
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Multi-granularity feature selection on cost-sensitive data with measurement
errors and variable costs

Shujiao Liao⁎,a,b, Qingxin Zhub, Yuhua Qianc, Guoping Lina

a School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China
b School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
c Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006, China

A R T I C L E I N F O

Keywords:
Feature-granularity selection
Measurement errors
Multi-granularity
Neighborhood
Rough sets
Variable costs

A B S T R A C T

In real applications of data mining, machine learning and granular computing, measurement errors, test costs
and misclassification costs often occur. Furthermore, the test cost of a feature is usually variable with the error
range, and the variability of the misclassification cost is related to the object considered. Recently, some ap-
proaches based on rough sets have been introduced to study the error-based cost-sensitive feature selection
problem. However, most of them consider only single-granularity cases, thus are not feasible for the case where
the granularity diversity between different features should be taken into account. Motivated by this problem, we
propose a multi-granularity feature selection approach which considers measurement errors and variable costs in
terms of feature-value granularities. For a given feature, the feature-value granularity is evaluated by the error
confidence level of the feature values. In this way, we build a theoretic framework called confidence-level-
vector-based neighborhood rough set, and present a so-called heuristic feature-granularity selection algorithm,
and a relevant competition strategy which can select both features and their respective feature-value granula-
rities effectively and efficiently. Experiment results show that a satisfactory trade-off among feature dimension
reduction, feature-value granularity selection and total cost minimization can be achieved by the proposed
approach. This work would provide a new insight into the cost-sensitive feature selection problem from the
multi-granularity perspective.

1. Introduction

Feature selection is one of the most frequently-used techniques in
data mining, machine learning and granular computing
[4,14,19,42,65]. A dataset often contains many features, thus posing
great difficulty in processing. By using the feature selection technique,
irrelevant or redundant features can be removed to reduce the data
complexity. Consequently, the efficiency of data processing can be
improved significantly [10]. Rough set theory [26,34,35,41] is a pow-
erful mechanism to handle uncertain data. Feature selection is also
called attribute reduction in rough set society [16,30,39,50].

Cost-sensitive learning has received much attention in data mining
and machine learning [1,43,54,60,66,67]. Among various kinds of cost
in cost-sensitive learning [48], test cost (also called feature cost) and
misclassification cost are the most commonly considered. Usually, the
feature values of an object could not be obtained for free. Test cost
refers to the money, time, or other resources consumed in acquiring a
data item of the object. In addition, an object may be misclassified into
a class that it does not belong to. Misclassification cost is the penalty

paid for the wrong decision. Cost-sensitive feature selection, also called
cost-sensitive attribute reduction in rough set community, aims at
finding a feature subset to minimize some types of cost and meanwhile
to keep the properties of original decision system as many as possible
[15,21,25,31,44,46,61].

In practical applications, it is hard to obtain the accurate value of a
data item because the measurement errors are ubiquitous and in-
effaceable. For a quantity in reality, its measurement errors usually
satisfy a normal (or near-normal) distribution. The existence of mea-
surement errors poses great difficulty in distinguishing two objects if
their measured values are close to each other. In view of this problem,
some researchers have addressed objects in groups instead of addres-
sing them individually [2,12]. The groups are referred to as information
granules. Objects with measured values closing to each other are drawn
into the same granule. In this case, the sizes of information granules are
related to the error ranges, or equivalently, the lengths of error inter-
vals. Granularity selection, namely selecting the sizes of information
granules, plays an important role in granular computing [63].

Recently, three main kinds of approaches have been presented to
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study the error-based cost-sensitive feature selection problem by using
the rough set theory. The first kind [6,32] considers only test costs but
not misclassification costs; the second kind [62,63] considers both test
costs and misclassification costs, and the two types of costs are assumed
to be fixed values; while in the third kind of approaches [23,64], both
types of costs are seen to be variable, and all features are supposed to
have the same feature-value granularity, namely have the same data
precision. Unfortunately, these approaches are not feasible in some
real-world scenarios. Firstly, test costs and misclassification costs often
occur simultaneously in real applications, thus it is more realistic to
take the two types of costs into consideration. Secondly, acquiring fine-
grained data items usually costs more than acquiring coarse-grained
ones, so the test cost of a feature is often monotonically decreasing with
the enlargement of the feature values’ error range. While the variability
of the misclassification cost depends on the environment involved and
the object considered. Taking the risk evaluation of granting credit as
an example, if a customer is misclassified, both the cost (also called
benefit if the cost is negative) of the customer and that of the finance
company are usually constants. Taking the medical diagnosis as another
example, for the misdiagnosis of a specific disease, the misclassification
cost of the patient is often fixed, but that of the doctor is usually
monotonically increasing with the total test cost paid by the patient.
Concretely, if the patient is misdiagnosed with a total test cost of $100,
he may require just a little compensation, namely the misclassification
cost of the doctor is low; whereas if the patient is misdiagnosed with a
total test cost of $1000, the misdiagnosis may make him angry and
result in high misclassification cost of the doctor. Finally, in many real
applications, different features may have different feature-value gran-
ularities, namely have different data precision. For example, electro-
cardiogram and color ultrasound are two different medical check-up
items. Their metrics are not the same; naturally, the precision re-
quirements are not necessarily identical for them. Therefore, the
granularity diversity between different features, also called the multi-
granularity characteristic of features, should be discussed in the re-
search. However, most of existing rough-set-based feature selection
approaches are essentially single-granularity approaches.

In actual applications, for a given dataset, if more necessary features
are selected, or feature-value granularities get smaller (in this case, the
similarity among the objects in each granule is enhanced), the total test
cost will increase, while the misclassification rate will usually decrease.
In this case, people cannot intuitively know how the total cost will
change. Accordingly, it is complicated but important to choose suitable
features and their corresponding feature-value granularities to achieve
a trade-off between test costs and misclassification costs so that the
total cost is as small as possible. Moreover, except the above-mentioned
error-based cost-sensitive feature selection approaches, some existing
papers of cost-insensitive feature selection [12,13,51] also addressed
the granularity of feature values, but most of them have not taken the
diversity between different features into consideration. Multi-
granulation rough sets, which deal with multiple binary relations on the
universe, have been studied extensively in recent years
[18,27,38,53,56,59], but they have not touched the multi-granularity
characteristic of features in the feature selection. Based on the above
considerations, we introduce multi-granularity ideas into the cost-sen-
sitive feature selection in this study.

In this paper, based on measurement errors and variable costs, we
propose a multi-granularity feature selection approach to deal with the
relationship among feature dimension, feature-value granularities and
total cost. The approach aims at finding a suitable pair of feature subset
and feature-value granularity vector to minimize the average total cost
(the average value of total cost for the objects in the universe), and at
the same time, to preserve the information of original decision system
as much as possible. Differing from the previous methods, in the pro-
posed approach the feature-value granularities between different fea-
tures are not necessarily the same, thus we call the approach multi-
granularity feature selection. Owing to the variability consideration of

test costs and misclassification costs as well as the diversity of feature-
value granularities between different features, the proposed approach is
more versatile and practical than the existing error-based cost-sensitive
feature selection approaches. Moreover, since most previous feature
selection approaches, no matter whether cost-sensitive or cost-in-
sensitive, are single-granularity in essence, this study would provide a
new insight into the feature selection problem from the multi-granu-
larity perspective.

In the proposed approach, for a given feature, the feature-value
granularity is evaluated by the confidence level of the feature values’
measurement errors. The measurement errors are assumed to satisfy a
normal distribution, and the confidence level refers to the frequency
that an observed interval contains a specific error value. So the con-
fidence level is closely related to the data precision. In this context, we
construct a confidence-level-vector-based neighborhood rough set
model, in which features and their respective feature-value granula-
rities are associated effectively. Under the new model, some funda-
mental concepts in neighborhood rough sets are redefined and dis-
cussed, such as the neighborhood granule, the lower and upper
approximations, and the positive region. These concepts are closely
relevant to the given feature subset and its corresponding confidence
level vector. Moreover, some important properties in this model are
also presented, such as three types of monotonicity in respect of the
above-mentioned concepts. Then, some types of variable cost settings
are introduced according to reality, in which the relationship among
feature-value granularities, test costs and misclassification costs is
considered. We also discuss how to compute the average total cost for
any given feature-granularity pair (the pair of features and their re-
spective feature-value granularities). Finally, we formally define the
multi-granularity feature selection problem which takes measurement
errors and variable costs into consideration.

A heuristic feature-granularity selection (the selection of features
and their respective feature-value granularities) algorithm and a re-
levant competition strategy are proposed to deal with the multi-gran-
ularity feature selection problem. An addition-deletion strategy is
adopted in the heuristic algorithm. Concretely, in the addition phase of
the algorithm, for a given feature and its corresponding error con-
fidence level, a feature-granularity significance (the significance of a
feature and its feature-value granularity) function is designed by com-
bining the size of incremental positive region with a δ-weighted test-
cost-related value. The weight δ is set by the user to adjust the influence
of the test cost to the feature-granularity significance. According to the
significance values, best features and their corresponding best con-
fidence levels are selected step by step. It is worthwhile to note that the
above-mentioned monotonicities of the fundamental concepts in the
confidence-level-vector-based neighborhood rough set model are fully
used to make the process more efficient. Then in the deletion phase, the
redundant feature-granularity elements (a feature-granularity element
refers to a feature and its associated confidence level in the selected
feature-granularity pair) are deleted to guarantee that the remaining
feature-granularity pair has the minimal total cost. As for the compe-
tition strategy, it is presented to run the heuristic algorithm with dif-
ferent δ values and choose the best result. By using it, the users need not
know the best setting for the weight δ in advance. Finally, some eva-
luation metrics are developed to study the performance of the proposed
approach.

To evaluate the performance of the multi-granularity feature se-
lection approach, a series of detailed experiments are undertaken on
nine datasets from the UCI (University of California – Irvine) library
[3]. Experimental results demonstrate that a satisfactory trade-off
among feature dimension reduction, feature-value granularity selection
and total cost minimization can be achieved by the approach. Both
features and their respective feature-value granularities, which are
often not the same between different features, can be obtained si-
multaneously through using the approach. This cannot be achieved by
using the previous methods. The proposed multi-granularity approach
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performs well not only on minimizing the total cost but also on the
computational efficiency. Compared with the three kinds of error-based
cost-sensitive feature selection approaches discussed above, the pro-
posed approach is more effective and versatile. In addition, rational
value ranges of extrinsic parameters are also given through in-depth
experimental analyses.

The rest of the paper is organized as follows. In Section 2, we
construct the confidence-level-vector-based neighborhood rough set
model, and present some important notions and properties of this
model. Section 3 designs the variable cost settings and gives the cal-
culation method of average total cost. Then the multi-granularity fea-
ture selection problem is formally defined. In Section 4, we propose the
heuristic feature-granularity selection algorithm and the competition
strategy. Some relevant evaluation metrics are also given. Section 5
discusses the experiment settings and results thoroughly. Finally, we
conclude the paper and outline further research ideas in Section 6.

2. Confidence-level-vector-based neighborhood rough set

As a technique of granular computing [2,8,29,37], classical rough
set [35,36] and its extensions [5,9,11,13,24,40,45,47,52,68] handle the
uncertainty and the granulation in information systems and decision
systems. In view of the universality of measurement errors, we con-
struct a confidence-level-vector-based neighborhood rough set (CVRS)
model in this section. Fundamental notions and properties in this model
are introduced, such as the concepts of neighborhood, lower and upper
approximations, positive region, and their monotonicities with respect
to (w.r.t.) the given pair of feature subset and error confidence level
vector.

