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Maximal-Discernibility-Pair-Based Approach to
Attribute Reduction in Fuzzy Rough Sets

Jianhua Dai

Abstract—Attribute reduction is one of the biggest challenges
encountered in computational intelligence, data mining, pattern
recognition, and machine learning. Effective in feature selection as
the rough set theory is, it can only handle symbolic attributes. In
order to overcome this drawback, the fuzzy rough set model is pro-
posed, which is an extended model of rough sets and is able to deal
with imprecision and uncertainty in both symbolic and numer-
ical attributes. The existing attribute selection algorithms based
on the fuzzy rough set model mainly take the angle of ‘“attribute
set,” which means they define the object function representing the
predictive ability for an attribute subset with regard to the do-
main of discourse, rather than following the view of an ‘“object
pair.” Algorithms from the viewpoint of the object pair can ig-
nore the object pairs that are already discerned by the selected
attribute subsets and, thus, need only to deal with part of object
pairs instead of the whole object pairs from the discourse, which
makes such algorithms more efficient in attribute selection. In this
paper, we propose the concept of reduced maximal discernibility
pairs, which directly adopts the perspective of the object pair in
the framework of the fuzzy rough set model. Then, we develop two
attribute selection algorithms, named as reduced maximal discerni-
bility pairs selection and weighted reduced maximal discernibility
pair selection, based on the reduced maximal discernibility pairs.
Experiment results show that the proposed algorithms are effective
and efficient in attribute selection.

Index Terms—Attribute reduction, fuzzy discernibility matrix,
fuzzy rough sets, maximal discernibility pairs.
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I. INTRODUCTION

HE rough set theory, introduced by Pawlak [1], is a use-

ful mathematical approach to deal with vague and uncer-
tain information, has attracted many researchers’ attention, and
has been proven to be successful in solving a variety of prob-
lems [1]-[6]. However, just as [7] mentioned, a rough set model
can only deal with a symbolic value, while values of attributes
might be either symbolic or real valued in many real datasets.
To overcome this problem, several extended models have been
proposed [8], and the fuzzy rough set model [9], [10] is a typi-
cal case. Attribute reduction, called attribute selection or feature
selection as well, is regarded as one of the most important top-
ics in rough set theory [3], [11]-[16], which should be taken
as a necessary preprocessing step to find a suitable subset of
attributes.

In the fuzzy rough set model, we use the fuzzy similarity
relation to replace the equivalence relation in crisp rough set
theory to measure the indiscernibility between two objects. In
most of the cases, we use a number whose value is in the unit in-
terval to represent the degree of indiscernibility of two objects,
in which 1 means they are indiscernible and 0 means they are
discernable. The existing research studies on a fuzzy rough set
contain at least two topics: the construction of the approxima-
tions of the fuzzy rough set model and the applications of the
fuzzy rough set model. On one hand, since the fuzzy rough set
is proposed in [9], many different lower approximations and up-
per approximations have been put forward [17]; more detailed
information can be found in [18]. On the other hand, the fuzzy
rough set model has been successfully applied in many applica-
tions [19], such as classification [20], clustering [21], and rule
extraction [22], especially attribute reduction [3], [23]-[27].

Attribute reduction of fuzzy rough set theory has been a pop-
ular topic in recent years. Shen and Jensen [28] generalized the
dependence function defined in the classical rough set based on
the positive region into the fuzzy case and presented a fuzzy
rough attribute selection algorithm based on such dependence.
In [29], Bhatt and Gopal proposed an algorithm to improve its
computational efficiency. In [30], a method based on fuzzy en-
tropy was proposed. In [31], Hu et al. extended the Shannon
entropy to measure the information quantity by fuzzy equiva-
lence classes in fuzzy sets and reduce hybrid datasets. In [32]
and [33], a fuzzy discernibility matrix was proposed, and the
algorithm based on dependence [28] was improved. In [34], a
novel algorithm was proposed to find reducts based on the mini-
mum elements in a discernibility matrix and, thus, improved the
computational efficiency of the discernibility matrix. In [35], a
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concept of fuzzy similarity measure and a model for evaluat-
ing feature dependence were presented. In [36], an accelerator,
called forward approximation, was constructed by combining
sample reduction and dimensionality reduction together.

In summary, the existing attribute reduction methods based
on the fuzzy rough set model mainly adopt the angle of an
“attribute set,” which means they use an object function to rep-
resent the predictive ability of the attribute subset with regard
to the domain of discourse, rather than the view of an “object
pair.” Comparatively speaking, algorithms based on the “object
pair” can ignore the object pairs that are already discerned by
the selected attribute subset and thus only deal with part of ob-
ject pairs each time, rather than the whole object pairs from the
whole domain of discourse, which makes such algorithms more
efficient. Recently, Chen et al. proposed a related algorithm
(denoted by SPS) in [34]; however, it is an algorithm based
on the crisp discernibility matrix generated by cut set technol-
ogy, rather than the fuzzy discernibility matrix. In essence, the
framework of fuzzy rough sets was transformed into that of
crisp rough sets in [34]. In this paper, we propose the concept
of reduced maximal discernibility pairs. Consequently, the view
of the “object pair” is directly introduced into the framework
of fuzzy rough sets. Then, we develop two attribute selection
algorithms, named as reduced maximal discernibility pair se-
lection (RMDPS) and weighted reduced maximal discernibility
pair selection (WRMDPS), based on the reduced maximal dis-
cernibility pairs. Experiments indicate that our algorithms are
effective and efficient.

The rest of this paper is organized as follows. Some related
basic notions are presented in Section II. The related defini-
tions and concepts of reduced maximal discernibility pairs are
proposed in Section III. The proposed attribute significance
measure and attribute reduction algorithms based on reduced
maximal discernibility pairs are introduced in Section IV. Ex-
periments are conducted in Section V, and Section VI concludes
this paper.

II. PRELIMINARIES

In this section, we briefly review some basic notions about
rough sets [1], [2], [33] and the attribute selection method based
on rough set theory. Then, we recall the concepts of fuzzy rough
sets and its corresponding attribute selection method.

A. Rough Sets

A decisiontableisdefinedas S =< U, A, V, f >, where U =
{1, 22, ..., 2y, } is a finite nonempty set of objects; A = C' U D
is a finite nonempty set of attributes, where C' = {c1, ¢a, ..., ¢ }
is a nonempty set of conditional attributes, and D is a nonempty
set of decision attributes (usually, D = {d}), CND = 0.V is
the union of the value domains, i.e., V = U,c4V,, where V,
is the value set of attribute a, called the value domain for at-
tribute a; and f : U x A — V is an information function, which
maps an object in U to exactly one value from domains of at-
tribute suchasVa € A,z € U, and f(a,z) € V,, where f(a, )
represents the value of object = on attribute a.
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Given a decision table S =< U, A, V, f >, for any subset of
attributes B C A, the indiscernibility relation generated by B
on U is defined by

IND(B) = {(z,y) € U?|f(b,z) = f(b,y),¥b € B} (1)

It is clear that IND(DB) is an equivalence relation, which is
reflexive, symmetric, and transitive. It determines a partition of
U, denoted by U/IND(B) or simply U/ B; an equivalence class
of IND(B) containing 2 will be denoted by [z]5.

