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Multigranulation rough set (MGRS) theory provides two kinds of qualitative combination
rules that are generated by optimistic and pessimistic multigranulation fusion functions.
They are used to aggregate multiple granular structures from a set theoretic standpoint.
However, the two combination rules seem to lack robustness because one is too relaxed
and the other too restrictive to solve some practical problems. Dempster’s combination
rule in the evidence theory has been employed to aggregate information coming from mul-
tiple sources. However, it fails to deal with conflict evidence. To overcome these lim-
itations, we focus on the combination of granular structures with both reliability and
conflict from multiple sources, which has been a challenging task in the field of granular
computing. We first address the connection between multigranulation rough set theory
and the evidence theory. Then, a two-grade fusion approach involved in the evidence the-
ory and multigranulation rough set theory is proposed, which is based on a well-defined
distance function among granulation structures. Finally, an illustrative example is given
to show the effectiveness of the proposed fusion method. The results of this study will
be useful for pooling the uncertain data from different sources and significant for establish-
ing a new direction of granular computing.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

In the information age, complex data is often represented by a multi-source information system [7] in which data come
from different sources. How to fuse such data has become a challenging task in the community of granular computing
(GrC) [60]. Information granulation is one of three basic issues: information granulation, organization, and causation in granular
computing. Information granulation involves decomposition of whole data into parts called granules. Then, these granules are
organized into a granular structure (or a granular space). In granular computing, the granules induced by an equivalence rela-
tion (or a tolerance relation) form a set of equivalence classes (or tolerance classes), in which each equivalence class (or tol-
erance class) can be regarded as a Pawlak information granule (or a tolerance information granule).

A multi-source information system is used to represent information coming from multiple sources. Single-source infor-
mation system is a special multi-source information system. According to the granulation approach, the objects in a multi-
source information system can be granulated into multiple granular structures induced by a family of binary relations, or a
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family of attribute sets. In each information subsystem, the objects are organized into a granular structure by an attribute
set. It is natural to put a fundamental issue on how to combine multiple granular structures from a multi-source information
system. In this paper, we call this kind of information fusion as granulation fusion.

Rough set theory, proposed by Pawlak [17,18] in 1982, has been proved to be an efficient tool for uncertainty management
and uncertainty reasoning. This theory is emerging as a powerful methodology in the field of artificial intelligence such as
pattern recognition, machine learning and automated knowledge acquisition. The basic structure of the rough set theory is a
known knowledge base (or an approximate space) consisting of a universe of discourse and an indiscernible relation imposed
on it. Based on the known knowledge base, the primitive notion of the lower and upper approximate operators can be induced.
The lower and upper approximations of a target concept characterize the non-numeric aspect expressed by the known
knowledge base. In the view of granular computing (proposed by Zadeh [60]), Pawlak rough set model and its extensions
are based on a single relation (such as an equivalence relation, a tolerance relation or a reflexive relation) on the universe,
which are called single granulation rough sets [19–21,23]. However, if data come from different sources, the data analysis
mechanism of the classical rough set theory is not desirable even not efficient. In this circumstance, one often needs to
describe concurrently a target concept through multiple binary relations according to a user’s requirements or targets of
problem solving, which motivates us to consider how to fuse such data from different sources.

Information fusion is a typical problem that involves the integration of multi-source information in signal processing,
image processing, knowledge representation and inference, which has been the objective of many researches over the last
few years. Up to now, a variety of qualitative (non-numeric) and quantitative (numeric) information fusion methods
[23,38,51,41] have been developed over the years [1,30,50,55,9]. It is worth pointing out that Qian et al. [22–25] introduced
the multigranulation rough set theory (MGRS) which employed conjunctive/disjunctive operators of multiple binary rela-
tions to integrate multiple granular structures induced by a family of binary relations. Furthermore, Khan and Banerjee
[7,8] proposed a weak lower (or strong upper) approximation of a target concept in the framework of a multi-source approx-
imation space. In fact, the essence of the so-called optimistic lower (or upper) approximation defined in [22] is the same as
the weak lower (or strong upper) approximation of a target concept proposed in [7]. Similarly, the essence of the so-called
pessimistic lower (or upper) approximation defined in [25] is the same as the strong lower (or weak upper) approximation of
a target concept proposed in [7]. The former focuses on multiple granulations and the latter focuses on multiple approx-
imation spaces. Since multigranulation rough set model inception, its theoretical framework has been largely enriched,
and many extended multigranulation rough set models, as well as relative properties and applications have been also stud-
ied extensively [13,45,10,11,14–16,26,29,32–34,49,56–59,39,40,43,44].

In the view of information fusion, MGRS theory can be regarded as a qualitative fusion strategy through the optimistic
and pessimistic fusing paradigms. The optimistic fusion paradigm expresses the idea that in multiple independent granular
structures, one needs only at least one granular structure to satisfy with the inclusion condition between an equivalence
class and a target concept. Whereas the pessimistic version needs all granular structures to satisfy with the inclusion con-
dition. However, the former seems too relaxed for data analysis and leads to generating a loose uncertain interval and the
latter seems too restrictive and generates a tight uncertain interval. Therefore, both of them seem not enough precise to mea-
sure the uncertainty in multi-source environment. That is, these two fusing methods are two extreme cases which limit the
application scope of MGRS. In addition, previous related work addressing qualitative combination rule deserves to be men-
tioned here. Yao and Wong [52,42] proposed qualitative combination rule which requires the definition of a binary relation
expressing the preference of one proposition or source, over another. However, the qualitative methods are still not desirable
in engineering analysis, so one expects to propose the quantitative approach to deal with quantitative data.

Dempster–Shafer (DS) theory (also known as evidence theory or Dempster–Shafer theory of evidence) [2,31], a general exten-
sion of Bayesian theory, provides a simple method for combining the evidence carried by a number of different sources. This
method is called orthogonal sum or Dempster’s combination rule. In Dempster–Shafer theory, inference is made by aggregating
independent evidence from different sources via the Dempster’s combination rule. Unfortunately, the unexpected and rather
counterintuitive results of Dempster’s combination rule under some situations, as highlighted by Zadeh [61], limit the appli-
cation of Dempster’s combination rule in intelligent fusion process. To overcome the disadvantage, its alternatives have been
developed. Of all the alternatives, there are three distinguished improved combination rules, such as Smets’s unnormalized
combination rule (known as the conjunctive combination rule) [36,37], Yager’s combination rule [54] and Dubois and Prade’s
disjunctive combination rule [3]. However, it is pointed out that all combination rules based on DS theory have a common
characteristic. That is, they all require prior information to define a basic probability assignment (bpa).

From the above discussions, we find that both multigranulation fusion rules and Dempster’s combination rule have their
respective limitations. For this reason, in this paper we focus on a fundamental issue on how to combine multiple gran-
ulations from a multi-source information system. To address this issue, we first examine the connection between multigran-
ulation rough set theory and Dempster–Shafer’s theory. One may capture the prior information as the mass function
according to the relationship between the single granulation Pawlak rough set and the evidence theory [35,53,45–48].
Then, we propose a two-grade quantitative fusion approach integrating Dempster–Shafer theory and multigranulation rough
set theory to deal with uncertainty of a multi-source information system. This new approach is based on a new distance
between two granular structures. Finally, an illustrative example is given to show the effectiveness of the proposed fusion
method.

This paper is organized as follows. Section 2 reviews some basic concepts of a multi-source information system,
Dempster–Shafer theory and MGRS. Section 3 discusses the connection between MGRS and the evidence theory. In
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Section 4 we propose a new fusion function based on the evidence distance to merge multi-source uncertain information
from a multi-source information system. In Section 5, an example is subsequently employed to demonstrate the validity
and effectiveness of the integrated information fusion approach. Section 6 concludes the paper with a summary and direc-
tion for future.

2. Preliminaries

In this section, we review some basic concepts of a multi-source information system, the Dempster–Shafer theory and
MGRS.