2.1. Preliminaries

In this subsection, we review some basic concepts related to gran-
ular computing and statistics.

In granular computing domains, an information granule is often
represented by a neighborhood [13,17,28,49]. Let U be a nonempty
finite object set called the universe. For each object x∈U, a neigh-
borhood granule of x is a set n(x) composed of some objects from U with
a certain criterion. The elements in n(x) are indistinguishable from x
under the given criterion. When measurement errors are involved in the
universe, the neighborhoods are formed according to the errors. An
error-bound-based neighborhood has been defined as follows:

Definition 2.1. [64] Let U be a universe with measurement errors, and
∈ +e  be an error bound. For each x∈U, the neighborhood of x w.r.t.

the error bound is defined as

= ′ ∈ ′ − ≤n x x U x x e( ) { 2 }.e (1)

Naturally, the error interval is −e e[ , ], which the measurement error
values should lie within. The reason why 2e instead of e is employed in
Eq. (1) has been explained in [64]. It means that all objects with
measured value differing from x by not exceeding 2e should be drawn
into the neighborhood ne(x) together.

In Definition 2.1, both the error bound and the error interval are
fixed. However, in real-world applications, the error range for the same
data item often changes due to different observers or different instru-
ments. Similar to those in [23,62,64], we suppose that the measurement
errors follow a normal distribution. Confidence interval and confidence
level are two commonly-used concepts in statistics [7,33]. The con-
fidence interval is a type of interval estimation for a population para-
meter, while the confidence level determines how frequently an ob-
served interval contains a given parameter value. Moreover, the left
endpoint of confidence interval is called the lower confidence limit, and
the right endpoint is called the upper confidence limit. The higher the
confidence level is, the wider the confidence interval becomes. For a

normal distribution, the confidence interval and confidence level satisfy
the so-called “3-sigma” rule, which is shown in Fig. 1, where μ and σ are
the mean and the standard deviation, respectively. From the figure, we
can find that nearly all values (99.7%) lie within 3 standard deviations
away from the mean.

For a normal distribution, if the confidence interval is known, the
confidence level can be computed by using the cumulative distribution
function [7]. Concretely, assuming that x is a normal random variable
with mean μ and variance σ2, the confidence level (i.e. the probability)
of x∈ [a, b] is

≤ ≤ = − = ⎛
⎝

− ⎞
⎠
− ⎛

⎝
− ⎞

⎠
p a x b F b F a

b μ
σ

a μ
σ

{ } ( ) ( ) Φ Φ ,
(2)

where F and Φ denote the cumulative distribution functions of normal
distribution N(μ, σ2) and standard normal distribution N(0, 1), respec-
tively. Besides, if the confidence level is known, the confidence interval
can be calculated through the quantile function, which is the inverse of
the cumulative distribution function [7]. Assuming that the confidence
level is p, the quantile function of the standard normal distribution can
be expressed as

= − ∈− −p erf p pΦ ( ) 2 (2 1), (0, 1),1 1 (3)

where −−erf p(2 1)1 is the inverse error function. For convenience,
− pΦ ( )1 is usually denoted by zp. Assuming that x is a normal random

variable with mean μ and variance σ2, its quantile function value is

= + = + ∈− −F p μ σ p μ σz p( ) Φ ( ) , (0, 1).p
1 1 (4)

x will exceed +μ σzp with probability − p1 , and will lie outside
− +μ σz μ σz[ , ]p p with probability − p2(1 ).
In data mining and machine learning, decision system is a funda-

mental notion defined as follows:

Definition 2.2. [55] A decision system (DS) S is the 5-tuple:

= = ∈ ∪ = ∈ ∪S U C d V V a C d I I a C d( , , , { { }}, { { }}),a a

where U is a finite nonempty set of objects called the universe, C is the
set of conditional attributes (also called as features), d is the decision
attribute, Va is the set of values for each a∈ C ∪ {d}, and Ia: U→ Va is an
information function for each a∈ C ∪ {d}.

Note that, in real applications, many decision systems only have one
decision attribute, so our work focuses on this kind of decision systems.
If the involved DS has more than one decision attribute, we can con-
struct multiple new decision systems, each with only one decision at-
tribute.

Fig. 1. The “3-sigma” rule.
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2.2. Fundamental concepts in confidence-level-vector-based neighborhood
rough set

Now we present the fundamental concepts in the CVRS model,
which is started from the decision system. Since each object in a deci-
sion system has a series of features, and the data precisions between
different features are not necessarily the same, we construct an error
confidence level vector corresponding to all features. Based on the
confidence level vector, a new kind of decision system is defined as
follows:

Definition 2.3. A confidence-level-vector-based decision system (CVDS) S
is the 6-tuple:

=S U C d V I P( , , , , , ), (5)

where U, C, d, V, I have the same meanings as in Definition 2.2, and

⎜ ⎟= ⎛
⎝

… ⎞
⎠

P p p p, , ,a a a C1 2 is a confidence level vector, in which ∈p (0, 1)ai

is the error confidence level for the feature values of feature ai.

Note that, for brevity, we often omit the term “feature values” when
mentioning confidence level in the following context. For example, pa is
called as the confidence level for feature a, or the confidence level
corresponding to feature a. An exemplary CVDS consists of the decision
system shown in Table 1 and the confidence level vector shown in
Table 2. From the two tables, we know that
= ⋯ = =U x x x C a a a P{ , , , }, { , , }, (0.5, 0.8, 0.6)1 2 6 1 2 3 .
Since the confidence interval refers to the measurement errors in

this paper, the upper confidence limit is regarded as the upper error
bound. As told in [64], the confidence interval for a normal distribution
is −∞ +∞( , ) if the confidence level is 1; combined with the “3-sigma”
rule, the maximal confidence level for each attribute is supposed to be
99.7%. Let e(a, pa) denote the upper error bound w.r.t. feature a and its
corresponding confidence level pa, then according to Eq. (4), we have

= ∈e a p σ z p( , ) , (0, 0.997].a a p aa (6)

So the maximum e(a, pa) is =e a σ( , 0.997) 3 a. We let the standard de-
viation be

= − ≤ ≤σ k max a x a x i U· ( ) ( ) , 1 ,a i (7)

where k>0 is a constant, a(xi) is the feature value of object xi w.r.t.
feature a, and = ∑=a x a x( ) ( )U i

U
i

1
1 is the average feature value of a for

all objects (note that the standard deviation σa could also be given in
other forms). Then, for each feature a and its corresponding confidence
level pa, the upper error bound can be computed according to Eqs. (6)
and (7).

Neighborhoods play an important role in the CVRS model.
Analogously to Definition 2.1, the neighborhood based on a single
feature and its corresponding confidence level is defined as follows:

Definition 2.4. Let be a CVDS, x∈U and a∈ C. The neighborhood of x
with reference to feature a and confidence level pa is defined as

= ′ ∈ ′ − ≤ ∈n x x U a x a x e a p p( ) { ( ) ( ) 2 ( , )}, (0, 0.997].a p a a( , )a (8)

Before introducing the neighborhood corresponding to multiple

features, we give a remark about subvector as follows:

Remark 2.5. Traditional subvector is defined as a contiguous part of a
larger vector. To facilitate our discussions, we relax the restriction in
this paper, i.e., we suppose that the subvector can also be constituted by
two or more discontiguous parts of the entire vector. For example,
given two vectors =V (1, 2, 3, 4, 5, 6) and ′ =V (1, 3, 6), we say that V′
is the subvector of V, which is denoted as V′⊑V or V⊒V′.

Let be a CVDS, B⊆C. In the following context, we let PB denote the
confidence level subvector corresponding to B, i.e., PB⊑P and each
component of PB corresponds to a feature in B. Naturally, the neigh-
borhood of x∈U induced by B and PB is the intersection of the neigh-
borhoods induced by each feature a∈ B and its corresponding con-
fidence level pa, i.e., the confidence-level-vector-based neighborhood is

= ⋂
∈

n x n x( ) ( ).B P
a B

a p( , ) ( , )B a (9)

Two exemplary 2-dimensional neighborhoods, whose feature-granu-
larity pairs are (B, PB) and

′B P( , )B respectively, are shown in Fig. 2,
where = =B a a P p p{ , }, ( , )B1 2 1 2 and =′ ′ ′P p p( , )B 1 2 . From the figure, it is
known that the neighborhoods change with the feature-granularity
pairs. The related properties will be discussed further in Section 2.3.
Moreover, it is easy to obtain the following proposition for neighbor-
hoods:

Proposition 2.6. Let be a CVDS, B⊆C, and PB be the corresponding
confidence level subvector. Then for any object in U, its neighborhood based
on B and PB satisfies

(1) reflexivity: ∀ ∈ ∈x U x n x, ( )B P( , )B ;
(2) symmetry: ∀xi, xj∈U, if ∈x n x( ),j B P i( , )B ∈x n x( )i B P j( , )B .

According to the reflexivity of neighborhoods, we have
⊆ ∈U n x x U{ ( ) },B P( , )B so ∈n x x U{ ( ) }B P( , )B is a covering of U. We de-

note it as C(B, PB) for brevity, i.e.,

= ∈{ }C B P n x x U( , ) ( ) .B B P( , )B (10)

Note that, if B only contains one feature a, we write C(B, PB) as C(a, pa)
instead of C({a}, (pa)) for brevity, which is similar to that for neigh-
borhood. This kind of notation is also used for other concepts

Table 1
An example of numeric decision system.

a1 a2 a3 d

x1 0.71 0.31 0.21 1
x2 0.61 0.34 0.11 1
x3 0.58 0.27 0.25 1
x4 0.82 0.29 0.23 2
x5 0.68 0.44 0.55 2
x6 0.55 0.38 0.05 2

Table 2
An example of confidence level vector.

a a1 a2 a3

pa 0.5 0.8 0.6

Fig. 2. Two exemplary 2-dimensional neighborhoods with feature-granularity
pairs (B, PB) and

′B P( , )B respectively, where = =B a a P p p{ , }, ( , )B1 2 1 2 and

=′ ′ ′P p p( , )B 1 2 .
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introduced in the following context.
Based on B and PB, a neighborhood relation R B P( , )B on the universe U

can be induced. It can be written as a relation matrix
= ×M R r( ) ( ) ,B P ij U U( , )B where =r 1ij if ∈x n x( ),j B P i( , )B or equivalently,

∈x n x( )i B P j( , )B ; otherwise =r 0ij . According to Proposition 2.6, it is easy
to know that R B P( , )B satisfies reflexivity: =r 1,ii and symmetry: =r rij ji.

Lower and upper approximations, positive region and boundary
region are fundamental issues in rough set theory. We redefine them in
the CVRS model as follows.