For any X C U, the lower and upper approximations of X
with respect to B can be further defined as

RpX = {z|[z]p € X} 2)
RpX = {z|[z]p N X # 0}. 3)

Ry X and Rp X are two key concepts in rough set theory.
Suppose that P and () are equivalence relations over U then,
the concepts of positive, negative, and boundary regions are con-
structed based on lower and upper approximations as follows:

POSH{Q} = U RpX @)
NEGP{Q} =U — XG%/Q RPX )

BNDp{Q}= U RpX —

U RpX. 6
XeUu/Q P ©®

XeU/Q

According to the above definitions, we find that the positive
region is the collection of objects that can be discerned by
attributes P with respect to decision attributes (). The negative
region is the collection of objects that cannot be discerned by
the given attributes P with respect to (). The boundary region
is the collection of objects that might be discerned by attributes
P with respect to attributes Q.

Given a decision table S =< U,C' U D >, a subset B C ('
is called a relative reduct of C' if B is independent in .S, and
POS3 (D) = POS¢ (D). The set of all indispensable attributes
in C is called the core and denoted by Corey (C'U D). The
set of all reducts is denoted as Redy (C'U D), and we have
Corey (C'U D) =N Redy (CUD,).

For any B C C, we can say that the decision attribute D
depends on B to degree v (D), defined as follows:

_ [POSp(D)|
U]

~vp (D) = 1 means D totally depends on B; D partially depends
on Bwhen0 < v5(D) < 1; and when v (D) = 0, D does not
depend on B at all.

Attribute reduction based on the positive region in rough set
theory is to find a subset B of conditional attribute C, which is
a minimal set preserving the value of ~y. In other words, a subset
of conditional attributes can be regarded as a reduct only if it
satisfies

78 (D) @)

1) v8(D) = yc (D) ®)
2)VB' C B,yp/(D) < vp(D). )

There might exist many reducts for a dataset. The discernibility
matrix, introduced by Skowron and Rauszer [37] to find reducts
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based on the rough set theory, is a matrix in which conditional
attributes that can discern pairs of objects are stored. In other
words, it can be denoted by M = (M (z,y)), which is a |U| x
|U| matrix, and each of its entry for a given decision table
S =< U,CUD > is defined by

M(z,y) = {a € Cf(a,2) £ f(a,y) and f(D, ) £ F(D,p)}.
(10)

The implication of matrix entry M (x,y) is that any object
pair (z,y) can be differentiated by the attributes in M (x,y),
which characterize the ability of object pair (z,y). A discerni-
bility matrix M is symmetric, i.e., M(z,y) = M(y,x), and
M (z,x) = 0. Therefore, it is sufficient to consider only the
lower triangle or the upper triangle of the matrix.

Given a decision table S = < U, C'U D >, an attribute ¢; €
C belongs to core Corey (C'U D) iff Jz,y € U satisfying
M (z,y) = {¢; }. Thus, in the discernibility matrix, the core is
defined by

Corey (C U D) = U{M(x,y)|x,y € U and | M (z,y)| = 1}
D
where |M (x,y)| means the number of attributes contained in
M(z,y).
The discernibility function fp as one of the key concepts of
the discernibility matrix is a Boolean function, which can be
defined as follows:

wCm) = N{VM(x,y)|Vz,y € U,and
[M(z,y)| > 0}.

fp(ec,c, ..

12)

Thus, for the discernibility matrix, any reduct for a decision
table is the set of attributes B C ' satisfying

DVa,y € U, M(z,y) #0 — BN M(z,y) # 0 (13)

2)VB' € B,3z,y € U, M(z,y) #0 — B'N M(z,y) = 0.
(14)

Through the discernibility matrix, we are able to find one or all
reducts in a given dataset.

B. Fuzzy Rough Sets

The traditional rough set theory can only process symbolic-
valued attributes. However, most of the real datasets contain
real-valued attributes, which means it goes beyond the capacity
of the traditional rough set theory. Hence, the crisp rough set
model is extended the fuzzy rough set model. By means of the
fuzzy rough set model [38], [39], we can handle the real-valued
attributes or the hybrid attributes directly.

In fuzzy rough sets, we use a fuzzy similarity relation R to
substitute the crisp equivalence relation in traditional rough sets.
A fuzzy similarity relation R is a fuzzy relation S : U x U —
[0, 1] that should satisfy the following conditions.

1) Reflexivity: Va € U, S(z,x) = 1.

2) Symmetry: Vz,y € U, S(x,y) = S(y, x).

3) T-transitivity: Vz,y,z € U, S(z,2z) > T(S(z,y), S(y,
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Here, T is a T-norm [17], which is an associative aggrega-
tion operator 7" : [0, 1] x [0, 1] — [0, 1] and holds the following
conditions.

1) Commutativity: T'(a,b) = T'(b, a).

2) Monotonicity: T'(a,b) < T(c¢,d),if a < cand b < d.

3) Associativity: T'(a, T'(b,c)) = T(T'(a,b), ¢).

4) Boundary conditions: T'(a, 1) = a.

I:[0,1]> —[0,1] is an implicator [40], which satisfies
1(0,0) =1, I(1,0) = 0, and 7(0,1) = 1. An implicator [ is
called left monotonic iff I(., x) decreases Vz € [0, 1]. Similarly,
I is called right monotonic iff I(z, .) increases Va € [0, 1]. Once
1 is both left and right monotonic, then it can be called as hybrid
monotonic.

In [40], Radzikowska and Kerre proposed the lower and upper
approximations by means of the T-transitive fuzzy similarity
relation:

pr, X(z) = }gg I(pr, (z,y), pnx (y)) (15)
pig, X (x) = sup T(ur, (2,y), px (y)) (16)

yeU

where I and T' mean fuzzy implicator and T-norm, respectively,
and Rp refers to the similarity relation induced by the subset of
attributes P
piry (2,y) = min{ug, (2,y)} a7
acP
where pp, (z,y) is the similarity degree of objects  and y with
respect to attribute a.

In [7], the fuzzy positive region is proposed by means of the
extension principle [41] according to the crisp positive region in
the traditional rough set theory. Thus, Vx € U, its membership
with respect to the positive region can be defined as follows:

MPOSQ (S(}) = Sup ,UEP X(SC) (18)
XeU/Q
The fuzzy rough dependence is defined by
/ [POSP(Q)| _ >ucu Hpos, ()
7p(Q) = = 19)
" U] U]

With fuzzy dependence, we are able to measure the ability
of a given subset of attributes for preserving the dependence
degree of the entire attributes. By means of comparing fuzzy
dependence, we can find a way to choose an attribute subset
B, which can provide the same predictive ability as C, i.e.,
75 (D) =~ (D). In other words, a subset of conditional at-
tributes can be regarded as a reduct only if it satisfies

1) 7p (D) = 7¢(D)
2)VB' C B,vp/(D) < vp(D).