2.1. Multi-source information systems

In Pawlak rough set theory, a single-source information system [17] is defined as a triple IS ¼ ðU;AT; f Þ, where
U ¼ fx1; x2; . . . ; xng is a finite non-empty set of objects (the universe of discourse) and AT is a finite non-empty set of attri-
butes, and f a : U ! Va for any a 2 AT with Va being the domain of an attribute a.

For any B # AT , there is an associated indiscernibility relation RB:
RB ¼ fðx; yÞ 2 U � Uj8a 2 B; f aðxÞ ¼ f aðyÞg:
Obviously, the relation RB is an equivalence relation and it can generate a partition of U, denoted by U=RB ¼ f½x�Bjx 2 Ug. ½x�B
denotes the equivalence class (called Pawlak information granule). As defined by Pawlak, ðU;RBÞ is called a Pawlak approx-
imation space, briefly written as ðU;RÞ. Based on ðU;RÞ, a pair of lower and upper approximations of X # U are defined as:
RðXÞ ¼ fx 2 Uj½x�R # Xg and RðXÞ ¼ fx 2 Uj½x�R \ X – ;g, respectively.

In the view of granular computing, one calls U=RB a granular structure which can be represented as
KðRBÞ ¼ fGRB ðx1Þ;GRB ðx2Þ; . . . ;GRB ðxnÞg [27]. Accordingly, a binary indiscernibility relation RB is regarded as one of granulation
methods for partitioning objects [28].

In particular, the finest granular structure on U is denoted as KðdÞ ¼ ffx1g; fx2g; . . . ; fxngg and the coarsest one on U is
denoted as KðxÞ ¼ ffx1; x2; . . . ; xngg.

Let us consider the scenario when we obtain information regarding a set of objects from different sources. Information
from each source is collected in the form of the above information system [17], and thus a family of the single information
systems with the same domain is obtained and called a multi-source information system which is formulated as follows.

A multi-source information system is defined as MS ¼ fISijISi ¼ ðU;ATi; fðVaÞa2ATi
g; f iÞg, where,

(1) U is a finite non-empty set of objects;
(2) ATi is a finite non-empty set of attributes of each subsystem;
(3) fVag is the value of the attribute a 2 ATi; and
(4) f i : U � ATi ! fðVaÞa2ATi

g such that for all x 2 U and a 2 ATi; f iðx; aÞ 2 Va.

In particular, a multi-source decision information system is given by MS ¼ fISijISi ¼ ðU;ATi; fðVaÞa2ATi
g; f i;D; gÞg, where D

is a finite non-empty set of decision attributes and gd : U ! Vd for any d 2 D with Vd being the domain of a decision attribute
d.

In this paper, we suppose MS ¼ fISijISi ¼ ðU;ATi; fðVaÞa2ATi
g; f iÞg is composed of q single-source information systems. If

one employs a binary relation to granulate every single-source information system from a multi-source information system,
one gets q granular structures: K1;K2; . . . ;Kq. Then, we obtain a multigranulation approximation space, denoted as
F ¼ ðU;K1;K2; . . . ;KqÞ from a multi-source information system.

Throughout this paper, we suppose that a universe of discourse U is a non-empty finite set and a granular structure Ki is
represented as Ki ¼ fGiðx1Þ;Giðx2Þ; . . . ;GiðxjUjÞg where j � j represents the cardinality of Ki [27].

2.2. Basics of Dempster–Shafer theory

Dempster–Shafer theory [31] is an approach to reason under uncertainty. It enables us to combine evidence from differ-
ent sources and arrives at a degree of belief. It has become an important method for the study of information fusion. To facili-
tate our discussion, we first briefly review some basic concepts of the theory in this section. Let U be a finite non-empty set of
mutually exclusive and exhaustive hypotheses, called the frame of discernment (or the universe of discourse), and let 2U be the
power set of U.

Definition 2.1. A basic probability assignment (bpa) is a mapping m: 2U ! ½0;1� that satisfies
mð/Þ ¼ 0;
X
X # U

mðXÞ ¼ 1:
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A set X # U with mðXÞ– 0 is called a focal element of m. Let M be a family of all focal elements of m. A pair of ðM;mÞ is called
a belief structure on U.
Definition 2.2. The belief function is a mapping Bel: 2U ! ½0;1� that satisfies
BelðXÞ ¼
X

X0 # X

mðX 0Þ; 8X 2 2U :
Definition 2.3. The plausibility function is a mapping Pl: 2U ! ½0;1� that satisfies
PlðXÞ ¼
X

X\X0–/

mðX0Þ; 8X 2 2U :
According to the belief structure, a pair of belief and plausibility functions can be derived. Based on the same basic proba-
bility assignment, the belief and plausibility functions are dual, i.e., BelðXÞ ¼ 1� Plð� XÞ, where � X is the complement of X.
½BelðXÞ; PlðXÞ� is the confidence interval which describes the uncertainty about X, and PlðXÞ � BelðXÞ represents the level of

ignorance about X. Furthermore, a belief function satisfies the following axioms:

(1) Belð;Þ ¼ 0,
(2) BelðUÞ ¼ 1,

(3) Belð[m
i¼1XiÞP

P
;–J # f1;2;...;mgð�1Þj Jjþ1Belð\i2JXiÞ for any X1;X2; . . . ;Xm # U.

When uncertain information comes from different sources, it is important to desire a consensus by combining such infor-
mation. Dempster–Shafer theory uses Dempster’s combination rule for combining belief functions defined by independent
bodies of evidence.

Definition 2.4. Let m1 and m2 be two bpas on U which are derived from two distinct sources. Then, the combination (or the
joint) m12 is calculated from the aggregation of m1 and m2 in the following manner:
m12ðXÞ ¼
P

B\C¼Xm1ðBÞm2ðCÞ
1� k

; 8X 2 2U ; X – ;;
where k ¼
P

B\C¼;m1ðBÞm2ðCÞ and represents the basic probability mass associated with conflict. This is determined by the
summing the products of the bpa’s of all sets where the intersection is null. In general, we denote m12ðXÞ by m1 �m2ðXÞ
which is the so-called orthogonal sum operator of combination.
2.3. Qualitative fusion functions based on multigranulation rough sets

According to two different approximating strategies, i.e., seeking common reserving difference and seeking common
rejecting difference, Qian and Liang [23] proposed two kinds of multigranulation rough sets which provide two kinds of dif-
ferent lower or upper fusion functions. They are optimistic lower and upper multigranulation fusion functions and pes-
simistic versions, which are disjunctive and conjunctive combination rules, respectively.

Definition 2.5. Let MS ¼ fISijISi ¼ ðU;ATi; fðVaÞa2ATi
g; f iÞg be a multi-source information system. K1;K2; . . . ;Kq are q granular

structures induced by AT1;AT2; . . . ;ATq and X # U. The optimistic lower and upper approximations of X in a multigranulation
rough set can be formally represented as two qualitative fusion functions, respectively,
Xq

i¼1

Ki
oðXÞ ¼ f o

l ðK1;K2; . . . ;KqÞ ¼ fx 2 Uj½x�K1
# X _ � � � _ ½x�Kq

# Xg;

Xq

i¼1

Ki
oðXÞ ¼ f o

uðK1;K2; . . . ;KqÞ ¼�
Xq

i¼1

Ki
oð� XÞ;
where f o
l is called an optimistic lower qualitative fusion function, and f o

u is called an optimistic upper qualitative fusion func-
tion. They are a kind of disjunctive combination rules. These two functions are used to compute the lower and upper approx-
imations of a multigranulation rough set through fusing q granular structures. In practical applications of multigranulation
rough sets, the fusion function has many different forms according to various semantics and requirements. It is noted that
the essence of a so-called optimistic lower (or upper) approximation defined in Definition 2.5 is the same as weak lower (or
strong upper) approximation proposed in [7,8].
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Similar to the form of representation of the orthogonal sums of evidence, we denote optimistic lower fusion operator as
f o
l ðK1;K2; . . . ;KqÞðXÞ ¼ K1 � K2 � � � � � KqðXÞ; X # U;
and the optimistic upper fusion operator as
f o
uðK1;K2; . . . ;KqÞðXÞ ¼ K1 � K2 � � � � � KqðXÞ; X # U;
where KiðXÞ is a lower approximation of a target concept X, denoted as KiðXÞ ¼ fGiðxÞ 2 KijGiðxÞ# X; x 2 Ug;KiðXÞ is an upper

approximation of a target concept X, denoted as KiðXÞ ¼ fGiðxÞ 2 KijGiðxÞ \ X – ;; x 2 Ug in each single granulation structure
as defined in Pawlak rough sets [17], and � represents the disjunctive operator of combination.