Definition 2.7. Let be a CVDS, and let U/{d} denote the partitions of
the universe U induced by the decision attribute d. Suppose that B⊆C
and PB is the corresponding confidence level subvector. We call
< >U R, B P( , )B a neighborhood approximation space. For any X∈U/
{d}, the lower and upper approximations of X in < >U R, B P( , )B are
defined as

= ∈ ⊆{ }N X x U n x X( ) ( ) ,B P B P( , ) ( , )B B (11)

= ∈ ∩ ≠ ∅{ }N X x U n x X( ) ( ) .B P B P( , ) ( , )B B (12)

Obviously, ⊆ ⊆N X X N X( ) ( )B P B P( , ) ( , )B B . The boundary region of X in
< >U R, B P( , )B is defined as

= −BN X N X N X( ) ( ) ( ).B P B P B P( , ) ( , ) ( , )B B B (13)

Definition 2.8. Let be a CVDS, B⊆C, and PB be the corresponding
confidence level subvector. Suppose that = …U d X X X/{ } { , , , },K1 2 where
Xi is the object subset with decision class i. Then the lower and upper
approximations of decision {d} in the neighborhood approximation
space < >U R, B P( , )B are defined as

= ⋃ = ⋃
= =

N d N X N d N X({ }) ( ), ({ }) ( ).B P
i

K

B P i B P
i

K

B P i( , )
1

( , ) ( , )
1

( , )B B B B (14)

The decision boundary region of {d} in < >U R, B P( , )B is defined as

= −BN d N d N d({ }) ({ }) ({ }).B P B P B P( , ) ( , ) ( , )B B B (15)

The lower approximation N d({ })B P( , )B is also called as the positive
region, which is denoted by POS d({ })B P( , )B . For each object in the po-
sitive region, its neighborhood granule consistently belongs to one of
the decision classes. In contrast, for each object in the boundary region,
the samples in its neighborhood granule come from two or more classes.

So the objects in the positive region can be certainly classified into one
class, while those in the boundary region cannot. One objective of
multi-granularity feature selection is to make the positive region as
large as possible. It is easy to obtain the following proposition:

Proposition 2.9. Let be a CVDS, B⊆C, and PB be the corresponding
confidence level subvector. Then we have

(1) = ∅∅ ∅POS d({ })P( , ) ;
(2) =N d U({ })B P( , )B ;
(3) ⋂ = ∅POS d BN d({ }) ({ })B P B P( , ) ( , )B B ;
(4) ⋃ =POS d BN d U({ }) ({ })B P B P( , ) ( , )B B .

We give an example to illustrate the concepts discussed above.

Example 2.10. A CVDS is composed of Tables 1 and 2,
where = … = =U x x x C a a a P{ , , , }, { , , }, (0.5, 0.8, 0.6)1 2 6 1 2 3 and

=U d x x x x x x/{ } {{ , , }, { , , }}1 2 3 4 5 6 . Let = =X x x x X x x x{ , , }, { , , }1 1 2 3 2 4 5 6 .
And let =k 0.2 in Eq. (7), then the upper error bounds for each (a,
pa) pair can be calculated according to Eqs. (6)–(7). The results are
displayed in Table 3.

Let
= = = = =B a a P B a a P B a a{ , }, (0.5, 0.8), { , }, (0.5, 0.6), { , }1 1 2 1 2 1 3 2 3 2 3

and =P (0.8, 0.6)3 . Based on the upper error bounds, we can compute
the neighborhoods for each feature-granularity pair according to
Eqs. (8)–(9). The results are listed in Table 4.

According to Table 4, a series of coverings of U are obtained, which
are

=C a x x x x x x x x x x( , 0.5) {{ , }, { , }, { , , }, { }, { , }},1 1 5 2 3 2 3 6 4 3 6
=C a x x x x x x x x x x x x( , 0.8) {{ , , , }, { , , , }, { , , }, { },2 1 2 3 4 1 2 4 6 1 3 4 5 {x2, x6}},
=

=

C a C B P

x x x x x x x x x x x x x

( , 0.6) ( , )

{{ , , , }, { , , }, { , , }, { }, { , }},
3 3 3

1 2 3 4 1 2 6 1 3 4 5 2 6
= = =C B P C B P C C P x x x x x x( , ) ( , ) ( , ) {{ }, { }, { }, { }, { }, { }}1 1 2 2 1 2 3 4 5 6 . So the

coverings induced by (B1, P1), (B2, P2) and (C, P) are all the partitions of
U essentially. The lower and upper approximations for each feature-
granularity pair can also be computed according to Table 4. The results
are shown in Table 5.

Based on the obtained lower and upper approximations, the positive
regions and boundary regions are calculated for different feature-
granularity pairs. =POS d({ })a( ,0.5)1 =x x BN d x x x x{ , }, ({ }) { , , , }a2 4 ( ,0.5) 1 3 5 61 ;

= = =POS d POS d POS d x({ }) ({ }) ({ }) { },a a B P( ,0.8) ( ,0.6) ( , ) 52 3 3 3
= = =BN d BN d BN d x x x x x({ }) ({ }) ({ }) { , , , , }a a B P( ,0.8) ( ,0.6) ( , ) 1 2 3 4 62 3 3 3 ;
= = =POS d POS d POS d U({ }) ({ }) ({ }) ,B P B P C P( , ) ( , ) ( , )1 1 2 2
= = = ∅BN d BN d BN d({ }) ({ }) ({ })B P B P C P( , ) ( , ) ( , )1 1 2 2 . Hence, the feature

subsets =B a a{ , }1 1 2 and =B a a{ , }2 1 3 have the same approximate power
as the entire feature set C at the given confidence levels. They can
characterize all samples in the universe.

2.3. Three types of monotonicity with respect to above-mentioned concepts

In this subsection, we discuss three types of monotonicity for the
fundamental concepts mentioned in Section 2.2. The first type of
monotonicity relates to the addition of features.

Table 3
The upper error bounds.

a a1 a2 a3

pa 0.5 0.8 0.6
z pa 0.6745 1.2816 0.8416
e(a, pa) 0.0218 0.0261 0.0533

Table 4
The neighborhoods.

U n x( )a( 1,0.5) n x( )a( 2,0.8) n x( )a( 3,0.6) n x( )B P( 1, 1) n x( )B P( 2, 2) n x( )B P( 3, 3) n(C, P)(x)

x1 {x1, x5} {x1, x2, x3, x4} {x1, x2, x3, x4} {x1} {x1} {x1, x2, x3, x4} {x1}
x2 {x2, x3} {x1, x2, x4, x6} {x1, x2, x6} {x2} {x2} {x1, x2, x6} {x2}
x3 {x2, x3, x6} {x1, x3, x4} {x1, x3, x4} {x3} {x3} {x1, x3, x4} {x3}
x4 {x4} {x1, x2, x3, x4} {x1, x3, x4} {x4} {x4} {x1, x3, x4} {x4}
x5 {x1, x5} {x5} {x5} {x5} {x5} {x5} {x5}
x6 {x3, x6} {x2, x6} {x2, x6} {x6} {x6} {x2, x6} {x6}
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Theorem 2.11. (Type-1 monotonicity). Let be a CVDS,
⊆ ⊆ ⊑B B C P P, B B1 2 1 2. We have

(1) ∀x∈U, ⊇n x n x( ) ( )B P B P( , ) ( , )B B1 1 2 2 ;
(2) ⊇R RB P B P( , ) ( , )B B1 1 2 2 ;
(3) ∀ ∈ ⊆ ⊇X U d N X N X N X N X/{ }, ( ) ( ), ( ) ( )B P B P B P B P( , ) ( , ) ( , ) ( , )B B B B1 1 2 2 1 1 2 2 ;
(4) ⊆ ⊇POS d POS d BN d BN d({ }) ({ }), ({ }) ({ })B P B P B P B P( , ) ( , ) ( , ) ( , )B B B B1 1 2 2 1 1 2 2 .

Proof. (1) According to Eqs. (8) and (9), ∀ ′ ∈x n x( ),B P( , )B2 2 we have
′ − ≤ ∀ ∈a x a x e a p a B( ) ( ) 2 ( , ),a 2. Since B1⊆B2, we have
′ − ≤ ∀ ∈a x a x e a p a B( ) ( ) 2 ( , ),a 1. So ′ ∈x n x( ),B P( , )B1 1 then we have

⊇n x n x( ) ( )B P B P( , ) ( , )B B1 1 2 2 .
(2) Let rij, sij denote the elements in relation matrices M R( )B P( , )B1 1

and M R( ),B P( , )B2 2 respectively. If =s 1,ij ∈x n x( ),j B P i( , )B2 2 we have
∈x n x( )j B P i( , )B1 1 according to (1), so =r 1ij . Then we have

⊇R RB P B P( , ) ( , )B B1 1 2 2 .
(3) ∀ ∈ ⊆x N X n x X( ), ( )B P B P( , ) ( , )B B1 1 1 1 . According to (1),

⊆ ⊆n x n x X( ) ( ) ,B P B P( , ) ( , )B B2 2 1 1 so ∈x N X( ),B P( , )B2 2 we have N X( )B P( , )B1 1

⊆N X( )B P( , )B2 2 . Similarly, we have ⊇N X N X( ) ( )B P B P( , ) ( , )B B1 1 2 2 .
(4) Assume = …U d X X X/{ } { , , , }K1 2 . According to (3), N X( )B P i( , )B1 1

⊆ = …N X i K( ), 1, 2, ,B P i( , )B2 2 . Because = ⋃
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

POS d N({ })
B P

i
K

B P,
1

,j Bj j Bj

=X j( ), 1, 2,i we have P ⊆OS d POS d({ }) ({ })B P B P( , ) ( , )B B1 1 2 2 . Similarly,
N d({ })B P( , )B1 1 ⊇N d({ })B P( , )B2 2 according to (3). Since B

= − =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

N d N d POS d j({ }) ({ }) ({ }), 1, 2,
B P B P B P, , ,j Bj j Bj j Bj

we have

⊇BN d BN d({ }) ({ })B P B P( , ) ( , )B B1 1 2 2 . □

Theorem 2.11 shows that the positive region increases mono-
tonically with the adding of features, while the boundary region de-
creases monotonically. Since not only the features but also their re-
spective feature-value granularities should be considered in the multi-
granularity feature selection problem, we discuss the second type of
monotonicity, which refers to the change of confidence levels. Before
that, we define an order relation ⪯ for the vectors with the same di-
mension.

Definition 2.12. Given two vectors = …X x x x( , , , )n1 2 and
= …Y y y y( , , , ),n1 2 X⪯Y if ≤ = …x y i n, 1, 2, ,i i .

Based on the order relation, the second type of monotonicity is
given as follows:

Theorem 2.13. (Type-2 monotonicity). Let be a CVDS, B⊆C, and P1, P2
be two confidence level subvectors corresponding to B, which satisfies P1⪯P2.
We have

(1) ∀ ∈ ⊆x U n x n x, ( ) ( )B P B P( , ) ( , )1 2 ;
(2) ⊆R RB P B P( , ) ( , )1 2 ;
(3) ∀ ∈ ⊇ ⊆X U d N X N X N X N X/{ }, ( ) ( ), ( ) ( )B P B P B P B P( , ) ( , ) ( , ) ( , )1 2 1 2 ;
(4) ⊇ ⊆POS d POS d BN d BN d({ }) ({ }), ({ }) ({ })B P B P B P B P( , ) ( , ) ( , ) ( , )1 2 1 2 .

Proof. (1) Let p p,a a
1 2 respectively denote the components of P1, P2

corresponding to feature a∈ B. ∀ ′ ∈x n x( ),B P( , )1 we have
′ − ≤ ∀ ∈a x a x e a p a B( ) ( ) 2 ( , ),a

1 . Since P1⪯P2, we have
≤ ≤p p e a p e a p, 2 ( , ) 2 ( , ),a a a a

1 2 1 2 then ′ − ≤ ∀ ∈a x a x e a p a B( ) ( ) 2 ( , ),a
2 .

So ′ ∈x n x( ),B P( , )2 ⊆n x n x( ) ( )B P B P( , ) ( , )1 2 . □

The proof of (2)-(4) is similar to that for Theorem 2.11, so we omit it
for brevity. From Theorem 2.13, we know that the positive region de-
creases monotonically with the increase of confidence levels, while the
boundary region increases monotonically. Theorem 2.11 and
Theorem 2.13 can significantly improve the efficiency of the heuristic
algorithm designed in Section 4.1.