(20)
2y

Similar to the crisp case, the discernibility matrix in the fuzzy
rough set model is also an important approach to find one or more
reducts. The fuzzy discernibility matrix, proposed in [33], is an
extension of the crisp discernibility matrix in rough set theory.
For a given decision table S = < U, C'U D >, each entry of the
corresponding fuzzy discernibility matrix, denoted by M’ (z, y),
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is defined as follows:

M'(z,y) = {an(up, (2y)))a € C} Yo,y €U (22)

where g, (z,y) describes the fuzzy indiscernibility degree be-
tween objects x and y with respect to attribute a. On the contrary,
N(ugr, (z,y)) =1 — ug, (x,y) means the fuzzy discernibility
degree among objects x and y with regard to attribute a. For
example, an entry M'(x,y) might be {ag 42, by 548, ¢1.0}. The
Corey; (C) in the fuzzy discernibility matrix is defined by

Corey; (C) = {a|3M'(2,y), ur, (x,y) > 0,
Ve e C —{a}, pr, (z,y) = 0}.

Then, the fuzzy discernibility function f},, by extending the
concept of the discernibility matrix in rough set theory, is defined
as follows:

(23)

fpler e, em) = M{VM'(z,y) — N(ug, (z,y))|Vo,y € U}.

(24)
Here, < represents the fuzzy implication and D means the
decision attributes. It is noteworthy that, the same as the dis-
cernibility function, the satisfaction of the clause is largely
affected by the value of decision attributes. In this paper, we
concentrate on the datasets that only contain single symbolic
decision attribute. Thus, up, (z,y) takes values in {0,1}, i.e.,
1R, (x,y) = 1 means objects « and y have the same decision
value; otherwise, objects x and y have different decision values.
In order to find reducts, the degree of satisfaction of a clause
M'(x,y) for a subset of attributes B with respect to decision
attribute D is proposed:

SATg.p (M'(2,y)) = max{N (ur, (,9))} —N(ur, (z,y))-

(25)
Thus, the total satisfiability of all clauses for B is defined as
Zz,yeU,zyfy SATB«,D (M/(:Ev y))
ZI,yEU.I;&y SATC-,D (M/(:Z?7 y))

Once SAT(B) = 1, then the subset B is a fuzzy rough reduct. In
other words, a subset of conditional attributes B can be regarded
as a reduct only if it satisfies the following:

1) SAT(B) = SAT(C) = 1
2)VB' C B,SAT(B') < SAT(B).

SAT(B) = (26)

27)
(28)

III. MAXIMUM DISCERNIBILITY PAIRS

In a crisp discernibility matrix, as (13) and (14) indicate, a
reduct B is a minimum attribute subset that overlaps each entry
in the crisp discernibility matrix with at least one attribute. If
we take each entry in the crisp discernibility matrix as a basic
unit and neglect the matrix that contains those entries, then new
algorithms (such as the algorithm in [34]) can be proposed.
Since each entry can be represented by an object pair (x,y),
we can also call such algorithms based on the “object pair.”
One important property in attribute reduction based on the crisp
discernibility matrix is: for a given reduct candidate B, any
entry containing at least one attribute that belongs to B can
be neglected. In this paper, we extend such a property to the
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fuzzy discernibility matrix by means of constructing the reduced
maximal discernibility pairs, which means such a pair can be
discerned by any attribute in it.

We first introduce two important concepts in fuzzy rough sets:

aecC
aeC.

(29)
(30)

simg (2, y) = pa (2, y),
diS,l (l,y) = N(,Ufa (xvy))a

sim, (z, y) represents the fuzzy indiscernibility between objects
x and y; on the contrary, dis,(z,y) represents the fuzzy dis-
cernibility. For simplicity, we use N(z) = 1 — x in this paper.
Note that, in this paper, we assume that the fuzzy similarity
satisfies symmetry:
Sima(xay) = Sim(z(yax)' 3D
In order to find a reduct, we follow the idea of defining the
degree for a given entry M'(x, y) as (25), but, in this paper, we
intend to use operator max to specify it

SAT p(M'(2,y)) = I;neag{l —pr, (2,y)} < N(ur, (z,y))

(32)
which means, same as the crisp discernibility matrix, we con-
centrate only on the attributes having the maximal discernibility
and ignore the others. We can also express it as follows:

SATg p (M'(2,y)) = min{pg, (z,y)} — N(unr, (z,y))
(33)
which means the minimal fuzzy similarity and maximal fuzzy
discernibility are equivalent.

So far, we find that, for any M’ (z, y), any attribute contained
in it should be concerned only when the attribute has the mini-
mal fuzzy similarity or the maximal fuzzy discernibility. Thus,
the minimal fuzzy similarity attributes and the maximal fuzzy
discernibility attributes are defined as follows.

Definition 1: For a given decision table S =< U,C U D >,
the minimal fuzzy similarity attributes with respect to pair (z, y)
in the fuzzy discernibility matrix are defined as follows:

MSA¢ D(z,y) = {a|sim, (z,y) = mig sim, (z,y),a € C}
aec

P N(ur, (,y))
(34)

where <P is a symbol representing a switch used to determine
whether its left side should be calculated, i.e., a <P b means: if
b = 1, then calculate a; if b = 0, then do not calculate a and
assign empty set to a directly. In other words, (34) is equal to
the following equation:

{a|sim, (z,y) = min.cc sim.(z,y),
a€C}, ifpg, (x,y)=0
@, if/,LRD (l‘,y) = 1

MSA¢c D(z,y) =

(35)
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The maximal fuzzy discernibility attributes corresponding to
pair (x,y) in the fuzzy discernibility matrix is defined as

MDA D(z,y) = {aldis, (z,y) = magcdisc(x,y),a eC}
acC

- N(MRD (.’IZ‘, y))
(36)

In this paper, we use |MSA¢ (z,y)| and [MDA¢ (z,y)| to
represent the number of conditional attributes contained in the
minimal fuzzy similarity attributes and the maximal fuzzy dis-
cernibility attributes, respectively.

Equation (36) is equal to the following equation:

{a]dis, (z,y) = max.cc dis.(x,y),
aeC}, ifugp, (x,y)=0
0, if pr, (z,y) =1.

MDA¢D(x,y) =

(37

The above definition can successfully degrade to the crisp
form, in which MSA¢ D(x, y) and MDA D(x, y) are the same
as M (x,y) in the crisp discernibility matrix where the range is
{0,1}.

Proposition 1: For a given decision table S =< U,CU
D >, for any pair (z,y) in the corresponding fuzzy discernibil-
ity matrix, we have

MDA D(z,y) = MDA¢ D(y, ) (38)
MSA¢D(z,y) = MSAc D(y, x) (39)
MDA¢ D(z,y) = MSA¢ D(z,y). (40)

Proof: Since the fuzzy discernibility matrix is symmetric,
according to Definition 1, (38) and (39) can be easily obtained.
The result in (40) follows directly by using (29), (30), and
Definition 1. |

Then, we propose the concepts of the minimal fuzzy similarity
pairs and the maximal fuzzy discernibility pairs.

