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 
Abstract—Classical rough set theory is considered as a useful 

tool for dealing with the uncertainty of categorical data; the major 
deficiency of this model is that the classical rough set model is 
sensitive to noise in classification learning due to the stringent 
condition of equivalence relation. Thus, a class of fuzzy similarity 
relations was introduced to describe the similarity between 
samples with categorical attributes. However, these kinds of 
similarity relations also have deficiencies when they are used in 
fuzzy rough computation. In this paper, we propose a new 
fuzzy-rough-set model for categorical data by introducing a 
variable parameter to control the similarity of samples. This 
model employs the iterative computation strategy to define fuzzy 
rough approximations and dependency functions. It is proved that 
the proposed rough dependency function is monotonic. Finally, the 
proposed model is applied to the attribute reduction of categorical 
data. The experimental results indicate that the proposed model is 
more effective for categorical data than some existing algorithms.  

 
Index Terms—Fuzzy rough set; rough approximation; categorical 

data; attribute reduction 
 

I. INTRODUCTION 

ough set methodologies have become a popular class of 
approaches for dealing with data with uncertainty. One 

significant advantage of these approaches is that they use only 
internal information in the data and do not depend on any prior 
knowledge as fuzzy modes and probabilistic methods do. In 
recent years, rough set methodologies have received wider 
attention and have been extensively applied in the fields of 
feature selection, reasoning with uncertainty, and classification 
learning.  

Rough set methodologies mainly deal with two types of data: 
categorical and numerical data. Classical rough set theory 
considers only categorical data [1]. In this framework, samples 
are described by a set of categorical attributes, which is viewed  
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as a discrete feature space. Categorical attributes can induce 
equivalence relations and partition the feature space into mutually 
exclusive information granules (equivalence classes). Samples 
in the same information granule are indiscernible. A decision 
variable or target subset in the feature space can be 
approximated by information granules [2]. However, there is one 
main drawback of classical rough set theory. That is, the model 
is sensitive to noise in classification learning. In a given 
equivalence class, even if there is only one sample having 
different class label from the others, the equivalence class will 
be grouped into the boundary region. 

For numerical data, several extensions of the classical rough 
set model have been developed, which include neighborhood 
rough sets [3]-[5], dominance rough sets [6],[7], fuzzy rough 
sets [8]-[10], and so on [11]-[17]. 

Fuzzy rough set is one of the most important generalization 
models for numerical data, and it has attracted considerable 
attention [18]-[28]. Dubois and Prade first introduced fuzzy 
rough sets based on fuzzy equivalence relations by combining 
fuzzy sets and rough sets [8]. Radzikowska and Kerre used fuzzy 
logic operators to generalize the model [10]. Mi and Zhang 
defined a class of new fuzzy rough sets using implication 
operators [27]. Wu and Zhang studied the axiomatic methods 
for fuzzy rough approximation under min-max operators [28]. 
In recent years, fuzzy rough sets have had successful 
applications in attribute reduction [29]-[36], approximate 
reasoning [26], [37], and classification learning [29], [38]. For 
example, Jensen proposed fuzzy rough dependency functions to 
evaluate the classification ability of attributes and developed an 
attribute-reduction algorithm [35]. Chen introduced the concept 
of a fuzzy discernible matrix and used it to reduce redun- 
dant attributes [31]. Hu et al. combined kernel functions and 
fuzzy rough sets to define fuzzy dependency functions [36]. 
Wang introduced a fitting fuzzy rough set model and used it to 
perform attribute reduction [25]. Zhao et al. proposed a novel 
fuzzy-rough-set method for constructing a robust fuzzy rough 
classifier [38]. 

Although fuzzy rough sets can successfully handle numerical 
data, they will be degraded to classical rough set models when 
facing categorical data. That is, fuzzy rough set models have 
the same drawback as classical rough sets do when they are 
used to deal with categorical data. The reason is that fuzzy 
equivalence relations will be degraded to crisp equivalence 
relations in this case. Similarly, other generalization models of 
rough sets also confront the same problem when they are used 
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to manage categorical data. 
Categorical data is an important class of data in machine 

learning. Several improved models have been proposed to 
overcome the weakness of classical rough sets in dealing with 
categorical data. Ziako introduced the model of variable- 
precision rough set (VPRS) [39]. Yao proposed a probabilistic 
rough-set model [40]. Duntch and Gediga developed some 
types of conditional entropies for attribute reduction [41]. 
Among these models, the VPRS model and information 
entropy were extensively discussed and used in coping with 
noisy data. In the VPRS model, the concept of inclusion was 
introduced to compute the lower and upper approximations of a 
target decision. The method of information entropy uses 
equivalence relations to define information entropy and 
conditional entropy of feature subsets and employs them to 
measure the uncertainty in Pawlak's approximation space 
[42]-[44]. The two methods are more effective than other 
existing methods in dealing with the uncertainty of categorical 
data. Besides, Mieszkowicz-Rolka and Rolka introduced a 
variable-precision fuzzy-rough-set model to deal with noisy 
data [45], in which the fuzzy memberships to rough approxim- 
ations were defined by fuzzy inclusion. Zhao et al. proposed a 
fuzzy rough variable-precision model to overcome the noise of 
perturbation [46]. Nevertheless, these variable-precision models 
will be degraded to classical variable-precision models of 
rough sets when they are confronted with categorical data. 

The disadvantage of classical rough sets lies in the stringent 
conditions of defining equivalence relations. Two samples are 
equivalent if and only if their attribute values are equal to each 
other in each dimension. If there is an attribute such that two 
samples have different attribute values, the two samples will be 
grouped into different equivalence classes. Such clustering is a 
major reason why classical rough sets are sensitive to noise. In 
fact, we can introduce a similarity measure to describe the 
similarity between categorical samples and then use it to 
granulate the feature space into elementary information 
granules. However, in this model there is a constant parameter 
that controls the similarity between samples. For a 
high-dimensional feature space, the membership degrees of a 
fuzzy similarity relation may get very small when just a few 
attributes are included in rough computation. To overcome this 
problem, in this paper, we propose a novel fuzzy rough 
computation model for categorical data. This model employs 
the iterative computation strategy to define fuzzy rough 
approximations and dependency functions. 