Proposition 2.1. f o
l is disjunctive, i.e., f o

l has a behavior of indulgent.
Proof. Suppose X # U, according to the definition of f o
l , we have
jf o
l ðK1;K2; . . . ;KqÞðXÞjP jKiðXÞj; i ¼ f1;2; . . . ; qg:
Hence,
jf o
l ðK1;K2; . . . ;KqÞðXÞjP maxfjK1ðXÞj; . . . ; jKiðXÞj; . . . ; jKqðXÞjg:
Then, according to the definition given in [4], the optimistic operator is disjunctive. h

Obviously, the following propositions also hold.

Proposition 2.2. f o
l satisfies associativity.
Proposition 2.3. f o
l satisfies commutativity.

From the above properties, we can find that the order and grouping of granular structures do not affect the result by the
optimistic lower fusion operator. Correspondingly, due to the duality of the optimistic lower and upper fusion operators, the
latter has the same propositions to that the former has.

Definition 2.6. Let MS ¼ fISijISi ¼ ðU;ATi; fðVaÞa2ATi
g; f iÞg be a multi-source information system. K1;K2; . . . ;Kq are q granular

structures induced by AT1;AT2; . . . ;ATq and X # U. The pessimistic lower and upper approximations of X in a multigran-
ulation rough set can be formally represented as two qualitative fusion functions, respectively,
Xq

i¼1

Ki
pðXÞ ¼ f p

l ðK1;K2; . . . ;KqÞðXÞ ¼ fx 2 Uj½x�K1
# X ^ � � � ^ ½x�Kq

# Xg;

Xq

i¼1

Ki
pðXÞ ¼ f p

uðK1;K2; . . . ;KqÞðXÞ ¼�
Xq

i¼1

Ki
pð� XÞ;
where f p
l is called a pessimistic lower qualitative fusion function, and f p

u is called a pessimistic upper qualitative fusion func-
tion. f p

l and f p
u are a kind of conjunctive combination rules.

Similar to the form of representation of the orthogonal sums of evidence, we denote the pessimistic lower fusion operator
as
f p
l ðK1;K2; . . . ;KqÞðXÞ ¼ K1 � K2 � � � � � KqðXÞ; X # U;
and the pessimistic upper fusion operator as
f p
uðK1;K2; . . . ;KqÞðXÞ ¼ K1 � K2 � � � � � KqðXÞ; X # U;
where KiðXÞ and KiðXÞ are defined in each single granulation structure as defined in the Pawlak rough sets [17], and � repre-
sents the conjunctive operator of combination. Similarly, it is noted that the essence of the so-called pessimistic lower (or
upper) approximation defined in Definition 2.6 is the same as the strong lower (or weak upper) approximation proposed
in [7,8].
Proposition 2.4. f p
l is conjunctive.
Proof. Suppose X # U, according to the definition of f p
l , we have
jf p
l ðK1;K2; . . . ;KqÞðXÞj 6 jKiðXÞj; i ¼ f1;2; . . . ; qg:
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Hence,
jf p
l ðK1;K2; . . . ;KqÞðXÞj 6 minfjK1ðXÞj; . . . ; jKiðXÞj; . . . ; jKqðXÞjg:
Then, according to the definition given in [3], the pessimistic operator is conjunctive. h

Similarly, according to Definition 2.6, the following propositions hold.

Proposition 2.5. f p
l satisfies associativity.
Proposition 2.6. f p
l satisfies commutativity.

From the above discussions, we can see that the order and grouping of granular structures do not affect the result by the
pessimistic lower operator. Due to the duality of the pessimistic lower fusion operator and the upper pessimistic fusion
operator, the latter has the same properties to that the former has.

Remark 1. These two kinds of fusion operators are different from Dempster’s combination rule but they have the same
purpose to combine possibly conflictive beliefs or reliable beliefs. The semantic interpretation of optimistic fusion function is
that when different granular structures coming from different sources are conflict, one employs optimistic rule to fuse
information, whereas the semantic interpretation of pessimistic strategy is that when evidence is not conflict, one employs
pessimistic strategy to do that.

For the sake of completeness and subsequent discussions, we summarize the main result from the relationship between
the rough set theory and Dempster–Shafer theory in the following theorem.

In Pawlak’s rough set models, sets are approximated by a Pawlak approximation space ðU;RÞ. The qualities of lower and
upper approximations of a set X # U are defined, respectively, by
QðXÞ ¼ jRðXÞjjUj ; QðXÞ ¼ jRðXÞjjUj :
Theorem 2.1. The qualities of lower and upper approximations defined by the above. QðXÞ and QðXÞ are a dual pair of belief and

plausibility functions and the corresponding basic probability assignment is mðAÞ ¼ jAjjUj for all A 2 U=R; and 0 otherwise. Conversely,

if Bel and Pl are a dual pair of belief and plausibility functions on U satisfying two conditions: (i) the set of focal elements of m is a

partition of U; (ii) mðAÞ ¼ jAjjUj for every focal element A of m, where m is the basic probability assignment of Bel, then there exists a

Pawlak approximation space ðU;RÞ, i.e. there exists an equivalence relation R on U, such that the induced qualities of lower and
upper approximations satisfy
QðXÞ ¼ BelðXÞ; QðXÞ ¼ PlðXÞ; for all X # U:
The first part of this theorem is shown by Skowron [35] and the second part is given by Yao [51].
In this paper, we denote ðK;mÞ as a belief structure, where
K ¼ fGðx1Þ;Gðx2Þ; . . . ;GðxjUjÞg and mðGðxiÞÞ ¼
jGðxiÞj
jUj :
Obviously, each GðxiÞ is a focal set for mðGðxiÞÞ > 0 and K is corresponding focal sets of the belief structure ðG;mÞ. Particularly,
if focal elements Gðx1Þ;Gðx2Þ; . . . ;GðxjUjÞ satisfy Gðx1Þ# Gðx2Þ# � � � # GðxjUjÞ, then they are called consonant focal elements
[38]. Similarly, if sets of focal elements K1;K2 satisfy K1 	 K2, i.e., if for any S 2 K1, there exists L 2 K2 such that S # L, then
we call that K1 is finer than K2 (or K2 is coarser than K1), denoted by K1 	 K2. If K1 	 K2 and K1 – K2, we say that K1 is strictly
finer than K2 (or K2 is strictly coarser than K1), written as K1 
 K2, then they are called the generalized consonant focal
elements.

3. The connection between Dempster–Shafer theory and MGRS theory

In the view of Dempster–Shafer theory, we suppose each granulation structure induced by an attribute set is regarded as a
body of evidence in multigranulation rough sets. Therefore, the aim of fusing multiple uncertain information is equivalent to
combining granulation structures from different sources. According to the relationship between Dempster–Shafer theory
and Pawlak rough set theory, Yao [51] proposed a basic function assignment, i.e., mðGðxiÞÞ ¼ jGðxiÞj

jUj . In what follows, we denote

the optimistic multigranulation belief function and the pessimistic one as Belo
� and Belp�, denote the optimistic multigran-

ulation plausibility function and the pessimistic one as Plo
� and Plp

�, and denote the belief and plausibility functions by the

way of D-S combination rule as BelDS
� and PlDS

� , respectively.
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3.1. The relationship between Dempster–Shafer theory and the optimistic MGRS theory

Dempster–Shafer theory and MGRS are two different fusion methods by their combination rule. The former captures the
numeric aspect and can be interpreted as the quantitative representation rule, whereas, the latter captures the non-numeric
aspect of fusing uncertainty of a target concept and can be interpreted as the qualitative representation rule. Though they
capture different aspects of fusion rule, they are complementary each other in data fusion. In this section, we first investigate
their connection on the foundation of the relationship between rough set theory and the evidence theory which has been
addressed by Wu [43,44] and Yao [51].