Definition 2: For a given decision table S =< U, C U D >,
the minimal fuzzy similarity pairs with respect to attribute a € C'
can be defined by

MSP, D(U) = {(2,y)la € MSAcD(x, y), (z,y) € U x U}
(41
The maximal fuzzy discernibility pairs with respect to any
attribute @ € C'is defined as

MDP,D(U) = {(z,y)|a € MDA¢D(x,y), (z,y) € U x U}.
(42)
In the following, we use [MSP, D(U)| and [MDP, D(U)| to
represent the sizes of the minimal fuzzy similarity pairs and the
maximal fuzzy discernibility pairs, respectively.
Proposition 2: For a given decision table S =< U,C U
D >, for any attribute a € C, we have

MSP, D(U) = MDP, D(U). 43)

Proof: From Proposition 1, we know that MDA¢ D(z,y) =
MSA¢c D(x,y). According to Definition 2, it is easy to get
MSP, D(U) = MDP, D(U). o
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TABLE I
DECISION TABLE

U c1 co c3 d

T 0.2 0.3 —-02 true

T9 0.3 0.2 0.1 false
T3 - 0.1 0 0 true
T4 —-02 -0.1 0 false

Example 1: Considering a decision table S=<U,CU
D > shown in Table I, we use the fuzzy similarity measure
defined in (54). Then, the fuzzy relation is calculated as fol-
lows:

1.000 0.580 0.000 0.000

sim, — 0.580 1.000 0.000 0.000
! 0.000 0.000 1.000 0.580
0.000 0.000 0.580 1.000

1.000 0.452 0.000 0.000

sim. — 0.452 1.000 0.000 0.000
2 0.000 0.000 1.000 0.452
0.000 0.000 0.452 1.000

1.000 0.000 0.000 0.000

sim. — 0.000 1.000 0.205 0.205
o 0.000 0.205 1.000 1.000
0.000 0.205 1.000 1.000

Thus

MDP,., D(U) = {(z1,z4), (x4, 21), (x2,x3), (x3,22)}

MDP,., D(U) ={(x1,24), (x4, 21), (x2,23), (3, 22),
(z3,74), (T4, 23)}

MDP,, D(U)

MSP., D(U)

MSP,., D(U)

{(581,1‘2), (x%xl)v (931,334), (x4,x1)}

{(3517564)7(9647951 ,(9627963)7(5837@)}

)
{(IL‘1,$4), (x4,x1), (z2,23), (3, 72),

(z3,24), (T4, 23)}

MSPC:;D(U) = {(xlva)v (x27x1)7 ($1,$4)7 (1’471'1)}.

As (43) and (40) illustrate, the maximal fuzzy discernibility
pairs and the minimal fuzzy similarity pairs are the same. Hence,
we concentrate only on the maximal fuzzy discernibility pairs
in the following for the purpose of simplicity.

Definition 3: For a given decision table S =< U,C U D >,
the maximal fuzzy discernibility pairs with respect to attribute
subset B C C can be defined in the following way:

MDP; D(U) = | | MDP,D(U).
YaeB

(44)

Here, MDPp D(U) is a set that contains all the maximal
discernibility pairs with respect to the attribute in B.
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Proposition 3: For a given decision table S =< U,C U
D >, for any attribute subset B C C, we have

MDP; D(U) C MDP-D(U),VB C C (45)
Proof: From Definition 3, it is easy to know if B C C,
MDP; D(U) € MDP¢ D(U). [ |

Proposition 4: For a given decision table S =< U,C U
D >,VB'C BC C,MDPy D(U) C MDP5D(U).

Proof: According to Definition 3, it can be proved easily. B

According to Proposition 4, we know that [MDPp D(U)]
satisfies monotonicity with respect to attribute subset B.

Proposition 5: For a given decision table S =< U,C U
D >,VB' C B,Va € C — B, we have

IMDP3 D(U)| < [MDP;D(U)|
IMDP D(U)| < [MDPp . D(U)|.

(46)
(47)

Proposition 6: For a given decision table S= < U,C'U
D >, MDPy D(U)=MDP- D(U) iff MDPg D(U)|=|MDP¢
D(U)|.

Proof: According to (45) in Proposition 3, MDP D(U) =
MDP:-D(U) < [MDPpD(U)| = |MDPoD(U)|. Thus, the
proposition holds. |

Proposition 7: For a given decision table S =< U,C U
D >, B is a reduct of the given decision table if it satisfies
the following.

1) MDP; D(U) = MDP¢ D(U).

2) VB' € B,MDPgz D(U) C MDPsD(U).

Proof: According to review of Section II-B, B is a reduct if
it satisfies (27) and (28).

Once we use N(z) = 1 — x and operator max to specify it,
by (32), we have

SAT(B)

_ Ez,yEU,z;Ay SATgB. p (]\/[/(x7 y))
> yeU,asty SATC D (M (z,y))

YayeUazy ax{l —ur, (2,9)} < N(ur, (2,9))
= (48)
Zx,yeU,:L'#y I(Peaé({l - /J’Ra (LE, y)} P N(MRD (LE, y))
which means

SAT(B) = SAT(C)

& > maxdi -, (59)} P N, (2,9))
z,yel,x#y €

= > max{l—pp, (5,9)} @ N(ur, (2,))
zyel,x#y a€

& Z dis, (z,y), YVa € MDA¢ D(z,y)
z,yel,x#y

= Y disy(z,y), Ya € MDA D(x,y)
ryel,z#y

< MDPp D(U) = MDP¢ D(U). 49)

SAT(B') < SAT(B) < MDPy/D(U) C MDP D(U) can
be obtained by the similar method.
In summary, the proposition holds. ]
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Definition 4: For a given decision table S =< U,C U D >,
the reduced maximal discernibility pairs with respect to attribute
a € C can be defined in the following way:

MDP, D(U) = {(z;,z;)|a € MDA¢ D(x;,x;),

Vl‘i,l‘j clU,i< j} (50)
MDP; D(U) = {(2:,;)|a € MDA¢ D(z;, z;),
Va;,x; € Ui > j}. (51)

Definition 5: For a given decision table S =< U,C U D >,
the reduced maximal fuzzy discernibility pairs with respect to
attribute subset B C C' can be defined in the following way:

MDP; D(U) = |_J MDP, D(U) (52)
a€B

MDP}, D(U) = |_J MDP; D(U). (53)
aeB

According to Definition 4, we know that MDP; D(U) or
MDP3; D(U) are exactly the half part of MDPg D(U). Thus,
our attention will be only focused on the MDP; D(U) in the
following for the purpose of simplicity.

Proposition 8: For a given decision table S =< U, C'U
D >,VB' C B C C,MDP%,,D(U) C MDP; D(U).

Proof: From Definition 5, we know that MDP; D(U) is
the union of MDP, D(U),a € B. Hence, it is easy to get
MDP),, D(U) C MDP,;, D(U) if VB' C B. |

Proposition 9: For a given decision table S= < U,C'U

D >, MDP%, D(U)=MDP, D(U) iff ]MDP; D(U)|=|MDP,
D(U)|.

Proof: According to Definition 5 and Proposition 5, this
proposition can be easily proved. |

Proposition 10: For a given decision table S =< U,C' U
D >, B is areduct of the given decision table iff

1) MDP; D(U) = MDP, D(U)

2) VB' € B, MDPY%,D(U) C MDP,. D(U).

