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Abstract Deriving the consensus ranking(s) from a set of rankings plays an impor-
tant role in group decision making. However, the relative importance, i.e. weight of
a decision maker, is ignored in most of the ordinal ranking methods. This paper aims
to determine the weights of decision makers by measuring the support degree of each
pair of ordinal rankings. We first define the similarity degree of dominance granular
structures to depict the mutual relations of the ordinal rankings. Then, the support de-
gree, which is obtained from similarity degree, is presented to determine weights of
decision makers. Finally, an improved programming model is proposed to compute
the consensus rankings by minimizing the violation with the weighted ranking(s).
Two examples are given to illustrate the rationality of the proposed model.
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1 Introduction

Group decision-making (GDM) is accentuated in the organizations when they realize
that the complexity and the size of their decision problems could not be solved by
working individually [32]. In practical GDM problems, decision makers (DMs) pro-
vide their preference information in multiple formats, such as utility functions [15,
33,39,43], multiplicative preference relations [37,38], fuzzy preference relations [4,
16,24], and ordinal rankings [1,2,6,7,8,9,10,11,12,13,18,19,20,21,22]. Many real
world decision problems involve ordinal rankings, such as marketing of new products
[9], allocating priorities to R & D projects [13], service evaluation of e-commerce
[23], document retrieval [46]. The attractiveness of the ordinal ranking format is due
in great part to the minimal amount of information required, i.e. each decision maker
only needs to express a preference of one object over another, not the degree of pref-
erence as it is required in utility functions and preference relations.

Aggregating the consensus ranking(s) from a set of individual ordinal rankings
has been investigated by several researchers. There are mainly two approaches in the
consensus ranking problems: total ranking and partial ranking. The total ranking ap-
proach demands that decision makers appraise all the objects and deliver a total rank
of the objects. The total ranking approach has been studied more maturely. The well-
known Borda-Kendall [26] method is the representative total ranking approach. Ke-
meny and Snell [25] first proposed the optimal approach that minimizes the distance
between the solution ranking and the set of given rankings in pairwise format. Cook
designed another optimal model to minimize the number of disagreements among the
given total ranking [8,9].

In many practical problems, it might be better to allow decision makers to pro-
vide partial rankings on the object set. For instance, a film review website wants to
launch a most popular movies recommender project and the workers make a survey
of one thousand college students on naming several Hollywood Movies of 2012 that
they had seen and ranking them in decreasing order of preference. Then student A
might give the preference as: Ice Age: Continental Drift, Madagascar3, Skyfall, The
Vow, Dredd, and other movies are not compared. Student B might give his preference
as: Skyfall, Looper, Argo, and some other movies are not compared. Both of A’s list
and B’s list are partial rankings of movie titles of 2012. Another instance is the peer
review of articles in the academic community. In most cases, the committee mem-
ber can only express the preferences concerning a proper subset of the articles for
the the domain expertise or the limited time and attentions. For the reason that the
decision makers have no preference knowledge about the two objects, we can think
that no comparison between two objects means the incomparable relation for the cur-
rent judgement of each decision maker. Several researchers have paid their attention
to this kind of problems. Bogart [1,2] analyzed the structure of transitive and asym-
metric preference relations, defined the distance metric of the two kinds of relations,
and concluded that the mean of a collection of relations is the consensus preference.
Cook et al. studied the preference in priority ranking [7], compared the relations of
the different methods [11,12] and constructed the strict mathematical programming
model to solve the partial ordinal ranking problems [12,13]. Brüggemann [3] used a
local partial order model to estimate the averaged ranks. Cook et al. [13] proposed a
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Branch-and-Bound approach to support the construction aggregate ranking(s) so as to
achieve the maximum possible overlap among the partial rankings provided by differ-
ent decision makers. The Branch-and-Bound method given in [13] is one of the most
effective methods for solving the partial ranking problems by discarding large subsets
of fruitless rankings through computing the upper and lower estimated bounds of the
branched nodes.

Weights of decision makers play a very important role in GDM problems. It is
an interesting research topic to determine weights of decision makers. In many group
decision making literature, particularly in ordinal ranking problems [1,2,7,8,9,10,
11,12,13], relative importance, i.e. weight, has been largely ignored. It is typically
assumed that all decision makers in a group have the same importance. Some re-
searchers have studied the weight determination methods in ordinal ranking prob-
lems. The subjective and objective methods are two kinds of weights determining
approaches. Ramanathan [36] used the eigenvector method, a subjective method, to
determine the weights of group members. Emond and Mason [14] determined the
objective weights of decision makers by computing the consensus degree of each
decision maker. Jabeur et al. [18,19,20,21,22] used a subjective and objective com-
bined method to obtain the relative importance coefficient of each decision maker
under each pair of objects.