In the multigranulation rough set model, a target concept is approximated by a multigranulation approximation space
ðU;K1;K2; . . . ;KqÞ. The qualities of lower and upper approximations of a set X # U are defined, respectively, by
QoðXÞ ¼
j
Pq

i¼1Ki
oðXÞj

jUj ; ð1Þ

QoðXÞ ¼ j
Pq

i¼1Ki
oðXÞj

jUj : ð2Þ
However, a pair of Q oðXÞ and Q oðXÞ may not always be equal to that computed by Dempster’s combination approach. It
shows that the optimistic MGRS fusion operator is not equal to Dempster’s combination operator and the conjunction opera-
tor of multiple single Pawlak approximation operators. In what follows, we employ an example to illustrate these
conclusions.

Example 3.1. Given a universe U ¼ fx1; x2; x3; x4; x5; x6; x7; x8g and two granular structures K1 and K2 on U, where
K1 ¼ ffx1; x7g; fx2; x6g; fx3; x4; x5g; fx8gg
and

K2 ¼ ffx1; x2g; fx3; x4; x5g; fx6; x7; x8gg:
For a target concept X ¼ fx1; x2; x6; x8g# U, then,

(1) according to Eqs. (1) and (2), one obtains Q oðXÞ ¼
j
P2

i¼1
Ki

oðXÞj

jUj ¼ 1
2 and QoðXÞ ¼ j

P2

i¼1
Ki

oðXÞj
jUj ¼ 5

8,

(2) according to Dempster’s combination rule, one obtains BelDS
� ðXÞ ¼ 17

32 and PlDS
� ðXÞ ¼ 17

32,
(3) according to the conjunction of the Pawlak approximation operators, one gets a new approximation space
K1 \ K2 ¼ ffx1g; fx2g; fx3; x4; x5g; fx6g; fx7g; fx8gg and obtains QðXÞ ¼ 1

2 and QðXÞ ¼ 1
2.

Based on the above example, we find that the results in Theorem 2.1 do not hold between optimistic MGRS combination
method and Dempster’s combination rule. It can be seen that the optimistic multigranulation fusion method is an approx-
imation of Dempster’s combination rule presented in [38]. In what follows, a criterion will be considered to evaluate approx-
imation with respect to the error they make.

Definition 3.1. Let ðK1;m1Þ and ðK2;m2Þ be two belief structures. Bel1 and Bel2 are two belief functions induced by two
granular structures (or two distinct bodies of evidence) in a multigranulation approximation space ðU;K1;K2Þ. Then the
lower approximate error measure D and the upper approximate error measure D of X # U are defined as:
DðXÞ ¼ Belo
�ðXÞ � Q oðXÞ;

DðXÞ ¼ Plo
�ðXÞ � Q oðXÞ:
The main error measure is based on the distance between the correct and approximated combination belief functions
computed by the optimistic fusion rule. From the bpa, one can calculate the optimistic low approximate quality as follows.
Theorem 3.1. Suppose Bel1 and Bel2 are two belief functions induced by two granular structures (or two distinct bodies of evi-
dence) in a multigranulation approximation space ðU;K1;K2Þ and X # U. Then an optimistic combination belief function satisfies:
QoðXÞ ¼
X
B # X

m1ðBÞ þ
X
C # X

m2ðCÞ �
X

B;C # X

mo
�ðB \ CÞ;
where
mo
�ðB \ CÞ ¼

1
1�
P

B;C # X
m1ðBÞm2ðCÞ

; K1 \ K2 – ;;

0; otherwise:

(
and B 2 K1; C 2 K2:
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Proof. It can be easily proved by Definition 2.5. h

Theorem 3.1 shows the relationship between the lower approximation quality in the multigranulation rough set and the
belief function induced from each granular structure.

Example 3.2. (Continued from Example 3.1.) According to Theorem 3.1, we have QoðXÞ ¼
P

B # Xm1ðBÞ þP
C # Xm2ðCÞ �

P
B;C # Xmo

�ðB \ CÞ ¼ 2
8þ 1

8þ 2
8� 1

8 ¼ 4
8, which is equal to that computed by Eq. (1).
Corollary 3.1. Suppose Bel1 and Bel2 are two belief functions induced by two granular structures (or two distinct bodies of evi-
dence) in a multigranulation approximation space ðU;K1;K2Þ and X # U. Then an optimistic combination plausibility function
satisfies:
Q pðXÞ ¼ 1�
X

B #�X

m1ðBÞ þ
X

C #�X

m2ðCÞ �
X

B;C #�X

mo
�ðB \ CÞ

 !
:

Without loss of generality, we here extend the combination rule with q; q P 2 belief functions.
Theorem 3.2. Suppose Bel1;Bel2; . . . ;Belq are q belief functions induced by granular structures (bodies of evidence) in a multigran-
ulation approximation space ðU;K1;K2; . . . ;KqÞ and X # U, Then,
Q oðXÞ ¼
Xq

i¼1

BeliðXÞ �
X

16i<j6q

mðKiðXÞ \ KjðXÞÞ þ � � � þ ð�1Þq�1mð\q
i¼1KiðXÞÞ:
Proof. It can easily be proved by the set-theoretic theory. h
Theorem 3.3. Suppose Bel1;Bel2; . . . ;Belq are q belief functions induced by granular structures (bodies of evidence) in a multigran-
ulation approximation space ðU;K1;K2; . . . ;KqÞ;K1 	 K2 	 � � � 	 Kq, and X # U. Then
Q oðXÞ ¼
jK1ðXÞj
jUj :
From Theorem 3.3, we can find that when belief structures satisfy the generalized consonant property, the optimistic
lower approximation quality is equal to the optimistic multigranulation combination belief function, i.e., Belo

�ðXÞ ¼ Q oðXÞ
and Plo

�ðXÞ ¼ Q oðXÞ. Therefore, the error measures DðXÞ ¼ 0 and DðXÞ ¼ 0.

Theorem 3.4. Suppose Bel1;Bel2; . . . ;Belq are q belief functions induced by granular structures (bodies of evidence) in a
multigranulation approximation space ðU;K1;K2; . . . ;KqÞ;K1 	 K2 	 � � � 	 Kq, and X1 # X2 # � � � # Xl # U. Then
Belo
�ðX1Þ 6 Belo

�ðX2Þ 6 � � � 6 Belo
�ðXlÞ:
From the above discussions, we have only addressed the relationship between the lower approximation quality of multi-
granulation rough set and belief function induced from each granular structure. In what follows, we will give a sufficient and
necessary condition under which the optimistic lower and upper approximate qualities can be characterized by belief and
plausibility functions, respectively. For convenient discussion, we consider a special case with jATij ¼ 1. In other words, we
will use the single-source information system to complete our discussion.

Let IS ¼ ðU;AT; f Þ be an information system. For any x 2 U, we define a minimal granule with respect to x as:
MdðxÞ ¼ f½x�fagja 2 AT; ð½x�fa0g # ½x�fag; a0 – a) ½x�fa0g ¼ ½x�fagÞg;
and denote jðXÞ ¼ fx 2 UjX 2 MdðxÞg for X # U. In general, jMdðxÞj– 1. In the following, we employ Ka to denote a granular
structure induced by an attribute a.