Proof: According to Definition 5 and Proposition 5, this
proposition can be easily proved. |

Example 2: Letus consider the dataset in Table I again. Then

MDPcl ) D<U) - {($1,$4), ($4,.’b1), (.’Eg,xg), (x371'2)7

(3, 24), (x4, 23)}

MDP,, ., D(U) = {(21,741), (z4,21), (¥2,73), (v3,22),
(z3,24), (T4,73), (1, 72), (T2, 21)}

MDP C1,C3 ( )* {(171,124), (:E4,£C1), (‘T27x3)7 (x?)vg:?)v
(z1,22), (22, 21)}

MD 01 c2,C3 ( ) = {(.%‘1,.%'4), (‘T4>$1)7 (:Ug,.%’g), (.’ﬁ371'2)7
(z3,24), (T4, 23), (71, 22), (2,21)}

MDP; . D(U) = {(24,71), (v3,72), (T4, 73)}

MDP;, . D(U) = {(x4,71), (73, 72), (T4, 23), (T2, 71)}

MDP* C3 DU) = {(x4,71), (x3,72), (22, 71)}

MDPZ er.es D) ={(z4,21), (23, 22), (T4, 73), (T2, 21) }

c1 o (U) = {(SL’I,.Z'4), (.1’2,.%‘3)7 (-7537334)}

MDPiQ,(’; (U) = {(-’131,.134) (.132,1‘3), ($3,l‘4), (xlva)}

MDP,, . D(U) = {(z1,24), (22, 73), (21, 72)}

MDPL] ,C9,C3 (U - {(561,1’4), (1‘271’3), (1'3,1’4), (Ith)}'

Characteristics of MDP and MDP’ indicate that we can eval-
uate the attribute subset from the viewpoint of the “object pair.”
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Algorithm 1: RMDPS.

Algorithm 2: WRMDPS.

Input: A decision table S = (U,C' U D, V, f), where
U={x1,29,..,x,},C ={c1,¢2,...,em }, D = {d}

Output: Red

1: Red=(); maxNum=0; pairNum[i]=0, 1 < < |C]|.

2: Compute MDP,, D(U);

3: while true do

4:  pairNum[i]=0, 1 < i < |C|;

5:  forall (z;,z;) € MDP, D(U) do
6: for all ¢, € MDA D(z;, ;) do
7. pairNum[k]++;

8: end for

9:  end for

10:  maxNum=0;
11: forallc; € C,1 <k <|C|do

12: if pairNum[k] > maxNum then
13: maxNum=pairNum[k];

14: sel Att = k;

15: end if

16:  end for

17:  if maxNum # O then

18: Red = Red U cgejaxe;

19: MDP,. D(U) = MDP,. D(U) — MDP;SE]ARD(U);
20:  else

21: BREAK;

22: endif

23: end while

Input: A decision table S = (U,C U D, V, f), where
U={x,29,....20,},C ={c1,¢9,...,cn }, D ={d}

Output: Red

1: Red=0; maxNum=0; wPairNum[i]=0, 1 < i < |C|.

2: Compute MDP,, D(U);

3: while true do

4:  wPairNum[i]=0, 1 < i < |C|;

5:  forall (z;,z;) € MDP, D(U) do

6: for all ¢, € MDA D(z;, ;) do

7: wPairNum[k] += [MDA¢ D(z;, z;)|;
8: end for

9:  end for

10:  maxNum=0;
11: forallc; € C',1 <k <|C|do

12: if wPairNum[k] > maxNum then
13: maxNum=wPairNum[k];

14: selAtt = k;

15: end if

16:  end for

17:  if maxNum # O then

18: Red = Red U cgeaxt;

19: MDP,. D(U) = MDP. D(U) — MDP;MA"D(U);
20:  else

21: BREAK;

22:  endif

23: end while

As for attribute reduction, methods from the angle of the object
pair can ignore the object pairs that are already discerned by the
selected attributes subsets and thus need only to deal with part of
object pairs instead of the whole object pairs from the discourse,
which makes such algorithms efficient in attribute selection.

IV. ALGORITHMS BASED ON THE MAXIMAL DISCERNIBILITY
PAIR SELECTION

According to Propositions 8—10, we find that the reduced
maximal discernibility pairs are suitable for attribute selection.
In this section, we propose two algorithms, called RMDPS and
WRMDPS, in the framework of the reduced maximal discerni-
bility pairs.

A. RMDPS

Algorithm 1, denoted by RMDPS, is proposed via measuring
the importance of attribute by the size of the maximal discerni-
bility pairs with respect to each attribute, which is similar to the
algorithm in [42] for the crisp discernibility matrix.

In Algorithm 1, pairNum[i] represents the number of object
pairs in the remaining maximal discernibility pairs with respect
to attribute ¢;. Each time we choose the first attribute with the
maximal value for pairNum as the most important attribute,
i.e., selAtt, then we delete any object pair (x;,x;) that selAtt
€ MDAcD(z;, ;).

Step 2 consists of two parts: calculating the fuzzy rela-
tions and getting reduced maximal discernibility pairs. As
shown in Fig. 1, the time complexity is O(|U|?|C|). The time

complexity from steps 3 to 17 is O(‘U‘l;& * ﬁ), in which
— Re 2

0= Y/ oo

the Appendix. In summary, the time complexity of RMDPS

is max(O(|U|?|C|), O(% * 115)). According to Proposi-

tion 11 in the Appendix, O(‘U‘ZJ * ﬁ) is smaller compared
with O(|U]?|C|) when |red| is small. In order to make our al-
gorithm easier to understand, we also present it in a flowchart,

shown in Fig. 2.

. The detailed analysis can be found in

B. WRMDPS

Algorithm 2, denoted by WRMDPS,; is a “weighted” version
of RMDPS. It differs from RMDPS at step 6. In Algorithm 1,
we directly use the size of the remaining reduced maximal dis-
cernibility pairs with respect to each attribute to measure the
importance of the attribute. However, in Algorithm 2, we com-
bine the size of the remaining reduced maximal discernibility
pairs and the value of [MDP¢ (x;, ;)| together to measure the
importance of each attribute. In other words, the importance of
each attribute ¢; is measured by the value of [MDP;, D(U)| and
the value of [MDP¢ (x;, x;)| in which (z;, ;) € MDP,, D(U).
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WRMDPS

Calculate Fuzzy
Relations
oU?%c)

Fig. 1.

RMDPS
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SPS

First Step:

Calculate Fuzzy
Relations
o?c)

Calculate Fuzzy
Relations

0(U?C)

Get Reduced Max Get Reduced Max Get Sample Pair
Second Step: | Discernibility Pair Discernibility Pair 0(U2 C)
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Get A Reduct Get A Reduct Get A Reduct
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RMDPS

Y

y

Compute MDP:D(U)

A

A

»| Compute pairNum for

every unselected feature

MaxpairN

um==0

Fig. 2.

Select the first attribute
for pairNum.

Set pairNum for selAtt to 0.
MDP.D(U) = MDP;D(U) — MDPgy4:+D(U)

with maximum value

Flowchart of RMDPS.

A Reduct

Its time complexity is max(O(|U|?|C|), O(‘UlzJ * 1)),
and the detailed analysis is similar to the time complexity in

Section IV-A.