Note that, in real applications, for each feature a∈ C, there is
usually a highest data precision which could be achieved by using the
best measurement instruments. At this time, the error interval and error
confidence level are both minimal. Assuming that the minimal error is
ea>0 for feature a, then according to Eq. (2), the minimal confidence
level is

⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠
− ⎛

⎝

− ⎞
⎠
= ⎛

⎝
⎞
⎠
−□p e

σ
e

σ
e
σ

Φ Φ 2Φ 1,a
a

a

a

a

a

a (16)

where Φ denotes the cumulative distribution function of the standard
normal distribution, and σa is computed according to Eq. (7). Ob-

viously, □pa is intrinsic to feature a. Let ⎜ ⎟= ⎛
⎝

… ⎞
⎠

□
□ □ □P p p p, , ,a a a C1 2

denote

the minimal-confidence-level vector corresponding to the entire feature
set C. Based on the above two theorems, we have the third type of
monotonicity as follows:

Theorem 2.14. (Type-3 monotonicity). Let be a CVDS, B⊆C, PB be the
confidence level subvector corresponding to B, and □P be the minimal-
confidence-level vector corresponding to C. We have

(1) ∀ ∈ ⊇ □x U n x n x, ( ) ( )B P C P( , ) ( , )B ;
(2) ⊇ □R RB P C P( , ) ( , )B ;
(3) ∀ ∈ ⊆ ⊇□ □X U d N X N X N X N X/{ }, ( ) ( ), ( ) ( )B P C P B P C P( , ) ( , ) ( , ) ( , )B B ;
(4) ⊆ ⊇□ □POS d POS d BN d BN d({ }) ({ }), ({ }) ({ })B P C P B P C P( , ) ( , ) ( , ) ( , )B B .

Proof. The proof for ⊆ □POS d POS d({ }) ({ })B P C P( , ) ( , )B :
Obviously, ⪯□P P, so ⊆ □POS d POS d({ }) ({ })C P C P( , ) ( , ) according to

Theorem 2.13. Moreover, since B⊆C, PB⊑P, we have
⊆POS d POS d({ }) ({ })B P C P( , ) ( , )B according to Theorem 2.11. Therefore,
⊆ □POS d POS d({ }) ({ })B P C P( , ) ( , )B . □

For brevity, we only give the proof for
⊆ □POS d POS d({ }) ({ })B P C P( , ) ( , )B . The proofs of other formulas are si-

milar.

3. Variable-cost-based multi-granularity feature selection
problem

In this section, we start from designing several kinds of variable cost
settings. In these cost settings, the relationship among feature-value
granularities, test costs and misclassification costs is considered, in
which the feature-value granularity of a feature is evaluated by the
confidence level of the feature values’ measurement errors. Then, we
present the calculation method of average total cost for any given pair
of features and confidence levels. Finally, the variable-cost-based multi-
granularity feature selection problem is formally defined.

Table 5
The lower and upper approximations.

(a1, 0.5) (a2, 0.8) (a3, 0.6) (B1, P1) (B2, P2) (B3, P3) (C, P)

N X( )B PB( , ) X1 {x2} ∅ ∅ X1 X1 ∅ X1

X2 {x4} {x5} {x5} X2 X2 {x5} X2

N X( )B PB( , ) X1 {x1, x2, x3, x5, x6} {x1, x2, x3, x4, x6} {x1, x2, x3, x4, x6} X1 X1 {x1, x2, x3, x4, x6} X1

X2 {x1, x3, x4, x5, x6} U U X2 X2 U X2
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3.1. Variable cost settings

As we know, for a feature, the test cost often increases mono-
tonically with the increase of data precision. Meanwhile, the data
precision decreases monotonically with the increase of feature-value
granularity, or equivalently the error confidence level of feature values.
Therefore, the test cost is monotonically decreasing as the confidence
level gets large. As for the misclassification cost, its variability depends
on the environment involved and the object considered. As discussed
earlier, in some cases the misclassification cost is a fixed value, while in
other cases it is monotonically increasing as the total test cost becomes
large. For these reasons, we design the test cost functions and the
misclassification cost functions in the following forms.

For a CVDS =S U C d V I P( , , , , , ), let tc denote the test cost func-
tion, and tc(a) denote the highest test cost of feature a, namely, the test
cost paid for obtaining the highest data precision for feature a. Then the
highest total test cost for each object is = ∑ ∈tc C tc a( ) ( )a C . Given fea-
ture a and its corresponding confidence level pa, the test cost function
can be presented in different forms according to the application back-
grounds. For example, a linear-function-form test cost is

= − ∈tc a p tc a λ p p( , ) ( )·(1 ), (0, 0.997],a a a a (17)

where λa∈ [0, 1] is the adjusting factor of the test cost w.r.t. the con-
fidence level; and a piecewise-constant-function-form test cost is

= ∈ = …−tc a p TC a p p p i m( , ) ( ), [ , )( 1, 2, , ),a i a i i1 (18)

where m is the number of segments, p0> 0, pm<1, and TCi(a) are
constant values satisfying TC1(a)> TC2(a)> ⋅⋅⋅> TCm(a)> 0. Then,
given a feature-granularity pair (B, PB), the corresponding total test cost
is

∑=
∈

tc B P tc a p( , ) ( , ).B
a B

a
(19)

Finally, let (k, l) denote the misclassification from class k to class l,
which is called a misclassified class pair, and let mc(B, PB)(k, l) denote
the misclassification cost of (k, l) based on (B, PB) pair. Obviously, if
= =k l mc B P, ( , ) 0B k l( , ) . While if k≠ l, mc(B, PB)(k, l) can be given in

multiple forms according to reality. For example, a constant-form
misclassification cost is

=mc B P MC( , ) ,B k l k l( , ) ( , ) (20)

where MC(k, l) > 0 is a constant; a linear-function-form misclassification
cost is

=mc B P γ tc B P( , ) · ( , ),B k l k l B( , ) ( , ) (21)

where γ(k, l) > 0 is a penalty factor; and a piecewise-constant-function-
form misclassification cost is

= ∈ = …−mc B P MC tc B P TTC TTC j n( , ) , ( , ) [ , )( 1, 2, , ),B k l j
k l

B j j( , )
( , )

1 (22)

where n is the number of segments, all TTCj and MCj
k l( , ) are constant

values, TTC0≥ 0, and < < < ⋯<MC MC MC0 k l k l
n

k l
1
( , )

2
( , ) ( , ).

We give an example of variable cost settings as follows:

Example 3.1. A CVDS is constituted by Tables 1 and 2,
where =C a a a{ , , }1 2 3 and =P (0.5, 0.8, 0.6). Given

= = = = =tc a tc a tc a λ λ( ) 23, ( ) 97, ( ) 14, 0.2, 0.4a a1 2 3 1 2 and =λ 0.1,a3

we have = ∑ ==tc C tc a( ) ( ) 134i i1
3 . Let =B a a{ , },2 3 then

=P (0.8, 0.6)B . Since = × − × =tc a( , 0.8) 97 (1 0.4 0.8) 65.962 and
= × − × =tc a( , 0.6) 14 (1 0.1 0.6) 13.16,3 we have t

= + =c B P( , ) 65.96 13.16 79.12B . Then let =γ 50(1,2) and =γ 10,(2,1) we
have = × = = × =mc B P mc B P( , ) 50 79.12 3956, ( , ) 10 79.12B B(1,2) (2,1)
791.2.

It is notable that, although sometimes the misclassification costs are
fixed, the test costs are always variable, so the designed cost settings are
said to be variable. Moreover, for simplicity, we only introduce some
types of cost functions in this paper. One could also present other types
of cost functions according to practical problems. Besides, for con-
venience, each object in the universe is supposed to have the same total
test cost, and have the same misclassification cost w.r.t the same mis-
classified class pair.

3.2. Calculation method of average total cost

We begin with discussing the calculation method of total mis-
classification cost for all objects in the universe, which is crucial for
computing the average total cost. A relevant method has been in-
troduced in [64], in which the total misclassification cost is obtained by
computing the sum of the misclassification costs of each neighborhood
granule in the covering of the universe. However, the obtained value
often exceeds the real value. The reason is that, an object often belongs
to more than one neighborhood granule in the covering, which results
in repetitive computations for the misclassification costs.

To overcome this inexpedience, we present a new method for
computing the total misclassification cost. Let be a CVDS, x∈U, B⊆C,
and PB be the confidence level subvector corresponding to B, and let mc
(x, B, PB) denote the misclassification cost of x based on B and PB. The
calculation process of the total misclassification cost and average total
cost based on B and PB is stated as follows, in which Eqs. (17)–(22) are
used to compute test costs and misclassification costs. (1) For each
object x∈U, classify it according to its neighborhood n x( ),B P( , )B and
obtain the misclassification cost mc(x, B, PB). There are two cases.

A) If ∀ ∈ =y n x d y d x( ), ( ) ( ),B P( , )B we can classify x into the right
class, so =mc x B P( , , ) 0B .

B) If ∃ ∈ ≠y n x d y d x( ), ( ) ( ),B P( , )B since the objects in the same
neighborhood granule are indistinguishable, they are assumed to have
the same decision value in the classification. So we can classify x into
the class which minimizes the total misclassification cost for all objects
in n x( )B P( , )B . Naturally, the corresponding mc(x, B, PB) can be obtained.

(2) Compute the total misclassification cost (TMC) and average
misclassification cost (AMC) for all objects in U.

∑=
∈

TMC U B P mc x B P( , , ) ( , , ),B
x U

B
(23)

=AMC U B P TMC U B P
U

( , , ) ( , , ) .B
B

(24)

(3) Compute the average total cost for all objects in U. Since the total
test cost for each object is supposed to be the same and is equal to tc(B,
PB), the average total cost (ATC) is

= +ATC U B P tc B P AMC U B P( , , ) ( , ) ( , , ).B B B (25)

Based on Examples 2.10 and 3.1, we show the calculation process of
average total cost in the following example:

Example 3.2. Since =B B ,3 from Table 4, we have
=n x x x x x( ) { , , , },B P( , ) 1 1 2 3 4B =n x x x x( ) { , , },B P( , ) 2 1 2 6B =n x( )B P( , ) 3B
=n x x x x( ) { , , },B P( , ) 4 1 3 4B =n x x( ) { },B P( , ) 5 5B n B P( , )B =x x x( ) { , }6 2 6 .

Combined with Table 1, each object is classified according to its
neighborhood, and the misclassification costs can be obtained. Con-
cretely, for x1, if we guess all objects in n x( )B P( , ) 1B belong to class “1”, the
total misclassification cost for the objects in n x( )B P( , ) 1B is 791.2; on the
contrary, if they are classified into class “2”, the corresponding total
misclassification cost is 3956×3, so we choose class “1” to obtain a
less total misclassification cost. Consequently, x1 is correctly classified
and =mc x B P( , , ) 0B1 . For x4, if we categorize all objects in n x( )B P( , ) 4B
into class “1”, the total misclassification cost corresponding to n x( )B P( , ) 4B
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is 791.2; conversely, the corresponding total misclassification cost is
3956×2, thus we also choose class “1”. In this case, x4 is misclassified
and =mc x B P( , , ) 791.2B4 . Similarly, we have

= = =mc x B P mc x B P mc x B P( , , ) ( , , ) ( , , ) 0,B B B2 3 5 and mc x( ,6
=B P, ) 791.2B .