As we know, attribute reduction or feature selection is one 
important application of rough set theory. In a classification 
task, some of attributes may be redundant and do not provide 
classification information. They can destroy the performance of 
algorithms and bring high computational complexity. The main 
task of attribute reduction is to find an optimal attribute subset 
while keeping or improving classification accuracy. Therefore, 
attribute reduction has a close relationship to classification 
learning [47]-[54]. In this paper, we apply the proposed model 
to the attribute reduction of categorical data and verify that the 
proposed model is feasible and effective. 

Compared to other rough set models, the proposed model has 

the following advantages: (1) A fuzzy similarity relation is used 
to describe the similarity of categorical samples. It can better 
characterize the similarity of categorical data than crisp 
equivalence relations. Correspondingly, the fuzzy rough com- 
putation model can elaborate on the uncertainty of categorical 
data more subtly. (2) The computational complexity of the 
proposed model is lower than that of classical fuzzy rough sets. 

This paper is organized as follows. In Section 2, we 
introduce a fuzzy similarity relation to depict the similarity of 
categorical data and review the corresponding fuzzy rough 
computations. In Section 3, a new fuzzy-rough-set model, 
called the fuzzy-rough iterative computation model, is 
proposed for categorical data. In Sections 4 and 5, we apply the 
proposed model to attribute reduction to verify its feasibility 
and stability. Section 6 concludes the paper. 

II. FUZZY ROUGH SETS FOR CATEGORICAL DATA 

   Let 1 2{ , , , }nU x x x=  be a set of samples, called the 

universe of discourse, 1 2{ , , , }mA a a a   be a set of categorical 

attributes (features) to describe the samples, and D be a decision 
attribute. Then, the triplet , ,U A D   is called a discrete 
feature space. Without loss of generality, the universe U  is 
assumed to be divided into r crisp decision classes by D  and 
is expressed as 1 2{ , , }rU D D D D  . In this section, we first 

introduce a similarity measure to depict the similarity between 
categorical samples. Let B A ; a similarity measure with B  is 
defined as follows:  

      1
, :B i j i jR x x a B a x a x

c
                (1) 

where   denotes the cardinality of a set and c  is a constant 

parameter that adjusts the ( , )B i jR x x  to be in the interval [0,1]  

for any sample pair, ( )a x  is the attribute value of sample x  on 

attribute a . Here, c A . Obviously, BR  satisfies symmetry. 

It is a fuzzy similarity relation and can be used to characterize 
the similarity of categorical samples. In general, BR  can be 

represented by a matrix and expressed as ( )B ij n nR r  , where 

0 1ijr  , 1, 2, , ,i n   1, 2, ,j n  . 

We can see that the attribute subset B  influences the 
membership degrees of BR . The increasing number of attributes 

in B means the greater the membership degrees of BR . That is, 

BR  has the following property. 

Property 1. Let 1 2B B , then 
1 2B BR R . 

Consider a discrete feature space , ,U A D  , x U , 

B A , and 1 2{ , , }rU D D D D  . Let BR  be the fuzzy 

similarity relation on U  introduced by formula (1). The fuzzy 
similarity class [ ]Bx  associated with x  and BR  is a fuzzy set 

on U , defined as [ ] ( ) ( , )B Bx y R x y , y U . All the fuzzy 

similarity classes  [ ] |Bx x U constitute the fuzzy 
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information granules of , ,U A D  . For any decision class 

iD U D , from the theory of fuzzy rough sets [8], the decision 

class iD can be approximately characterized by fuzzy 

information granules as follows.  

 ( )( ) min 1 ( , )
i

B i B
x D

R D y R x y


  ， y U .                (2) 

( )( ) max ( , )
i

B i B
x D

R D y R x y


 ， y U .                    (3) 

( )B iR D and ( )B iR D  are called lower and upper 

approximations of iD  relative to B respectively.  

( )( )B iR D y  denotes the membership degree of y certainly 

being included in the equivalence class iD . When sample y  

does not belong to class i , the value of ( )( )B iR D y  is the 

smallest. Otherwise, it is equal to the smallest value of dissimilar 
degrees between y  and the samples not falling into class i . 

( )( )B iR D y  represents the membership degree of sample y  

possibly belonging to equivalence class iD . If sample y  

belongs to class i , the value of ( )( )B iR D y  is the largest. If not, 

it is equal to the max-value of the fuzzy similarities between y  

and all the samples in class i . 

Fuzzy positive region and dependency function are two 
important concepts in fuzzy rough set theory [35]. As they are 
uncertain measures that represent the classification ability of 
attribute subsets, they are usually used as feature-evaluation 
functions in feature selection or attribute reduction [29]-[36]. 
The fuzzy positive region of decision D relative to B  can be 
formulated as 

1

( ) ( )
r

B B i
i

POS D R D


 .                         (4) 

The dependency function of D  relative to B  can be formally 
described by  

( )( )
( )

| |
i

B ix U

B

POS D x
D

U
 


.                      (5) 

Intuitively, the samples with greater memberships are more 
easily classified into one of the decision classes with lesser 
uncertainty. The dependency function is defined as the ratio of 
the size of the positive region over all samples in the feature 
space. Evidently, 0 ( ) 1B D  . 

Property 2. Let 1 2B B A  , 
2 1
( ) ( )B BPOS D POS D . 

Proof. Because 1 2B B , it follows from Property 1 that 

1 2
( , ) ( , )B BR x y R x y for any ,x y U . By formula (2), we 

conclude that 
2 1
( )( ) ( )( )

BB i iR D y R D y  for any y U , which 

means that 
2 1
( ) ( )B Bi iR D R D . The result is derived from 

formula (4). 

    Property 3. If 1 2B B A  , then 
2 1
( ) ( )B BD D   .  

It is worth noting that Properties 2 and 3 differ from those in 
classical fuzzy rough set theory, where the monotonic 
relationship is reversed. 

According to the rough set theory, the dependency function 
indicates the approximating ability of an attribute subset for a 
decision. It can be used as a measure for evaluating an 
attribute’s significance [35]. 