Although the above approaches have done beneficial attempts to derive the con-
sensus ranking(s) by considering the weights of decision makers, the relations among
the total or partial preference rankings are greatly ignored and these information in-
deed provides very useful clues for determining weights of decision makers. Granular
computing, which is seen as a conceptual and algorithmic platform supporting anal-
ysis and design of human-centric intelligent systems, has attracted the attention of
many researchers [27,34,41,42,43,44,47]. Granule, granulation and granularity are
regarded as the three primitive notions of GrC. A granule is a clump of objects drawn
together by indistinguishability, similarity and proximity of functionality. Granula-
tion of an object leads to a collection of granules. The granularity is the measurement
of the granulation degree of objects [35]. For the less comparison information, we
can not use the entropy or deviation measures [5,40], which are widely used in the
utility expressed decision making, to calculate the weights, and the clues that we can
use are structures of the rankings. Granularity measure is indeed a good tool to reveal
the relations among different granular structures. In this paper, we try to design a
new granularity measure in the scheme of granular computing to analyze the support
degrees among different decision makers. In real life, if one’s opinion is approved
by most of the decision makers, he or she is usually considered an influencer and
should be granted a comparatively larger power. Firstly, we construct the dominance
granular structures by granulating the dominating objects under the corresponding
ordinal rankings. Inspired by the measurements of knowledge granularities in the
studies of Refs. [17,28,30,29,34,48], we define the similarity degree of each pair
of dominance granular structures to analyze the differences among decision makers’
judgments. Then, an improved similarity degree, support degree, is used to determine
the weights of decision makers in ordinal group ranking. In addition, we improve
the programming model to derive the consensus ranking(s) of the weighted ordinal
rankings by the Branch-and-Bound method proposed in [13].
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The rest of this paper is organized as follows. The ordinal ranking and its domi-
nance granular structure are presented in Subsection 2.1; the mathematical program-
ming model for deriving consensus total ranking(s) with minimum violations is fol-
lowed in Subsection 2.2. Section 3 defines the similarity degree and support degree
of dominance granular structures to determine weights of decision makers. Consid-
ering the weights of decision makers, Section 4 improves Cook’s minimum violation
model to compute the consensus ranking(s) from a set of weighted ordinal rank-
ings. Two examples are given in Section 5 to illustrate the rationality of the proposed
method. Section 6 concludes the paper.

2 Preliminaries

In this section, several notions related to rankings are given in the first subsection.
Then the mathematical programming model for deriving the consensus ranking(s)
from an ordinal ranking set are reviewed in the second subsection.

2.1 Total ranking, partial ranking and ranking

Definition 1 [31] Let X = {x1,x2, . . . ,xn} (n > 1) and R be a binary relation on X . If
R satisfies the following conditions:

(1) for any x ∈ X , (x,x) ∈ R (reflexivity);
(2) if (x,y) ∈ R and (y,x) ∈ R, then x = y (antisymmetric);
(3) if (x,y) ∈ R and (y,z) ∈ R, then (x,z) ∈ R (transitivity);

then, R is called a partial relation on X .

(x,y) ∈ R is simplified as x ºR y. In decision making, it is senseless to compare
one object to itself, so we mainly investigate the irreflexive partial relation, in which
x prefers y is denoted as xÂR y.

Definition 2 Let X = {x1,x2, . . . ,xn} (n > 1) and R be a strict partial relation on X .
The set V ES(R) = {x | x,y ∈ X ,∃y,x ÂR y or y ÂR x} is called the valid evaluation
set of R.

Let R be a strict partial relation on X . If x ∈V ES(R), then x is called a compared
object; if x ∈ X−V ES(R), then x is not compared with any other objects.

Definition 3 [31] Let X = {x1,x2, . . . ,xn} (n > 1) and R be a strict partial relation on
X . If for any two distinct elements x,y ∈ X , x ÂR y or y ÂR x, then R is called total
(complete) ranking on X .

Suppose R is a total ranking on X , then the ranking can be clearly expressed as
xi1 ÂR xi2 ÂR . . .ÂR xin . Let RX represent the set of all the total rankings on X , then
|RX |= n!.

Example 1 Let X = {x1,x2,x3,x4}, R1 = {(x2,x1)}, R2 = {(x2,x1),(x2,x3),(x2,x4),
(x3,x1),(x3,x4),(x4,x1)}. It is easy to verify that R1 and R2 are two strict partial
relations on X . V ES(R1) = {x1,x2}, V ES(R2) = {x1,x2,x3,x4}. In addition, R2 is a
total ranking and it can be denoted as x2 ÂR2 x3 ÂR2 x4 ÂR2 x1.
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Definition 4 Let X = {x1,x2, . . . ,xn} (n > 1), R be a strict partial relation on X and
Y ⊆ X . Pro jY (R) = (Y ×Y )∩R is called the projection of R on Y.

Property 1 Let X = {x1,x2, . . . ,xn} (n > 1), R be a strict partial relation on X and
Y ⊆ X . Pro jY (R) is a strict partial relation on Y.

Proof: (1) “Irreflexive.” For any y ∈ Y, since Y ⊆ X , y ∈ X . R is irreflexive on X ,
so (y,y) /∈ R, therefore, (y,y) /∈ R∩ (Y ×Y ) = Pro jY (R).

(2) “Antisymmetric.” If (x,y) ∈ Pro jY (R) and (y,x) ∈ Pro jY (R), then (x,y) ∈ R
and (y,x) ∈ R. Since R is antisymmetric, it follows y = x.