According to Eqs. (23) and (24),

= + + + + +

= = ≈

TMC U B P

AMC U B P

( , , ) 0 0 0 791.2 0 791.2

1582.4, ( , , ) 263.73
B

B
1582.4

6

. Then ac-

cording to Eq. (25), = +ATC U B P tc B P( , , ) ( , )B B
= + =AMC U B P( , , ) 79.12 263.73 342.85B .

If we use the method in [64], the total misclassification cost is

Input: (1) a confidence-level-vector-based decision system (U,C, d,V, I, P), the test cost function for each feature, and the misclas-
sification cost function for each misclassified class pair;
(2) the weight δ; for each feature a ∈ C, the confidence level’s minimal value p0

a and the step-size sa.
Output: the selected feature subset B and confidence level vector PB

Method: addition-deletion

//Step 1: Initialize five global variables
1: Set B = ∅, PB = (), POS (B,PB)({d}) = ∅,CA = C, and S = U, where B is the selected feature subset, PB is the selected confidence

level vector (“()” denotes an empty vector), POS (B,PB)({d}) is the positive region, CA is the set of unselected features, and S is
the set of the objects out of the positive region.
//Step 2: Add feature-granularity elements which have the maximal significances into (B, PB) step by step

2: while (|S | > 0) do
3: for (each a ∈ CA) do
4: for (each x ∈ S ) do
5: signx = true;//signx is a global variable used in Algorithm 2
6: end for
7: if (δ == 0) then
8: p∗a = p0

a;
9: FGScomputing(S , B, PB, a, p∗a);//Invoke Algorithm 2, and return IPR(B,PB)(a, p∗a) and FGS (B,PB)(a, p∗a)

10: else
11: for (pa = p0

a; pa ≤ 0.997; pa = pa + sa) do
12: FGScomputing(S , B, PB, a, pa);//Invoke Algorithm 2, and return IPR(B,PB)(a, pa) and FGS (B,PB)(a, pa)
13: end for
14: Select p∗a satisfying FGS (B,PB)(a, p∗a) = max(FGS (B,PB)(a, pa));
15: end if
16: end for
17: Select a′ satisfying FGS (B,PB)(a′, p∗a′ ) = max(FGS (B,PB)(a, p∗a));
18: if (FGS (B,PB)(a′, p∗a′ ) > 0) then
19: B = B ∪ {a′}; PB = PB � (p∗a′ ); POS (B,PB)({d}) = POS (B,PB)({d}) ∪ IPR(B,PB)(a′, p∗a′ ); CA = CA − {a′}; S =

S − IPR(B,PB)(a′, p∗a′ );//Update the five variables, in which PB = PB � (p∗a′ ) refers to Definition 4.1
20: else
21: exit while;
22: end if
23: end while
//Step 3: Delete redundant feature-granularity elements to make the remaining feature-granularity pair have the minimal average
total cost (ATC)

24: cmtc = ATC(U, B, PB);//cmtc denotes currently minimal ATC, where ATC is computed according to Section3.2
25: while (ture) do
26: for (each a ∈ B) do
27: Compute ATC(U, B − {a}, PB − (pa)), where PB − (pa) refers to Definition 4.2;
28: end for
29: Select a′ satisfying ATC(U, B − {a′}, PB − (pa′ )) = min(ATC(U, B − {a}, PB − (pa)));
30: if (cmtc > ATC(U, B − {a′}, PB − (pa′ ))) then
31: cmtc = ATC(U, B − {a′}, PB − (pa′ )); B = B − {a′}; PB = PB − (pa′ );//Update the three variables
32: else
33: exit while;
34: end if
35: end while
36: return B, PB;

Algorithm 1. A δ-weighted heuristic feature-granularity selection algorithm.
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× =791.2 4 3164.8, and the average total cost is
+ ≈ + =79.12 527.47 79.12 606.593164.8

6 . Both the two cost values are
much larger than those obtained by our method because the mis-
classification costs of x4 and x6 are repetitively computed. This loophole
has been coped with by our method.

3.3. The variable-cost-based multi-granularity feature selection problem

Traditional cost-sensitive feature selection aims at finding a feature
subset to minimize the total cost, or equivalently the average total cost,
and meanwhile to preserve the information of original decision system
as much as possible. The scale of preserved information is often mea-
sured with the size of the positive region. In the multi-granularity
feature selection, not only features but also feature-value granularities
are taken into account based on measurement errors and variable costs.
We focus on finding a suitable pair of feature subset and confidence
level vector to achieve a good trade-off among feature dimension re-
duction, feature-value granularity selection and total cost minimiza-
tion. The variable-cost-based multi-granularity feature selection pro-
blem can be formally defined as follows:

Problem 3.3. The variable-cost-based multi-granularity feature
selection problem.

Input: a CVDS =S U C d V I P( , , , , , ), the test cost function for each
feature, and the misclassification cost function for each misclassified
class pair;

Output: the pair of selected feature subset B and confidence level
vector PB;

Optimization objectives: (1) min(ATC(U, B, PB)); and (2)
max POS d( ({ }) )B P( , )B .

4. Algorithm design

Since not only features but also their respective feature-value
granularities are considered in the variable-cost-based multi-granu-
larity feature selection problem, the problem is more complicated than
the existing cost-sensitive feature selection problems. In this section, we
design a novel approach to deal with the new problem, which mainly
contains a δ-weighted heuristic feature-granularity selection algorithm
and a relevant competition strategy. Firstly, the heuristic algorithm is
introduced, which follows an addition-deletion strategy. In the algo-
rithm, the monotonicities of the fundamental concepts in the CVRS
model are fully used to improve the efficiency. Then, the competition
strategy is adopted to run the heuristic algorithm within a given range
of δ to choose the best result. Finally, some metrics are presented to
evaluate the performance of the proposed approach.

4.1. The δ-weighted heuristic feature-granularity selection algorithm

There are a series of heuristic feature selection algorithms in the
literature of rough set applications [13,22,39]. In particular, the
weighted heuristic algorithms, in which the weights are often used to
adjust the influence ratio of the feature cost to the feature significance,
are proposed to deal with the cost-sensitive feature selection problems
[31,62]. These weighted heuristic algorithms have been manifested to
be effective and efficient, but they have not touched variable costs and
feature-value granularities. In this subsection, we introduce a δ-
weighted heuristic feature-granularity selection algorithm to address
the variable-cost-based multi-granularity feature selection problem.
Note that, according to the essence, the feature-granularity selection
algorithm is also called multi-granularity feature selection algorithm in
Section 5.3 to facilitate the statements regarding the comparison with
the existing single-granularity algorithms. There are two operations
w.r.t vectors in the proposed algorithm. We define them as follows:
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Definition 4.1. Given a vector = …X x x x( , , , )n1 2 and a number y,
⊔ = …X y x x x y( ) ( , , , , )n1 1 denotes a new vector obtained by extending

vector X and adding y as its last component.

Definition 4.2. Given a vector = … …− +X x x x x x x( , , , , , , , ),i i i n1 2 1 1
− = … …− +X x x x x x x( ) ( , , , , , , )i i i n1 2 1 1 denotes a new vector obtained by

deleting component xi from vector X.

The proposed heuristic feature-granularity selection algorithm is
composed of Algorithms 1 and 2, in which Algorithm 1 is the main
framework, and Algorithm 2 is invoked by Algorithm 1. Note that, there
are two remarks about the parameters in the input of Algorithm 1,
which are given as follows:

Remark 4.3. As a matter of fact, the entire confidence level vector P in
the input of Algorithm 1 is not given any specified values, namely it is
just a symbol in the heuristic algorithm. For each feature a∈ C, we only
give the minimal confidence level pa

0 and the maximal confidence level
0.997 at the beginning of the algorithm. Note that, pa

0 can be set to be
□pa (the intrinsic minimal value of confidence level computed by

Eq. (16)) or a larger value. We will discuss which setting is better in
Section 5.

Remark 4.4. Although it seems that there are a series of parameters in
the input of Algorithm 1, most of them are intrinsic to the given
decision system in real applications, except the weight δ, the confidence
level’minimal value pa

0 and the step-size sa. Concretely, given a decision
system (U, C, d, V, I) in real world, the test cost functions and the
misclassification cost functions introduced in Section 3.1 are
automatically generated and could not be controlled by users, namely
they are intrinsic parameters.

Algorithm 1 follows an addition-deletion strategy discussed in [57]
and it mainly contains three steps. First, Step 1 is shown in line 1, in
which several global variables are explicitly initialized. Then, as shown
in lines 2–23, Step 2 is the addition phase, in which features and their
corresponding confidence levels which make the designed feature-
granularity significance maximal in each iteration of the while loop are
chosen step by step until the positive region could not be expanded any
more. Algorithm 2 is invoked in this step. After this step, a feature-
granularity pair (B, PB) is obtained. Finally, as listed in lines 24–35, Step
3 is the deletion phase, in which we delete redundant feature-granu-
larity elements in (B, PB) according to the average total costs whose
computation method has been introduced in Section 3.2. The result of
the algorithm is an optimal feature-granularity pair that has the
minimal average total cost.

As shown in lines 3–17 of Algorithm 1, there is a two-layer selection
in the addition phase of the heuristic algorithm. Firstly, for each un-
selected feature a, we try the confidence level pa from the minimal
value pa

0 to the maximal value 0.997 with a step-size sa∈ (0, 1), and
choose the best value p*a which makes the feature-granularity sig-
nificance maximal. Next, for all unselected features, their maximal
feature-granularity significance values are compared to select the best
feature a′. The feature-granularity significance function plays an im-
portant role in the process. Let B and PB respectively denote the selected
feature subset and confidence level vector, then the incremental posi-
tive region (IPR) induced by feature ∈ −a C B and confidence level pa
is denoted as

= −∪ ⊔IPR a p POS d POS d( , ) ({ }) ({ }).B P a B a P p B P( , ) ( { }, ( )) ( , )B B a B (26)

According to Theorem 2.11, ≥IPR a p( , ) 0B P a( , )B . Then the δ-weighted
feature-granularity significance (FGS) function is defined as

=FGS a p IPR a p tc a p( , ) ( , ) ·[ ( , )] ,B P a B P a a
δ

( , ) ( , )B B (27)

where the exponent δ≤ 0 is a parameter set by the user to adjust the

weight ratio between the size of incremental positive region
IPR a p( , )B P a( , )B and the test cost tc(a, pa). Because we choose the fea-
ture-granularity pair with the maximal feature-granularity significance
in the algorithm, it is known from Eq. (27) that the feature-granularity
pair which can expand the positive region more largely or which has
cheaper test cost is preferred. In fact, the positive region is related to the
total misclassification cost. If an object belongs to the positive region,
its neighborhood granule is consistent, namely, the objects in the
neighborhood have the same decision value, so the misclassification
cost is 0 for the object. Therefore, maximizing the positive region is
helpful to minimize the total misclassification cost. Essentially, test
costs and misclassification costs are both considered in the feature-
granularity significance function. The algorithm aims at finding a good
trade-off between them. Specially, if =δ 0, test costs are not considered
in the feature-granularity significance function.