V. EXPERIMENT STUDY

In this section, we compare the proposed methods with several
representative algorithms. The summary information of the ex-
perimental datasets is shown in Table II. The Colon dataset and
the Hepatocellular dataset are two tumor datasets. The Colon
dataset can be downloaded at http://www.molbio.princeton.
edu/conlondata. One can find the Hepatocellular carcinoma
dataset in [43] (simply written as hepatocellular). The AM-
LALL dataset can be downloaded at Keng Ridge Bio-medical
(KRBM) Data Set Repository.! The other datasets are taken
from UCI.?

In this paper, we use WEKA to complete the missing val-
ues at first. The details of the hardware condition and software
environment are specified as follows.

1) The hardware environment: Intel(R) Core(TM) CPU 3.20-

GHz 8.00-GB Memory.
2) The software environment: Eclipse 3.12.1.v20160907-
1200, javas.

Afterwards, we conduct our comparison experiments from
two aspects: one is the comparison of efficiency (i.e., the time
consumption of attribute selection); the other is the comparison

Uhttp://datam.i2r.a-tar.edu.sg/datasets/
Zhttp://www.ics.uci.edu/mlearn/MLRepository.html
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TABLE II
DETAILED INFORMATION OF THE DATASETS

Index Dataset Abbreviation ~ Objects  Conditional Attributes Data type Decision classes
1 Glass Identification glass 214 9 Numeric 7
2 Horse Colic horse 368 22 Nominal, Numeric 2
3 Ecoli ecoli 336 7 Numeric 8
4 cleanl clean 476 166 Numeric 2
5 creditg credit 1000 20 Nominal, Numeric 2
6 Lymphography lymph 148 18 Numeric, Nominal 4
7 ColonAll colon 62 2000 Numeric 2
8 Hepatocellular hepa 33 7192 Numeric 2
9 ionosphere ionos 351 34 Numeric 2
10 AMLALL alma 72 7129 Numeric 2
11 segment segm 2310 19 Numeric 7
12 anneal anneal 798 38 Numeric, Nominal 6

of classification performance (i.e., the quality of the selected at-
tributes). In the following, we compare the proposed algorithms
RMDPS and WRMDPS with four representative algorithms:
L-FRFS and FDM [33], SPS [34], and NFRS [16]. L-FRFS is
based on fuzzy lower approximation. It uses the fuzzy positive
region to construct dependence degree and then uses dependence
degree to gauge subset quality and gets the reduct. FDM is a
fuzzy-discernibility-matrix-based feature selection algorithm. It
extends the discernibility matrix to the fuzzy case and uses indi-
vidual satisfaction of each clause for a given set of attributes to
find reducts. SPS is also an attribute reduction method from the
viewpoint of the object pair. Different from our methods, it is
an algorithm based on the crisp discernibility matrix generated
by cut set technology, rather than fuzzy discernibility matrix.
In essence, SPS transforms the framework of fuzzy rough sets
into that of crisp rough sets. NFRS is a fitting model feature
selection algorithm for fuzzy rough sets. First, it defines the
fuzzy decision of a sample using the concept of fuzzy neigh-
borhood. Then, a parameterized fuzzy relation is introduced to
characterize the fuzzy information granules. Finally, it defines
the significance measure of a candidate attribute and designs a
greedy forward searching strategy. As for the compared meth-
ods, original proposals of these methods have been used in our
comparison.

In the experiments, we use the following similarity measure
to obtain fuzzy similarity relations:

ta(2,y) = max (min <f(“’y) — fla,2) + 04

Oa

)

fla,z) 4+ o4

—f(a,y)>’0>

As for the nominal (or symbolic) attributes, we use the fol-
lowing formula to get the similarity relations:

[0, i fay) # Flar)
ta(,y) =

(54)

55
L if f(ay) = fla, ). 63

Table III represents the average consuming time of ten in-
dependent running of every algorithm. It is obvious that both

RMDPS and WRMDPS are more efficient than the compared
algorithms.

In Tables IV and V, we illustrate the comparison results
of the classification performance with respect to the selected
reducts. The results are average values of tenfold cross valida-
tion of C4.5 and Naive Bayes. Student’s paired two-tailed t-test
is applied to evaluate the statistical significance of the differ-
ence between two averaged accuracy values: one resulted from
RMDPS and the other resulted from the other algorithms. In this
experimental study, we set the statistical significance to the de-
fault value 0.05. p-Value indicates the probability associated
with the t-test. The smaller the value, the more significant the
difference between the two average values is. What is more,
the symbols “+” and “—” represent that the corresponding ap-
proach statistically significantly (at 0.05 level) wins and loses
the competing with our RMDPS, respectively. The symbol “o”
represents ties.

Table IV shows the classify performance by C4.5. Table IV
indicates that the proposed methods outperform compared
algorithms in general. The proposed methods RMDPS and WR-
MDPS get the highest average performance on all the datasets,
and they are the only methods that obtain average classifi-
cation accuracies over 80% except for the full attribute set.
Table V shows the classification performance by the Naive
Bayes classifier. From the table, we can get similar conclu-
sion to Table IV. RMDPS and WRMDPS are still the methods
that get the best average performance on all the datasets. On the
whole, one may conclude that the presented methods outper-
form the compared algorithms and the full attribute set. In the
last rows of Tables IV and V, the statistical significance results
are summarized over all compared algorithms. The results in-
dicate that RMDPS and WRMDPS perform closely. Compared
with other methods, RMDPS wins more and losses less. On the
whole, the proposed RMDPS and WRMDPS obtain satisfactory
results.

Since SPS is also an attribute reduction approach from the
viewpoint of object pairs, we need to compare the proposed
methods with SPS specially.