(3) “Transitivity.” Similar to the proof of (2).
This completes the proof.
Property 1 shows that the projection of a strict partial relation is also a strict partial

relation.

Definition 5 Let X = {x1,x2, . . . ,xn} (n > 1) and R be a strict partial relation on X .
If V ER(R) 6= X and Pro jV ER(R)(R) is a total ranking on V ER(R), then we call R a
partial ranking on X .

A partial ranking on X can be seen a total ranking on a proper subset of X . The
object set X are divided into two non-empty parts: V ER(R) and X−V ER(R). If both
of x and y are in V ER(R), then there exists an explicit order relation between x and y;
otherwise, the two elements x and y are incomparable.

Remark 1 From Definition 5, a total ranking is different from a partial ranking. All
the objects are comparable in a total ranking. In contrast, some of the objects are
incomparable in a partial ranking. Total ranking and partial ranking are collectively
called ranking.

Definition 6 Let X = {x1,x2, . . . ,xn} (n > 1) and R be a ranking on X . For any x∈ X ,
the weak dominance granule of x with respect to the ranking R is defined as

[x]ÂR = {y | yÂR x and y ∈ X}∪{x}. (1)

The weak dominance granule [x]ÂR is the set that includes x and the elements
dominate x with respect to R. The elements except x in a weak dominance granule,
[x]ÂR , are drawn together by the preference relation.

Let X/R = {[x]ÂR | x ∈ X}. X/R is called a dominance granular structure of X
induced by R. Each ranking induces an unique dominance granular structure. The
weak dominance granules in X/R do not constitute a partition of X , in general, they
constitute a covering of X . In the following section, we analyze the relations among
decision makers by comparing the differences among the dominance granular struc-
tures of rankings provided by the corresponding decision makers.

Example 2 (Continued from Example 1.) We calculate the dominance granule struc-
tures with respect to R1 and R2 given in Example 1.

X/R1 = {[x1]ÂR1
, [x2]ÂR1

, [x3]ÂR1
, [x4]ÂR1

},
where [x1]ÂR1

= {x1,x2}, [x2]ÂR1
= {x2}, [x3]ÂR1

= {x3}, [x4]ÂR1
= {x4}.

X/R2 = {[x1]ÂR2
, [x2]ÂR2

, [x3]ÂR2
, [x4]ÂR2

},
where [x1]ÂR2

= {x1,x2,x3,x4}, [x2]ÂR2
= {x2}, [x3]ÂR2

= {x2,x3}, [x4]ÂR1
= {x2,x3,x4}.
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2.2 Mathematical programming model for deriving the consensus ranking(s) with
minimum violations

Let X = {x1,x2, . . . ,xn} be a set of objects, DM = {e1,e2, . . . ,el} be a set of decision
makers and ℜ = {ÂR1 ,ÂR2 , . . . ,ÂRl} be a set of rankings on X provided by the deci-
sion makers in DM. The task of us is to find the total ranking(s) on X with minimum
violations of the rankings in ℜ.

Cook et al. [12] solved the pairwise comparison consensus ranking problem from
a strictly mathematical programming perspective. The minimum violation consensus
total ranking problem is expressed as an integer programming formulation as follows.

min
R∈RX

M(R) = ∑
(xi,x j)∈X2:i6= j

pi jvi j

s.t. pi j + p jk ≤ 1+ pik ∀(xi,x j,xk) ∈ X3 : i 6= j, i 6= k,k 6= j,
pi j + p ji = 1 ∀(xi,x j) ∈ X2, i 6= j,
pi j ∈ {0,1}.

(2)

where vi j = |{Rk|x j ÂRk xi,k = 1,2, . . . , l}| represents the number of violations occurs
in ℜ if xi is ranked ahead of x j in the final ranking R; if xi ÂR x j pi j = 1, otherwise,
pi j = 0.

In the above programming formulation, the evaluation information of decision
makers is expressed via the violation matrix V = (vi j)n×n. The solutions of the pro-
gramming problem are total rankings. It is deserved to point out that the consen-
sus ranking(s) can be derived theoretically by solving the above problem, however,
size becomes a major issue for the reason that the number of constraints is given by
n(n−1)(n−2)+ n(n−1)

2 . Cook et al. have proved that Eq. (2) can be re-expressed as
the unconstrained programming problem.

min
R∈RX

M(R) = ∑
xiÂRx j

vi j. (3)

An effective Branch-and-Bound algorithm was given in [12] to solve the uncon-
strained programming model. They assumed that all members have the same im-
portance. In fact, the differences among the decision makers’s skills, experience and
personality imply that they should be granted with different weights in the overall
decision making processes. In the following sections, we use a granular computing
method to determine the weights of decision makers and derive the consensus total
ranking(s) from a weighted strict ordinal ranking set.

All of the symbols utilized in this paper are summarized in Table 1.