Let B A  and a A B  . From Property 3, the significance 

of a  relative to B  is formulated as 

{ }( , , ) ( ) ( )B B aSIG a B D D D     .                      (6) 

The significance of attribute a  is related to attribute subset 
B . An attribute is advantageous for classification if it has the 
greater significance. Formula (6) also differs from ones in 
classical fuzzy rough sets, where the subtracting relationship is 
reversed. 

III. FUZZY ROUGH COMPUTATION MODEL  

As discussed above, fuzzy relations introduced by formula (1) 
are crucial for defining a fuzzy rough computation model. 
However, there is a constant parameter c  in the formula (1). 
For a dataset with a large number of attributes, the membership 
degrees of samples to a relation can get very small when a few 
of the attributes are included in rough computation. That is to 
say, the lower the number of the included features in rough 
computation, the smaller the discrimination of memberships. 

To overcome this problem, in this section we propose a fuzzy 
rough iterative computation model for categorical data. We first 
deduce the iterative computation method under general 
conditions. Then, we present the iterative formulas in the case 
of natural sequences and show the monotonicity proof of 
attribute significance. 

In the following, we use the strategy of an increasing 
sequence as the value of c  in formula (1) to deduce fuzzy- 
rough computation. For instance, if a dataset contains 200 
features, we select the sequence (20, 40, 60, 80, 100, 120, 140, 
160, 180, 200) for c . First, let 20c   when the number of the 
included features is less than 20. If the number of the included 
features is between 20 and 40, let 40c  , and so on. Then, the 
relationship between fuzzy lower approximations under 
different values of parameter c  can be characterized as 
follows.  

Theorem 1. Let , ,U A D   be a discrete feature space, 

{ : 1,2, , }ic i l   be an increasing sequence of numbers as the 

value domain of c  in formula (1), B A , and hD U D . When 

ic c , the lower approximation of hD  is rewritten as ( )B h iR D . 

When 1ic c  , the lower approximation of hD  is rewritten as 

1( )B h iR D  , then 

   1
1

1 1 1

( ) =1 1 ( ) ( )ii i i i
B B Bh i h h i

i i i

c c c c
R D R D R D

c c c



  


    .   (7) 

    
Proof. Denote formula (1) as 
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        1
, :B k l k li

i

R x x a B a x a x
c

    

when ic c . Then, we have 

        1
, :B k l k li

i

R x x a B a x a x
c

    and 

        1
1

1
, :B k l k li

i

R x x a B a x a x
c


   . 

   It follows from Formula (2) that 

      

 

 

  

( ) ( ) min 1 ( ) ( , )

1
min 1 : ( ) ( )

1
1 max : ( ) ( ) .

l h

l h

l h

B h i k B i k lx D

k lx D
i

k l
x D

i

R D x R x x

a B a x a x
c

a B a x a x
c







 

 
    

 

   

 

   Similarly,  

  

 

  

1 1

1

( ) ( ) min 1 ( ) ( , )

1
1 max : ( ) ( ) .

l h

l h

B h i k B i k lx D

k l
x D

i

R D x R x x

a B a x a x
c

 




 

   
 

   Then we have 

1

1

1 ( ) ( )

1 ( ) ( )
B h i k i

B h i k i

R D x c

R D x c








. 

   Thus,  

 1
1

( ) ( )=1 1 ( ) ( )i
B Bh i k h i k

i

c
R D x R D x

c


  , 

   So  

 1
1

1

1 1

( ) ( )=1 1 ( ) ( )

( ) ( ).

i
B Bh i k h i k

i

i i i
B h i k

i i

c
R D x R D x

c

c c c
R D x

c c






 

 


 

 

   This completes the proof of the theorem. 

This theorem shows that the fuzzy lower approximation 

1( )B h iR D   of hD  under parameter value 1ic  is equal to the 

linear combination of the lower approximation under parameter 
value ic .  

Theorem 2. Let , ,U A D   be a discrete feature space, 

{ : 1,2, , }ic i l  be an increasing sequence of numbers as the 

value domain of c in formula (1), and B A . When ic c , the 

fuzzy positive region of decision D is rewritten as ( )B iPOS D . 

When 1ic c  , the fuzzy positive region is rewritten as 

1( )B iPOS D  , then 

  1
1

1 1 1

( ) =1 1 ( ) ( )i i i i
B i B i B i

i i i

c c c c
POS D POS D POS D

c c c



  


    .   

(8) 

   Proof. Let 1 2{ , , }rU D D D D  . For hD U D  and any 

kx U , similar to the proof of Theorem 1, we have 

  1
( ) ( ) 1 max : ( ) ( ) ,

l h
B h i k k l

x D
i

R D x a B a x a x
c 

     

  1
1

1
( ) ( ) 1 max : ( ) ( ) .

l h
B h i k k l

x D
i

R D x a B a x a x
c 



     

   Then,  

        ( ) ( ) max ( ) ( )
h

BB i k h i k
D U D

POS D x R D x


  

 

  

  

1
max 1 max : ( ) ( )

1
1 min max : ( ) ( )

h l h

h l h

k l
D U D x D

i

k l
D U D x D

i

a B a x a x
c

a B a x a x
c

 

 

 
    

 

   

 

and  

  1
1

1
( ) ( ) 1 min max : ( ) ( )

h l h
B i k k l

D U D x D
i

POS D x a B a x a x
c  



    . 

  Thus, 

1

1

1 ( ) ( )

1 ( ) ( )
B i l i

B i l i

POS D x c

POS D x c








. 

  Therefore,  

 1
1

( ) ( )=1 1 ( ) ( )i
B i l B i l

i

c
POS D x POS D x

c


  . 

  So  

  1
1

1 1 1

( ) =1 1 ( ) ( )i i i i
B i B i B i

i i i

c c c c
POS D POS D POS D

c c c



  


   

. 