In particular, the above-mentioned monotonicities w.r.t. the fun-
damental concepts in CVRS are well used to make the addition phase of
the heuristic algorithm more efficient. Firstly, as shown in lines 4–6 of
Algorithm 1 and lines 3–10 of Algorithm 2, we use global variables
{signx} to judge whether to continue computing the neighborhood of x
in Algorithm 2 when pa increases. Concretely, assuming that

⊈ ∀ ∈∪ ⊔n x X X U d( ) , /{ },B a P p( { }, ( ))B a we label “signx = false” to avoid
computing ∪ ⊔ +n x( )B a P p s( { }, ( ))B a a because ⊈∪ ⊔ +n x X( )B a P p s( { }, ( ))B a a ac-
cording to Theorem 2.13, and ∉ +x IPR a p s( , )B P a a( , )B in this case. So
we need not consider this kind of objects when computing

+IPR a p s( , )B P a a( , )B . In this way, the time consumption of calculating
the incremental positive region can be reduced effectively. Secondly, as
shown in lines 7–15 of Algorithm 1, selecting the best confidence level
p*a for =δ 0 is much faster than that for δ<0. If =δ 0, i.e., only
IPR a p( , )B P a( , )B is considered in the significance function
FGS a p( , ),B P a( , )B p*a is equal to the minimal confidence level pa

0. The
reason is that FGS a p( , )B P a( , )B is equal to IPR a p( , )B P a( , )B and the latter is
maximal at this time according to Theorem 2.13. Accordingly, if =δ 0,
we can immediately choose =p p*a a

0 and compute FGS a p( , *),B P a( , )B while
the calculation of FGS a p( , )B P a( , )B is not needed when >p pa a

0. Because
we often run the heuristic algorithm within a range of δ including =δ 0
for comparison by using the competition strategy introduced in the
following context, this design can improve the efficiency of our ap-
proach. Finally, as shown in line 19 of Algorithm 1, by using
= − ′ ′S S IPR a p( , *),B P a( , )B the objects needed to be judged whether they

belong to the positive region get fewer and fewer as the feature-gran-
ularity selection goes on. Given B1⊆B2⊆C and ⊑P P ,B B1 2 if
∈x POS d({ }),B P( , )B1 1 we have ∈x POS d({ })B P( , )B2 2 according to

Theorem 2.11. It means that we just need to discuss the objects in
−U POS d({ })B P( , )B1 1 when computing POS d({ })B P( , )B2 2 because the ob-

jects in POS d({ })B P( , )B1 1 are necessarily in POS d({ })B P( , )B2 2 . Consequently,
the computation will be reduced significantly.

Now we analyze the time complexity of the heuristic feature-gran-
ularity selection algorithm. Because the algorithm is composed of
Algorithms 1 and 2, and Algorithm 2 is invoked by Algorithm 1, we first
analyze the time complexity of Algorithm 2. In Algorithm 2, the key
step is to compute the neighborhood of object x∈ S, which is shown in
line 4. According to Eqs. (6)–(9), the time complexity of this step is

∪ = +O U B a O U B( { } ) ( ( 1)). In the worst case, ∀x∈ S, “sign = =x

true”, so the time complexity of Algorithm 2 is +O S U B( ( 1)). Then,
we combine Algorithms 1 and 2 to analyze the time complexity of the
addition phase of the heuristic algorithm. Assuming that =B k after
this phase and that selecting a feature-granularity element averagely
leads to |U|/k objects added into the positive region, we have
= − = = … −−( )S U U i k k1 ( 0, 1, 2, , 1, )i

k
k i

k with the while loop
going on. In this phase, the key step is to compute the incremental
positive region and the feature-granularity significance, i.e. to invoke
Algorithm 2, which is shown in line 9 of Algorithm 1 if =δ 0, and line
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12 if δ<0. If =δ 0, the total computational time of the addition phase
is

∑

⎟

+ − − + − −

+⋯+ − + ⎞
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= + − −
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−

O C U C U k
k

C U k
k

k C k U
k

O U
k

i k i C i

( · 2( 1)· 1 3( 2)· 2

·( 1)· · 1

( ( 1)( )( ));
i

k

2 2 2

2

2

0

1

(28)

and if δ<0, let =np max ⎡
⎢⎢

⎤
⎥⎥

∈
− ,a C

p
s

0.997 a
a

0
then in the worst case, the total

computational time of this phase is

∑ + − −
=

−

O
n U

k
i k i C i( ( 1)( )( )).p

i

k2

0

1

(29)

In practice, it is often found that most of objects are grouped into the
positive region at the beginning of the addition phase, and the above-
mentioned monotonicities can further improve the efficiency, so the
computational time of this phase is usually much less than that shown
in Eq. (28) or Eq. (29). Finally, we analyze the time complexity of the
deletion phase of the heuristic algorithm. The key step in this phase is to
compute the average total cost for given feature-granularity pair, which
is shown in line 27 of Algorithm 1. This step is mainly composed of two
computations. The first one, whose time complexity is

− = −O B a U O B U( { } ) (( 1) ),2 2 computes the neighborhoods for
each object in U; and the second one, whose time complexity is O
(|U||Vd|) according to Section 3.1 and 3.2, calculates the average total
cost. Assuming that l< k features and their associated confidence levels
are removed in the deletion phase, the total computational time of this
phase is

∑

− + + − −

+ +⋯+ − − − +

= − − − +
=

O k k U U V k k U

U V k l k l U U V

O k i k i U U V
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d

d d

i

l

d

2 2

2

0

2

According to the above analysis, if =δ 0, the total computational time
of the heuristic algorithm is

∑ ∑+ − − + − − −
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(30)

and if δ<0, its counterpart is

∑ ∑+ − − + − − −
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=
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n U
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(31)

As discussed above, for the heuristic algorithm, the computational time
of its addition phase is often much less than that formulated in Eq. (28)
when =δ 0 and Eq. (29) when δ<0, so its total computational time is
usually less than that shown in Eq. (30) or Eq. (31), which will be va-
lidated in Section 5.3.

4.2. The competition strategy

As mentioned above, the parameter δ in Eq. (27) is used to adjust
the weight ratio between the size of incremental positive region and the
test cost. Different δ settings result in different feature-granularity se-
lection results, but the users do not know which δ value will generate
less average total cost in advance. To tackle this problem, we propose a
competition strategy. The strategy is similar to that in [31] in terms of
designing ideas, but the optimization objective function has changed
because of the new environment.

Concretely, we specify a set of δ values and compute the feature-
granularity selection results for each δ respectively by using the heur-
istic algorithm. Through comparison, the feature-granularity pair with
minimal average total cost will be chosen. Formally, let (Bδ, Pδ) denote
the feature-granularity pair constructed by the heuristic algorithm with
the weight δ, and L denote the set of user-specified δ values, then the
minimal average total cost and the corresponding optimal feature-
granularity pair can be obtained by the following equation:

= ∈ATC min ATC B P( , ),L δ L δ δ (32)

where ATC(Bδ, Pδ) is the abbreviation of ATC(U, Bδ, Pδ). This kind of
abbreviations is also used in Section 4.3.

By using the competition strategy, the heuristic algorithm needs to
be run for |L| times, but this is acceptable for relatively small |L| since
the heuristic algorithm is fast, which will be validated in Section 5.3. If
|L| is large, we can run the program on several computers in parallel to
reduce the time consumption. Although the competition strategy is
simple, by using it, users do not have to know the best setting of δ in
advance, and the quality of the feature-granularity selection results can
be enhanced effectively, which will be manifested in Section 5.

4.3. Evaluation metrics

To compare our approach with the existing approaches, some eva-
luation metrics are introduced, which is started from the difference
ratio of cost. Let c denote a type of cost, for a dataset in a particular
environment, the cost difference ratio (DR) is defined as

= − = − ≠DR c c
c

c
c

c1, 0,c
2 1

1

2

1
1 (33)

where c1 and c2 denote the costs obtained by two different approaches,
respectively. Obviously, ≥ −DR 1c . If ≤ − ≤ ≤c c DR, 1 0c2 1 ; otherwise,
DRc>0. The smaller |DRc| is, the closer c2 is to c1. Specially, = −DR 1c

when =c 0,2 and =DR 0c when =c c2 1. Take the average total cost as
an example. Let ATC1 and ATC2 denote the average total costs obtained
by Approach 1 and Approach 2 of feature selection, respectively. If

=ATC 2001 and =ATC 210,2 we have = =−DR 0.05,ATC
210 200

200 so
Approach 1 performs better than Approach 2 on minimizing the
average total cost.

Note that, a concept called cost exceeding factor was introduced in
[31] to compute the exceeding ratio between the cost obtained by a
heuristic feature selection algorithm and the minimal cost obtained by
the exhaustive algorithm, so the cost exceeding factor is no less than 0.
Compared with the cost exceeding factor, the defined cost difference
ratio has a wider value range, and it is also more general because any
two feature selection algorithms can be compared by using it.

As will be shown in Section 5.3, our approach is mainly compared
with three state-of-art feature selection or feature-granularity selection
approaches from the perspective of minimizing average total costs in
the experiments, thus we discuss the relevant metrics for the ap-
proaches here. For example, let (B, PB) and (R, p) respectively denote
the feature-granularity selection results obtained by our approach and
the approach proposed in [64] for a decision system with a particular
cost setting. Then the difference ratio between (B, PB) and (R, p) in
terms of average total cost is

= −DR B P ATC B P
ATC R p

( , ) ( , )
( , )

1.ATC B
B

(34)

Since we compare the two approaches by running them with different
cost settings for each decision system in Section 5.3, the corresponding
average difference ratio (ADR) can be obtained as follows:

∑ ⎜ ⎟=
∑

= ⎛
⎝

− ⎞
⎠

=

=

ADR
DR B P

K K
ATC B P
ATC R p

( , ) 1 ( , )
( , )

1 ,ATC
i
K

ATC i B

i

K
i B

i i

1

1

i i

(35)

where B P( , )i Bi and (Ri, pi) are the results of feature-granularity selection
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undertaken on the ith cost setting by the two approaches, respectively.
The average difference ratio index compares the overall performance of
different feature selection or feature-granularity selection algorithms
from a statistical perspective.

5. Experiments

As discussed in Section 4, the proposed multi-granularity feature
selection approach mainly contains the δ-weighted heuristic feature-
granularity selection algorithm and the relevant competition strategy.
In this section, we try to answer the following questions by experi-
mentation:

(1) Is the heuristic feature-granularity selection algorithm appropriate
for the multi-granularity feature selection problem?

(2) Can the competition strategy enhance the quality of the results?
(3) Is there an optimal setting or a rational value range for each ex-

trinsic parameter in the heuristic algorithm for any dataset?
(4) Does the multi-granularity feature selection approach perform

better than the existing single-granularity approaches?

We start from generating the parameter values, which mainly in-
clude those of test cost functions and misclassification cost functions,
for experiments according to reality. Then we give some representative
results of multi-granularity feature selection and analyze the results.
Finally, we further study the performance of our approach through
making comparisons from two perspectives. One is comparing between
our approach and the existing approaches, the other is comparing
among different values for the extrinsic parameters, especially the
weight δ. All the algorithms are running on the same computation
platform (CPU: Intel(R) Core(TM) i7-6500U CPU @ 2.50 GHz; RAM:
8.00 GB; OS: Windows 10).

5.1. Data generation

We test the performance of the multi-granularity feature selection
approach on nine standard datasets in the UCI repository, whose basic

information is listed in Table 6. To handle the data more easily, data
items are normalized onto [0,1]. For convenience, missing values are
directly set to be 0.5. The constant k in Eq. (7) is set to be 0.05. To
facilitate the understanding of experiment results w.r.t. the feature
values’ multi-granularity, both the confidence level’s minimal value pa

0

and the step-size sa are respectively set to be the same among all fea-
tures in the following experiments (when this assumption does not
hold, it is known that the results are similar by experimentation).