3 Support degree based method for determining the weights of decision makers

Different decision makers may deliver their opinions by different rankings (including
total ranking and partial ranking) in ordinal decision making problems. In this section,
we depict the weights of decision makers by defining the support degree of rankings.
First, we measure the similarity degree of each pair of rankings.
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Table 1 Summary of the symbols utilized in this paper

Symbol Meaning Symbol Meaning
X The set of objects. xi The ith object.
ei The ith decision maker. DM The set of decision makers.
R The partial relation. V ES(R) The valid evaluation set of R.
xi Â x j xi is preferred to x j . RX The set of all total rankings on X .
Pro jY (R) The projection of R on X . X/R The dominance granular structure

of X induced by R.
R The set of rankings on X . simX (R1,R2) The similarity degree between R1 and R2.
V ,V ′ The violation matrixes. sup(R1,R2) The support degree of R2 from R1.
Ti The support of ei from others. ηi The weight of ei.
n The number of objects. l The number of decision makers.

Definition 7 Let X = {x1,x2, · · · ,xn} (n > 1). R1, R2 are two rankings on X , and
X/R1 = {[xi]ÂR1

| xi ∈ X}, X/R2 = {[xi]ÂR2
| xi ∈ X}. If R1 6= /0 or R2 6= /0, then the

similarity degree between R1 and R2 is defined as

simX (R1,R2) =

n
∑

i=1
log2

n
|[xi]ÂR1

∪ [xi]ÂR2
|

n
∑

i=1
log2

n
|[xi]ÂR1

∩ [xi]ÂR2
|
. (4)

For the convenience of analysis below, if R1 = R2 = /0, the similarity degree be-
tween them is defined as 0. If there is only one universe X involved, simX (R1,R2) can
be simplified as sim(R1,R2).

The similarity degree between two rankings are defined based on the calculations
of sets that are the granules from the two corresponding dominance granular struc-
tures.

Example 3 Let X = {x1,x2,x3,x4,x5}. R1 : x1 Â x2 Â x4 Â x3 and R2 : x2 Â x1 Â x3 Â
x5 are two strict partial rankings on X . We use Equation (4) to compute sim(R1,R2).
X/R1 = {{x1},{x1,x2},{x1,x2,x3,x4},{x1,x2,x4},{x5}}. X/R2 = {{x1,x2},{x2},
{x1,x2,x3},{x4},{x1,x2,x3,x5}}. Then,

sim(R1,R2) =
log2

5
2 + log2

5
2 + log2

5
4 + log2

5
3 + log2

5
4

log2
5
1 + log2

5
1 + log2

5
3 + log2

5
1 + log2

5
1

= 0.4015.

In what follows, we discuss the properties of the similarity degree defined above.

Property 2 Let X = {x1,x2, · · · ,xn} (n > 1). If R1 and R2 are two rankings on X , then

0≤ sim(R1,R2)≤ 1.

Proof: Suppose R1 = R2 = /0. According to the special case of Definition 7,
sim(R1,R2) = 0.

Suppose R1 6= /0. For any xi ∈ X ,

{xi} ⊆
(
[xi]ÂR1

∩ [xi]ÂR2

)⊆ (
[xi]ÂR1

∪ [xi]ÂR2

)⊆ X ,
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then
1≤ |[xi]ÂR1

∩ [xi]ÂR2
| ≤ |[xi]ÂR1

∪ [xi]ÂR2
| ≤ n.

So
1≤ n

|[xi]ÂR1
∪ [xi]ÂR2

| ≤
n

|[xi]ÂR1
∩ [xi]ÂR2

| ≤ n

and

0≤

n
∑

i=1
log2

n
|[xi]ÂR1

∪ [xi]ÂR2
|

n
∑

i=1
log2

n
|[xi]ÂR1

∩ [xi]ÂR2
|
≤ 1.

Therefore,
0≤ sim(R1,R2)≤ 1.

This completes the proof.

Property 3 Let X = {x1,x2, · · · ,xn} (n > 1), R1,R2 be two non-empty rankings on X .
If R1 = R2, then sim(R1,R2) = 1.

Proof: If R1 = R2, then for any xi ∈ X , [xi]ÂR1
= [xi]ÂR2

and [xi]ÂR1
∪ [xi]ÂR2

=[xi]ÂR1
∩

[xi]ÂR2
, so |[xi]ÂR1

∪ [xi]ÂR2
|=|[xi]ÂR1

∩ [xi]ÂR2
|, then,

n

∑
i=1

log2
n

|[xi]ÂR1
∪ [xi]ÂR2

| =
n

∑
i=1

log2
n

|[xi]ÂR1
∩ [xi]ÂR2

| .

Hence, sim(R1,R2) = 1.
The following two properties show the characteristics about the similarity degree

between two total rankings.

Property 4 Let X = {x1,x2, · · · ,xn} (n > 1) and R be a total ranking on X . Without
loss of generality, R : x1 ÂR x2 ÂR · · · ÂR xn and R−1 : xn ÂR−1 xn−1 ÂR−1 · · · ÂR−1 x1
is the reverse ordering of R, then sim(R,R−1) = 0.