Theorem 3. Let , ,U A D   be a discrete feature space, 

{ : 1, 2, , }ic i l  be an increasing sequence of numbers as the 

value domain of c in formula (1), and B A . When ic c , the 

dependency function is rewritten as ( )B iD . When 1ic c  , 

the dependency function is rewritten as 1( )B iD  , then 

  1
1

1 1 1

( ) =1 1 ( ) ( )i i i i
B i B i B i

i i i

c c c c
D D D

c c c



  


       .      (9) 

   Proof. For any lx U , it follows from Theorem 2 that 

 1
1

( ) ( )=1 1 ( ) ( )i
B i l B i l

i

c
POS D x POS D x

c


  , and 

1
1

( ) ( )=| | | | ( ) ( )
l l

i
B i l B i l

x U x Ui

c
POS D x U U POS D x

c
 

 
   

 
  . 

So  

  1
1

1 1 1

( ) =1 1 ( ) ( )i i i i
B i B i B i

i i i

c c c c
D D D

c c c



  


       . 

For a given subset of attributes B , one can obtain different 
fuzzy rough approximations, fuzzy positive regions, and 
dependency functions when different parameters ( : 1,2, ,ic i l  ) 
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are used. Theorems 1-3 present the iterative computation 
approaches of rough approximations by using incremental 
sequences. 

Theorem 4. let , ,U A D   be a discrete feature space, 

{ : 1,2, , }ic i l  be an increasing sequence of numbers as the 

value domain of c in the formula (1), B A , and a A B  . 

When ic c , the dependency function is rewritten as ( )B iD . 

When 1ic c  , the dependency function is rewritten as 

1( )B iD  . The significance of a  with respect to B is denoted as 

( , , )iSIG a B D , then 

(A)   1 { } 1 { }
1

( , , ) ( ) ( ) ( ) ( )i
i B i B a i B i B a i

i

c
SIG a B D D D D D

c 


      ,  

(B)  1
{ } 1

1 1

( , , ) ( ) ( )i i i
i B i B a i

i i

c c c
SIG a B D D D

c c



 


     .             (10) 

Proof. (A) From Definition 4, we have that ( , , )iSIG a B D  

1 { } 1( ) ( )B i B a iD D      . it follows from Theorem 3 that  

1
1

1 1

( ) = ( )i i i
B i B i

i i

c c c
D D

c c



 


    and 

1
{ } 1 { }

1 1

( ) = ( )i i i
B a i B a i

i i

c c c
D D

c c



 


    . 

Thus,  { }
1

( , , ) ( ) ( )i
i B i B a i

i

c
SIG a B D D D

c 

    . 

    (B) Similarly, we can get the result. 

Theorem 4 presents a formula for computing the significance 
of an attribute. It shows that the significance numerically equals 
the linear difference between the fuzzy dependencies of the 
adjacent feature subsets.  

From Theorem 1 to Theorem 4, we see that an artificially 
increasing sequence is used to derive the main formulas of 
fuzzy rough approximations. The purpose of such a design is 
just to illustrate that the proposed fuzzy rough computation is 
established under general conditions, not limited to a specific 
circumstance. If the increasing sequence is set to a natural 
sequence, there are no longer any parameters in formulas (7) - 
(10). In the following theorem, we present the formula for 
computing the significance of an attribute in the case of a 
natural sequence. 

Theorem 5. Let , ,U A D  be a discrete feature space, 

{1,2,3, }  be the sequence of natural numbers as the value 

domain of c in formula (1), B A , and a A B  . Let c i  

when | |B i  , then 

{ } 1

1 | |
( , , ) ( ) ( )

| | 1 | | 1i B i B a i

B
SIG a B D D D

B B     
   .    (11) 

Proof. It follows immediately from Theorem 4. 

Theorem 6. Let , ,U A D  be a discrete feature space, 

{1,2,3, }  be the sequence of natural numbers as the value 

domain of c in formula (1), and B A . Let c i  when 

| |B i  , then ( , , ) 0iSIG a B D   for any a A B  . 

Proof. According to Theorem 4, we have 

1 { } 1( , , ) ( ) ( )i B i B a iSIG a B D D D    . 

It follows from Property 3 that 1 { } 1( ) ( )B i B a iD D     , 

which implies that ( , , ) 0iSIG a B D   for any a A B  . 

Theorem 7. Let , ,U A D   be a discrete feature space, 

{1,2,3, }   be the sequence of natural numbers as the value 

domain of c in formula (1), and B A . Let c i  when 

| |B i  , then ( , , )iSIG a B D is monotonic as | |i A . 

Proof. According to the significance of attributes, we 
assume that the order of attributes is determined as follows: 

1 2 3 | | 1 | |A Al l l l la a a a a


    , 

where the term 
1k kl la a


  means that attribute 
kl

a is more 

important than 
1kl

a


. For any B A , without loss of generality, 

let 
1

,
k kl la a B


 . It follows from Property 3 that 

1
{ } { } { }( ) ( ) ( )t t t

l l lk k k

c c c
B B a B a aD D D


       , 

and 

1
{ } { } { } { }( ) ( ) ( ) ( )t t t t

l l l lk k k k

c c c c
B B a B a B a aD D D D


          , 

where ( )tc
B D  denotes the fuzzy dependency when tc c  and 

tc  is a distance parameter. By Theorem 3, when c B i  , we 

have 

 ( ) 1 1 ( )tct
B i B

c
D D

i
     , 

 { } 1( ) 1 1 ( )
1

t

lk

ct
B a i B

c
D D

i    
 ,  

 
1

{ } { } 2 { }( ) 1 1 ( )
2

t

l l lk k k

ct
B a a i B a

c
D D

i
   

   . 

From Theorem 5, it follows that 

   
   

 

{ } 1

{ }

{ }

{ }

1
( , , ) ( ) ( )

1 1

1
1 1 ( ) 1 1 ( )

1 1 1

1 1 ( ) 1 1 ( )
1 1

( ) ( ) .
1

k lk

t t

lk

t t

lk

t t

lk

i l B i B a i

c ct t
B B a

c ct t
B B a

c ct
B B a

i
SIG a B D D D

i i
c ci

D D
i i i i

c c
D D

i i
c

D D
i

   
 
                 

     
 

  










Similarly, 

 1 1
1 { } { } { }( ,{ } , ) ( ) ( )

2
t t

k k l l lk k k

c ct
i l l B a B a a

c
SIG a a B D D D

i 
    

    . 