RMDPS, WRMDPS, and SPS can be broken down into three
steps, shown in Fig. 1. They are similar in the first step, so the
running time results are close in Table VI. RMDPS, WRMDPS,
and SPS differ in the second and third steps. In the second step,
SPS has to convert a fuzzy discernibility matrix into a crisp
discernibility matrix, which is a time-consuming process. Also,
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TABLE III
COMPARISON OF THE WHOLE RUNNING TIME (SECONDS)
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Algorithms alma anneal clean colon  credit  ecoli glass hepat horse  ionos lymph segme  AverageTime
RMDPS 0.964 1.437 1.334 0.136 0.832 0.018 0.011 0.134  0.067 0.109 0.005 6.944 0.999
WRMDPS 0.884 1.467 1.365 0.156 0.808  0.018  0.008 0.143 0.070  0.109  0.005 7.035 1.006
L-FRFS 235.571  13.737 44.677 16.479 5202 0.051 0.038 41.546 0.741 0.231 0.055 8.788 30.592
FDM 1.428 4.119 4.408 0.22 1.923 0.022 0.012 0.171 0.222  0.135 0.011 8.371 1.754
SPS 0.77 1.752 1.394 0.142 1.035 0.042 0.018 0.132  0.093 0.13 0.009 9.296 1.234
NFRS 69.671 6.975 206.063 49.36 4.18 0.062  0.037 2.907 0.465 2.083 0.018 37.515 31.611
TABLE IV
ACCURACY RESULTS OF ALGORITHMS WITH C4.5 CLASSIFIERS
Datasets RMDPS WRMDPS L — FRFS FDM SPS NFRS fullset
Acc+Std  Acc£Std p-Value Acc+Std p-Value Acc+Std p-Value Acc+Std p-Value Acc+Std p-Value Acc+ Std p-Value
Amla 94.11 £ 0.21 94.11 £0.21 1.000 94.55 +£0.48 0.014 93.06+0.0 0.00— 6691 +£0.83 0.00— 92.52+0.51 0.00— 81.33£0.7 0.00—
Anneal 98.53 £0.06 98.53 +£0.06 1.000 98.18 £0.1 0.00— 98.51 +0.06 0.100 98.53 +£0.06 1.000 88.41+0.15 0.00— 98.52+0.04 0.960
Clean 77.09 +£1.26 80.11 +1.5 0.01+ 7697 +£0.92 0.660 74.8+0.24 0.00— 788 +0.74 0.02+ 79.83 +£0.36 0.00+ 83.0+0.49 0.00+
Colon 80.92 £ 0.6 80.52£0.57 0.170 87.01 £0.83 0.00+ 79.91 +0.49 0.00— 71.49 £0.78 0.00— 79.53 +£1.27 0.00— 82.73 +1.19 0.00+
Credit 72.77 £0.34 72.66 £ 0.36 0.02— 72.13 +£0.28 0.00— 72.13+0.28 0.00— 7298 +£0.21 0.01+ 68.61 £0.24 0.00— 71.15+0.19 0.00—
Ecoli 82.84 +£0.32 82.84 £0.32 1.000 82.84 +0.32 1.000 82.84 £0.32 1.000 82.84 +£0.32 1.000 82.84 +0.32 1.000 82.84 +0.32 1.000
Glass 68.24 + 0.63 68.24 £ 0.63 1.000 68.24 +£0.63 1.000 67.17 = 1.12 0.01— 68.24 £0.63 1.000 67.03 £0.77 0.00— 68.24 +0.63 1.000
Hepat 90.21 £0.7 73.42+2.11 0.00— 86.24 +£0.91 0.00— 86.24 +0.91 0.00— 66.05+ 1.29 0.00— 71.82 +3.45 0.00— 53.79 +1.59 0.00—
Horse 84.65 + 0.08 84.65 +£0.08 1.000 84.81 £0.15 0.00+ 84.95+ 041 0.03+ 85.08+0.61 0.070 68.65+0.19 0.00— 83.47+0.29 0.00—
Tonos 90.37 £0.6 90.37+0.6 1.000 64.1+£0.0 0.00— 80.91 +0.01 0.00— 91.35+0.36 0.00+ 89.8+0.21 0.00— 89.68 +0.33 0.01—
Lymph 743+035 743+035 1.000 743+035 1.000 7434+0.35 1.000 73.12+0.53 0.00— 67.724+0.33 0.00— 76.47 +0.97 0.00+
Segme 96.83 + 0.06 96.83 £0.06 1.000 14.29 +0.0 0.00— 52.64 +0.08 0.00— 96.82 £0.07 0.350 96.21 0.1 0.00— 96.83 +0.05 0.440
Average(Acc% ) 84.23 83.03 75.3 78.94 79.35 79.39 80.66
Lose/Win/Tie 2/1/9/ 5/3/4/ 8/1/3/ 4/3/5/ 10/1/1/ 5/3/4/
TABLE V
ACCURACY RESULTS OF ALGORITHMS WITH NAIVE BAYES CLASSIFIERS
Datasets RMDPS WRMDPS L — FRFS FDM SPS NFRS fullset
Acc£Std AccxStd p-Value Acc=+Std p-Value Acc=+Std p-Value Acc=+Std p-Value Acc=£Std p-Value Acc=£Std p-Value
Amla 94.65 + 0.71 94.65 +0.71 1.000 96.24 +0.39 0.00+ 96.39 +0.24 0.00+ 70.69 £0.26 0.00— 99.85 £0.12 0.00+ 99.32 +0.28 0.00+
Anneal 87.71 £0.04 87.71 =0.04 1.000 84.16 £0.06 0.00— 87.72+0.05 0.500 87.71 £0.04 1.000 39.54 +£0.07 0.00— 86.52 +0.07 0.00—
Clean 67.75+0.2 73.81 £0.28 0.00+ 69.57 +£0.18 0.00+ 70.17 £0.3 0.00+ 69.63 +£0.22 0.00+ 76.15+0.13 0.00+ 74.1 £0.19 0.00+
Colon 8548 £0.0 83.6+0.31 0.00— 77.424+0.31 0.00— 79.87 £0.89 0.00— 6529 +0.45 0.00— 84.35+0.41 0.00— 5596+ 049 0.00—
Credit 74.76 +0.27 74.66 £0.2 0.00— 74.0+0.12 0.00— 74.0+0.12 0.00— 74.69 £0.19 0.080 70.92+0.06 0.00— 7529 +0.11 0.00+
Ecoli 8552+ 0.1 8552+0.1 1.000 8547 +0.11 0.00— 8547 +0.11 0.00— 8552+0.1 1.000 8552+0.1 1.000 8552+0.1 1.000
Glass 48.87 £ 0.69 48.87 = 0.69 1.000 48.87 £0.69 1.000 43.2+0.54 0.00— 4887 +0.69 1.000 48.47+0.54 0.00— 48.87 +£0.69 1.000
Hepat 82.48 + 1.68 87.54 +1.02 0.00+ 84.68 +2.37 0.00+ 84.68 +2.37 0.00+ 59.06+1.52 0.00— 93.61 +0.58 0.00+ 74.87 +0.48 0.00—
Horse 81.02+0.1 81.02+0.1 1.000 81.38+0.3 0.00+ 79.36+0.21 0.00— 78.85+0.17 0.00— 59.55+0.24 0.00— 77.17 £0.11 0.00—
Tonos 82.16 £ 0.08 82.16 £ 0.08 1.000 64.1 £0.0 0.00— 76.37 £0.04 0.00— 85.68 +£0.26 0.00+ 86.97 +0.12 0.00+ 82.48 £0.12 0.00+
Lymph 80.01 +0.18 80.01 +0.18 1.000 80.01 £0.18 1.000 80.01 £0.18 1.000 79.38 +0.45 0.01— 72.18 £0.32 0.00— 82.77+0.2 0.00+
Segme 80.48 +£0.03 80.48 £0.03 1.000 14.29+0.0 0.00— 47.64 £0.05 0.00— 80.65+0.07 0.00+ 86.0£0.06 0.00+ 79.88+0.03 0.00—
Average(Acc% ) 79.24 80.00 71.69 75.42 73.84 75.26 76.90
Lose/Win/Tie 2/2/8/ 6/4/2/ 7/3/2/ 5/3/4/ 6/5/1/ 5/5/2/
TABLE VI
RUNNING TIME RESULTS OF THE FIRST STEP (SECONDS)
Algorithms  alma  anneal clean colon credit ecoli glass  hepat  horse ionos lymph segme  AverageTime
RMDPS 0.823 1.365 1.186  0.108 0.75 0.013  0.008 0.105 0.055 0.096 0.003 6.146 0.888
WRMDPS 0.699 1.384 1.156  0.12 0.706  0.013 0.005 0.103 0.054 0.091 0.003 6.038 0.864
SPS 0.616 1.415 1.158  0.115 0.729 0.013 0.005 0.103 0.055 0.096 0.003 6.416 0.894
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TABLE VII
RUNNING TIME RESULTS OF THE SECOND STEP (SECONDS)
Algorithms  alma  anneal clean colon credit ecoli glass  hepat horse ionos lymph segme  AverageTime
RMDPS 0.087 0.05 0.08 0.017 0.051 0.003 0.002 0.017 0.007 0.007 0.001 0.432 0.063
WRMDPS  0.078  0.049 0.08 0014 005 0003 0.002 0.016 0.007 0.007 0.001 0.536 0.07
SPS 0.124  0.144 0.139 0.022 0.178 0.0l  0.005 0.025 0.022 0.017 0.004 0924 0.1345
lymph amla glass
il n"ﬁ:‘”fm_v e o S y L’b‘aﬁin"m'
) i rlu;wk' o ; i ln‘ oyl ] = [} 1#.(\«‘; >
(a) (b) (c)
clean ecoli horse
AT L -LL L.‘i,,, o I.l...,,,mmm
i-th cyde - ) I-fl:lrh: ’ ; ' I-Itllll\h: -
(d) (e} (n
Fig. 3. Number of remaining object pairs in the ith cycle.
TABLE VIII
RUNNING TIME RESULTS OF THE THIRD STEP (SECONDS)
Algorithms  alma  anneal clean colon credit ecoli glass  hepat horse ionos lymph segme  AverageTime
RMDPS 0.054  0.022 0.068 0.011 0.03  0.002 0.002 0.024 0.009 0.011 0.001 0.367 0.048
WRMDPS  0.106  0.035 0.13  0.022 0.052 0.002 0.002 0.024 0.009 0011 0.001 0.461 0.071
SPS 0.029  0.193  0.097 0.005 0.129 0.02 0.008 0.004 0.016 0.017 0.002 1.956 0.206