Proof: According to the orders of R and R−1, [xi]ÂR = {x1,x2, · · · ,xi}, and [xi]ÂR−1 =
{xi,xi+1, · · · ,xn},(i = 1,2, · · · ,n). So we have that |[xi]ÂR ∪ [xi]ÂR−1 | = n and |[xi]ÂR ∩
[xi]ÂR−1 |= 1. Therefore,

sim(R,R−1) =

n
∑

i=1
log2

n
|[xi]ÂR ∪ [xi]ÂR−1 |

n
∑

i=1
log2

n
|[xi]ÂR ∩ [xi]ÂR−1 |

=

n
∑

i=1
log2

n
n

n
∑

i=1
log2 n

=
0

n log2 n
= 0.
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Property 5 Let X = {x1,x2, · · · ,xn} (n > 1). Let R1 : x1 ÂR1 · · · ÂR1 xt ÂR1 xt+1 ÂR1
· · · ÂR1 xn be a total ranking on X , R2 : x1 ÂR2 · · · ÂR2 xt+1 ÂR2 xt ÂR2 · · · ÂR2 xn be
a total ranking by exchanging the positions of xt and xt+1, then

sim(R1,R2) =
n log2 n− log2

(t+1)n!
t

n log2 n− log2
t×n!
(t+1)

(5)

where t ∈ {1,2, · · · ,(n−1)}.

Proof: For that

R1 : x1 ÂR1 · · · ÂR1 xt ÂR1 xt+1 ÂR1 · · · ÂR1 xn

and

R2 : x1 ÂR2 · · · ÂR2 xt+1 ÂR2 xt ÂR2 · · · ÂR2 xn.

We have

[x j]ÂR1
= [x j]ÂR2

= {x1,x2, · · · ,x j} ( j = 1,2, · · · , t−1, t +2, · · · ,n),

[xt ]ÂR1
= {x1,x2, · · · ,xt}, [xt+1]ÂR1

= {x1,x2, · · · ,xt+1},

[xt ]ÂR2
= {x2,x2, · · · ,xt ,xt+1}, [xt+1]ÂR2

= {x1,x2, · · · ,xt−1,xt+1}.

Then,

|[x j]ÂR1
∩ [x j]ÂR2

|= |[x j]ÂR1
∪ [x j]ÂR2

|= j ( j = 1,2, · · · , t−1, t +1, · · · ,n),

|[xt ]ÂR1
∪ [xt ]ÂR2

|= |{x1,x2, · · · ,xt ,xt+1}|= t +1,

|[xt ]ÂR1
∩ [xt ]ÂR2

|= |{x1,x2, · · · ,xt}|= t,

|[xt+1]ÂR1
∪ [xt+1]ÂR2

|= |{x1,x2, · · · ,xt ,xt+1}|= t +1,

and

|[xt+1]ÂR1
∩ [xt+1]ÂR2

|= |{x1,x2, · · · ,xt−1,xt+1}|= t.
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sim(R1,R2)

=

n
∑

i=1
log2

n
|[xi]ÂR1

∪[xi]ÂR2
|

n
∑

i=1
log2

n
|[xi]ÂR1

∩[xi]ÂR2
|

=

t−1
∑

i=1
log2

n
i +

n
∑

i=t+2
log2

n
i + log2

n
|[xt ]ÂR1

∪[xt ]ÂR2
| + log2

n
|[xt+1]ÂR1

∪[xt+1]ÂR2
|

t−1
∑

i=1
log2

n
i +

n
∑

i=t+2
log2

n
i + log2

n
|[xt ]ÂR1

∩[xt ]ÂR2
| + log2

n
|[xt+1]ÂR1

∩[xt+1]ÂR2
|

=

t−1
∑

i=1
log2

n
i +

n
∑

i=t+2
log2

n
i + log2

n
t+1 + log2

n
t+1

t−1
∑

i=1
log2

n
i +

n
∑

i=t+2
log2

n
i + log2

n
t + log2

n
t

=
(n−2) log2 n− log2

n!
t×(t+1) + log2

n
t+1 + log2

n
t+1

(n−2) log2 n− log2
n!

t×(t+1) + log2
n
t + log2

n
t

=
n log2 n− log2

(t+1)n!
t

n log2 n− log2
t×n!
t+1

.

This completes the proof.

Remark 2 Let f (t) =
n log2 n− log2

(t+1)n!
t

n log2 n− log2
t×n!
t+1

,

f ′(t)

=

(
n log2 n− log2

(t+1)n!
t

)′(
n log2 n− log2

t×n!
(t+1)

)
−

(
n log2 n− log2

t×n!
(t+1)

)′(
n log2 n− log2

(t+1)n!
t

)

(
n log2 n− log2

t×n!
(t+1)

)2

=

(
ln2

t×(t+1)

)(
n log2 n− log2

t×n!
(t+1)

)
+

(
ln2

t×(t+1)

)(
n log2 n− log2

(t+1)×n!
t

)

(
n log2 n− log2

t×n!
(t+1)

)2

> 0.

Therefore, f (t) is an increasing function. The bigger the subscript t is, the larger
sim(R1,R2) is. The result means that when we exchange the positions of the two
objects in front of the total ranking, the similarity degree between the former and the
latter is smaller, and the smaller similarity tells that the difference between the two
total rankings is larger. Yet, we exchange the position of the two objects at the end
of the total ranking, the similarity degree is larger and the difference is smaller. This
property of similarity degree is coincide with the agreement index given in [21].