Thus, 1
1

( , , ) ( ,{ } , )i i
k k kl l lSIG a B D SIG a a B D


  , namely, 

( , , )iSIG a B D  is monotonically decreasing with the increase of 

i .  
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Along with the fact that ( , , ) 0iSIG a B D   for any a A B  , 

we know that ( , , )iSIG a B D  is bounded and monotonic. It can 

be concluded that ( , , )iSIG a B D  converges as | |i A . 

The iterative computation of attribute significance takes full 
advantage of the monotonic property of rough approximations. 
Theorem 5 shows that the significance of an attribute can be 
obtained by adjacent dependency functions. Theorems 6 and 7 
prove that attribute significance by iterative computation still 
converges as the number of features grows to the cardinality of 
attribute set A . 

In the case of natural sequence, the proposed fuzzy rough 
computation essentially uses the following measure to calculate 
the similarity of two samples with categorical attributes. 

  1
( , ) { : ( ) ( )}

| |B k l k li
R x x a B a x a x

B
   ,             (12) 

where | |i B . 

It is easy to see that formula (12) is different from formula 
(1), in which the parameter c  is a constant number. The 
membership degrees of a fuzzy similarity relation computed by 
formula (12) cannot get small even when only a few of the 
features are included in rough computation. In addition, it has 
more advantages than equivalence relations in characterizing 
the similarity of categorical data. For example, there are two 
samples with 100 categorical attributes. For classical rough sets, 
the two samples are equivalent (similar) if and only if the two 
samples take the same value on each attribute. If there is only 
one attribute such that the two samples have different attribute 
values on it, then the two samples are not equivalent (similar). 
If we use formula (12) to characterize the similarity of the two 
samples, then the similarity degree of the two samples is 0.99. 
The two samples are almost equivalent. Hence, formula (12) 
can take some important characteristics of categorical data into 
consideration in describing the similarity of samples. Such 
representation was recalled by Zhao and Yao in 2007 [55]. The 
difference is that they used a threshold to control the similarity. 
For the full content, the reader may refer to the literature. 

From formula (12), the definitions of fuzzy lower 
approximation, fuzzy positive region, and dependency function 
can be rewritten as follows. 

 ( ) ( ) min 1 ( ) ( , )
l h

B h i k B i k l
x D

R D x R x x


  ,                   (13) 

    
1

r

BB hi i
h

POS D R D


 ,                        (14) 

 
( ) ( )

( )
| |

l
B i lx U

B i

POS D x
D

U
 


.                     (15) 

where | |i B .  

According to formulas (11) - (15), the fuzzy rough 
computation model can be conducted. It overcomes the 
shortcoming that is caused by considering c  as a constant 
number in rough computation. This is because the proposed 
model can elaborate the uncertainty of rough computation more 
subtly for symbolic data than classical fuzzy rough sets or 

Pawlak's rough sets. 
In the following, we apply the proposed model to the 

attribute reduction of categorical data and verify its feasibility 
and effectiveness. 

IV. ATTRIBUTE-REDUCTION ALGORITHM FOR CATEGORICAL 

DATA 

In this section, we employ formulas (11) - (15) to compute a 
fuzzy dependency function and use it as a measure for 
evaluating an attribute subset. In addition, a heuristic algorithm 
for attribute reduction is designed, and its computational 
complexity is analyzed. 

Algorithm: Fuzzy rough computation algorithm (FRC) 
Input: Data table , ,U A D  , threshold   // is set to stop 

the algorithm. 
Output: one optimal attribute subset red . 
1:  Initialize: red   , B A red  , start=1; // red  is the 
variable container to store the selected attributes and B is for 
the left attributes. 
2:  Compute 1 2{ , , }rU D D D D  . Define a 1 | |kU D   null 

vector for each j kx D , i.e., let 1 | |( ) (0)
kU Dsv j    for each 

j kx D , 1,2, ,k r  . 

3:  while start 
4:   Define an n r  null matrix _   ( , )lower appr zeros n r , 

where | |n U . 

5:     for each la B  

6:         for each i kx D , 1, 2, ,k r   

7:             Compute vector 1 | |( )
kij U Dr   , where j kx U D  ,  

1ijr    if ( ) ( )l i l ja x a x , otherwise, 0ijr  .  

8:             Let ( )temp sv i + 1 | |( )
kij U Dr   . 

9:             Let 
1

min 1
|

_ ,
1

( )
|

temp
red

lower appr i k
 

  
 

. 

10:       end for 
11:       Compute 

                { } | | 1 1
ma _ ( , )x

l

r

red a red k
lower apD su i km pr U  

  .  

12:    end for 

13:    Find ka  with maximum value  { } | | 1kred a red
D 

 . 

14:    Compute  

| | | | { } | | 1

1 | |
( , , ) ( ) ( )

| | 1 | | 1 kred B red red a red

red
SIG a red D D D

red red    
   . 

15:    if | | ( , , )redSIG a red D   

16:       kred red a  . 

17:       for any i kx D , 1, 2, ,k r   

18:             compute 1 | |( )
kij U Dr   ,where j kx U D  , 1ijr   if  

                  ( ) ( )k i k ja x a x , otherwise, 0ijr  .  

19:             Let 1 | |( ) ( ) ( )
kij U Dsv i sv i r    . 
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20:       end for 
21:      B B red   
22:    else  
23:        start = 0； 
24:    end if 
25:  end while 
26:  return red . 

In this algorithm, a pre-set null vector is designed for each 
sample in Step 2. It is first stored, then called by the algorithm. 

The complexity of Step 2 is in  | |pO n U D , where 

| | min {| |}
i

p i
D U D

D D


 . For the main block of the algorithm, the 

worst search time for an optimal attribute subset will result in 
( 1) 2m m   loops to evaluate the dependency function. In each 

loop, for each sample, the sample needs to be compared 
| |pn U D  times with other samples with different class labels. 