Since the UCI datasets have no intrinsic test costs and mis-
classification costs, we create the two kinds of cost functions for ex-
perimentation according to Section 3.1. Naturally, Eqs. (17)–(22) can
be used to generate multiple different cost settings. Here we mainly
introduce one type of cost setting for brevity, and if not specified, the
results mentioned below corresponds to this type of cost setting. First,
the values of test cost parameters are set according to the number of
features. For the datasets whose feature number is less than 15, the
highest test costs tc(a) in Eq. (17) are set to be uniformly distributed
random integers lying within [20,100]; and for other datasets, the
counterparts are set to be lying within [20,200]. The test cost adjusting
factors λa in the equation are set to be uniformly distributed random
decimals lying within [0,1]. Then, the values of misclassification cost
parameters are set according to the application background of the da-
taset. For the medical datasets Diab, Heart, Liver, Wdbc and Wpbc,
misclassification cost functions are set by using Eq. (21), in which the
misclassification cost penalty factors γ(m, n) are supposed to be integers
lying within [10,100]; for other four datasets, misclassification cost
functions are set by using Eq. (20), in which the constant mis-
classification costs MC(m, n) are assumed to be integers lying within
[5000,50000]. Note that, in order to be close to reality, the values of
misclassification cost parameters are set carefully. For one example,
there are two classes “recur” and “nonrecur” for the objects in Wpbc
dataset, which are abbreviated as “R” and “N” respectively. Generally
speaking, the cost of misclassifying an object from class “R” to class “N”
is larger than that for misclassifying from class “N” to class “R”, because
the former will delay the treatment of the life-threatening disease,
while the latter may only cause unnecessary spending and psycholo-
gical burden. So we set =γ 100R N( , ) and =γ 10N R( , ) . For another ex-
ample, there are seven classes in Image dataset, and the misclassifica-
tion consequences are similar between different classes, so all the
misclassification costs are set to be 10,000 for convenience.

5.2. Representative results and the analyses

We let = − … −δ 4, , 0.5, 0, and let the pair p s( , )a a
0 be (0.1,0.1),

(0.1,0.2) and (0.2,0.15), respectively. Note that, the aim of testing
different values of pa

0 is to find whether the confidence level’s intrinsic
minimal value □pa is a good parameter assignment in the proposed
heuristic algorithm, and whether there exists a value which is larger
than □pa and performs better than □pa . For each dataset in Table 6 and
each p s( , )a a

0 pair, we generate 1000 different cost settings, then run the
heuristic algorithm with these data settings for all δ values. In order to

Table 6
Data information.

Dataset Domain Samples Features Classes

Diab Clinic 768 8 2
German Finance 1000 20 2
Heart Clinic 303 13 5
Image Graphics 2310 18 7
Iono Physics 351 34 2
Liver Clinic 345 6 2
Sonar Physics 208 60 2
Wdbc Clinic 569 30 2
Wpbc Clinic 198 33 2

Table 7
A representative feature-granularity selection result for Liver dataset with =p s( , ) (0.1, 0.1),a a

0 where pa
0 and sa are respectively the minimal value and the step-size of

the confidence level, TTC denotes the total test cost for each object, and AMC and ATC respectively denote the average misclassification cost and average total cost for
all objects.

δ TTC AMC ATC Feature subset Confidence level vector

−4 152.0487 92.5217 244.5705 {1,2,3,4,6} (0.997,0.9,0.9,0.8,0.997)
−3.5 156.5427 45.2174 201.76 {1,2,3,4,6} (0.997,0.9,0.6,0.8,0.997)
−3 125.0852 14.4928 139.5779 {1,2,4,6} (0.9,0.9,0.3,0.997)
−2.5 125.0852 14.4928 139.5779 {1,2,4,6} (0.9,0.9,0.3,0.997)
−2 86.4529 52.3478 138.8007 {2,4,6} (0.3,0.7,0.997)
−1.5 88.0332 35.7101 123.7434 {2,4,6} (0.3,0.7,0.9)
−1 109.6507 3.1594 112.8101 {2,3,6} (0.3,0.1,0.9)
−0.5 94.9563 13.6232 108.5795 {2,4,6} (0.3,0.3,0.9)
0 102.106 20.6957 122.8016 {2,3} (0.1,0.1)
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save space, we only list the representative results of Liver and Wpbc
with =p s( , ) (0.1, 0.1),a a

0 which are shown in Tables 7,8, where TTC
denotes the total test cost for each object. The boldface numbers in the
fourth columns of the tables are the minimal average total costs, and
the integers in the fifth columns are the indexes of selected features.

The following observations could be made from the results:
(1) Only a part of candidate features are selected; more importantly,

even though both pa
0 and sa are respectively set to be the same among all

features, the best confidence levels p*a between different chosen features
are often not the same except that p*a for each selected feature is pa

0

when =δ 0 (This has been explained in Section 4.1). It validates that
the heuristic algorithm can effectively solve the multi-granularity fea-
ture selection problem.

(2) Although the feature-granularity selection results may be the
same between two adjacent values of δ in some cases, they change with
the value of δ in general, and the competition strategy could be used to
further improve the quality of the results. By using the competition
strategy, the minimal average total cost and the best feature-granularity
pair can be obtained within the given range of δ.

(3) In general, with the increase of δ value, the dimension of se-
lected features reduces gradually apart from some exceptions. The
reason is that, the bigger δ is, the larger proportion the size of incre-
mental positive region occupies in the feature-granularity significance
according to Eq. (27). Hence, less features are usually needed to max-
imize the positive region in the addition phase of the heuristic algo-
rithm.

To investigate the influence of parameters pa
0 and sa, we also test our

heuristic algorithm with the same data settings (i.e. the same settings of
decision systems and cost functions) under the three p s( , )a a

0 pairs. Two
examples of Wpbc dataset are given in Table 9, in which the boldface
numbers are the minimal average total costs. It is found from the table
that, in the first example, the minimal average total cost for

=p s( , ) (0.1, 0.2)a a
0 is less than that for =p s( , ) (0.1, 0.1),a a

0 and the
corresponding cost for =p s( , ) (0.2, 0.15)a a

0 is more than that for
=p s( , ) (0.1, 0.1)a a

0 . While in the second example, the minimal average
total cost for =p s( , ) (0.1, 0.2)a a

0 is equal to that for =p s( , ) (0.1, 0.1),a a
0

and the corresponding cost for =p s( , ) (0.2, 0.15)a a
0 is less than that for

=p s( , ) (0.1, 0.1)a a
0 . In fact, with the increase of pa

0 and/or sa, the
average total cost for each δ value may increase, decrease, or stay the
same, so the minimal average total cost may also grow, drop or remain
unchanged. Hence, there is not an obvious change rule of the minimal
average total cost with the change of p s( , )a a

0 .
Combining Tables 7,8 with Table 9, we find that the average total

costs are usually smaller when δ takes value within interval −[ 3, 0), and
the minimal average total cost and optimal feature-granularity pair often
fall within this range of δ. The reason is that, if =δ 0, test costs are not
taken into account for computing the feature-granularity significance in
Eq. (27); while the δ-weighted test-cost-related value usually far out-
weighs the size of incremental positive region if < −δ 3. In these two
cases, a good trade-off between test costs and misclassification costs often
cannot be achieved. Hence, to obtain better results, the value range of δ
is that δ<0 and |δ| is not too large (|δ|≤ 3 here).

In summary, our approach can effectively solve the multi-granu-
larity feature selection problem. A good trade-off among feature di-
mensionality reduction, feature-value granularity selection and total
cost minimization can be obtained by the approach. We will further
investigate the performance of our approach and the influence of the
extrinsic parameters in the next subsection.

5.3. Comparisons and analyses

In this subsection, we study the performance of the proposed mea-
surement errors and variable costs based multi-granularity feature se-
lection approach by making comparisons from two aspects. One aspect
is that, we compare our multi-granularity approach with three state-of-
art error-based cost-sensitive feature selection approaches mentioned in
Section 1, all of which are essentially single-granularity approaches
[6,63,64]. The other aspect is that, the performance of the designed
heuristic algorithm is compared among different values of extrinsic
parameters to study the influence of these parameters. Two main me-
trics are employed to compare the performance. One metric is the
average difference ratio introduced in Section 4.3, which is used to
compare the effectiveness from the viewpoint of total cost minimiza-
tion. The other metric is the run-time for comparing the computational
efficiency.

To study the influence of different values of extrinsic parameters, we
first discuss detailedly the comparisons between our multi-granularity
approach and the single-granularity approach in [64]. For brevity, if
not specified, in this subsection the phrase “single-granularity ap-
proach/algorithm” refers to the one in [64]. In order to facilitate the
comparisons, we uniformly use Eqs. (17)–(22) to construct the cost
settings for the compared approaches, and uniformly use the calcula-
tion method presented in Section 3.2 to compute the average total cost.
Let = − − … −δ 4, 3.75, , 0.25, 0, and let =p s( , )a a

0

(0.1, 0.1), (0.1, 0.2), (0.2, 0.15). For each dataset and each p s( , )a a
0 pair,

1000 different cost settings are generated; and for each data setting, we
run our multi-granularity feature selection algorithm (i.e., the heuristic
feature-granularity selection algorithm proposed in Section 4.1) with
each δ value and run the single-granularity feature selection algorithm.1

The average difference ratios w.r.t. average total cost are computed,
which are depicted in Figs. 3–5. Note that, according to Eq. (35), the
less the average difference ratio is, the better our algorithm is in terms
of minimizing the total cost. In particular, if the average difference ratio
is less than 0, the average total cost obtained by our multi-granularity
algorithm is less than that of the single-granularity algorithm. From the
figures, we observe the follows:

(1) For each p s( , )a a
0 pair, there is at least one average difference

ratio less than or close to 0 for all datasets. Especially in Diab, German,
Heart, Image and Liver, a series of average difference ratios are

Table 8
A representative feature-granularity selection result for Wpbc dataset with =p s( , ) (0.1, 0.1)a a

0 .

δ TTC AMC ATC Feature subset Confidence level vector

−4 42.1923 20.202 62.3943 {6,7,12,14,20,31} (0.997,0.997,0.997,0.997,0.8,0.997)
−3.5 42.1923 20.202 62.3943 {6,7,12,14,20,31} (0.997,0.997,0.997,0.997,0.8,0.997)
−3 42.1923 20.202 62.3943 {6,7,12,14,20,31} (0.997,0.997,0.997,0.997,0.8,0.997)
−2.5 42.6963 15.1515 57.8479 {6,7,12,14,20,31} (0.997,0.997,0.997,0.997,0.7,0.997)
−2 38.2619 10.101 48.3629 {6,10,12,20,31} (0.997,0.9,0.997,0.6,0.997)
−1.5 38.2619 10.101 48.3629 {6,10,12,20,31} (0.997,0.9,0.997,0.6,0.997)
−1 28.9484 7.5758 36.5241 {6,12,20,31} (0.997,0.997,0.1,0.997)
−0.5 39.9784 10.101 50.0794 {9,12,29,31} (0.997,0.997,0.1,0.997)
0 128.8477 0 128.8477 {4,7} (0.1,0.1)

1 For each p s( , )a a
0 pair, we generate 50 different cost settings for German dataset and

100 different cost settings for Image dataset, as on each cost setting the single-granularity
algorithm takes at least 1 h and 0.15 h for German and Image respectively.
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dramatically less than 0 for each p s( , )a a
0 pair. Naturally, all the minimal

average difference ratios are less than or close to 0 in these datasets.
Therefore, the minimal average total costs obtained by our multi-
granularity feature selection approach are less than or close to those
obtained by the approach in [64], which are minimal in the single-
granularity context. Hence, our approach performs well on minimizing
the total cost.