Example 4 Let X = {x1,x2,x3,x4}. R1 : x1 Â x2 Â x4 Â x3, R2 : x1 Â x2 Â x3 Â x4
and R3 : x2 Â x1 Â x3 Â x4 are three strict total rankings on X . We use Equation
(4) to compute the similarity degree between each pair of rankings. Exchanging the
positions of x3 and x4 in R1, R2 is obtained and sim(R1,R2) = 0.7833. Exchanging the
positions of x1 and x2 in R2, R3 is obtained and sim(R2,R3) = 0.5470. According to
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the analysis and Property 5, the similarity between R1 and R3 should be the smallest,
in fact, sim(R1,R3) = 0.4141.

Example 5 Suppose there is a set of four objects X = {x1,x2,x3,x4}. Three decision
makers e1, e2 and e3 evaluate the four objects and give their opinion as three rankings
R1 : x1 Â x2 Â x3 Â x4, R2 : x1 Â x2 (x3,x4 are not compared ), R3 : x1 Â x3 (x2,x4 are
not compared ). Using Equation (4), we have sim(R1,R2) = 0.4879, sim(R2,R3) =
0.75.

As shown in the calculated results, sim(R1,R2) < sim(R2,R3). However, one may
find that there exists the same comparison information x1 Â x2 between the opinions
of e1 and e2 and there is no common comparison information between e2 and e3, so
it is may reasonable to get the reverse result sim(R1,R2) > sim(R2,R3).

Remark 3 The properties and examples given above show that the similarity degree
defined above is suitable for measuring the differences between two strict rankings
from their mathematical structures. When the valid evaluation sets of the two rankings
are different from each other, the similarity degree fails to work. In the following
subsection, a new directional similarity degree, support degree, is presented to depict
the closeness between two ranking judgments.

Definition 8 Let X = {x1,x2, · · · ,xn} (n > 1). Let R1, R2 be two non-empty rankings
on X . The support degree of R2 from R1 is defined as

sup(R1,R2) =
|X1∩X2|
|X1| simX1∩X2(R

′
1,R

′
2), (6)

where X1 = V ER(R1), X2 = V ER(R2), R′1 = Pro jX1∩X2(R1) and R′2 = Pro jX1∩X2(R2).

The support degree is not symmetric for that |X1∩X2|
|X1| 6= |X1∩X2|

|X2| when X1 6= X2.

Example 6 (Continued from Example 5.) X1 =V ES(R1)= {x1,x2,x3,x4}, X2 =V ES(R2)=
{x1,x2} and X3 = V ES(R3) = {x1,x3}. R′1 = Pro jX1∩X2(R1) = Pro jX2(R1) : x1 Â x2,
R′2 = Pro jX1∩X2(R2) = Pro jX2(R2) : x1 Â x2 Then,

sup(R1,R2) = |X1∩X2|
|X1| simX2 (Pro jX2(R1),Pro jX2(R2))

= 1
2 × simX2 (R′1,R

′
2)

= 1
2 ,

sup(R2,R1) = |X1∩X2|
|X2| simX2 (Pro jX2(R1),Pro jX2(R2))

= simX2 (R′1,R
′
2)

= 1.

Similarly, sup(R1,R3) = 1
2 , sup(R3,R1) = 1, and sup(R2,R3) = sup(R3,R2) = 0.

Example 7 Let X = {x1,x2,x3,x4}. R1 : x1 Â x2 Â x3 Â x4, R2 : x1 Â x2 Â x3 (x4 is
not compared with the others) and R3 : x1 Â x2 (x3 and x4 are not compared with
the others) are three rankings on X . We get sup(R1,R2) = 3

4 , sup(R1,R3) = 1
2 , and

sup(R2,R3) = 2
3 . These results are much more closer to our rational judgment.
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Property 6 Let X = {x1,x2, · · · ,xn} (n > 1). Let R1 and R2 be two rankings on X .
Then,

0≤ sup(R1,R2)≤ 1.

Proof: For any R1 and R2, we have 0 ≤ simX1∩X2(R1,R2) ≤ 1. Obviously, 0 ≤
|V ES(R1)∩V ES(R2)|

|V ES(R1)| ≤ 1, thus, 0≤ sup(R1,R2)≤ 1.

Property 7 Let X = {x1,x2, · · · ,xn} (n > 1). Let R1 and R2 be two rankings on X . If
V ES(R1) = V ES(R2) = A, then

sup(R1,R2) = sup(R2,R1) = simA(Pro jA(R1),Pro jA(R2)).

proof: It can be easily followed from the fact that

|V ES(R1)∩V ES(R2)|
|V ES(R1)| =

|V ES(R1)∩V ES(R2)|
|V ES(R2)| = 1

and the symmetrical of the similarity degree.
Specially, if both of R1 and R2 are two total rankings on X , then sup(R1,R2) =

simX (R1,R2), i.e. the support degree is equal to the similarity degree. Property 7
shows that support degree is symmetrical under some special circumstances.

A decision maker’s power or influence depends on the support degree and recog-
nitions by the other decision makers in the real world. In [45], Yager gave the defini-
tion of support degree of one number from another numbers on a real number set and
determine the corresponding average weight of each number based on the support
degree. In what follows, we determine the weights of decision makers by the support
degree.