Thus, the time complexity from Step 3 to Step 26  is 

 2( ) | | 2pO m m n U D   , and the overall complexity of 

Algorithm 2 is in  | | ( 1) | | 2p pO n U D m m n U D    . It is 

just in  ( 1) | | 2pO m m n U D  . Although classical 

fuzzy-rough-set-based algorithms [29] - [36] can also deal with 
categorical data sets, the computational complexity for most of 

these algorithms is  2( 1)O m m n . From the perspective of 

space efficiency, the proposed algorithm assigns each sample 
with a vector whose length equals the number of samples with 
different decision labels from itself, while the algorithms based 
on matrix calculation assign each sample with a vector whose 
length equals the number of all samples. Furthermore, each 
vector variable in the FRC algorithm can release the 
computational space after the calculation of the vector, while a 
matrix variable in matrix-based algorithms can only release the 
computational space after the calculation of all the samples. 
These algorithms often overflow memory for larger-scale data 
sets and make computation fail. Obviously, the proposed 
algorithm is more efficient compared to those classical 
algorithms. 

V. EXPERIMENTAL ANALYSIS 

As analyzed in the above sections, although fuzzy rough sets 
can deal with data with both real-valued and normal attributes, 
they will be degraded to classical rough set models when facing 
categorical data. This means that fuzzy rough set models have 
the same drawback as classical rough sets do when they are 
used to handle symbolic data. The proposed method uses fuzzy 
similarity relations to characterize the similarity between 
samples with categorical attributes and presents a new fuzzy 
rough set model to approximately describe a decision variable. 
The shortcomings of classical rough set models are effectively 
overcome. In this section, we verify the viability and 
effectiveness of our method by comparing some existing 
algorithms. We first consider comparing our algorithm with 

fuzzy rough sets (FFRS) [25], as well as other representative 
attribute-reduction algorithms that are considered as to be 
better for categorical data, namely, classical rough sets (RS) [1], 
variable precision rough sets (VPRS) [39] and consistency 
algorithms (CONSIS) [56]. Three indexes are compared: the 
number of selected attributes, classification accuracy of the 
reduced data sets, and reduction time. All the algorithms are run 
in Matlab 2013b and a hardware environment with an Intel (R) 
Core (TM) i7-4790 CPU @ 3.60 GHz &16.0 GB RAM. 

We employ 10-fold cross-validation to conduct these 
experiments. The original data set is equally divided into ten 
parts; one of them is used for testing; the remaining nine parts 
are used as the training set for attribute reduction. A classifier is 
then learned with the reduced training set, and the classification 
accuracy is calculated on the reduced testing data. After 10 
loops, the average value of the classification accuracies are 
calculated and used as the final performance value. Two 
selected classifiers in WEKA [57], i.e., trees.J48 (C4.5) and 
bayes.NaiveBayes, are used to evaluate these attribute 
reduction algorithms. All the parameters in C4.5 are set to the 
default values. We download ten public data sets from the UCI 
Machine Learning Repository [58]. There are eight data sets 
that include only categorical attributes, and two mixed data sets 
with categorical and numerical attributes. All the numerical 
attributes are preprocessed by discretization using the fuzzy 
C-means clustering (FCM) technique, and each numerical 
attribute is discretized into four intervals. These data sets are 
described in Table 1. 

 
Table 1 Description of data sets 

NO Data set Samples Attributes Classes 

1 Car 1728 6 4 

2 Kr-vs-kp 3196 36 2 

3 Lphography 148 18 4 

4 Monk 432 6 2 

5 Mushroom 8124 22 2 

6 Spect 267 22 2 

7 Soybean 683 35 19 

8 Tic-tac-toe 958 9 2 

9 Horse 369 23 2 

10 Heart 270 13 2 

In the VPRS algorithm, a parameter  is introduced to 
control the variable precision. The value of  is set to vary 
from 0.5 to 1 with a step of 0.015. To make a fair comparison, in 
the FRC algorithm, the value of  is also set from 0.05 to 0.35 
with a step of 0.01. Because different data sets use different 
attribute subsets to yield the best classification accuracy, in the 
following experiments, we only compare the experimental 
results corresponding to the highest classification accuracies. 

Table 2 presents the average sizes of selected attribute sets 
with these algorithms. It is easily seen that these algorithms can 
effectively reduce the number of attributes. The average sizes 
of the selected attribute subsets with these methods are 
approximately the same except data sets Car, Kr-vs-kp, 
Tic-tac-toe, and Horse. For the Tic-tac-toe, Kr-vs-kp, and Car 
data sets, the numbers of selected attributes with the RS and 
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FFRS algorithms are roughly the same but less than the other 
three algorithms. Furthermore, the resulting classification 
performances are relatively low, as shown in Tables 3 and 4. 
This shows that the RS and FFRS algorithms remove too many 
attributes, and even some attributes that are beneficial to the 
classification are deleted. This implies that the FFRS algorithm 
has the same drawback as the RS algorithm when it is used to 
handle symbolic data. Compared to the results of VPRS, 
CONSIS, and algorithms, the average sizes of selected attribute 
subsets with FRC are relatively small, but the corresponding 
classification accuracies are the highest in most cases, as shown 
in Tables 3 and 4. These results show that the FRC algorithm 
not only can delete redundant attributes but also retains 
attributes with more classification information. 

Table 2 Numbers of selected features 

Data set Raw data RS FFRS VPRS CONSIS FRC

Car 6 2.0 2.8 5.2 5.0 5.0 

Kr-vs-kp 36 4.8 4.2 8.6 7.0 8.8 

Lphography 18 5.8 5.8 6.2 5.8 5.6 

Monk 6 1.0 1.0 2.2 2.0 2.0 

Mushroom 22 5.0 4.4 5.0 4.8 4.2 

Spect 22 2.0 4.8 2.6 3.2 3.2 

Soybean 35 14.0 14.0 14.0 13.0 11.4

Tic-tac-toe 9 1.0 1.5 6.8 8.0 8.0 

Horse 22 5.2 4.6 4.8 5.2 2.2 

Heart 13 5.8 7.2 7.8 7.2 7.8 

Average 18.9 4.66 5.03 6.32 6.22 5.82

 
Table 3 Comparison of classification accuracies of reduced data with C4.5 

Data set Raw data RS FFRS VPRS CONSIS FRC 

Car 96.25 ± 1.40 77.78 ± 3.81 78.78 ± 2.09 86.70 ± 9.45 89.31 ± 10.71 96.31 ± 0.74 