(2) According to Eq. (35), we know that all the minimal average

total costs and optimal feature-granularity pairs obtained by our ap-
proach fall within ∈ − −δ [ 1.5, 0.25] for each dataset and each p s( , )a a

0

pair. Moreover, when =δ 0 or < −δ 3, the average total costs are often
larger than those corresponding to ∈ −δ [ 3, 0). These observations are
in accord with those in the penultimate paragraph of Section 5.2, and a
smaller value range is obtained for the weight δ, namely
∈ − −δ [ 1.5, 0.25].
(3) There is not a universally best setting for δ. However, there is

Table 9
Two exemplary changes of minimal average total costs with the increase of pa

0 and/or sa.

No. (p s,a a
0 ) = −δ 4 = −δ 3.5 = −δ 3 = −δ 2.5 = −δ 2 = −δ 1.5 = −δ 1 = −δ 0.5 =δ 0

1 (0.1,0.1) 86.0389 86.0389 86.0389 75.8952 75.8952 68.6087 63.1366 63.1366 125.8582
(0.1,0.2) 73.1694 73.1694 58.3503 58.3503 58.3503 58.3503 66.8415 66.8415 125.8582
(0.2,0.15) 84.8507 84.8507 84.8507 84.8507 71.2236 66.774 66.774 66.774 121.0185

2 (0.1,0.1) 100.0722 100.0722 70.8993 67.5602 65.7547 65.7547 65.7547 63.7621 334.0319
(0.1,0.2) 70.8993 70.8993 70.8993 65.7547 65.7547 65.7547 65.7547 63.7621 334.0319
(0.2,0.15) 90.6442 85.8204 85.8204 70.2147 70.2147 70.2147 67.4919 62.8244 270.4155

Fig. 3. Average difference ratios (ADR): (a) Diab, (b) German, (c) Heart.

Fig. 4. Average difference ratios: (a) Image, (b) Iono, (c) Liver.

Fig. 5. Average difference ratios: (a) Sonar, (b) Wdbc, (c) Wpbc.
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also not a big change for the average difference ratios when
∈ − −δ [ 1.5, 0.25] in most cases. It means that good feature-granularity

selection results could usually be achieved within this range of δ even
when the competition strategy is not adopted.

Note that, for a dataset, if the average difference ratios corre-
sponding to one p s( , )a a

0 pair are lower than those corresponding to
another two p s( , )a a

0 pairs, it does not mean that the former p s( , )a a
0 value

is better. The reason is that, as discussed in Section 5.2, with the in-
crease of pa

0 and/or sa, the average total costs obtained by our heuristic
multi-granularity algorithm may grow, drop or remain unchanged; and
it is found in the experiments that those costs gained by the single-
granularity algorithm may also increase, decrease or stay the same.
Moreover, for each dataset, the test cost settings are generated ran-
domly and they are not necessarily the same among the three p s( , )a a

0

pairs. Thus we cannot know which p s( , )a a
0 value is the best according to

the average difference ratio index. Fortunately, the question could be
answered by the comparisons of average run-time in the above-

mentioned experiments. The results are shown in Figs. 6–8, in which
the unit of run-time is 1 ms. From the figures, we note the follows:

(1) In general, our heuristic multi-granularity feature selection al-
gorithm performs well on the computational efficiency. Although
sometimes our algorithm runs more slowly than the single-granularity
algorithm when the dataset only has several features, it runs much
faster than the latter when the dataset has many features; meanwhile, it
can obtain multiple feature-value granularities for selected features
while the latter cannot. Besides, as discussed above, good feature-
granularity selection results could usually be obtained within
∈ − −δ [ 1.5, 0.25] even when the competition strategy is not used. Even

if the competition strategy is adopted, the multi-granularity feature
selection approach is still efficient because the range of δ value is short
( ∈ − −δ [ 1.5, 0.25]).

(2) With the increase of the p s( , )a a
0 value, the run-time of our

heuristic multi-granularity algorithm often gets large. The reason is
that, big p s( , )a a

0 will generate large error intervals. In this case, more

Fig. 6. Comparisons of average run-time: (a) Diab, (b) German, (c) Heart, where “single” denotes the single-granularity feature selection algorithm proposed in [64],
and “w=*” denotes the proposed heuristic multi-granularity algorithm with weight =δ *.

Fig. 7. Comparisons of average run-time: (a) Image, (b) Iono, (c) Liver.

Fig. 8. Comparisons of average run-time: (a) Sonar, (b) Wdbc, (c) Wpbc.
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feature-granularity elements are usually needed to reduce the increase
of misclassification rate induced by the large error intervals in the ad-
dition phase of the algorithm, and these feature-granularity elements
are required to be checked whether to be redundant in the deletion
phase. Consequently, the run-time increases for both the addition phase
and the deletion phase of the algorithm. So (0.1,0.1) is the best among
the three p s( , )a a

0 values for our heuristic multi-granularity algorithm in
terms of computational efficiency. Besides, from Table 9, it is known
that there is usually not a big change of minimal average total costs
between the three p s( , )a a

0 values. Hence, if allowed, one could choose
pa

0 to be the confidence level’s intrinsic minimal value □p ,a and choose sa
to be a rational small value.

(3) For the same dataset and the same p s( , )a a
0 value, the run-time of

our algorithm often grows with the decrease of δ although the growth
may be slow sometimes. The reason is that, the less the δ value is, the
smaller proportion the size of incremental positive region occupies in
the feature-granularity significance according to Eq. (27). In this case,
more feature-granularity elements are often needed to maximize the
positive region in the addition phase of the algorithm. Similarly with
that in (2), the run-time of the algorithm will increase. Hence,
− −[ 1.5, 0.25] is a desirable value range of δ in terms of the computa-
tional efficiency.

It is notable that, for simplicity only one type of cost setting is in-
troduced in Section 5.1, but as a matter of fact we test our approach
with multiple types of cost settings in the experiments. And it is found
from the experimental results that our multi-granularity feature selec-
tion approach always has a good performance, especially when com-
paring with the existing single-granularity approach in [64]. Taking one
type of cost setting for Wpbc dataset as an example, we use Eq. (18) to
generate piecewise-constant-function-form test costs and let them be

random integers lying within [100,1000], and let misclassification costs
be constant values, = =mc mc100000, 10000R N N R( , ) ( , ) . This type of cost
setting is different from that one introduced in Section 5.1. Then we
conduct the same experiments as those in Section 5.2 and Section 5.3
with this type of cost setting. A representative feature-granularity se-
lection result is listed in Table 10, and the results of comparing between
the multi-granularity approach and the single-granularity approach are
shown in Fig. 9. It can be found that these results follow the rules ob-
tained in Section 5.2 and 5.3. The good performance of the proposed
multi-granularity feature selection approach is due to the nice algo-
rithm design.

As mentioned above, except the approach in [64], in fact we also
compare our multi-granularity feature selection approach with two
other single-granularity error-based cost-sensitive feature selection ap-
proaches in [6,63]. Experiments whose procedure is the same as that
discussed in this subsection are conducted on the nine datasets listed in
Table 6. In particular, to facilitate the comparisons, three different
values are respectively taken for the parameters of the two compared
single-granularity approaches. It is known from the experimental re-
sults that the proposed approach performs much better than the two
existing approaches on total cost minimization, and its computational
efficiency is comparable to that of the two ones. In order to save the
space, we only display the results of Heart dataset, which are depicted
in Fig. 10. From the average difference ratios shown in the figure, it is
known that most of average total costs obtained by our multi-granu-
larity algorithm are rather less than those obtained by the two existing
single-granularity algorithms. In addition, our algorithm runs faster
than the algorithm in [63], but it runs more slowly than that in [6]. The
reason why our multi-granularity algorithm runs more slowly than
some single-granularity algorithms is that, the multi-granularity

Table 10
A representative feature-granularity selection result for Wpbc dataset with =p s( , ) (0.1, 0.1)a a

0 and another type of cost setting.

δ TTC AMC ATC Feature subset Confidence level vector

−4 415.3408 202.0202 617.361 {5,13,27,30} (0.9,0.9,0.9,0.9)
−3.5 415.3408 202.0202 617.361 {5,13,27,30} (0.9,0.9,0.9,0.9)
−3 528.3196 50.5051 578.8246 {5,16,22,27,30} (0.9,0.7,0.9,0.7,0.9)
−2.5 528.3196 50.5051 578.8246 {5,16,22,27,30} (0.9,0.7,0.9,0.7,0.9)
−2 359.5862 50.5051 410.0912 {5,22,27} (0.1,0.9,0.7)
−1.5 359.5862 50.5051 410.0912 {5,22,27} (0.1,0.9,0.7)
−1 348.588 0 348.588 {5,27,30} (0.1,0.5,0.9)
−0.5 348.588 0 348.588 {5,27,30} (0.1,0.5,0.9)
0 1,167.5526 0 1,167.5526 {4,7} (0.1,0.1)

Fig. 9. Comparison results on Wpbc dataset with another type of cost setting: (a) average difference ratio, (b) average run-time.
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algorithm selects not only features but also their respective feature-
value granularities, while single-granularity algorithms select only
features, or features plus a single feature-value granularity for all se-
lected features. In general, the proposed multi-granularity feature se-
lection approach performs well not only on minimizing the total cost
but also on the computational efficiency. In these two aspects, the re-
sults of our approach are better than or comparable to those of state-of-
art single-granularity error-based cost-sensitive feature selection ap-
proaches. Meanwhile our approach can obtain multiple feature-value
granularities for selected features, while the single-granularity ap-
proaches cannot. Hence, our multi-granularity approach is more ef-
fective and versatile than the single-granularity approaches. In addi-
tion, − −[ 1.5, 0.25] is a rational value range for the weight δ, and smaller
values are preferred for the confidence level pair p s( , )a a

0 .

6. Conclusion and further work

In recent years, some researchers have studied cost-sensitive feature
selection based on rough set theory. However, most of existing ap-
proaches are essentially single-granularity, which are not feasible in
some real applications. In this paper, multi-granularity ideas have been
introduced into the area of cost-sensitive feature selection to study the
measurement errors and variable costs based multi-granularity feature
selection problem. We first built a confidence-level-vector-based
neighborhood rough set model, in which feature set and feature-value
granularity vector are associated effectively. Fundamental notions and
properties are discussed thoroughly in this new model. Then, several
kinds of variable cost settings were constructed according to reality, in
which the relationship among feature-value granularities, test costs and
misclassification costs was considered; and the computation method of
average total cost was developed. Finally, we proposed the multi-
granularity feature selection approach which mainly contains a heur-
istic feature-granularity selection algorithm and a relevant competition
strategy. In the feature-granularity selection algorithm, features and
their respective feature-value granularities are selected simultaneously;
and the competition strategy can further improve the performance of
the algorithm when necessary. Experimental results have indicated that
a desirable trade-off among feature dimension reduction, feature-value
granularity selection and total cost minimization can be obtained by
using the proposed approach. The multi-granularity feature selection

approach is more effective and versatile than the state-of-art single-
granularity error-based cost-sensitive feature selection approaches.

In summary, this work provides a new insight into the research
concerning multi-granularity ideas, cost-sensitive learning, and feature
selection problem. In the future, we will study the extended models to
cope with more complex data, such as composite information systems
or decision systems [20,58]. Our another future work is to design
parallel or incremental algorithms to deal with the multi-granularity
feature selection of large or even super-large data.
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