It is obvious that x 2
P

a2AT Ka
oðXÞ if and only if there exists X0 2 MdðxÞ such that X 0 # X, i.e.,P

a2AT Ka
oðXÞ ¼ fx 2 Uj9X 0 2 MdðxÞ;X 0 # Xg.

Theorem 3.5. Let IS ¼ ðU;AT; f Þ be an information system. A set function m : 2U ! ½0;1�. Then,
mðXÞ ¼ 1
jUj

X
x2jðXÞ

1
jMdðxÞj
is a basic probability assignment.
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Proof.

(1) Obviously, mð;Þ ¼ 0.
(2) Since x 2 jðXÞ () X 2 MdðxÞ for x 2 U and X # U, we have
mðXÞ ¼ 1
jUj

X
x2jðXÞ

1
jMdðxÞj ¼

1
jUj

X
X2MdðxÞ

1
jMdðxÞj :
Hence,
X
X # U

mðXÞ ¼
X
X # U

1
jUj

X
x2jðXÞ

1
jMdðxÞj

 !
¼ 1
jUj
X
X # U

X
X2MdðxÞ

1
jMdðxÞj

0
@

1
A ¼ 1

jUj
X
x2U

X
X2MdðxÞ

1
jMdðxÞj

0
@

1
A:
In fact,
P

X2MdðxÞ
1

jMdðxÞj ¼ 1, so we have
X
X # U

mðXÞ ¼ 1
jUj
X
x2U

X
X2MdðxÞ

1
jMdðxÞj

0
@

1
A ¼ 1

jUj
X
x2U

1 ¼ jUjjUj ¼ 1:
Therefore, we can conclude that m is a basic probability assignment. h

Particularly, if jMdðxÞj ¼ 1, then mðXÞ ¼ jjðXÞjjUj for x 2 U;X # U.

The following theorem presents a formula to measure the optimistic lower and upper approximations of MGRS by belief
and plausibility functions under a special condition.

Theorem 3.6. Suppose IS ¼ ðU;AT; f Þ is an information system. If jMdðxÞj ¼ 1 for all x 2 U and X # U, then we have
Belo
�ðXÞ ¼

1
jUj

X
a2AT

Ka
oðXÞ

������
������
and
Plo
�ðXÞ ¼

1
jUj

X
a2AT

Ka
oðXÞ

�����
�����:
Proof. Since jMdðxÞj ¼ 1 for all x 2 U, we have mðXÞ ¼ 1
jUj
P

x2jðXÞ
1

jMdðxÞj ¼ 1
jUj
P

x2jðXÞ1 ¼
jjðXÞj
jUj . Hence, Belo

�ðXÞ ¼
P

X0 # XmðX0Þ ¼P
X0 # X

jjðX0 Þj
jUj ¼

P
X0 # X

jjðX0 Þj
jUj . For the further proof, we first verify that jðXÞ \ jðX 0Þ ¼ ; for any X – X 0;X;X0 2 U. Assume

x 2 jðXÞ \ jðX0Þ. Then X 2 MdðxÞ and X 0 2 MdðxÞ. With the fact of jMdðxÞj ¼ 1, we have X ¼ X 0, which contradicts to X – X0.

Thus jðXÞ \ jðX 0Þ ¼ ; for any X – X0;X;X0 2 U. Therefore, Belo
�ðXÞ ¼

P
X0 # X

jjðX0 Þj
jUj ¼ j[X0 # X jðX0 Þj

jUj . Since jMdðxÞj ¼ 1 for all x 2 U, we

can write MdðxÞ ¼ fnðxÞg for all x 2 U. Thus nðxÞ# U is the minimal element in f½x�aja 2 ATg. On the other hand, we have

jðX 0Þ ¼ fx 2 UjX 0 2 MdðxÞg ¼ fx 2 UjnðxÞ ¼ X 0g, thus [X0 # XjðX 0Þ ¼ fx 2 UjnðxÞ# Xg. Therefore, Belo
�ðXÞ ¼

j[X0 # X jðX0 Þj
jUj ¼ jfx2UjnðxÞ# Xgj

jUj .

In addition, we can easily conclude that nðxÞ# X () x 2
P

a2AT Ka
oðXÞfor any x 2 U;X # U. Therefore,

Belo�ðXÞ ¼
jfx2UjnðxÞ# Xgj

jUj ¼ 1
jUj j
P

a2AT Ka
oðXÞj.

Similarly, we can prove Plo�ðXÞ ¼ 1
jUj j
P

a2AT Ka
oðXÞj. �

From the above conclusions, under the condition that jMdðxÞj ¼ 1 for all x 2 U, the optimistic multigranulation approx-
imations can be measured by belief and plausibility functions. However, we wonder whether the condition jMdðxÞj ¼ 1 is
necessary or not. We first give a lemma.

Lemma 3.1. Let IS ¼ ðU;AT; f Þ be an information system and X # U. Then Belo�ðXÞ ¼ 1
jUj
P

x2
P

a2AT
Ka

oðXÞ
jfX02MdðxÞjX0 # Xgj

jMdðxÞj .
Proof. According to the definition of belief function, we have
Belo
�ðXÞ ¼

X
X0#X

mðX0Þ ¼
X
X0#X

1
jUj

X
x2jðX0 Þ

1
jMdðxÞj

0
@

1
A¼ 1
jUj
X
X0#X

X
x2jðX0 Þ

1
jMdðxÞj

0
@

1
A¼ 1
jUj
X
X0#X

X
X02MdðxÞ

1
jMdðxÞj

0
@

1
A¼ 1
jUj
X
x2U

X
X02MdðxÞ;X0#X

1
jMdðxÞj

0
@

1
A:
On the other hand, it follows
P

X02MdðxÞ;X0 # X
1

jMdðxÞj ¼
jfX02MdðxÞjX0 # Xgj

jMdðxÞj . Thus,
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Belo�ðXÞ ¼ 1
jUj
P

x2Uð
P

X02MdðxÞ;X0 # X
1

jMdðxÞjÞ ¼
1
jUj
P

x2U
jfX02MdðxÞjX0 # Xgj

jMdðxÞj . Moreover, with the fact of x 2
P

a2AT Ka
oðXÞ ()

9X0 2 MdðxÞ;X0# X, it is easy to verify that jfX0 2 MdðxÞjX0# Xgj– 0() x 2
P

a2AT Ka
oðXÞ. Therefore,
Belo
�ðXÞ ¼

1
jUj
X
x2U

jfX0 2 MdðxÞjX 0 # Xgj
jMdðxÞj ¼ 1

jUj
X

x2
P

a2AT
KaoðXÞ

jfX0 2 MdðxÞjX0 # Xgj
jMdðxÞj þ 1

jUj
X

xR
P

a2AT
KaoðXÞ

jfX 0 2 MdðxÞjX0 # Xgj
jMdðxÞj

¼ 1
jUj

X
x2
P

a2AT
KaoðXÞ

jfX0 2 MdðxÞjX0 # Xgj
jMdðxÞj : �
The following result tells us jMdðxÞj ¼ 1 for all x 2 U. It is a basic condition to guarantee that the qualities of the optimistic
lower and upper approximations of MGRS can be measured by the belief and plausibility functions.
Theorem 3.7. Let IS ¼ ðU;AT; f Þ be an information system. If Belo�ðXÞ ¼ 1
jUj j
P

a2AT Ka
oðXÞj and Plo�ðXÞ ¼ 1

jUj j
P

a2AT Ka
oðXÞj for

X # U, then jMdðxÞj ¼ 1 for all x 2 U.
Proof. Suppose, by contradiction, that jMdðx0Þj > 1 for some x0 2 U, and X 2 Mdðx0Þ. By Lemma 3.1,

Belo
�ðXÞ ¼ 1

jUj
P

x2
P

a2AT
KaoðXÞ

jfX02MdðxÞjX0 # Xgj
jMdðxÞj . We can see that jfX

02MdðxÞjX0 # Xgj
jMdðxÞj 6 1 for all x 2 U. Since X 2 Mdðx0Þ, we can verify that

fX 0 2 MdðxÞjX 0 # Xg ¼ fXg. That means jfX0 2 MdðxÞjX0 # Xgj ¼ 1. Besides, with the fact of jMdðx0ÞjP 1 we have that
jfX02Mdðx0ÞjX0 # Xgj

jMdðx0Þj
< 1. Consequently,
Belo
�ðXÞ ¼

1
jUj

X
x2
P

a2AT
KaoðXÞ

jfX0 2 MdðxÞjX 0 # Xgj
jMdðxÞj <

1
jUj

X
x2
P

a2AT
KaoðXÞ

1 ¼ 1
jUj j

X
a2AT

Ka
oðXÞj:
It is equal to Belo
�ðXÞ < 1

jUj j
P

a2AT Ka
oðXÞj, which contradicts to Belo

�ðXÞ ¼ 1
jUj j
P

a2AT Ka
oðXÞj.