Let X = {x1,x2, · · · ,xn} (n > 1). Suppose ei (i = 1,2, . . . , l) expresses the judg-

ment as a ranking Ri 6= /0 (i = 1,2, . . . , l). Let Ti =
l
∑

j=1, j 6=i
sup(R j,Ri). Then, the weight

of ei is computed as

ηi =
1+Ti

n
∑
j=1

(1+Tj)
. (7)

Actually, we can calculate the weights of decision makers from the support degree
matrix directly. Let

Msup =




sup(R1,R1) sup(R1,R2) . . . sup(R1,Rl)
sup(R2,R1) sup(R2,R2) . . . sup(R2,Rl)

...
...

...
sup(Rl ,R1) sup(Rl ,R2) . . . sup(Rl ,Rl)


 . (8)

Then, ηi is the normalization of the sum of the ith column for that sup(Ri,Ri) = 1.
Since ηi (i = 1,2, . . . , l) is calculated from the relations of granular structures and not
given by the decision makers, it is a kind of objective weights.

Remark 4 In practical application, the final weights of decision makers might be cal-
culated by integrating the objective weights and the subjective ones. Here, we con-
sider the objective weights only.
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4 An improved programming model for weighted ordinal rankings

Suppose decision makers e1,e2, . . . ,el express their judgments as l strict non-empty
rankings R1,R2, . . . ,Rl on a set of objects X = {x1,x2, . . . ,xn}. We can calculate the
objective weights of the l decision makers as η1,η2, . . . ,ηl by using the Eqs. (4)-(8)
in Section 3. Then we construct the violation matrix as

V ′ = (v′i j)n×n,

where v′i j =
l
∑

k=1
x jÂRk xi

ηk and ηk is the weight of the kth DMs.

The mathematical programming, Eq. (3), should be changed in order to solve the
following weighted GDM problems

min
R∈RX

M′(R) = ∑
xiÂRx j

v′i j. (9)

The meaning of v′i j is different from vi j in Eq. (3).
If there are a few objects (such as less than 8) in the object set, we can use the

enumeration method to get the optimal solution in an acceptable computation time,
otherwise, the Branch-and-Bound method [13] can be applied to solve Eq. (9).

In reality, different decision makers have different judgement abilities, and their
judgments may influence the decision making result differently, so it is reasonable
to set different weights for different decision makers in a credible decision mak-
ing process. However, the Cook’s model grants each decision maker with the equal
weight, which usually does not conform to the reality. Considering the decision mak-
ers’ weights, we have proposed a new model to calculate the total ranking(s) by min-
imizing the weighted violation. In the new model, if a violation is provided by a
decision maker with a smaller weight, then it contributes less to the objective; if a
violation comes from a decision maker with a higher weight, it contributes more to
the objective.

5 Illustrative examples

In this section, two GDM examples are given to illustrate the rationality of the pro-
posed weighted ordinal ranking model.

5.1 The first numerical example

Four objects x1,x2,x3,x4 are evaluated by four DMs e1,e2,e3,e4 with the ordinal
ranking expression. The ordinal rankings are expressed in Table 2. The task is to
derive the total ranking(s) from the total and partial rankings with the minimum vio-
lation.
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Table 2 The first partial ranking expressed decision making problem

DM Evaluated objects Partial Ranking
e1 {x1,x2,x3,x4} R1 : x1 Â x2 Â x3 Â x4
e2 {x1,x2} R2 : x1 Â x2 (x3,x4 are not compared)
e3 {x3,x4} R3 : x3 Â x4 (x1,x2 are not compared)
e4 {x1,x2,x3,x4} R4 : x4 Â x3 Â x2 Â x1

(1) Determine the weights of DMs. Take the calculation of sup(R1,R3) for exam-
ple, by using Eqs.(4) and (6),

sup(R1,R3) = |X1∩X3|
|X1| simX1∩X3(Pro jX1∩X3(R1),Pro jX1∩X3(R3))

= 1
2 × simX3(x3 Â x4,x3 Â x4)

= 0.5,

where X1 = {x1,x2,x3,x4} and X3 = {x3,x4}. Then, the support degree matrix is com-
puted as

Msup = (sup(Ri,R j)) =




1 0.5 0.5 0
1 1 0 0
1 0 1 0
0 0 0 1


 .

By Eq. (7), we calculate the weights of the four decision makers from the support de-

gree matrix as η1 = 1+Ti
4
∑

j=1
(1+Tj)

=

4
∑

j=1
sup(R j ,R1)

4
∑

i=1

4
∑

j=1
sup(R j ,Ri)

= 0.4286, similarly, η2 = 0.2143,η3 =

0.2143,η4 = 0.1429.
(2) Construct the violation matrix (r′i j)4×4. For example, r′43 = η1 +η3 = 0.6538,

since e1 and e3 consider that x3 dominates x4. The others follow in a similar manner.
Then,

(r′i j)4×4 =




0 η4 η4 η4
η1 +η2 0 η4 η4

η1 η1 0 η4
η1 η1 η1 +η3 0




=




0 0.1429 0.1429 0.1429
0.6429 0 0.1429 0.1429
0.4286 0.4286 0 0.1429
0.4286 0.4286 0.6429 0


 .

