [42].
We first validate the advantage of our initialization method
on the efficiency of algorithm. Considering the computational
consumption of SVD is determined by the size of image
matrix, three levels of image size are designed and tested for
comparison. Table VII lists the average running time, iteration
steps, and identification accuracy of LDMR under different
initializations and image sizes. We can clearly see that the
number of iterations and running time are greatly reduced
in our proposed method, which improves the computational
efficiency. This advantage becomes evident while operating on
images in large size, and the identification rates keep stable in
two cases of initialization.

We also test the running time of different methods on the
YaleB data set with different numbers of training samples per
subject. The number of training samples per subject varies
from 5 to 30 with an interval of 5. The average running time
(base-10 log of seconds) for identifying one test sample is
shown in Fig. 13. CRC and its variations, such as WCRC and
ProCRC, are three fastest algorithms since these methods have
closed-form solutions for representation learning. TPTSR is
also efficient, which can be viewed as performing CRC twice
in practice. However, these methods are not robust when face
images are contaminated severely. In SRC, no dimensionality
reduction algorithm is used, so SRC and its variations, such
as WSRC and SLRC methods, are time-consuming. IRGSC is
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Fig. 13. Average running time (base-10 log of seconds) for identifying one
test sample of different methods on the YaleB data set.

also not efficient due to its iterative sample weights and feature
weights learning mechanism. Compared with other regression
approaches, LDMR achieves desirable computational speed
and is more robust to illumination changes and facial occlu-
sions. Deep neural networks have achieved excellent perfor-
mance on face recognition; however, they may be not robust to
new distortions in test sets and need massive training data and
time. For example, FaceNet spends 1000–2000 h on a CPU
cluster for training [7]. Compared with deep learning methods,
our method saves much training time.

V. CONCLUSION

In this work, we propose an LDMR method for robust
FI under structural noise conditions. LDMR differs the roles
of training samples at class level and directly constrains the
representation components of all classes that have a closer
connection to the identification process. The class weights
characterized by subspace distances are integrated, and a
weighted pairwise class competition constraint is designed to
reduce the correlations among classes and enhance the compe-
tition among all classes. The experiments on several popular
face data sets demonstrate the effectiveness and robustness of
LDMR compared with other competitive regression methods.
An interesting work is to incorporate dictionary learning into
our proposed method, which may improve this performance
for unconstrained FI. Furthermore, it is also important to reject
imposters in practice, and we will work to extend our method
for the open-set identification.
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