Therefore, we finish the proof. h

By the above analysis, we have the properties as follows.

Corollary 3.2. Let IS ¼ ðU;AT; f Þ be an information system. Then the following conclusions are equal to each other.

(1) jMdðxÞj ¼ 1 for all x 2 U;
(2) Belo

�ðXÞ ¼ 1
jUj j
P

a2AT Ka
oðXÞj and Plo

�ðXÞ ¼ 1
jUj j
P

a2AT Ka
oðXÞj for all X # U.
Proof. By Theorems 3.6 and 3.7, it holds. h

Let us employ an example to characterize the optimistic multigranulation approximations by belief and plausibility
functions.

Example 3.3. Let U ¼ fx1; x2; x3; x4; x5; x6g be a universe of discourse. K1;K2;K3 and K4 are four granular structures on U,
where K1 ¼ ffx1; x3; x4g; fx2; x6g; fx5gg;K2 ¼ ffx1; x3g; fx2; x5; x6g; fx4gg;K3 ¼ ffx1; x3; x4g; fx2; x5; x6gg, and K4 ¼ ffx1; x3g;
fx2; x6g, fx4; x5gg. Then one gets the minimal granule of xi, that is, Mdðx1Þ ¼ ffx1; x3gg;Mdðx2Þ ¼ ffx2; x3gg;
Mdðx3Þ ¼ ffx1; x3gg, Mdðx4Þ ¼ ffx4gg;Mdðx5Þ ¼ ffx5gg, and Mdðx6Þ ¼ ffx2; x6gg. We can find that jMdðxÞj ¼ 1 for all x 2 U.
So the optimistic multigranulation approximations can be measured by belief and plausibility functions.

We randomly choose three target concepts X1 ¼ fx2; x5; x6g;X2 ¼ fx1; x2; x4g, and X3 ¼ fx2; x3; x6g. Based on the definition
of optimistic multigranulation approximations, we can obtain thatP

a2AT Ka
oðX1Þ ¼ fx5; x6g;

P
a2AT Ka

oðX2Þ ¼ fx4g and
P

a2AT Ka
oðX3Þ ¼ fx2; x6g. Then,

Belo�ðX1Þ ¼ 1
jUj j
P

a2AT Ka
oðX1Þj ¼ 1

3 ;Belo
�ðX2Þ ¼ 1

jUj j
P

a2AT Ka
oðX2Þj ¼ 1

6, and Belo�ðX3Þ ¼ 1
jUj j
P

a2AT Ka
oðX3Þj ¼ 1

3.

3.2. The relationship between Dempster–Shafer theory and the pessimistic MGRS theory

Similar to the discussion of the relationship between Dempster–Shafer theory and the optimistic MGRS, we also examine
it between Dempster–Shafer theory and the pessimistic MGRS.

In pessimistic multigranulation rough set model, a target concept is approximated by a multigranulation approximation
space ðU;K1;K2; . . . ;KqÞ. The qualities of lower and upper approximations of a set X # U are defined, respectively, by
Q pðXÞ ¼
j
Pq

i¼1Ki
pðXÞj

jUj ; ð3Þ
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QpðXÞ ¼ j
Pq

i¼1Ki
pðXÞj

jUj : ð4Þ
Similar to the results of Yao’ study [51], they are a dual pair of belief and plausibility functions. The main results are sum-
marized in the following theorem.

Theorem 3.8. The qualities of lower and upper approximations defined by Eqs. (3) and (4), QpðXÞ and QpðXÞ are a dual pair of
belief and plausibility functions and the corresponding basic probability assignment is mðjðAÞÞ, where jðAÞ is any focal element
which is the possible intersections between pairs of focal element of Ki; i ¼ f1;2; . . . ; qg, respectively, for all jðAÞ# U; and 0
otherwise. Conversely, if Belp� and Plp� are a dual pair of belief and plausibility functions on U satisfying two conditions: (i) the set of

focal elements of mp
� is a partition of U; (ii) mp

�ðjðAÞÞ for every focal element A of mp
�, where m is the basic probability assignment of

Bel�, then there exists a Pawlak approximation space ðU;RÞ, i.e. there exists an equivalence relation R on U, such that the induced
qualities of lower and upper approximations of X # U satisfy
QpðXÞ ¼ Belp
�ðXÞ; ð5Þ

QpðXÞ ¼ Plp
�ðXÞ: ð6Þ
Proof. According to (2) of Theorem 8 from [25], i.e., Qpð;Þ ¼ ; and QpðUÞ ¼ U, hence, Belp�ð;Þ ¼ 0 and Belp�ðUÞ ¼ 1,
respectively. Considering a collection X1;X2; . . . ;Xn # U, we have
QpðX1 [ � � � [ XnÞ ¼
j
Pq

i¼1Ki
pðX1 [ � � � [ XnÞj
jUj P

j
Pq

i¼1Ki
pðX1Þ [ � � � [

Pq
i¼1Ki

pðXnÞj
jUj

¼
Xn

i¼1

j
Pq

i¼1Ki
pðXiÞj

jUj �
X
i<j

j
Pq

i¼1Ki
pðXiÞ \

Pq
i¼1Ki

pðXjÞj
jUj � � � � ð�1Þnþ1 j

Pq
i¼1Ki

pðX1Þ \ � � � \
Pq

i¼1Ki
pðXnÞj

jUj

¼
Xn

i¼1

j
Pq

i¼1Ki
pðXiÞj

jUj �
X
i<j

j
Pq

i¼1Ki
pðXi \ XjÞj
jUj � � � � ð�1Þnþ1 j

Pq
i¼1Ki

pðX1 \ � � � \ XnÞj
jUj :
Hence, Belp�ðXÞ is a belief function.
According to the duality of the belief and plausibility functions, one can prove that Plp�ðXÞ is a plausibility function. �

It is noted that Theorem 3.8 offers an interpretation of the Dempster’s combination rule.

Theorem 3.9. Suppose Bel1 and Bel2 are two belief functions induced by two granular structures (or two distinct bodies of
evidence) in a multigranulation approximation space ðU;K1;K2Þ and X # U. Then a pessimistic combination belief function is
defined as:
Belp
�ðXÞ ¼

X
jðAÞ# X

mp
�ðjðAÞÞ �

1
2

X
A\B¼jðAÞ

mp
�ðjðAÞÞ;
where 8

mp
�ðB \ CÞ ¼

1

1�
X

B;C # X

m1ðBÞm2ðCÞ
; K1 \ K2 – ;;

0; otherwise:

><
>:
Proof. Similar to the proof of Theorem 3.2, it can be proved. h

Theorem 3.9 gives a quantitative presentation for the qualitative pessimistic combination rule, which may be intuitional
in the engineering field.