Kr-vs-kp 96.34 ± 0.45 76.81 ± 1.85 77.38 ± 1.86 94.09 ± 1.46 94.09 ± 1.21 96.72 ± 1.87 

Lphography 80.09 ± 8.41 76.86 ± 3.86 82.43 ± 6.99 83.14 ± 7.57 78.19 ± 2.66 84.47 ± 6.67 

Monk 81.36 ± 6.63 74.98 ± 2.44 75.02 ± 6.07 75.63 ± 6.67 74.98 ± 2.74 83.63 ± 6.07 

Mushroom 99.93 ± 0.14 100  ±  0.00 99.43 ± 0.23 98.52 ± 0.18 100 ± 0.00 100  ±  0.00 

Spect 80.14 ± 7.51 79.42 ± 4.45 80.93 ± 4.75 80.47 ± 5.85 77.16 ± 2.94 80.51 ± 6.27 

Soybean 88.93 ± 5.72 87.69 ± 4.26 90.78 ± 3.03  91.67 ±  2.07 87.25 ± 1.92 90.48 ± 5.32 

Tic-tac-toe 87.99 ± 3.39 65.36 ± 3.61 65.36 ± 4.98 82.13 ± 7.88 86.25 ± 1.82 89.54 ± 2.13 

Horse 93.47 ± 2.06 93.11 ± 2.04 92.91 ± 2.93 92.11 ± 2.26 93.01 ± 2.85 95.13 ± 2.59 

Heart 76.67 ± 2.11 74.44 ± 15.35 80.37 ± 4.66 80.15  ± 7.05 82.96 ± 5.77 83.85 ± 6.18 

Average 88.12 ± 3.78 80.64 ± 4.17 82.34 ± 3.76 86.36 ± 5.04 86.32 ± 3.26 90.69 ± 3.78 

Table 4 Comparison of classification accuracies of reduced data with NaiveBayes 

Data set Raw data RS FFRS VPRS CONSIS FRC 

Car 86.28 ± 1.25 77.78 ± 3.81 78.78 ± 2.09 80.91 ± 8.46 82.99 ± 6.37 86.29 ± 1.53 

Kr-vs-kp 85.98 ± 1.26 77.22 ± 1.99 77.22 ± 1.77 91.11 ± 1.48 93.84 ± 1.18 93.84 ± 1.11 

Lphography 83.19 ± 5.50 80.28 ± 3.10 83.81 ± 5.53 84.19 ± 7.65 80.95 ± 4.21 85.03 ± 4.83 

Monk 66.42 ± 3.99 66.65 ± 5.65 66.69 ± 6.44 66.68  ± 6.44 66.65 ± 5.65 70.65  ±  5.01 

Mushroom 88.95 ±  1.52 93.84  ±  0.52 93.84  ±  1.57 94.32 ± 1.66 91.79 ± 2.06 97.03  ±  1.33 

Spect 77.70 ± 5.78 79.42 ± 4.45 80.28 ± 4.84 80.92 ± 6.10 76.06 ± 3.87 80.51 ± 6.06 

Soybean 89.07 ± 4.44 86.22 ± 4.90 89.47 ± 3.98 90.65 ± 3.00 87.39 ± 2.80 91.07 ± 4.86 

Tic-tac-toe 70.98 ± 2.25 65.36 ± 3.61 65.36 ± 4.98 67.94 ± 3.72 69.73 ± 3.05 80.56 ± 1.16 

Horse 93.77 ± 2.92 91.85 ± 1.88 92.95 ± 3.36 94.29 ± 3.48 91.39 ± 1.18 94.13 ± 2.20 

Heart 84.81 ± 4.22 73.73  ±  14.61 81.48 ± 7.01 80.25 ± 6.49 82.96 ± 5.77 85.93 ± 5.36 

Average 82.72 ± 3.31 79.24 ± 4.45 80.98 ± 4.16 83.13 ± 4.85 82.38 ± 3.61 86.51 ± 3.35 

 
Tables 3 - 4 show the classification results of the reduced 

data sets based on these algorithms. The highest accuracies are 
underlined.  

It can be seen from these results that the classification 
performance with the RS algorithm is obviously lower than the 
other four algorithms. For the FRC algorithm, not only are the 
number of selected features fewer, but also the classification 
accuracies are the highest. The FRC method achieves the 
highest accuracy 16 times in 20 cases. The VPRS, CONSIS, 
FFRS, and RS methods only obtain the highest accuracies in 3, 
2, 1, and 1 cases, respectively. Furthermore, it is easily seen 
from the average accuracies that FRC outperforms any other 

reduction algorithm in terms of C4.5 and NaiveBayes 
classifiers. The reason why the FRC algorithm achieves such 
good performance may be that the FRC method fully considers 
the fuzzy information in categorical data and better elaborates 
the classification information of samples. Because the RS 
method is sensitive to noisy data, the corresponding 
performance is the worst. 

Next, we analyze the influence of the stopping threshold 
 on our proposed algorithm. The threshold is considered as 
a parameter to control the process of feature search; in other 
words, it is a threshold of stopping feature search. In the 
following, we demonstrate the effect of the stopping threshold 
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on the performance of the algorithm. Here, we randomly select 
six data sets and show the experimental results of these data 
sets on the C4.5 classifier. It is easily observed from Fig. 1 - 6 
that the threshold  has a great effect on the FRC algorithm. 
The number of selected attributes decreases monotonically 
with an increase in the value of  , and the classification 
accuracies also have different changes. Fortunately, most of 
the data sets can achieve high accuracy in a wider area. For 
instance, the Car, Mushroom, and Horse data sets achieve 
good accuracies in terms of a few attributes selected in 
attribute reduction and exhibit a wide range of accuracy 