from Table VII, we can see that our algorithms are always faster
than SPS. As for the third step, we know that SPS has more
object pairs to be evaluated from Fig. 3. On the whole, from
Table VIII, one can conclude that RMDPS and WRMDPS are
faster than SPS. However, we should notice that SPS is faster
than RMDPS and WRMDPS on few datasets. To understand this
situation, we need to notice that RMDPS and WRMDPS adopt
a greedy search strategy to choose the next attribute, i.e., they
choose the attribute with the maximal pairNum (remainder dis-
cerned object pairs) from the remainder conditional attributes
in each loop. RMDPS and WRMDPS terminate when all the
discernibility pairs are covered. SPS faces the similar situation,
i.e., it selects attributes gradually till all the discernibility pairs
are covered. It should be noticed that SPS uses an approximate
and simple search strategy by neglecting the change of remain-
der attributes’ discerning number in remainder uncovered pairs.
In other words, SPS sorts attributes once and adds attributes
one by one according to the sorted sequence. Actually, for a
remainder attribute, the discerning number in remainder uncov-

ered pairs may be changed when an attribute is selected. The
order of attributes may change. According to our understand-
ing, SPS uses such an approximate search strategy because that
remaining uncovered pairs are large at each iteration.

VI. CONCLUSION

In this paper, we first propose two concepts of the reduced
maximal discernibility pairs and the minimal indiscernibility
pairs. Consequently, we develop two effective algorithms based
on the proposed concepts, denoted by RMDPS and WRMDPS.
RMDPS and WRMDPS are attribute reduction algorithms from
the viewpoint of the object pair in the framework of fuzzy rough
sets. They only need to deal with part of the object pairs rather
than the whole object pairs from the discourse, which makes
such algorithms efficient for attribute reduction. Numerical ex-
periments are conducted, and the results verify the theoretical
analysis. Comparison results indicate that the proposed algo-
rithms are effective and feasible.



DAI et al.: MAXIMAL-DISCERNIBILITY-PAIR-BASED APPROACH TO ATTRIBUTE REDUCTION IN FUZZY ROUGH SETS

In this paper, we use a normal heuristic method to choose an
attribute. Actually, further study can consider other search mech-
anisms, such as the Davis—Logemann-Loveland-based strat-
egy [44], the Johnson Reducer approach [44], probabilistic
search [45], and global search based on swarm intelligence [46].

The main purpose of this study is to present a method to
attribute reduction issue in the fuzzy rough framework from
the viewpoint of the object pair. We think the presented study
can supply an optional angle to consider the attribute reduction
issue, since most of the existing attribute selection algorithms
mainly take the angle of the attribute set. However, one should
notice that there are also improved and optimized approaches
for attribute reduction from the viewpoint of the attribute set,
such as efficient positive-region-based approaches [47]-[49].
To our understanding, approaches from these two viewpoints
are inspiring to each other. In the future, we plan to introduce
speeding up techniques in attribute reduction from the viewpoint
of the attribute set into the proposed framework.

The presented study focuses on finding one reduct. In the
future, we also plan to study the methods to get all the reducts
of a given decision table from the viewpoint of the object pair.

APPENDIX

As shown in Algorithms 1 and 2, the While circulation should
run exactly |[Red| 4 1 cycles. Suppose maxNum,; is the value
of maxNum in the ith cycle, selAtt; represents the selected
attribute in the 7th selection, and MDP,’L- represents the number of
remaining MDP(, D. Note that maxNum = maxNumjgeq|1 =
0, MDPgq,; = 0. Then, we have

maxNum; + maxNumgy + - - - + maxNumgeq|

= |[MDP. D(U)| (56)
MDP; = |[MDP. D(U)| — (maxNum; + - - -
+ maxNum;_1),7 > 1. (57)

We randomly select six datasets to show the changes of the
values of MDP; in the circulation in Fig. 3. As we can see
from Fig. 3, MDP; is much smaller than MDP;_, . In order to
describe the changes of MDP;, better, we assume that it follows
a geometrical change, i.e., MDP, = MDP, x 9, where 0 is a
common ratio. Thus, MDPQ can be represented as follows:

MDP, = MDP} % 9'~!. (58)
Here, MDP| = w Considering the value of MDPy 4
is integer, thus

MDPfg g1 =0 0 < MDPfp g, <1

& 0 < MDP] « R4 < 1 (59)
which implies
1 2
9 < [Red = Reaf____— 60
wor, - Y
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Here, we choose 0 = ‘“;“/W in a most conservative

approach. Obviously, its range is (0, 1). So
MDP) + MDP,, + - -- +MDP[p ;.

= MDP), % 8’ + MDP} % 9" + - -- + MDP} iRed]

1 _ HRed|+1

— 5
1

1-0

ol -1,

2 1-0

P 1

<S5 1.5

— MDP), «

< MDP}, x

(61)

which means the time complexity for steps 3—18 is O(w *
ﬁ), in which

2

9 = Red
Ul(ul =1

(62)

Proposition 11: For a given decision table S =< U,C U
D >, |U| means the number of objects in U, |C| is the number
of attributes in C, and |Red| represents the number of attributes
contained in the reduct with respect to the given decision table.

Then, L)« 1o < [UR|C| & [U)(|U] = 1) > 2R+,

2
Proof: 1t can be easily proved using (62). |
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