Example 3.4. Given a universe U ¼ fx1; x2; x3; x4; x5; x6; x7; x8g and two granular structures K1 and K2 on U, where
K1 ¼ ffx1; x7g; fx2; x6g; fx3; x4; x5g; fx8gg and K2 ¼ ffx1; x2g; fx3; x4; x5g; fx6; x7; x8gg. For a target concept X ¼ fx1; x2; x6; x8g,

then, according to Theorem 3.8, Belp�ðXÞ ¼
j
P2

i¼1
Ki

pðXÞj
jUj ¼ 1

8 and Plp�ðXÞ ¼
j
P2

i¼1
Ki

pðXÞj
jUj ¼ 5

8. By Theorem 3.9, one has the same value

as the above.
Corollary 3.3. Suppose Bel1 and Bel2 are two belief functions induced by two granular structures (or two distinct bodies of evi-
dence) in a multigranulation approximation space ðU;K1;K2Þ and X # U. Then a pessimistic combination plausibility function is
defined as:
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Plp
�ð� XÞ ¼ 1�

X
jðAÞ#�X

mp
�ðjðAÞÞ �

1
2

X
A\B¼jðAÞ

mp
�ðjðAÞÞ

 !
:

If an approach used to combine the granular structures is based on the original Dempster’s combination rule, the results of
combination are unequal to that based on the quality method in the case that bodies of evidence are inconsistent. For this reason,
we should reconsider how to represent the combination rule.
Theorem 3.10. Suppose Bel1;Bel2; . . . ;Belq are q belief functions induced by granular structures (bodies of evidence) in a
multigranulation approximation space ðU;K1;K2; . . . ;KqÞ;K1 	 K2 	 � � � 	 Kq, and X # U. Then
Q pðXÞ ¼
jKqðXÞj
jUj :
From Theorem 3.10, we can find that when belief structures satisfy the generalized consonant property, the approximate
quality obtained by the pessimistic combination rule is the combination belief function.

Theorem 3.11. Suppose Bel1;Bel2; . . . ;Belq are q belief functions induced by granular structures (bodies of evidence) in a
multigranulation approximation space ðU;K1;K2; . . . ;KqÞ;K1 	 K2 	 � � � 	 Kq, and X1 # X2 # � � � # Xl # U. Then
Belp
�ðX1Þ 6 Belp

�ðX2Þ 6 � � � 6 Belp
�ðXlÞ:
4. A two-grade fusion approach by combining Dempster–Shafter theory and MGRS theory

In order to differentiate conflict and reliable evidence, we first introduce the granulation distance for characterizing the
difference among granular structures on the multigranulation space and then use the distance to cluster the conflict and reli-
able evidence.

In what follows, we give a definition of the distance among granular structures based on Liang’s distance [12].

Definition 4.1. Let F ¼ ðU;K1;K2; . . . ;KqÞ be a multigranulation space. Suppose Ki;Kj 2 F are two granular structures, where
Ki ¼ fGiðxlÞjxl 2 Ug and Kj ¼ fGjðxlÞjxl 2 Ug. Granulation distance between Ki and Kj is defined as
dðKi;KjÞ ¼
1

jUj2
XjUj
t¼1

jGiðxlÞ � GjðxlÞj;
where jGiðxlÞ � GjðxlÞj ¼ jGiðxlÞ [ GjðxlÞj � jGiðxlÞ \ GjðxlÞj.
From the definition of distance, granulation distance obtains the maximum value jUj�1

jUj if and only if

Ki ¼ KðxÞ ¼ ffx1; x2; . . . ; xngg and Kj ¼ KðdÞ ¼ ffx1g; fx2g; . . . ; fxngg (or Ki ¼ KðdÞ and Kj ¼ KðxÞ), which illustrates that
evidence has complete conflict. Whereas granulation distance obtains the minimum value 0 if and only if Ki ¼ Kj, which
illustrates that evidence has complete reliable.
Definition 4.2. Let F ¼ ðU;K1;K2; . . . ;KqÞ be a multigranulation space. Suppose Ki;Kj 2 F are two granular structures, where
Ki ¼ fGiðxlÞjxl 2 Ug and Kj ¼ fGjlðxlÞjxl 2 Ug. Similarity between Ki and Kj is defined as
SimðKi;KjÞ ¼ 1� dðKi;KjÞ:
Definition 4.3. Let F ¼ ðU;K1;K2; . . . ;KqÞ be a multigranulation space. Suppose Ki;Kj 2 F are two granular structures, where
Ki ¼ fGiðxlÞjxl 2 Ug and Kj ¼ fGjðxlÞjxl 2 Ug. Similarity matrix of F is defined as
Sq�q ¼ ðsijÞq�q;
where sij ¼ SimðKi;KjÞ.
Example 4.1. (Continued from Example 3.3.) In order to calculate the distance between two granular structures, we here use
the uniform representation to rewrite K1;K2; andK3 as:
K1 ¼ ffx1; x3; x4g; fx2; x6g; fx1; x3; x4g; fx1; x3; x4g; fx5g; fx2; x6gg;

K2 ¼ ffx1; x3g; fx2; x5; x6g; fx2; x5; x6g; fx1; x3g; fx4g; fx2; x5; x6g; fx2; x5; x6gg;
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and
K3 ¼ ffx1; x3; x4g; fx2; x5; x6g; fx1; x3; x4g; fx1; x3; x4g; fx2; x5; x6g; fx2; x5; x6gg:
Then we get dðK1;K2Þ ¼ 11
36 ; dðK1;K3Þ ¼ 4

36, and dðK2;K3Þ ¼ 7
36. Accordingly, we have SimðK1;K2Þ ¼ 1� dðK1;K2Þ ¼ 25

36 ;

SimðK1;K3Þ ¼ 1� dðK1;K3Þ ¼ 32
36, and SimðK2;K3Þ ¼ 1� dðK2;K3Þ ¼ 29

36. Then the similarity matrix is
1 25
36

32
36

25
36 1 29

36
32
36

29
36 1

0
B@

1
CA:
In light of the proposed evidence similarity as a criterion [6], we can justify whether two bodies of evidence are conflict or
not. If 0 6 SimðKi;KjÞ 6 1

2, the bodies of evidence Ki and Kj are conflict. If 1
2 < SimðKi;KjÞ 6 1, the bodies of evidence Ki and Kj

are reliable.
Based on this criterion and the k-modes clustering algorithm [5], q granular structures K1;K2; . . . ;Kq can be grouped into k

clusters. Granular structures in the same cluster are reliable and those in different clusters are conflict.

Definition 4.4. Let MS ¼ fISijISi ¼ ðU;ATi; fðVaÞa2ATi
g; f iÞg be a multi-source information system. K1;K2; . . . ;Kq are q granular

structures induced by AT1;AT2; . . . ;ATq, where Ki ¼ fGi1;Gi2; . . . ;GijUjg. Then, a two-grade fusion function is formally defined as
f ðK1;K2; . . . ;KqÞ ¼ M�
1 �M�

2 � � � � �M�
k ;
where M�
i is the combination result of every cluster and � is the orthogonal sum for the k clusters.

Our combination rule is parallel to the quantitative combination rule proposed by Wong and Lingras [42], in which the
combined belief function is derived by minimizing the entropy function.
Algorithm 4.1. A two-grade fusion algorithm

Input: A multi-source information system.
Output: Belief and plausibility measures.
Step 1. A family of attribute sets induce multiple granular structures, denoted by K1;K2; . . . ;Kq.
Step 2. Based on the relationship between the classical rough set theory and Dempster–Shafer theory, the assignment

function can be obtained, which is defined as mðGjÞ ¼
jGj j
jUj .

Step 3. Computing the evidence distance of granular structures and establishing evidence similarity matrix.
Step 4. According to the evidence distance of granular structures and the clustering algorithm, we classify multiple

bodies of evidence into k groups: granular structures in the same class are reliable and those in different class are
conflict.

Step 5. Based on the optimistic and pessimistic combination rules, we establish a combination fusion function.
Step 6. Output the belief and plausibility measures.