stability in their respective parameter domains. These results 
show that the proposed algorithm is stable and can provide an 
effective way to select an optimal subset of attributes for 
classification. The optimal location of the parameter  is 
different among these datasets. Therefore, we should train 
parameters before reducing a data set in experiments. As 
described above, we trained the optimal values of  by 
choosing its value from between 0.05 and 0.35 with a step of 
0.01. It is easily observed from Fig. 1- 6 that the optimal values 
of the stopping threshold   are taken in the interval [0.05, 
0.15] in most cases. 
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    Fig. 1 Effect of  on attribute reduction (Car)                        Fig. 2 Effect of  on attribute reduction (Mushroom) 
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          Fig. 3 Effect of  on attribute reduction (Spect)                      Fig. 4 Effect of  on attribute reduction (Tic-tac-toe) 
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                       Fig. 5 Effect of  on attribute reduction (Horse)                     Fig. 6 Effect of  on attribute reduction (Heart) 
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    To demonstrate the selected attribute subset of a data set, 
we use the FFRS, VPRS, and FRC algorithms to reduce the 
eight categorical data sets. We reduce each data set based on 
the parameters where the classification accuracies were 
obtained in the above experiments. The selected attribute 
subsets are shown in Table 5. For the Car, Kr-vs-kp, 
Tic-tac-toe, and Monk datasets, the optimal attributes selected 
by FFRS are virtually subsets of the optimal attributes selected 
by VPRS or FRC. The corresponding classification accuracies 
of the reduced data sets are also lower than those of the VPRS 
and FRC algorithms, as shown in Tables 3 and 4. Most of the 
attributes selected by VPRS and FRC are the same, but the 
classification accuracies of FRC are higher than those of 
VPRS. This result shows that FRC can select the optimal 
attributes for classification. For the Car dataset, four of the five 
attributes selected by the two algorithms are identical; namely, 
they are 2 (maintenance), 4 (passenger capacity), 5 (luggage 

boot), 6 (safety). One attribute is different. The VPRS 
algorithm chooses 3 (number of doors), and the FRC algorithm 
chooses 1 (buying price). This indicates that buying price has 
more classification information than number of doors. The 
Kr-vs-kp, Tic-tac-toe, and Monk datasets also have a similar 
situation.  
    For the Soybean, Lphography, and Mushroom datasets, 
most of the attributes selected by the three algorithms are the 
same. The difference in the attribute subsets indicates that 
there are multiple attribute subsets that have acceptable 
classification power for a given classification task. For the 
Spect dataset, the selected attribute subsets were identical, and 
the classification accuracies were almost the same for the 
VPRS and FRC algorithms. The marginal differences could be 
because the selected attribute subsets were presented by 
reducing the entire dataset, whereas the classification 
accuracies were given based on ten-fold cross-validation.  

Table 5. Optimal attributes selected by FFRS, VPRS, and FRC algorithms  

Data set                       FFRS                       VPRS                       FRC 

Car 4, 6, 1 4, 6, 5, 3, 2 4, 6 ,1, 2, 5 

Kr-vs-kp 21, 10, 29, 14 21, 33, 10, 35, 11, 1, 15, 6, 14 21, 10, 29, 14, 28, 1, 15, 16, 6 

Lphography 18, 2, 13, 14, 15, 5 13, 2, 15, 18, 14, 16 18, 2, 10, 13, 14, 15 

Monk 5 5, 2 5, 1 

Mushroom 5, 20, 8, 12 5, 8, 20, 12, 3 5, 9, 14, 20 

Spect 17, 18, 1,  4, 16 1, 17, 18 17, 18, 1 

Soybean 
18, 26, 11, 12, 35, 29, 22, 1, 3, 6, 7, 10, 4   
5 

21, 29, 35, 26, 18, 1, 22, 3, 15, 14, 8, 9, 
17, 11 

18, 26, 11, 28, 22, 15, 29, 4, 1, 3, 24, 7, 
10 

Tic-tac-toe 2, 3 5, 1, 2, 3, 4, 7, 6, 8 1, 2, 3, 5, 8, 9, 7, 4 

 
    Most attribute reduction algorithms with fuzzy rough sets are 
based on matrix computation, but the algorithm proposed in 
this paper is based on vector computation. Thus, the 
computational complexity of the proposed algorithm is lower 
than that of classical fuzzy rough sets. The comparison of the 
running time of reduction in the FRC and FFRS algorithms is 
shown in Fig. 7 - 10, where the vertical axis represents 
reduction time (in seconds), and the horizontal axis represents 
the number of selected attributes. From Fig. 7 – 10, it is easily 
observed that the FRC algorithm executed much faster than the 
FFRS algorithm in the four data sets presented. The FRC 
algorithm is more than three times faster than the FFRS 
algorithm when selecting the same number of attributes.  
 

    Finally, numerical experiments on the monotonicity of the 
attribute-significance measure are demonstrated on some data 
sets. From Fig. 11 – 14, it is seen that the measure of attribute 
significance decreases monotonically with the increase of the 
number of selected attributes. However, a closer look shows 
that for the Mushroom dataset, when the number of attributes is 
17, the corresponding attribute significance is slightly lower 
than it is when the number of attributes is 18. This may be 
caused by the noise of the data itself, but the overall trend is for 
the attribute significance to decrease gradually with an 
increasing number of attributes.  
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VI. CONCLUSIONS  

There are two important types of data in rough-set-based data 
analysis: categorical and numerical data. Fuzzy rough sets are 
used mainly to deal with numerical data, and classical rough 
sets are used mainly for categorical data. However, classical 
rough sets are sensitive to noise because this model is based on 
the stringent conditions of definitions of equivalence relations. 
In this paper, we propose a novel fuzzy-rough-set model to 
perform rough computations for categorical data. This model 
employs a fuzzy similarity relation to define rough 
approximations of a target decision and overcome the 
deficiency of classical rough sets. In the proposed model, there 
is a parameter that controls the fuzzy similarity between 
samples in a discrete feature space. If the parameter is viewed 
as a constant number, the membership degrees of samples to 
decision classes, computed by fuzzy rough approximation, may 
become very small for high-dimensional data when only a few 
of the features are included in rough computation. To solve the 
problem, we adopt an iterative method for rough computations 
and develop a rough-fuzzy iterative-computational model for 
categorical data. With ten data sets from the UCI data source, a 
series of experiments of attribute reduction are done for 
evaluating the proposed method. The experimental analysis 
indicates that the proposed method is effective for reducing 
redundant attributes and can keep high classification accuracy.  

In the future, we will further study the applications of the 
proposed model in approximate reasoning and classification 
learning, and develop fuzzy-rough iterative computation theory 
for continuous data.  
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