(3) Solve the programming problem, Eq. (9), with the violation matrix (r′i j)4×4.
By using the enumeration method, we get the optimal solution as x1 Â x2 Â x3 Â x4.

If we did not consider the weights of the decision makers, we would get tied
optimal consensus rankings x1 Â x2 Â x3 Â x4 and x1 Â x3 Â x2 Â x4. In our method,
weights of the four decision makers are calculated and a new violation matrix is
construct to calculate the result x1 Â x2 Â x3 Â x4, which is more reasonable than
x1 Â x3 Â x2 Â x4. Since most of decision makers support the judgment of e1, and e1
prefer x2 to x3, x2 should be preferred to x3.
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Table 3 The second partial ranking expressed decision making problem

DM Evaluated objects Partial Ranking
e1 {x1,x2,x3,x5} R1 : x1 Â x3 Â x2 Â x5 (x4,x6 are not compared)
e2 {x1,x2,x4,x6} R2 : x2 Â x1 Â x4 Â x6 (x5,x6 are not compared)
e3 {x3,x4,x5,x6} R3 : x4 Â x3 Â x5 Â x6 (x1,x2 are not compared)
e4 {x1,x4,x5,x6} R4 : x6 Â x1 Â x4 Â x5 (x2,x3 are not compared)
e5 {x1,x2,x3,x6} R5 : x6 Â x2 Â x3 Â x1 (x4,x5 are not compared)

5.2 The second numerical example

This example is chosen from Ref. [13]. Six objects x1,x2,x3,x4,x5,x6 are evaluated
by five DMs e1,e2,e3,e4,e5. The strict partial ordinal rankings are expressed in Table
3. It is our task to derive the total ranking(s) based on the partial rankings provided
by the five DMs.

(1) Determine the weights of the decision makers.
First of all, compute the support degree matrix by Eqs. (4) and (6) as

Msup = (sup(Ri,R j)) =




1 0 0.5 0.5 0
0 1 0.5 0.1169 0.1169

0.5 0.5 1 0.1169 0
0.5 0.1169 0.1169 1 0.5
0 0.1169 0 0.5 1




.

Take the calculation of sup(R2,R4) for example,

sup(R2,R4) = |X2∩X4|
|X2| sim(Pro jX2∩X4(R2),Pro jX2∩X4(R4))

= 3
4 × simX2∩X4 (x1 Â x4 Â x6,x6 Â x1 Â x4)

= 0.1169,

where X2 = {x1,x2,x4,x6} and X4 = {x1,x4,x5,x6}. By using Eq. (7), the weights of
the decision makers are calculated as η1 = 0.2062, η2 = 0.1787, η3 = 0.2182, η4 =
0.2303, η5 = 0.1667.

(2) Build the violation matrix (r′i j)6×6. For example, v′12 = η2 + η5 = 0.1787 +
0.1667 = 0.3454, that is because e2 and e5 consider that x2 dominates x1. Then the
violation matrix is computed as

(r′i j)6×6 =




0 η2 +η5 η5 0 0 η4 +η5
η1 0 η1 0 0 η5
η1 η5 0 η3 0 η5

η2 +η4 η2 0 0 0 η4
η1 +η4 η1 η1 +η3 η3 +η4 0 η4

η2 η2 η3 η2 +η3 η3 0




=




0 0.3454 0.1667 0 0 0.3970
0.2062 0 0.2062 0 0 0.1667
0.2062 0.1667 0 0.2182 0 0.1667
0.409 0.1787 0 0 0 0.2303

0.4365 0.2062 0.4244 0.4485 0 0.2303
0.1787 0.1787 0.2182 0.3969 0.2182 0




.
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(3) Solving Eq. (9) with the violation matrix (r′i j)5×5, we obtain the optimal con-
sensus total ranking x2 Â x6 Â x1 Â x4 Â x3 Â x5.

The optimal total ranking (x2 Â x6 Â x1 Â x4 Â x3 Â x5) derived from our model
is different from Cook’s (x2 Â x1 Â x4 Â x6 Â x3 Â x5). Due to the decision makers e4
and e5 with the higher weights support x6 and place it in the first place, then x6 takes
the second place in the final ranking.

It can be seen from the two examples that considering the objective weights of
decision makers which computed from the structures of their judgments would bring
out different results from the ones with equal weights and the decision making results
computed from the former are more reasonable than the latter.

6 Conclusions

The ranking is a common-used form of preference representation in a range of practi-
cal situations. Some researchers have successfully solved the problem about deriving
consensus total ranking(s) from an equal weighted ranking set. In this study, based
on the support degree of each pair of rankings, an objective weighting method is
presented to determine the relative importance of the decision makers and an im-
proved programming model is proposed to derive the consensus ranking(s) from the
weighted ranking set.

The current study develops the method for determining the weights of decision
makers and derives the minimum violation consensus ranking(s) form a set of weighted
partial ordinal rankings. There are mainly two interesting topics to be investigated in
our future research. One is to determine the objective weights of decision makers
which express their judgments by preorders. The other is to design a network based
decision making system to aid the distributed group decision making.
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