The architecture of the above algorithm is shown as Fig.1.
5. Example

In what follows, we employ an example to illustrate the effectiveness of the proposed combination rules.

Example 5.1. Let MS ¼ fISijISi ¼ ðU;ATi; fðVaÞa2ATi
g; f i; fdgÞg be a multi-source decision information system, where

U ¼ fe1; e2; e3; e4; e5; e6g is a universe of six objects which are here regarded as patients. Suppose there are four hospitals
(Hi; i ¼ f1;2;3;4g) providing us information regarding the attributes A;B;C of the objects. These attributes represent the
patients’ physical examination indicators. D is the decision attribute with attribute values fþ;�g, where þ represents the
patient has some disease and �the converse. Table 1 depicts the information provided by the four hospitals.

Firstly, by steps 1, 2, and 3 of Algorithm 4.1, we have the following results.
Each Hi gives rise to a granular structure Ki (i 2 f1;2;3;4g) as follows:
K1 ¼ ffe1g; fe2; e5g; fe3; e4g; fe6gg;K2 ¼ ffe1; e3g; fe2; e4; e5g; fe6gg,
K3 ¼ ffe1g; fe2; e3; e5g; fe4; e6gg, and K4 ¼ ffe1; e2; e4; e5; e6g; fe3gg.
In addition, we can get a granular structure induced by all attributes, which is
K ¼ ffe1g; fe2; e5g; fe3g; fe4g; fe6gg. As a result, one obtains five belief structures based on the relationship between DS

theory and rough set theory: m1
�! ¼ f1

6 ;
2
6 ;

2
6 ;

1
6g, m2
�! ¼ f2

6 ;
3
6 ;

1
6g, m3
�! ¼ f1

6 ;
3
6 ;

2
6g, m4
�! ¼ f5

6 ;
1
6g, and m!¼ f1

6 ;
2
6 ;

1
6 ;

1
6 ;

1
6g.



Fig. 1. The architecture of Algorithm 4.1.

Table 1
A multi-source decision information system.

H1 H2 H3 H4 D

A B C A B C A B C A B C d

e1 b b a b b b b b a a a b þ
e2 a a b b b a b a c a a b �
e3 a c a b b b b a c b c a þ
e4 a c a b b a b c a a a b �
e5 a a b b b a b a c a a b þ
e6 c a a c a c b c a a a b �

G. Lin et al. / Information Sciences 314 (2015) 184–199 197
Furthermore, a family of decision classes U=fdg ¼ fD1;D2g, where D1 ¼ fe1; e3; e5g and D2 ¼ fe2; e4; e6g. In the following,
we not only calculate a belief function value and a plausibility function value by Dempster’s combination rule, Pawlak rough
set, the pessimistic combination rule, and the proposed combination rule, respectively, but also we do that by the optimistic
combination rule.

(1) According to the Dempster’s approach, one has Belo�ðD1Þ ¼ 1
17 and Plo

�ðD1Þ ¼ 10
17.

(2) According to the Pawlak rough set approach, one has KðD1Þ ¼ fe1; e3g;KðD1Þ ¼ fe1; e2; e3; e5g. Hence, BelðD1Þ ¼ 2
6 and

PlðD1Þ ¼ 4
6.

(3) According to the pessimistic combination rule,
P4

i¼1Ki
pðD1Þ ¼ ; and

P4
i¼1Ki

pðD1Þ ¼ fe1; e2; e3; e4; e5; e6g. Hence,

Belp�ðD1Þ ¼ 0 and Plp
�ðD1Þ ¼ 1.
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(4) According to the proposed combination rule, we first compute the granulation distance between them. They are as
follows.
dðK1;K2Þ ¼ 8

36 ; dðK1;K3Þ ¼ 8
36 ; dðK1;K4Þ ¼ 20

36 ; dðK2;K3Þ ¼ 12
36 ; dðK2;K4Þ ¼ 16

36, and dðK3;K4Þ ¼ 20
36.

Secondly, we employ a clustering algorithm based on the granulation distance to group the granular structures into two
clusters: fK1;K2;K3g and fK4g. We can utilize the pessimistic combination rule to combine the granular structures in one
cluster and utilize optimistic combination rule to combine the granular structures in different clusters. Hence, we obtainP3

i¼1Ki
pðD1Þ ¼ fe1g and

P3
i¼1Ki

pðD1Þ ¼ fe1; e2; e3; e4; e5g. Hence, Belp
�ðD1Þ ¼ 2

6 and Pl�ðD1Þ ¼ 5
6, then combining with the

cluster fK4g, one has
P3

i¼1Gi
pðD1Þ � K4ðD1Þ ¼ fe1; e3g and

P3
i¼1Ki

pðD1Þ � K4ðD1Þ ¼ fe1; e2; e3; e4; e5g. Hence, the combina-

tion result is BelðK1;K2;K3;K4ÞðD1Þ ¼ 2
6 ; and PlðK1;K2;K3;K4ÞðD1Þ ¼ 5

6.

(5) According to the optimistic combination rule, Q oðD1Þ ¼ fe1; e3g and QoðD1Þ ¼ fe1; e2; e3; e5g. Hence, Q oðD1Þ ¼ 2
6 and

QoðD1Þ ¼ 4
6.

(6) For a new object e ¼ ða; a; b; c; a; c; b; a; c; b; c; aÞ, according to K1;K2;K3;K4, then we have the description of the object e
by four granular structures: ½e�H1

¼ fe2; e5g induced by the source H1; ½e�H2
¼ fe6g induced by the source H2; ½e�H3

¼ fe2; e3g
induced by the source H3; ½e�H4

¼ fe3g induced by the source H4. Based on the results of clustering, one can obtainP4
i¼1GiðD1Þe ¼ ð; \ ; \ fe3gÞ [ fe3g ¼ fe3g, hence, BeleðD1Þ ¼ 1

6. Similarly,
P4

i¼1KiðD2Þe ¼ ð; [ fe6g [ fe2gÞ \ ; ¼ ;, hence,

BeleðD2Þ ¼ 0. Therefore, based on the maximization rule, the new object e belongs to the decision class D1.P4
i¼1KiðD1Þe ¼ ðfe2; e5g \ fe6g \ fe2; e3gÞ [ fe3g ¼ fe3g, hence, BeleðD1Þ ¼ 1

6. Similarly,
P4

i¼1KiðD2Þe ¼ ðfe2; e5g [ fe6g[
fe2; e3gÞ \ ; ¼ ;, hence, BeleðD2Þ ¼ 0. Therefore, based on the maximization rule, the new object e belongs to the decision
class D1.
Remark 2. From this example, we can find that: (1) if bodies of evidence are conflicting, the belief fusion value obtained by
the proposed combination rule is no more than that computed by the optimistic combination rule, and no less than that done
by the pessimistic combination rule. It seems to be more reasonable in human reasoning and problem solving; (2) the belief
fusion value is close to that calculated by the single Pawlak rough set method, which illustrates that the proposed method
may be used to approximate the Pawlak rough set method when it fails to deal with large scale data.

6. Conclusion

In this paper, we proposed the concept of granulation fusion which is one of important issues in the field of granular com-
puting. Multigranulation rough set theory has provided a qualitative fusing method with no demand of prior information.
The existing multigranulation fusion functions, optimistic and pessimistic multigranulation fusion functions, are too relaxed
or restrictive for data analysis. Dempster’rule of combination and its improved rules have been employed as a major method
for reasoning with multiple highly conflicting evidence. One may capture prior information as a mass function according to
the relationship between the single granulation Pawlak rough set and the evidence theory. We have addressed the connec-
tion between the multigranulation rough set theory and Dempster–Shafer theory. A two-grade fusion approach involved in
evidence theory and multigranulation rough set theory is proposed and it is based on a well-defined distance function
between granulation structures. Finally, an example has been given to show the effectiveness of the proposed fusion method.
The results of this study will be useful for pooling the uncertain data from a multi-source information system and significant
for establishing a new direction of granular computing.
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